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THE RELATIVIZED LASCAR GROUPS, TYPE-AMALGAMATION,
AND ALGEBRAICITY

JAN DOBROWOLSKI, BYUNGHAN KIM, ALEXEI KOLESNIKOV, AND JUNGUK LEE

Abstract. In this paper we study the relativized Lascar Galois group of a strong type. The group is
a quasi-compact connected topological group, and if in addition the underlying theory T is G-compact,
then the group is compact. We apply compact group theory to obtain model theoretic results in this note.
For example, we use the divisibility of the Lascar group of a strong type to show that, in a simple theory,
such types have a certain model theoretic property that we call divisible amalgamation. The main result of
this paper is that if c is a finite tuple algebraic over a tuple a, the Lascar group of stp(ac) is abelian, and
the underlying theory is G-compact, then the Lascar groups of stp(ac) and of stp(a) are isomorphic. To
show this, we prove a purely compact group-theoretic result that any compact connected abelian group is
isomorphic to its quotient by every finite subgroup. Several (counter)examples arising in connection with
the theoretical development of this note are presented as well. For example, we show that, in the main result
above, neither the assumption that the Lascar group of stp(ac) is abelian, nor the assumption of c being
finite can be removed.

§0. Introduction and background. Given a complete theory T, the notion of the
Lascar (Galois) group GalL(T ) was introduced by D. Lascar (see [2]). The Lascar
group only depends on the theory and it is a quasi-compact topological group with
respect to a quotient topology of a certain Stone type space over a model ([2] or
[13]). More recently, the notions of the relativized Lascar groups were introduced
in [3] (and studied also in [11] in the context of topological dynamics). Namely,
given a type-definable set X in a large saturated model of the theory T, we consider
the group of automorphisms restricted to the set X quotiented by the group of
restricted automorphisms fixing the Lascar types of the sequences from X of
length �. The relativized Lascar groups also only depend on T, on the type that
defines X, and on the cardinal �. These groups are endowed with the quasi-compact
quotient topologies induced by the canonical surjective maps from GalL(T ) to the
relativized Lascar groups.

This paper continues the study started in [3], where a connection between the
relativized Lascar groups of a strong type and the first homology group of the
strong type was established. If T is G-compact (for example when T is simple), then
the relativized Lascar group of a strong type is compact and connected, and we use
compact group theory to obtain results presented here.

A common theme for the results in this paper is the connection between group
theoretic properties of the Lascar group of a strong type and the model theoretic
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532 JAN DOBROWOLSKI ET AL.

properties of the type. In Section 1, we use the fact that any compact connected
group is divisible to show that any strong type p in a simple theory has a property
we call divisible amalgamation. The property would follow from the Independence
Theorem if p was a Lascar type, but here p is only assumed to be a strong type.
Moreover, we give amalgamation criteria for when the Lascar group of the strong
type of a model is abelian, and for when the strong type of a model is a Lascar type.

In Section 2, we study morphisms between the relativized Lascar groups. The main
goal is to understand the connection between the Lascar group of stp(a), for some
tuple a, and the Lascar group of stp(acl(a)) or stp(ac), for a finite tuple c ∈ acl(a).
We prove that if T is G-compact, then for a finite tuple c algebraic over a, the
restriction map from a Lascar group of stp(ac) to that of stp(a) is a covering map.
In addition, if the Lascar group of stp(ac) is abelian then this group is isomorphic to
that of stp(a) as topological groups. In order to achieve this, we separately prove a
purely compact group theoretical result that any compact connected abelian group
is isomorphic to its quotient by a finite subgroup. We also give an example showing
that the abelianity of the relativized Lascar group is essential in the isomorphism
result.

In Section 3, we mainly present three counterexamples: a non-G-compact theory
where stp(a) is a Lascar type but stp(acl(a)) is not a Lascar type; an example
showing that in the above-mentioned isomorphism result in Section 2, the tuple c
being finite is essential; and an example answering a question raised in [10], namely a
Lie group structure example where an RN-pattern minimal 2-chain is not equivalent
to a Lascar pattern 2-chain having the same boundary.

Let us remark that the results of Section 2 and the supplementary examples from
Sections 3.1 and 3.2 do not make any use of the homology groups H1(p), so a reader
interested only in these results is advised to skip from Fact 0.4 to Section 2.

In the remaining part of this section we recall the definitions and terminology of
basic notions, which, unless said otherwise, we use throughout this note. We work in
a large saturated modelM(=Meq) of a complete theory T, and we use the standard
notation. So A,B, ... andM,N, ... are small subsets and elementary submodels of
M, respectively. Lower-case letters a,b, ... will denote tuples of elements fromM,
possibly infinite. We will explicitly specify when a tuple is assumed to be finite.

To simplify the notation, we state the results for types over the empty set (rather
than over acl(∅)). This does not reduce the generality because, after naming a
parameter set, we assume for the rest that dcl(∅)(= dcleq(∅)) = acl(∅)(= acleq(∅)).
We fix a complete strong type p(x)∈ S(∅) with possibly infinite arity of x. For tuples
a,b, we write a ≡A b (a ≡sA b, resp.) to mean that they have the same (strong, resp.)
type over A. Note that a ≡sA b if and only if a ≡acl(A) b.

Let us recall the definitions of the Lascar groups and types. These are well-known
notions in model theory. In particular, the Lascar group depends only on T and
is a quasi-compact group under the topology introduced in [2] or [13]. Moreover,
due to our assumption dcl(∅) = acl(∅), the group is connected as well. Recall that a
topological space is compact if it is quasi-compact and Hausdorff.

Definition 0.1.

• Autf(M) is the normal subgroup of Aut(M) generated by

{f ∈Aut(M) | f fixes some modelM ≺M pointwise}.
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• For tuples a,b ∈M, we say they have the same Lascar type, written a ≡L b or
Ltp(a) = Ltp(b), if there is f ∈Autf(M) such that f(a) = b. We say a,b have
the same KP(Kim–Pillay)-type (write a ≡KP b) if they are in the same class of
any bounded ∅-type-definable equivalence relation.

• The group GalL(T ) := Aut(M)/Autf(M) is called the Lascar (Galois) group
of T.

• We say T is G-compact if GalL(T ) is compact; equivalently {id} is closed in
GalL(T ); also equivalently a ≡L b iff a ≡KP b for any (possibly infinite) tuples
a,b fromM [8].

Note that the above is the definition of “G-compactness over ∅,” but for
convenience throughout this paper we omit “over ∅.”

Fact 0.2. For tuples a,b, we have a ≡L b if and only if the Lascar distance
between a and b is finite, i.e., there are finitely many indiscernible sequences I1, ...,In,
and tuples a = a0,a1, ...,an = b such that each of ai–1Ii and aiIi is an indiscernible
sequence for i = 1, ...,n.

Now let us recall, mainly from [3], the definitions of various relativized Lascar
groups of p and related facts.

Definition 0.3.

• Aut(p) := {f � p(M) | f ∈Aut(M)};
• for a cardinal � > 0, Autf�(p) = Autf�fix(p) :=

{� ∈Aut(p) | for any ā = (ai )i<� with ai |= p, ā ≡L �(ā)};
• Autffix(p) :=

{� ∈Aut(p) | ā ≡L �(ā) where ā is some enumeration of p(M)};
and Autfres(p) := {f � p(M) | f ∈Autf(M)}.

Notice that Autf�(p), Autffix(p), and Autfres(p) are normal subgroups of Aut(p).

• Gal�L(p) = Galfix,�
L (p) := Aut(p)/Autf�(p);1

• Galfix
L (p) := Aut(p)/Autffix(p), and Galres

L (p) := Aut(p)/Autfres(p).

We will give an example (in Example 2.3) where Gal1L(p) and Gal2L(p) are distinct.
In [3, Remark 3.4], a canonical topology on each of the above groups was defined.
With these topologies, they become quotients of the topological group GalL(T ).

Fact 0.4 [3]. Autf�(p) = Autffix(p), and, for each �(≤ �), Gal�L(p) does not
depend on the choice of a monster model, and is a quasi-compact connected
topological group. Hence, if T is G-compact, Gal�L(p) is a compact connected
group.

1Similarly, Autf�KP(p) is defined as the group of automorphisms in Aut(p) fixing the KP-type of any
�-many realizations of p, and Gal�KP(p) := Aut(p)/Autf�KP(p). Then in this paper, one may work with
Gal�KP(p) instead of Gal�L(p), and remove the assumption of T being G-compact where that is assumed.
See Remark 2.1 for more details.
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If p(x) is a type of a model, then Autf1(p) = Autffix(p) = Autfres(p), Gal1L(p) =
Galfix

L (p) = Galres
L (p) ∼= GalL(T ). The abelianization of Gal1L(p) (i.e., the group

Gal1L(p)/(Gal1L(p))′) is isomorphic to the first homology group H1(p).

The last statement in the above fact explains the connection between the relativized
Lascar group and the model theoretic homology groupH1 of the type. Let us recall
now the key definitions in the homology theory in model theory. We fix a ternary
automorphism-invariant relation |�

∗
between small sets ofM satisfying

• finite character: for any sets A,B, and C, we have A |�
∗
C B iff a |�

∗
C b for any

finite tuples a ∈ A and b ∈ B ;
• normality: for any sets A, B, and C, if A |�

∗
C B , then A |�

∗
C acl(BC );

• symmetry: for any sets A,B, and C, we have A |�
∗
C B iff B |�

∗
C A;

• transitivity: A |�
∗
B D iff A |�

∗
B C and A |�

∗
C D, for any sets A and B ⊆ C ⊆D;

• extension: for any sets A and B ⊆ C , there is A′ ≡B A such that A′ |�
∗
B C .

Throughout this paper we call the above axioms the basic 5 axioms. We say that A
is ∗-independent from B over C if A |�

∗
C
B . Notice that there is at least one such

relation for any theory, namely, the trivial independence relation given by: For any
sets A,B,C , put A |�

∗
B
C . Of course there is a non-trivial such relation when T is

simple or rosy, given by forking or thorn-forking, respectively.

Notation 0.5. Let s be an arbitrary finite set of natural numbers. Given any subset
X ⊆ P(s), we may view X as a category where for any u,v ∈ X , Mor(u,v) consists
of a single morphism �u,v if u ⊆ v, and Mor(u,v) = ∅ otherwise. If f : X → C0 is any
functor into some category C0, then for any u,v ∈ X with u ⊆ v, we let fuv denote the
morphism f(�u,v) ∈MorC0(f(u),f(v)). We shall call X ⊆ P(s) downward closed if
for any u,v ∈ P(s), if u ⊆ v and v ∈ X then u ∈ X . Note that if X is non-empty and
downward closed then it has ∅ ⊆ � as an object.

We use now C to denote the category whose objects are the small subsets ofM, and
whose morphisms are elementary maps. For a functor f :X →C and objects u ⊆ v of
X, fuv (u) denotes the set fuv (f(u))(⊆ f(v)).

Definition 0.6. By a ∗-independent functor in p, we mean a functor f from some
non-empty downward closed X ⊆P(s), viewed as a category as above, into C satisfying
the following:

(1) If {i} ⊆ � is an object in X, then f({i}) is of the form acl(Cb) where b |= p,
C = acl(C ) = f∅

{i}(∅), and b |�
∗
C .

(2) Whenever u(�= ∅)⊆ � is an object in X, we have

f(u) = acl

(⋃
i∈u
f

{i}
u ({i})

)

and {f{i}
u ({i})| i ∈ u} is ∗-independent over f∅

u (∅).

We let A∗
p denote the family of all ∗-independent functors in p.

A ∗-independent functor f is called a ∗-independent n-simplex in p if f(∅) = ∅,
our named algebraically closed set, and dom(f) =P(s) with s ⊆� and |s |= n+1.
We call s the support of f and denote it by supp(f).
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In the rest we may call a ∗-independent n-simplex in p just an n-simplex of p, as
far as no confusion arises.

Definition 0.7. Let n ≥ 0. We define:

Sn(A∗
p) := {f ∈ A∗

p | f is an n-simplex of p},
Cn(A∗

p) := the free abelian group generated by Sn(A∗
p).

An element of Cn(A∗
p) is called an n-chain of p. The support of a chain c, denoted

by supp(c), is the union of the supports of all the simplices that appear in c with
a non-zero coefficient. Now for n ≥ 1 and each i = 0, ...,n, we define a group
homomorphism

∂in : Cn(A∗
p)→ Cn–1(A∗

p)

by putting, for any n-simplex f : P(s)→C in Sn(A∗
p) where s = {s0 < ···< sn} ⊆�,

∂in(f) := f � P(s\{si})

and then extending linearly to all n-chains in Cn(A∗
p). Then we define the boundary

map

∂n : Cn(A∗
p)→ Cn–1(A∗

p)

by

∂n(c) :=
∑

0≤i≤n
(– 1)i ∂in(c).

We shall often refer to ∂n(c) as the boundary of c. Next, we define:

Zn(A∗
p) := Ker ∂n,

Bn(A∗
p) := Im ∂n+1.

The elements of Zn(A∗
p) and Bn(A∗

p) are called n-cycles and n-boundaries in p,
respectively. It is straightforward to check that ∂n ◦ ∂n+1 = 0. Hence we can now
define the group

H ∗
n (p) := Zn(A∗

p)/Bn(A∗
p)

called the nth ∗-homology group of p.

Notation 0.8.

(1) For c ∈ Zn(A∗
p), [c] denotes the homology class of c inH ∗

n (p).
(2) When n is clear from the context, we shall often omit it in ∂in and in ∂n, writing

simply ∂i and ∂ .

Definition 0.9. A 1-chain c ∈ C1(A∗
p) is called a 1- ∗-shell (or just a 1-shell) in

p if it is of the form

c = f0 – f1 +f2,

where fi ’s are 1-simplices of p satisfying

∂ifj = ∂j–1fi whenever 0≤ i < j ≤ 2.
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536 JAN DOBROWOLSKI ET AL.

Hence, for supp(c) = {n0 < n1 < n2} and k ∈ {0,1,2}, it follows that

supp(fk) = supp(c)\{nk}.

Notice that the boundary of any 2-simplex is a 1-shell. Recall that a notion of an
amenable collection of functors into a category is introduced in [5]. Due to the 5
axioms of |�

∗
, it easily follows that A∗

p forms such a collection of functors into C.
Hence the following corresponding fact holds.

Fact 0.10 [5] or [3]

H ∗
1 (p) = {[c] | c is a 1 – *-shell with supp(c) = {0,1,2}}.

We now recall basic notions and results that appeared in [3]. For the rest of this
section we assume that p is the strong type of an algebraically closed set.

Definition 0.11.

(1) Let f : P(s)→ C be an n-simplex of p. For u ⊆ s with u = {i0 < ··· < ik},
we shall write f(u) = [a0 ...ak]u , where each aj |= p is an algebraically closed

tuple as assumed above, iff(u) = acl(a0 ...ak), and acl(aj) =f
{ij}
u ({ij}). So,

{a0, ...,ak} is ∗-independent. Of course, if we write f(u)≡ [b0 ...bk]u , then it
means that there is an automorphism sending a0 ...ak to b0 ...bk .

(2) Let s = fv12 – f02 +f01 be a 1-∗-shell in p such that supp(fij) = {ni,nj}
with ni < nj for 0 ≤ i < j ≤ 2. Clearly there is a quadruple (a0,a1,a2,a3)
of realizations of p such that f01({n0,n1}) ≡ [a0a1]{n0,n1}, f12({n1,n2}) ≡
[a1a2]{n1,n2}, and f02({n0,n2}) ≡ [a3a2]{n0,n2}. We call this quadruple a
representation of s. For any such representation of s, call a0 an initial point, a3

a terminal point, and (a0,a3) an endpoint pair of the representation.

We summarize some properties of endpoint pairs of 1-shells. We define an
equivalence relation∼∗ on the set of pairs of realizations p as follows: Fora,a′,b,b′ |=
p, (a,b)∼∗ (a′,b′) if two pairs (a,b) and (a′,b′) are endpoint pairs of 1-shells s and
s ′ respectively such that [s] = [s ′] ∈H ∗

1 (p). We write E∗ = p(M)×p(M)/∼∗. We
denote the class of (a,b) ∈ p(M)×p(M) by [a,b]. Now, define a binary operation
+E∗ on E∗ as follows: For [a,b],[b′,c′]∈ E∗, [a,b]+E∗ [b′,c′] = [a,c], where bc ≡ b′c′.

Fact 0.12. The operation +E∗ is well-defined, and the pair (E∗,+E∗) forms an
abelian group which is isomorphic to H ∗

1 (p). More specifically, for a,b,c |= p and
� ∈Aut(M), we have:

• [a,b] + [b,c] = [a,c];
• [a,a] is the identity element;
• – [a,b] = [b,a];
• �([a,b]) := [�(a),�(b)] = [a,b]; and
• f : E∗→H ∗

1 (p) sending [a,b] �→ [s], where (a,b) is an endpoint pair of s, is a
group isomorphism.

We identify E∗ and H ∗
1 (p).

Fact 0.13. H ∗
1 (p) is isomorphic toG/N whereG := Aut(p) and N is the normal

subgroup of G consisting of all automorphisms fixing setwise all orbits of elements
of p(M) under the action ofG ′ (soG/N does not depend on the choice of a monster

https://doi.org/10.1017/jsl.2021.31 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2021.31


THE RELATIVIZED LASCAR GROUPS, TYPE-AMALGAMATION, AND ALGEBRAICITY 537

model). HenceH ∗
1 (p) does not depend on the choice of |�

∗
and we writeH1(p) for

H ∗
1 (p).

Fact 0.14. Let p be the fixed strong type of an algebraically closed set.

(1) Let |�
∗

be an independence relation satisfying the 5 basic axioms. Leta,b |=p.
Then the following are equivalent.
(a) [a,b] = 0 in H1(p);
(b) There is a balanced-chain-walk from a to b, i.e., there are some n ≥ 0 and

a finite sequence (di)0≤i≤2n+2 of realizations of p satisfying the following
conditions:

(i) d0 = a, and d2n+2 = b;
(ii) {dj,dj+1} is ∗-independent for each j ≤ 2n+ 1; and

(iii) there is a bijection

� : {0,1, ...,n}→ {0,1, ...,n}
such that d2i d2i+1 ≡ d2�(i)+2d2�(i)+1 for i ≤ n;

(c) There are some n ≥ 0 and finite sequences (di : 0≤ i ≤ n), (dji : i < n, 1≤
j ≤ 3) of realizations of p such that d0 = a, dn = b, and for each i < n,
did

1
i ≡ d 3

i d
2
i , d 1

i d
2
i ≡ di+1d

3
i .

(d) h(a) = b for some h in the commutator subgroup of Aut(p).
In particular, if a ≡L b then [a,b] = 0 ∈H1(p).

(2) The following are equivalent.
(a) Gal1L(p) is abelian;
(b) For all a,b |= p, [a,b] = 0 in H1(p) if and only if a ≡L b.

(3) p is a Lascar type (i.e., a ≡L b for any a,b |= p) if and only if H1(p) is trivial
and Gal1L(p) is abelian.

Remark 0.15. (1) Assume that p(x) is the type of a small model. Then for
any M,N |= p, the equivalence classes of (equality of) Lascar types of M and
N are interdefinable: Let M ≡L M ′ and MN ≡M ′N ′. It suffices to show that
N ≡L N ′. Now there is f ∈ Autf(M) such that f(M ′) =M . Let N ′′ := f(N ′) so
thatN ′′ ≡L N ′ andMN ≡MN ′′. HenceN ≡M N ′′ andN ≡L N ′′ ≡L N ′ as wanted.
When p is a type of any tuple we will see that the same holds if Gal1L(p) is abelian
(Remark 1.10).

(2) Notice that for tuples a,b |= p, we have:

(∗∗) there is a commutator f in Aut(p) such that f(a) = b if and only if there
are d 1,d 2,d 3 |= p such that ad 1 ≡ d 3d 2 and bd 3 ≡ d 1d 2.

Now we recall the following fact of compact group theory by M. Gotô from [6,
Theorem 9.2]: Assume (F,·) is a compact connected topological group. Then F ′,
the commutator subgroup of F, is simply the set of commutators in F, i.e.,

F ′ = {f ·g ·f–1 ·g–1 | f,g ∈ F }.
It follows that F ′ is a closed subgroup of F, and both F ′ and F/F ′ are compact
connected groups as well.

Due to the theorem we newly observe here that if T is G-compact then in Fact
0.14(1)(c), we can choose n = 1: If the equivalent conditions in Fact 0.14(1) hold,
then we have that h(a) = b for some h in the commutator subgroup of Aut(p). Now,
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as T is G-compact, we get by Gotô’s Theorem that h is a commutator in Aut(p), so,
by (∗∗), there are d 1,d 2,d 3 |= p such that bd 3 ≡ d 1d 2.

§1. Amalgamation properties of strong types in simple theories. Note that if T is
simple then since T is G-compact, each Gal�L(p) is a compact (i.e., quasi-compact
and Hausdorff) connected group, so it is divisible (see [6, Theorem 9.35]). In this
section we assume T is simple (except Remark 1.10 and Example 1.11), and the
independence is nonforking independence. It is still an open question whether the
strong type p is necessarily a Lascar type. If so, then the following theorem follows
easily by the 3-amalgamation of Lascar types in simple theories. But regardless of
the answer to the question, p has the following amalgamation property. We do not
assume here that a realization of p is algebraically closed.

Theorem 1.1 (Divisible amalgamation). Let p be a strong type in a simple theory.
Let a,b |=p and a |�b. Then for each n≥ 1, there are independent a = a0,a1, ...,an = b
such that a0a1 ≡ aiai+1 for every i < n.

Proof. Clearly we can assume n > 1. Note that there is f ∈ Aut(p) such that
b =f(a). Then since G := Gal1L(p) is divisible, there is h ∈Aut(p) such that [h]n =
[f] (in G). Put c = h(a). Now there is c1 ≡L c such that c1 |�ab. Then there is
h′ ∈Autf1(p) such that h′(c) = c1. Let g = h′ ◦h. Then [g] = [h] so [g]n = [f] too,
and g(a) = c1.

Claim. We can find additional elements c2, ...,cn such that {a = c0,c1, ...,cn,b} is
independent, and for each 1≤m ≤ n, c0c1 ≡ cm–1cm and there is hm ∈Aut(p) such
that [hm] = [g]m in G, and hm(a) = cm.

Proof of the Claim. For an induction hypothesis, assume for 1≤m<n we have
found a = c0,c1, ...,cm such that {c0,c1, ...,cm,b} is independent and c0c1 ≡ ci–1ci for
all 1≤ i ≤m and there is hm ∈Aut(p) such that [hm] = [g]m in G, and hm(c0) = cm.

Notice now that then c′m := gm(a) ≡L hm(a) = cm. Put c′m+1 := g(c′m) =
gm+1(a). Then there is cm+1 such that cmcm+1 ≡L c′mc′m+1, and {c0,c1, ...,cm+1,b} is
independent. Since cm+1 ≡L c′m+1, there is h′′ ∈Autf1(p), such that h′′(c′m+1) = cm+1

and so for hm+1 := h′′ ◦ gm+1, we have hm+1(a) = cm+1 and [g]m+1 = [hm+1] in G.
Moreover the equality of types cmcm+1 ≡ c′mc′m+1 ≡ c0c1 is witnessed by gm. Hence
the claim is proved.

Notice that cn = hn(a) with [hn] = [g]n = [f]. Hence cn ≡L b =f(a). Then, by 3-
amalgamation, we find b′ |= tp(b/a)∪ tp(cn/c1 ... cn–1) with b′ |�c0 ... cn–1. Then the
automorphic images of c1 ... cn–1 (rename them as a1 ...an–1) under a map sending
b′ to b over a satisfy the conditions of the theorem. �

Now we assume that p is the type of an algebraically closed tuple. For a,a′ |= p,
we have a better description of [a,a′] = 0 in H1(p).

Proposition 1.2. For a,a′ |= p, the following are equivalent.
(1) [a,a′] = 0 in H1(p), equivalently there is h in the commutator subgroup of

Aut(p) such that h(a) = a′.
(2) There are b,c,d |= p such that each of {a,b,c,d}, {a′,b,c,d} is independent,

and ab ≡ cd , bd ≡ a′c.
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Proof. (1)⇒(2) Since T is G-compact, by Remark 0.15(2) there are b′,c′,d ′ |= p
such that ab′ ≡ c′d ′ and b′d ′ ≡ a′c′. Now there is b ≡L b′ such that b |�aa′b′c′d ′.
Hence, by 3-amalgamation, there is d0 ≡L d ′ such that d0 |= tp(d ′/b)∪ tp(d ′′/b′)
and d0 |�bb′, where d ′′b′ ≡ d ′b and d ′′ ≡L d ′ ≡L d0. By extension there is no harm
in assuming that d0 |�bb′aa′c′d ′.

Now since a′c′ ≡ b′d ′, there are a′′c such that b′d ′bd0 ≡ a′c′a′′c. Hence, c ≡L c′,
a′′≡L a′, and c |�a′c′. Again by extension, we can further assume that c |�aa′c′bd0.
Moreover, since ab′ ≡ c′d ′, there is d1 ≡L d ′ such that ab′b ≡ c′d ′d1. Then since
c |�c′ with c ≡L c, and d1 |�c′, again by 3-amalgamation we can assume that
c′d1 ≡ cd1 and d1 |�cc′.

Now the situation is that aa′b |�c, d1 |�c, and d0 |�aa′b. Moreover, d0 ≡L d ′ ≡L
d1. Hence, by 3-amalgamation, we have d |= tp(d0/aa

′b)∪ tp(d1/c) and d |�aa′bc.
Therefore, each of {a,b,c,d}, {a′,b,c,d} is independent. Moreover, due to above
combinations

ab ≡ c′d1 ≡ cd1 ≡ cd,
and

bd ≡ bd0 ≡ bd ′ ≡ b′d ′′ ≡ b′d0 ≡ a′c
as wanted.

(2)⇒(1) Clear by Remark 0.15(2). �
From now until Theorem 1.8, we assume that p(x) is the (strong) type of a small

model, and all tuples a,b,c, ... realize p, so all are universes of models. Hence, by Fact
0.4, Autf1(p) = Autffix(p) and (GalL(T )∼=)Galfix

L (p) = Gal1L(p), which we simply
write Autf(p) and GalL(p), respectively. Moreover, H1(p) ∼= GalL(p)/(GalL(p))′

and hence it is a compact connected (so divisible) abelian group.

Definition 1.3. Let r(x,y),s(x,y) be types completing p(x)∧p(y)∧x |�y.

(1) We say p has abelian (or commutative) amalgamation of r and s, if there are
independent a,b,c,d |= p such that ab,cd |= r and ac,bd |= s .We say p has
abelian amalgamation if it has abelian amalgamation for any such completions
r and s.

(2) We say p has reversible amalgamation of r and s if there are independent
a,b,c,d |= p such that ab,dc |= r and ac,db |= s .We say p has reversible
amalgamation if it has reversible amalgamation for any such completions
r and s.

Lemma 1.4. The following are equivalent.

(1) The type p has abelian amalgamation.
(2) Let r(x,y),s(x,y) be any types completingp(x)∧p(y)∧x |�y, and leta,b,c |=
p be independent such that ac |= s and ab |= r. Then there is d |= p independent
from abc such that cd |= r and bd |= s .

Proof. (1)⇒(2) By (1), there are b0,d0 |=p such that {a,c,b0,d0} is independent,
ab0,cd0 |= r, and ac,b0d0 |= s . Hence, there is d1 such that abd1 ≡ ab0d0. Now by
3-amalgamation over the model a, there is

d |= tp(d0/a;c)∪ tp(d1/a;b),

https://doi.org/10.1017/jsl.2021.31 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2021.31


540 JAN DOBROWOLSKI ET AL.

such that {a,b,c,d} is independent. Moreover, cd ≡ cd0 |= r and bd ≡ bd1 ≡ b0d0 |=
s , as desired.

(2)⇒(1) Clear. �

By the same proof we obtain the following too.

Lemma 1.5. The following are equivalent.

(1) The type p has reversible amalgamation.
(2) Let r(x,y),s(x,y) be any types completingp(x)∧p(y)∧x |�y, and leta,b,c |=
p be independent such that ac |= s and ab |= r. Then there is d |= p independent
from abc such that dc |= r and db |= s .

Theorem 1.6. The following are equivalent.

(1) GalL(p)(∼= GalL(T )) is abelian.
(2) p has abelian amalgamation.

Proof. (1) ⇒(2) Assume (1). Thus for G := Aut(p), we have G ′ ≤ Autf(p).
Now let r(x,y) and s(x,y) be some complete types containing p(x)∧p(y)∧x |�y.
There are independent a,a′,b,d,c |= p such that ab,cd |= r and bd,a′c |= s . Hence
there is a commutator f ∈ G ′ ≤Autf(p) such that f(a) = a′, so a ≡L a′. Then by
3-amalgamation of Lstp(a), there is

a0 |= tp(a/bd )∪ tp(a′/c)

such that {a0,b,c,d} is independent, a0b ≡ ab |= r, and a0c ≡ a′c |= s . Therefore p
has commutative amalgamation.

(2)⇒(1) To show (1), due to Fact 0.14(2) it is enough to prove that if a,a′ |=p and
[a,a′] = 0∈H1(p) (†), then a ≡L a′. Now assume (2) and (†). Thus, by Proposition
1.2, there are b,c,d |= p such that each of the sets {a,b,c,d} and {a′,b,c,d} is
independent, ab ≡ cd , and bd ≡ a′c. Now by Lemma 1.4 and extension there is
c′ |= p such that c′ |�aa′cd and ac′ ≡ bd ≡ a′c and c′d ≡ ab ≡ cd . Then, since d
is a model, we have c ≡L c′, and there is a′′ such that a′c ≡d a′′c′, so a ≡L a′′ and
a′′ ≡c′ a. Since c′ is a model as well, we conclude that a′ ≡L a′′ ≡L a. �

A proof similar to that of the above Theorem 1.6 (2)⇒(1) applying Fact 0.14(1)(b)
gives the following as well.

Proposition 1.7. If p has reversible amalgamation, then GalL(p) is abelian
(equivalently, p has abelian amalgamation).

Proof. Assume that p has reversible amalgamation, and [a,b] = 0 ∈H1(p) for
a,b |= p (†). As before it is enough to prove that a ≡L b. It follows from the
extension axiom for Lascar types together with Fact 0.14(1)(b), there are b′ ≡L b
and a finite independent sequence (di)0≤i≤2n+2 of realizations of p satisfying the
following conditions:

(i) d0 = a, d2n+2 = b′; and
(ii) there is a bijection

� : {0,1, ...,n}→ {0,1, ...,n}

such that d2i d2i+1 ≡ d2�(i)+2d2�(i)+1 for i ≤ n.
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In other words, there is an independent balanced chain-walk from a to b′, and it
suffices to prove a ≡L b′. Notice that, by reversible amalgamation, condition (2) of
Lemma 1.5 implies that in the above chain-walk two adjacent edges can be swapped
with sign reversed (i.e., for say djdj+1 and dj+1dj+2 there is d ′j+1( |�djdj+2) such
that djd ′j+1 ≡ dj+2dj+1 and d ′j+1dj+2 ≡ dj+1dj). By iterating this process one can
transfer the chain-walk to another balanced chain-walk (d ′i )0≤i≤2n+2 from a to b′

such that the walk has a Lascar pattern, i.e., the bijection � for the new walk is the
identity map. Hence it follows d ′2i ≡d ′2i+1

d ′2i+2 for i ≤ n, and since each d ′2i+1 is a

model, we have a = d ′0 ≡L b′, as wanted. �
A stronger consequence is obtained.

Theorem 1.8. The strong type p is a Lascar type if and only if p has reversible
amalgamation.

Proof. (⇒) It follows from 3-amalgamation of Lascar strong types.
(⇐) Assume p has reversible amalgamation. Due to Fact 0.14(3) and Proposition

1.7, it suffices to show H1(p) is trivial. Let an arbitrary [s] ∈ H1(p) be given,
and let [a,b′] = [s] for a,b′ |= p. Then, for any b ≡L b′ with b |�ab′, we have
[a,b] = [a,b′] + [b′,b] = [s] + 0 = [s]. Similarly, for c ≡L b with c |�ba, we have
[b,c] = 0 in H1(p). Now reversible amalgamation (or Lemma 1.5) says that [s] =
[a,b] + [b,c] = [c,b] + [b,a] =– [s]. Hence [s] + [s] = 0. SinceH1(p) is compact and
connected so divisible, any element inH1(p) is divisible by 2. Therefore,H1(p) = 0
by what we have just proved. �

Question 1.9. Can the same results hold if p is the type of an algebraically closed
tuple (not necessarily a model ) in a simple theory? The answer to this question is
yes if any two Lascar equivalence classes in p are interdefinable, since essentially this
property (Remark 0.15(1)) implied the results in this section when p is the type of a
model. At least we can show the following remark.

Remark 1.10. Let T be any theory, and let a realization of p be any tuple. If
Gal1L(p) is abelian then any two Lascar equivalence classes in p are interdefinable:
Let a,b |= p, and f ∈Aut(p). Assume f(a)≡L a. We want to show the same holds
for b. Now there is g ∈Aut(p) such that g(a) = b. Since Gal1L(p) is abelian, we have
f(b) = f(g(a))≡L g(f(a))≡L g(a) = b.

Notice that Gal1L(p) is the group of automorphic permutations of the Lascar
classes in p. Hence, if Gal1L(p) is abelian, then f/Autf1(p) ∈Gal1L(p) is determined
by the pair of Lascar classes of c and f(c) for some (any) c |= p.

Example 1.11. Let (M, <) be a monster model of Th(Q, <). Then thorn-
independence |�

∗
in M coincides with acl-independence. We can also consider a

notion of reversible amalgamation using thorn independence instead of nonforking
independence. Note that the Lascar group of Th(M) is trivial because of o-
minimality, but the reversible amalgamation for |�

∗
fails.

Let p be the unique 1-type over ∅(= acl(∅)). Consider two types r(x,y) = {x< y}
and s(x,y) = {y < x} completing p(x)∧p(y)∧x |�

∗
y. Then p has no reversible

amalgamation of r and s. Suppose a,b,c,d |= p such that ab,dc |= r and ac,db |= s .
Then a < b < d < c < a, and there are no such elements. Thus, a type of a model
does not have reversible amalgamation either.
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§2. Relativized Lascar Galois groups and algebraicity. As mentioned in the
introduction, this section does not make any use of the homology groups and
thus can be read independently from Section 1. Recall that throughout we assume
that acl(∅) = dcl(∅). In Remark 1.8 from [3] it was noticed that if tp(a) is a Lascar
type, and a finite tuple c is algebraic over a then tp(ac) is also a Lascar type, and
hence if additionally T is G-compact then tp(acl(a)) is also a Lascar type. In other
words, if Gal1L(tp(a)) is trivial, then Gal1L(tp(acl(a)) is trivial when T is G-compact.
It seems natural to ask whether, more generally, Gal1L(tp(a)) and Gal1L(tp(acl(a))
must be always isomorphic in a G-compact T. In general, the answer turns out to be
negative (see Section 3), but we obtain some positive results if, instead of looking at
acl(a), we add only a finite part of it to a.

Remark 2.1. The only properties of Lascar equivalence ≡L in G-compact
theories used in this section are that it is a bounded ∅-type definable equivalence
relation and that for any compatible tuples a and b with a ≡L b we also have
a0 ≡ b0 for all corresponding subtuples a0 ⊆ a and b0 ⊆ b. As KP-equivalence ≡KP
has these properties in any theory, all the main results of this section: Theorem
2.6, Corollary 2.9, Propositions 2.12 and 2.14, and Corollaries 2.16 and 2.20 hold
without the G-compactness assumption if we replace the Lascar equivalence by
KP-equivalence, and relativized Lascar groups Gal�L(p) by relativized Kim–Pillay
groups Gal�KP(p) := Aut(p)/Autf�KP(p), where Autf�KP(p) is defined as the group
of automorphisms in Aut(p) fixing the KP-type of any �-many realizations of p.

For the whole Section 2, we fix the following notation.

Notation 2.2. Assume that p = tp(a) and p̄ = tp(ac), where c ⊆ acl(a) is finite.
Consider the natural projection �� : Gal�L(p̄)→Gal�L(p), and put � := �1. We denote
the kernel of � by K. Denote by E the relation of being Lascar-equivalent ( formally, E
depends on the length of tuples on which we consider it). Let ac1, ...,acN be a tuple of
representatives of all E-classes in p̄ in which the first coordinate is equal to a (so N ≤
the number of realizations of tp(c/a)), and for any a′ |= p, let a′ca

′
1 , ...,a

′ca
′
N be its

conjugate by an automorphism sending a to a′.

Example 2.3. We give an example of a structure and a type p such that Gal1L(p)
and Gal2L(p) are distinct. Let C = R×R be a Euclidean plane. Let Λ = {r� | r ∈
Q∩ (0, 12 ]}. For q ∈Λ, defineRq(xy,zw) on C4 such thatRq(ab,cd ) iff a �= b, c �= d ,
and either the lines L(ab) containing a,b and L(cd ) are parallel, or the smaller
angle between L(ab) and L(cd ) is ≤ q. Also define a family of ternary relations
Sr(x,y,z), for r ∈Q+, so that Sr(a,b,c) if and only if |ab|< r|ac|.

Consider a model M = (C;Rq(xy,zw);Sr(x,y,z))q∈Λ,r∈Q+. Then F (xy,zw) :=∧
q∈ΛRq(xy,zw) is an ∅-type-definable bounded equivalence relation in T =

Th(M ), and each class corresponds to a class of lines whose slopes are infinitesimally
close.

LetR be a sufficiently saturated model of the reals, C =R2,N |=T , a a finite tuple
in N, and c ∈ N an element. Then for any b ∈ C that has the same quantifier-free
type as a there is d ∈ C such that ac and bd have the same quantifier-free type.

Let p be the unique complete 1-type over ∅. Indeed p is a Lascar type, so Gal1L(p)
is trivial. On the other hand, a rotation of C around a point in C belongs to Autf1(p)
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but does not belong to Autf2(p). One can show that Gal2L(p) is a circle group, and
T is G-compact (see Definition 0.1 and Fact 0.2).

In fact for any n > 0, and any finite a<n = a0 ...an–1 and b<n = b0 ...bn–1 (aj,bj ∈
C1), the following are equivalent:

(1) a<n ≡L b<n.
(2) F (aiaj,bibj) for i < j < n.
(3) There is I = (ci<n | i < �) such that both a<nI and b<nI are indiscernibles.

It is enough to show (2)⇒ (3). We write aij = aiaj for i,j < n. We say that a0,
a1, and a2 are collinear if F (aij,aik) for {i,j,k} = {0,1,2}. Suppose F (aij,bij) for
all i < j < n. Then there is d ∈ C such that d,ai,bi are collinear for each i < n.
(Even when F (aibi,ajbj) holds for each i < j < n, there still is such d ∈M, by
compactness.) In other words, there is a perspective point d for the sets a<n and b<n
in C.

Let N ≺R be a small elementary substructure containing all coordinates of the
points a<n ∪b<n. Consider a complete type p∞(x) = {x > a : a ∈N} over N in the
ordered ring language. Let {αi | i < �} be a Morley sequence of realizations p∞
such that tp(αi/Nα<i) is an heir extension of p∞ so that αi is infinite with respect
to dcl(Nα<i). Now, we can take I to be the sequence of scaled by αi copies of a<n
relative to the point d: cij = αi(aj – d ) +d .

Let us recall basic definitions and facts on covering maps between topological
groups (see for example [6]).

Remark 2.4.

• Let X,Y be topological spaces, and let f : X → Y be a continuous surjective
map. We call f a (k-)covering map if for each y ∈ Y there is an open set V
containing y such that f–1(V ) is a union of (k-many) disjoint open sets in X,
and f induces a homeomorphism between each such open set and V. We call
f a local homeomorphism if for any x ∈ X , there is an open set U containing x
such that f �U :U → f(U ) is a homeomorphism. Obviously a covering map
is a local homeomorphism. Conversely, if both X and Y are compact, then a
local homeomorphism is a covering map. We call X a covering space of Y if
there is a covering map from X to Y.

• Let G be topological group, and let H be a normal subgroup of G such that
G/H with its quotient topology is also a topological group, and the projection
map pr : G → G/H is an open continuous homomorphism. Recall that pr
is a covering map if and only if H is a discrete subgroup. If G is compact,
then H is discrete if and only if H is finite, and hence iff pr is a covering
map.Assume F is another topological group and f : G → F is a continuous
surjective homomorphism. If G is compact and F is Hausdorff, then f induces
an isomorphism between the compact topological groups G/Ker(f) and F.

• Assume T is G-compact. By the above, �� is a covering homomorphism iff
the kernel of �� is finite. In particular, we shall show that � = �1 is a covering
homomorphism (Corollary 2.9).

If T is G-compact then the Lascar equivalence E is ∅-type-definable (see [7,
Proposition 20]), and we can assume any formulaϕ in E is symmetric (i.e.,ϕ(z̄,w̄) |=
ϕ(w̄,z̄)).
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Lemma 2.5. Assume T is G-compact. There is a formula α(xy,x′y′)∈E(xy,x′y′)
such that if p̄(xy)∧ p̄(x′y′)∧α(xy,x′y′)∧E(x,x′) holds then |= E(xy,x′y′).

Proof. Notice that the type

E(xy,x′y′)∧∃zwz ′w′ ≡ xyx′y′
⎛⎝ ∨

1≤i �=j≤N
(E(zw,aci)∧E(z ′w′,acj))

⎞⎠
is inconsistent, and choose α(xy,x′y′) ∈ E(xy,x′y′) so that the type

α(xy,x′y′)∧∃zwz ′w′ ≡ xyx′y′
⎛⎝ ∨

1≤i �=j≤N
(E(zw,aci)∧E(z ′w′,acj))

⎞⎠
is inconsistent. Now, if p̄(xy)∧ p̄(x′y′)∧α(xy,x′y′)∧E(x,x′) holds, then we can
find c′a′c′′ such that ac′a′c′′ ≡ xyx′y′, and then a′ ≡L a so a′c′′ ≡L aci for some
i, and also ac′ ≡L acj for some j, but, by the choice of α, i = j so ac′ ≡L a′c′′, so
xy ≡L x′y′. �

The following theorem and its proof will use the setting described in
Notation 2.2.

Theorem 2.6. If T is G-compact, then K is finite.

Proof. Assume T is G-compact. Since E is transitive, there is φ(xy,x′y′) ∈
E(xy,x′y′) such that

φ(xy,zw)∧φ(x′y′,zw) � α(xy,x′y′) (∗),
where α ∈ E is the formula given by Lemma 2.5.

Let (a�)�∈I be a small set of representatives of E-classes of realizations of p.
For any a′c′ |= p̄, there are � ∈ I and 1 ≤ j ≤ N such that |= E(a′c′,a�c

a�
j ), so

|= φ(a′c′,a�c
a�
j ). Hence, by compactness, there are a0, ...,ak |= p such that

p̄(xy) �
∨
{φ(xy,aic

ai
j ) | i ≤ k; 1≤ j ≤N} (∗∗).

Claim 2.7. Let f/Autf1(p̄) ∈K . For each aic
ai
j chosen above, there is a unique

aic
ai
j′ with 1≤ j′ ≤N such that φ(f(aic

ai
j ),ai c

ai
j′ ) holds. Such a j′ does not depend

on the choice of a representative of f/Autf1(p̄).

Proof. Notice that f/Autf1(p̄) ∈K implies E(f(ai),ai), so E(f(aic
ai
j ),ai c

ai
j′ )

holds for some j′. Now if φ(f(aic
ai
j ),aic

ai
j′′) holds as well, then due to (∗) (with

the symmetry of the formulas) and Lemma 2.5, we must have j′ = j′′. The second
statement of the claim follows similarly. �

Claim 2.8. Let f/Autf1(p̄), g/Autf1(p̄) ∈K . Assume that the permutations of
tuples aic

ai
j by f and g described in the claim above are the same. Thenf/Autf1(p̄) =

g/Autf1(p̄).

Proof. Let a′c′ |= p̄. By (∗∗), there is some aic
ai
j such that φ(a′c′,aic

ai
j )

holds. Hence, φ(f(a′c′),f(aic
ai
j )) and φ(g(a′c′),g(aic

ai
j )) hold. Moreover, by the
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previous claim with our assumption, there is j′ ≤ N such that φ(f(aic
ai
j ),ai c

ai
j′ )

and φ(g(aic
ai
j ),ai c

ai
j′ ) hold.

Then, again due to (∗) and Lemma 2.5, f(aic
ai
j ) ≡L g(aic

ai
j ) since f(ai) ≡L

g(ai) ≡L ai . Hence, there is h ∈ Autf1(p̄) such that f(aic
ai
j ) = hg(aic

ai
j ). Now by

(∗) again, α(f(a′c′),hg(a′c′)) holds, and, since f(a′) ≡L hg(a′) ≡L a′, we have
f(a′c′)≡L hg(a′c′)≡L g(a′c′). We conclude that f/Autf1(p̄) = g/Autf1(p̄). �

As there are only finitely many permutations of aic
ai
j (i ≤ k, 1 ≤ j ≤ N ), K is

finite. �
By Remark 2.4, we have the following.

Corollary 2.9. If T is G-compact then � : Gal1L(p̄)→ Gal1L(p) is a covering
homomorphism.

Example 2.10. Consider the following model:

M = ((M1,S1,{g1
n | 0< n}),(M2,S2,{g2

n | 0< n}),
),
a 2-sorted structure. HereM1,M2 are disjoint unit circles. For i = 1,2, Si is a ternary
relation on Mi such that Si(a,b,c) holds iff a,b,c are distinct and b comes before
c going clockwise around Mi from a; and gin is the clockwise rotation of Mi by
2�
n -radians. The map 
 :M1 →M2 is a double covering, i.e., if we identify each
Mi as the unit circle in xy-plane centered at 0, then 
 is given by (cos t, sin t) �→
(cos2t, sin2t). By arguments similar to those described in [3] forMi , it follows that
T = Th(M ) is G-compact, and, in T, ∅= acleq(∅). LetM1,M2 be saturated models
of M1,M2 respectively. For any ai,a′i ∈Mi , we have ai ≡ a′i ; and ai ≡L a′i iff they
are infinitesimally close. Now, given a ∈M2, there are two antipodal c1,c2 ∈M1

such that 
(ci) = a. Then ci ∈ acl(a) and ac1 ≡ ac2, but ac1 �≡L ac2. For p = tp(a)
and p̄ = tp(ac1), � : Gal1L(p̄)→ Gal1L(p) is a 2-covering homomorphism of circle
groups. Notice that for any n > 2,


(y) = x∧ 
(y′) = x′∧ (S1(y,y′,g1
n(y))∨S1(y′,y,g1

n(y
′)))

serves as the formula α(xy,x′y′) in Lemma 2.5.

Question 2.11. If T is G-compact, then is the kernel of the projection �� :
Gal�L(p̄) → Gal�L(p) finite as well for � > 1? Is T being G-compact essential in
Theorem 2.6?

We have a partial answer to the second question above. Namely, we also get that K
is finite when we replace the assumption of G-compactness by abelianity of Gal1L(p̄).

Proposition 2.12. If Gal1L(p̄) is abelian, then |K |=N .

Proof. If f/Autf1(p̄) ∈ K , then f(a) ≡L a, so there is another representative
f′ fixing a. Now, since Gal1L(p̄) is abelian, by Remark 1.10, the class of an
automorphism f′ fixing a depends only on the Lascar type of f′(ac) = af′(c)
for which, due to our choice, there are exactly N possibilities. �

We will investigate the epimorphism � further assuming the theory T satisfies, in
addition to G-compactness, some other nice hypotheses, obtaining better versions
of Theorem 2.6 in these cases.
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Remark 2.13.

(1) Let X be an ∅-type-definable set, and let F be a bounded ∅-type-definable
equivalence relation on X. Recall the logic topology on X/F : A subset of
X/F is closed if and only if its pre-image in X is type-definable over some
parameters. It follows that X/F is compact with the logic topology.

(2) Assume T is G-compact. By the natural embedding, G := Gal1L(p) can be
considered as a subgroup of Homeo(p(M)/E), where p(M)/E is equipped
with the logic topology. Moreover, for x := a/E andGx := {g ∈G | g.x = x}
(the stabilizer subgroup of G at x), we have that G/Gx as a homogeneous
coset space with the quotient topology and p(M)/E with the logic topology
are homeomorphic. Needless to say, analogous facts hold for p̄.

(3) Let X,Y be topological spaces. Recall that if X is path-connected then so is
any quotient space of X. Moreover, if X is a connected covering space of Y,
then X is path-connected if and only if Y is.

(4) Given a covering map 
 :X →Y , the unique path-lifting property says that for
any x0 ∈ X , y0 ∈ Y with 
(x0) = y0, and any path � in Y starting at y0 (i.e.,
� : [0,1]→ Y is continuous and �(0) = y0), there is a unique path � ′ starting
at x0 such that 
 ◦ � ′ = �.

Proposition 2.14. Assume T is G-compact and consider the canonical restriction
map 
 : p̄(M)/E → p(M)/E of compact spaces p̄(M)/E, p(M)/E equipped with
the logic topology. Then 
 is an N-covering map.

Proof. Choose φ as in the proof of Theorem 2.6 and fix a′c′ |= p̄. Define D :=
p̄(M)\{a′′c′′/E : a′′c′′ |= p̄ ∧¬φ(a′′c′′,a′c′)}. Then D is an open neighborhood
of a′c′/E in p̄(M)/E. To show that 
 is a covering map, by Remark 2.4, it is
enough to see that 
 is injective on D. So choose two pairs a0c0,a1c1 |= p̄ such
that a0c0/E,a1c1/E ∈D and 
(a0c0/E) = 
(a1c1/E). Then, by the first condition,
|= φ(a0c0,a′c′)∧φ(a1c1,a′c′), and, by the second one, E(a0,a1). We conclude by
the choice of φ that a0c0/E = a1c1/E. By our choice of N, we have that 
 is
N-covering map. �

Observe the following remark on covering maps.

Remark 2.15. Given topological spaces X,Y , suppose that 
 : X → Y is a k-
covering. Put F := {f ∈Homeo(X ) : 
 ◦f = 
}.

(1) If Y is path-connected, then |F | ≤ k! and this bound is optimal.
(2) If X is path-connected (thus so is Y), then |F | ≤ k.

Proof. We prove (1) first. It is enough to show that if f(∈ F ) fixes some fiber

–1(y) with y ∈ Y pointwise (∗), then f is identity. Fix x′ ∈ X and let y′ = 
(x′).
Now there is a path α from y to y′. Then, by the unique path-lifting property, there
is a unique path � starting at x, say, and ending at x′ such that 
 ◦� = α. Hence,

(x) = y. Now, since f ∈ F , we have 
 ◦ (f ◦�) = 
 ◦� = α too. Moreover due to
(∗), f(x) = x and by the uniqueness, we have f ◦� = � , so f(x′) = x′. Therefore f
is the identity map as desired.

To see that the bound is optimal, consider X =
⋃

1≤i≤k(i – 1,i) and Y = (0,1).
Define a covering map 
 : X → Y,x �→ x – �x�, where �x� is the greatest integer
which is less than or equal to x. Then, each permutation on {1, ...,k} induces a
homeomorphism of X fixing each fibers of 
 and in this case, |F |= k!.
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For (2), it is enough to show that if f ∈ F fixes a point x in X, then f is the
identity. Suppose f ∈ F fixes x ∈ X . If X is path-connected, then for each x′ ∈ X ,
there is a unique path � from x to x′ due to the unique path-lifting property, so f is
the identity by a similar argument as in the proof of (1). �

Recall that, by Fact 0.4, the topological group Gal1L(p) is connected (due to our
assumption acl(∅) = dcl(∅)). By Remarks 2.13(2)(3) and 2.15 and Proposition 2.14,
we immediately get the following:

Corollary 2.16. Assume T is G-compact. If p̄(M)/E or p(M)/E is path-
connected—each of which holds if Gal1L(p) is path-connected, for example a
(connected) Lie group—then |K |=N .

Now we show a purely compact abelian group theoretical result, which implies
Corollary 2.20. Gleason–Yamabe Theorem [12, Theorem 5′] states that every locally
compact group G is a generalized Lie group, i.e., for every neighbourhood U of the
identity there is an open groupG1 of G and a compact normal subgroup C ofG1 such
that C ⊆U and G1/C is a Lie group [4, Definition 1.4]. Note that if additionally G
is connected, then its only open subgroup is G itself, so the above gives the following
folklore fact:

Fact 2.17. Every locally compact connected group is an inverse limit of Lie
groups.

Lemma 2.18. Let G be an abelian compact connected topological group, and let F
be a finite subgroup of G. Then G and G/F are isomorphic as topological groups.

Proof. Recall that given a finite group F and a prime number q dividing the
order of F, there is a subgroup of F of order q. Hence, we can assume that F has
a prime order q (applying the prime order case and quotienting out finitely many
times to obtain the conclusion for any finite F).

By Fact 2.17 we can present G as lim←−I Gi with some directed system (I , ≤)
and continuous homomorphisms fi,j : Gi → Gj for j ≤ i ∈ I , where each Gi is an
abelian connected Lie group, hence a torus. We can assume each fi,j is surjective.
Since F has a prime order, it is generated by a single element, say a = (ai)i∈I . Also,
replacing I by Ii0 := {i ∈ I | i0 ≤ i} for an appropriate i0, we can assume that I has the
least element i0, and that each Fi (i.e., the projection of F onto the ith coordinate)
has order q. We have that

G/F = lim
←−I
Hi,

where Hi = Gi/Fi , with maps ki,j :Hi →Hj induced by fi,j . Moreover, for each
i ∈ I , we let Si be the unique one-dimensional subtorus of Gi containing ai .

Claim 2.19. We can find subtori Ti < Gi , i ∈ I , such that:

(1) Gi is the direct sum of Ti and Si (in other words, Ti intersects Si trivially,
and Gi = Ti +Si), and

(2) fi,j [Ti ]⊆ Tj for each j ≤ i .

Proof. For i = i0, we choose any torus Ti0 such that Gi0 = Ti0 ⊕Si0 (we can do
this just because Si0 is a subtorus of Gi0).
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Now, take any other i ∈ I . Put Vi = f–1
i,i0

[Ti0 ]. Since both ai and ai0 have order q
and fi,i0 (ai) = ai0 , the map fi,i0 maps Si isomorphically onto Si0 . Hence, Si ∩Vi =
{e} (if x was a nontrivial element in the intersection, then fi,i0 (x) would be a
nontrivial element in Ti0 ∩Si0 ). Also, for any x ∈ Gi , there are y ∈ Ti0 and z ∈ Si0
such that fi,i0 (x) = y+ z, so choosing w ∈ Si such that fi,i0 (w) = z, we get that
fi,i0 (x – w) = y ∈ Ti0 and x ∈ Si +Vi . Hence, Gi is the direct sum of Si and Vi .
Note that Vi is a closed (so compact) subgroup of Gi .

Now let Ti be the identity component of the group Vi . Then Ti is a torus of the
same dimension as Vi intersecting Si trivially, so dim(Ti +Si) = dim(Gi). Hence,
by the connectedness of Gi , we get that Gi = Ti ⊕Si .

To see that fi,j [Ti ]⊆ Tj for j ≤ i , notice first that fi,j [Ti ]⊆ Vj . Now, since fi,j
is continuous and Ti is connected,fi,j [Ti ] is a connected subgroup ofGj , so it must
be contained in the connected component Tj of Vj . This gives the claim. �

Now we will define isomorphisms gi from Hi to Gi such that, for j < i ,

fi,jgi = gjki,j (∗).
(Recall that ki,j : Hi → Hj is the map induced by fi,j .) Clearly, we can write
Hi = Gi/Fi as Ti ⊕ (Si/〈ai〉). We define gi to be the identity map on Ti , and to be
equal to the map αq : Si/〈ai〉→ Si induced by multiplication by q of representatives
modulo 〈ai〉 on Si/〈ai〉, and extend additively to a map from Hi = Ti ⊕ (Si/〈ai〉)
to Ti ⊕Si = Gi . To check (∗), notice that, for x ∈ Ti , both fi,jgi(x) and gjki,j(x)
are equal to fi,j(x), and for y/〈ai〉 ∈ Si/〈ai〉, we have that fi,jgi(y/〈ai〉) and
gjki,j(y/〈ai〉) are both equal to qfi,j(y)/Z, where Sj = (R,+)/Z.

Now, the system of isomorphisms gi induces an isomorphism of topological
groups G and G/F . �

Corollary 2.20. Suppose T is G-compact, and Gal1L(p̄) is abelian. Then, Gal1L(p̄)
and Gal1L(p) are isomorphic as topological groups.

Proof. By Proposition 2.12 or Theorem 2.6, K is finite; hence, by Lemma
2.18, the compact connected group Gal1L(p) isomorphic to Gal1L(p̄)/K must be
isomorphic to Gal1L(p̄) as well. �

Finally, we observe that Corollary 2.20 does not generalize to the non-abelian
case.

Proposition 2.21. Let G be a connected compact Lie group, and N a finite normal
subgroup of G. Then, one can find types p = tp(a) and p̄ = tp(ac) (with c ∈ acl(a)
finite) in some G-compact theory T with acl(∅) = dcl(∅) (in T eq so that G = Gal1L(p̄)
and G/N = Gal1L(p). The same holds for the groups Galres

L and Gal�L for any �.
If we take G = SO(4,R), N = Z(G) = {I , – I }, then G/N = PSO(4,R) and

Z(G/N ) is trivial, so G and G/N are not isomorphic.2

Proof. The Lie group G is definable in some o-minimal expansion R of the
ordered field of real numbers (see for example the discussion preceding Fact 1.1
in [1]), and (using elimination of imaginaries for o-minimal expansions of R) we
identify R with Req . Put H := G/N . We can assume that N ⊆ dcl(∅) = acl(∅), so

2This example is pointed out to us by Prof. Sang-Hyun Kim from Seoul National University.
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H is 0-definable. We consider a structure M = (R,X,Y ), where R comes with its
original structure, X and Y are sets equipped with a regular G-action and a regular
G/N -action, respectively (both denoted by ·), and we add to the language the map
� : X → Y , defined as follows: fix any elements x0 ∈ X and y0 ∈ Y , and, for any
g ∈G , we set �(g ·x0) := gN ·y0. Put T = Th(M).

Note that M = (R,X,Y ) is 0-interpretable in the structure (R,X ), so every
automorphism of (R,X ) extends to an automorphism of M. Moreover, this
extension is unique, as Y ⊆ dcl(X ). The same holds for the saturated extension
M∗ = (R∗,X ∗,Y ∗), hence, by [13, Chapter 7], every automorphism of M∗ is of
the form ḡφ̄, where g ∈ G∗ and φ ∈ Aut(R∗) (using the notation from [13], and
identifying an automorphism of (R∗,X ∗) with its unique extension to M∗), and
GalL(T ) =G .

Let q and p be the unique (strong) types of the sorts X ∗ and Y ∗, respectively.
It follows from [13] that an automorphism ḡφ̄ is Lascar-strong iff g ∈ G∗

inf (the
group of infinitesimals of G∗). It follows that two elements x,y ∈X ∗ have the same
Lascar type iff there is g ∈G∗

inf such that g ·x = y, and two elements w,u ∈ Y have
the same Lascar type iff there is g ∈ G∗

inf and n ∈ N such that (gn) ·w = u. As all
automorphism of the form φ̄ move any x ∈ X ∗ to its translate by some element of
G∗

inf , we conclude easily that

Autf1(q) = Autfres(q) = {ḡφ̄ : g ∈G∗
inf,φ ∈Aut(R∗)}

and

Autf1(p) = Autfres(p) = {ḡφ̄ : g ∈G∗
infN,φ ∈Aut(R∗)}.

Hence, the map

g �→ [ḡ|X∗ ]

is an isomorphism G →Gal1L(q) = Galres
L (q), and the map

g �→ [ḡ|Y∗ ]

is an epimorphism G → Gal1L(p) = Galres
L (p) with kernel N, so Gal1L(p) =

Galres
L (p) =G/N =H .

Now, if we take c |= q and a = �(c) |= p and p̄ = tp(ac), then c ∈ acl(a) (as the
fibers of � are finite), but the Lascar-Galois groups of p are isomorphic to H, and
we see (as ac is interdefinable with c) that those of p̄ are isomorphic to G.

Finally, since GalL(T ) = G is connected, its connected component Gal0L(T ) is
the same as G, so we get by Theorem 21 from [13] that all algebraic imaginaries are
fixed by all automorphisms over ∅, hence acl(∅) = dcl(∅). �

We will see in Theorem 3.7 that, in a non-G-compact T, some tp(acl(a)/acleq(∅))
fails to be a Lascar type while tp(a/acleq(∅)) is a Lascar type. We will also see in
Proposition 3.10 that, even in a G-compact theory, Gal1L(tp(acl(a)/acleq(∅)) may
be abelian but not isomorphic to Gal1L(tp(a/acleq(∅)).

§3. Examples. The starting point of the study in Section 2 was the result observed
in [3] that in a G-compact T if stp(a) is a Lascar type, then so is stp(acl(a)). In this
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section we give an example showing that T being G-compact is essential in the result.
Moreover, it is natural to ask whether all the hypotheses are essential in Corollary
2.20. In Example 2.21, we have already seen that the abelianity assumption cannot
be removed, and we present in this section an example showing that the assumption
that c is finite cannot be removed either. Lastly, we find a Lie group structure
example answering a question raised in [10], which asks whether there exists an
RN-pattern minimal 2-chain not equivalent to a Lascar pattern 2-chain having the
same boundary.

We now explain preliminary examples. Throughout this section we will useM,
N , ...to denote some models which need not be saturated. For a positive integer
n, consider a structure M1,n = (M ;S,gn), where M is a unit circle; S is a ternary
relation on M such that S(a,b,c) holds if and only if a,b,c are distinct and b comes
before c going around the circle clockwise starting at a; and gn = �1/n, where �r is
the clockwise rotation by 2�r-radians.

For p = tp(a), we will denote tp(acl(a)) by ¯̄p.

Fact 3.1 [2].

(1) Th(M1,n) has a unique 1-complete type pn(x) over ∅, which is isolated by the
formula x = x.

(2) Th(M1,n) is ℵ0-categorical and has quantifier elimination.
(3) For any subset A⊆Mn, acl(A) = dcl(A) =

⋃
0≤i<n g

i
n(A) (in the home sort),

where gin = gn ◦ ··· ◦gn︸ ︷︷ ︸
i times

.

(4) The unique complete 1-type pn is also a Lascar type.

3.1. Non-G-compact theory with p Lascar type but ¯̄p not Lascar type. We give
an example of non-G-compact theory which has a Lascar strong type tp(a) but
tp(acl(a)) is not a Lascar strong type. LetM= (Mi,Si,gi,�i)i≥1 be a multi-sorted
structure whereM1,i = (Mi,Si,gi) (as introduced in Fact 3.1, but of courseMi and
Mj are disjoint for i �= j) and �i : Mi →M1 sending x �→ xi for each i ≥ 1 (if
we identify eachMi with the unit circle in the complex plane). For each n ≥ 1, let
M≤n = (Mi,Si,gi,�i)1≤i≤n. LetT = Th(M),Ti = Th(M1,i), andT≤n = Th(M≤n).

Remark 3.2. Both T and T≤n are ℵ0-categorical.

Remark 3.3. Let N = (Ni, ...) be a model of T. For A ⊆ N , define A1 :=⋃
i≥1�i(

⋃
j≤i g

j
i (A∩Ni)), and cl(A) =

⋃
i≥1�

–1
i [A1].

(1) cl(A) is the smallest substructure containing A.
(2) For B,C ⊆N algebraically closed, if B1 = C1, then B = C .

Fact 3.4 [3, Theorem 5.5]. Let T be ℵ0-categorical and let M = (M, ...) be
a saturated model of T. Suppose that if X ⊆M 1 is definable over each of two
algebraically closed sets A0 and A1, then X is definable over B :=A0∩A1.

Then, for any subset Y ofMn, if Y is both A0-definable and A1-definable, then it
is B-definable. Furthermore, in this case, T has weak elimination of imaginaries.
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Proposition 3.5.

(1) Both T and T≤n, n ≥ 1, have quantifier elimination.
(2) Both T and T≤n, n ≥ 1, weakly eliminate imaginaries.

Proof. (1) Here we prove that T has quantifier elimination. By a similar reason,
each T≤n has also quantifier elimination. Let N1 = (N 1

i , ...) and N2 = (N 2
i , ...)

be models of T. Take some finite A ⊆ N1, and let f : cl(A)→ N2 be a partial
embedding. Take a ∈ N1 arbitrary. It is enough to show that there is a partial
embedding g : cl(Aa)→N2 extending f. By Remark 3.3(1), we may assume that
A=A1 ⊂N 1

1 . Suppose a ∈N 1
i . Let a1 = �i(a). If a1 ∈A, then a ∈ acl(A), and we are

done. Without loss of generality, we may assume that a1 �∈A. Since T1 has quantifier
elimination, we can pick b1 ∈N 2

1 such that b1 |= tpT1
(a1/A). Let Ai = �–1

i [A]⊆N 1
i ,

which is finite, and let āi = (a1
i , ...,a

i
i ) be an enumeration of �–1

i (a1). Since each Ti
has quantifier elimination, we can pick an enumeration b̄i = (b1

i , ...,b
i
i ) of �–1

i (b1)
such that b̄i |= tpTi (āi /Ai). Note that cl(Aa) = cl(A)∪

⋃
i≥1�

–1
i (a1). Consider a

map g = f ∪{(aji ,b
j
i )| 1 ≤ i,1 ≤ j ≤ i}. For each i, g �N1

i
is a partial embedding

to N 2
i , and for each j ≤ i , b1 = �i(b

j
i ) = �i(g(aji )). Therefore g : cl(Aa)→N2 is a

partial embedding extending f, and we are done. As a consequence, acl(A) = cl(A)
for each A.

(2) We first show that each T≤n weakly eliminates imaginaries. We consider
M≤n asM′

≤n = (M ′,S ′,g ′,�′), where M ′ =M1 ∪ ··· ∪Mn, S ′ = S1 ∪ ··· ∪Sn, g ′ =
g1 ∪ ··· ∪gn, and �′ = �1 ∪ ··· ∪�n. Let T ′

≤n = Th(M′
≤n). It is enough to show that

T ′
≤n weakly eliminates imaginaries. Note that T ′

≤n is ℵ0-categorical. LetN = (N (=
N1 ∪ ··· ∪Nn), ...) be a saturated model of T ′

≤n. By Fact 3.4, it is enough to show
that a subset X ofN 1 which is both A-definable and B-definable, where A and B are
algebraically closed, is also definable over C =A∩B . Let Ai , Bi , and Ci denote the
intersections of A, B, and C, respectively, withNi , 1≤ i ≤ n. Note that Ci =Ai ∩Bi
for each 1≤ i ≤ n and C = acl(C1). We may assume thatX ⊆Ni for some 1≤ i ≤ n
by taking X ∩Ni . By quantifier elimination, X is definable over Ai and Bi . Then
from the proof of [9, Theorem 4.3(1)], X is definable over Ci = Ai ∩Bi and clearly
over C = acl(Ci). Thus T ′

≤n weakly eliminates imaginaries and so does T≤n.
Let M′ be a saturated model of T and let M′

≤n be the saturated structure
corresponding to M≤n. By Remark 3.3(1) and quantifier elimination, there is
no strictly decreasing chain of algebraically closures of finite sets in M′. Since
M′ =

⋃
nM≤n, by the same reasoning as in the proof of [3, Theorem 5.9], we

conclude that T weakly eliminates imaginaries. �
Let N = (Ni, ...) be a saturated model of T. By Proposition 3.5, acleq(∅) = ∅. Let

a ∈N 1
1 , and consider strong typesp := tp(a) (isolated byx = x) and ¯̄p := tp(acl(a)).

Fact 3.6 [2]. For a �= b ∈Nn, a and b have the same type over some elementary
substructure ofNn if and only ifNn |= Sn(a,b,gn(a))∧Sn(g–1

n (a),b,a). So there are
a,b ∈Nn whose Lascar distance is at least n/2.

Theorem 3.7. The type p is a Lascar strong type but ¯̄p is not a Lascar strong type.

Proof. By Fact 3.6, p is a Lascar strong type. Take a,b ∈ N1 which are Lascar
equivalent. Let āi = (a1

i , ...,a
i
i ) and b̄i = (b1

i , ...,b
i
i ) be enumerations of �–1

i (a)
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and �–1
i (b). Denote �i(ai) = (a�(1)

i , ...,a
�(i)
i ) for each permutation � ∈ Si . Let

�i be the permutation of {1,2, ...,i} sending j to j + 1 for j < i and i to 1.
Then (a1,�

k2
2 (ā2),�k3

3 (ā3), ...) |= ¯̄p for arbitrary k2,k3, ...(∗). For each i, there are
ai ∈ �–1

i (a1) and bi ∈ �–1
i (b1) whose Lascar distance is at least i/2. So, by (∗), ¯̄p is

not a Lascar strong type. �

3.2. A G-compact theory with Gal1L( ¯̄p) abelian and not isomorphic to Gal1L(p).
We will use the symbols �r , gn, and (Mi,Si) defined in the previous subsection. Put
M̃= M̃1 = (M1,S1,g1,n)n≥1, where g1,n is the same rotation as gn on the unit circle
M1 = S1. We define a multi-sorted structure

M′ = ((M̃k),
k)k≥1,

where each M̃k := (Mk = {x(k) : x ∈ S1},Sk,gk,n)n≥1 is a copy of M̃1 (again gk,n is
the same rotation as gn onMk , and we may omit k in Sk and gk,n), and 
k : M̃k+1→
M̃k is given by 
k(x(k+1)) = x2

(k). Put T ′ = Th(M′).

Lemma 3.8. T ′ admits quantifier elimination.

Proof. It is enough to prove quantifier elimination for the restriction of M′

to finitely many sorts M̃≤k for each k, but such a restriction is quantifier-free
interpretable in the structure M′ for some n, which is known to admit quantifier
elimination [3, Theorem 5.8]. �

Using quantifier elimination, it is easy to check that two (possibly infinite)
tuples have the same Lascar type if and only if their corresponding coordinates are
infinitesimally close (in the same sort), and S induces corresponding partial orders
on the tuples. As this is a type-definable condition, we get that T ′ is G-compact.

By Theorem 5.9 from [3], M̃, and hence also any M̃≤k , weakly eliminates
imaginaries. Hence, we get:

Remark 3.9. T ′ weakly eliminates imaginaries.

By Lemma 3.8, one easily gets that aclT ′(∅) = ∅ in the home-sort; hence, by
Remark 3.9, acleq

T ′(∅) = ∅. Now, let p be the (unique) type of an element a ∈ M̃.
Then Gal1L(p) ∼= GalL(Th(M̃)) ∼= S1. On the other hand, for ¯̄p = tp(acl(a)), we
have:

Proposition 3.10. Gal1L( ¯̄p) is isomorphic to the 2-solenoid G := lim←−i R/2
iZ (the

projections in the inverse limit are the natural quotient maps). Hence, Gal1L( ¯̄p) is
abelian and non-isomorphic to Gal1L(p).

Proof. Consider the homomorphism φ : G = lim←−i R/2
iZ→Gal1L( ¯̄p) sending a

sequence (ri/2iZ)i to the class induced by the automorphism f(ri )i (defined on a
monster model of T ′) equal to �ri /2i on M̃i for each i. If ri /∈ 2iZ, then f(ri )i does
not preserve the Lascar types of elements of M̃i , hence Ker(φ) = {0}. It remains to
check that φ is surjective. Consider a class in Gal1L( ¯̄p) induced by an automorphism
f. As all elements of M̃1 have the same Lascar type, we may assume that f(a) = a
for some a ∈ M̃1 (by composing f with a strong automorphism sending f(a) to
a). Now, for each i, as f commutes with 
1
2 ... 
i–1, it must preserve acl(a)∩M̃i
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setwise. Hence, there is ri such that on acl(a)∩M̃i , f is equal to �ri /2i . Then f and
f(ri )i have infinitesimally close values on every element of the monster model, so
f–1f(ri )i is Lascar strong and φ(f(ri )i ) is equal to the class induced by f. �

3.3. RN but not a Lascar pattern 2-chain. Let p be a strong type of an algebraically
closed set. In [9], it was shown that any 2-chain in p with 1-shell boundary can be
reduced to a 2-chain having an RN-pattern or an NR-pattern.3 Also for a,b |= p, if
a ≡L b, then (a,b) is an endpoint pair of a 1-shell which is the boundary of a 2-chain
having a Lascar pattern, a kind of an RN-pattern. In [10, Question 4.5], it was asked
whether all minimal 2-chains having an RN-pattern with 1-shell boundary should
be equivalent to one having a Lascar pattern. It was also noticed that if there is a
counterexample, then its length should be at least 7.

In this subsection, we assume the reader has some familiarity with the notions
described in [9, 10], and we work with the trivial independence to define independent
functors in a strong type (see Definition 0.6), and corresponding 1-shells and 2-
chains. We now give descriptions of 2-chains having an RN- or a Lascar pattern in
terms of balanced walks, rather than original definitions. For more combinatorial
descriptions for RN- or Lascar pattern 2-chains, see [10].

Remark/Definition 3.11. Let a,b |= p. For n≥ 1, a balanced edge-walk of length
2n from a to b is simply a balanced chain-walk of length 2n from a to b in Fact
0.14(1)(b) with the trivial independence (so (1)(b)(ii) is removed ), that is, a finite
sequence (di)0≤i≤2n of realizations of p satisfying the following conditions:

(1) d0 = a, and d2n = b; and
(2) there is a bijection

� : {0,1, ...,n – 1}→ {0,1, ...,n – 1}
such that d2i d2i+1 ≡ d2�(i)+2d2�(i)+1 for i < n.

With the trivial independence, a balanced edge-walk of length 2n from a to b induces
a 2-chain of length 2n+1 (having the 1-shell boundary whose endpoint pair is (a,b)),
which is a chain-walk (cf., the proof of [3, Theorem 4.2]). Such an induced 2-chain
need not be unique but it is unique up to the first homology class.

In particular, given a minimal 2-chainα of length 2n+1 with the 1-shell boundary
s, α is equivalent to a Lascar pattern 2-chain if and only if α is equivalent to a chain-
walk induced by a balanced edge-walk of length 2n from a to b with � = id such
that [a,b] = [s] ∈H1(p).

Fact 3.12 [3, 10]. Let α be a minimal 2-chain of length 2n+ 1(n ≥ 1) in p with
the boundary s = g12 – g02 +g01 such that supp(gij) = {i,j}. Then the following are
equivalent.

(1) The 2-chain α has an RN-pattern.
(2) The 2-chain α is equivalent to a 2-chain

α′ =
2n∑
i=0

(– 1)ifi,

3In this paper, we change terminology “ ... -type” to “ ... -pattern” in order to avoid confusion with
the existing notion of a type—a set of formulas.
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which is a chain-walk of 2-simplices from g01 to – g02 such that ∂2f0 = g01,
∂0f2n = g12, ∂1(f2n) =– g02, and supp(α′) = 3 = {0,1,2}.

(3) There are an endpoint pair (a,b) of s, and a balanced-edge-walk of length 2n
from a to b which induces a 2-chain equivalent to α.

In this subsection we will give a minimal 2-chain example (with 1-shell boundary)
having an RN-pattern but not equivalent to that having a Lascar pattern. The
example will have length 7. We start with preparatory constructions. Let G be a
connected compact Lie group definable in R in the ordered ring language. Let X be
a set equipped with a regular G-action. LetM2 = (R,X,·) be a two sorted structure,
where R is the field of real numbers with a named finite set of elements over which
G is definable. Let Nn = (M1,n,M2), and there is no interaction betweenM1,n and
M2.

Let N ∗
n = (M∗

1,n,M∗
2 ) be a saturated model of Th(Mn) such that M∗

1,n =
(M ∗,S,gn) and M∗

2 = (R∗,X ∗,·) are saturated models of Th(M1,n) and Th(M2)
respectively. Since there are no other interactions betweenM∗

1,n andM∗
2 , we have

that

• Aut(N ∗
n ) = Aut(M∗

1,n)×Aut(M∗
2).

• For a ∈M∗
1,n and b ∈M∗

2, acl(ab) = aclM1,n (a)∪ aclM2(b), where aclM1,n
and aclM2 are the algebraic closures taken inM∗

1,n andM∗
2 respectively.

• For a ∈M∗
1,n and b ∈M∗

2, tp(ab) = tpM1,n
(a)∪ tpM2

(b) where tpM1,n
(a) and

tpM2
(b) are complete types inM∗

1,n andM∗
2 respectively.

First, let us recall a fact on minimal lengths of 1-shells in pn from [9].

Definition 3.13. LetA be a non-trivial amenable collection and let s be a 1-shell.
Define

B(s) := min{ |�| : � is a (minimal) 2-chain and ∂(�) = s }.
If s is not the boundary of any 2-chain, define B(s) :=–∞.

Fact 3.14. For n ≥ 7, there is a 1-shell s in pn such that B(s) = 7.

Note that in [9], the authors considered 1-shells and 2-chains defined under acl-
independence for Fact 3.14. By similar methods as in the proofs, it is not hard to
see that the same Fact 3.14 holds for 1-shells and 2-chains defined under the trivial
independence as in this subsection.

Next, let us recall some facts aboutM∗
2 from [13]. Let G∗ be the extension of G

in R∗. Let � be the normal subgroup of infinitesimals in G∗. We fix a base point
x0 ∈ X ∗ so that for x ∈ X ∗ there is a unique element h ∈G∗ with x = h ·x0.

Fact 3.15.

(1) Each φ ∈ Aut(R∗) is extended to Aut(M∗
2 ) defined by φ̄(h ·x0) := φ(h) ·x0.

An automorphism which fixesR∗ pointwise is of the form ḡ for some g ∈G∗,
where ḡ(h ·x0) = (hg–1) ·x0, and the commutation rule is given by φ̄ḡ =φ(g)φ̄.
So we have Aut(M∗

2 ) = Aut(R∗)�G∗.
(2) An automorphism Φ = φ̄ḡ is a strong automorphism if and only if g is an

infinitesimal. So the Lascar Galois group of Th(M2) is isomorphic to G.
(3) �= {h–1φ(h)| h ∈G∗, φ ∈Aut(R∗)}.
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We note that in X ∗, there is a unique 1-type over ∅ and it is also a strong type
over ∅.

Proposition 3.16. For any x ∈ X , x ≡ x0 and tp(x0) = stp(x0).

Proof. Suppose there are x,x′ ∈ X ∗ with stp(x) �= stp(x′). Then there is an
∅-definable finite equivalence relation E on X ∗ such that ¬E(x,x′). Define H :=
{g ∈ G∗| E(x,g ·x)}. Since E is ∅-definable, H is ∅-definable subgroup of G∗, and
it is proper. We claim that [G∗ : H ] is finite. Note that gg–1 ∈ H if and only if
E(g ·x,g ′ ·x). So the map sending gH ∈ G∗/H �→ g(x)E ∈ X ∗/E is a bijection
because G∗ acts on X ∗ transitively. Since X ∗/E is finite, so is G∗/H , contradicting
the connectedness of G. �

Let acleq
R∗(∅) be the algebraic closure of ∅ in (R∗)eq. For x ∈ X ∗, acleq(x) =

{x}∪ acleq
R∗(∅). From Proposition 3.16, we have that tp(x) |= stp(acleq(x)). So we

say x1 and x2 are endpoints if acleq(x1) and acleq(x2) are endpoints of a 1-shell in
p := stp(acleq(x)).

Lemma 3.17. For x1,x2,x3 ∈ X ∗, if x1x2 ≡ x3x2, then there is h ∈ � such that
h̄(x1) = x3.

Proof. Let x1,x2,x3 ∈ X ∗ be such that x1x2 ≡ x3x2. Let h1,h2,h3 ∈ G∗ be such
that xi = hi ·x0. It is enough to show that h3h

–1
1 ∈ �.

Take φ ∈Aut(R∗) and g ∈G∗ such that ḡφ̄(x1x2) = x3x2. Then we have

ḡφ̄(x1x2) = ḡ((φ(h1) ·x0)(φ(h2) ·x0))

= (φ(h1)g–1 ·x0)(φ(h2)g–1 ·x0)

= (h3 ·x0)(h2 ·x0).

By the regularity of the action ofG∗, we have φ(h1)g–1 = h3 and φ(h2)g–1 = h2, and
so g = h–1

2 φ(h2) ∈ �. And h3h
–1
1 = φ(h1)g–1h–1

1 = φ(h1)h–1
1 = id modulo � because

� is a normal subgroup of G∗. Thus h3h
–1
1 ∈ �. �

Theorem 3.18. For x1,x2 ∈ X ∗, the following are equivalent:

(1) x1 ≡L x2.
(2) There is h ∈ � such that h(x1) = x2.
(3) x1 and x2 are endpoints of a 1-shell which is the boundary of a 2-chain in p

having a Lascar pattern.

Proof. (1)⇔ (2) was proved in [13] and (1)⇒ (3) was proved in [9]. It is enough
to show (3)⇒ (2). By definition of Lascar pattern 2-chain (in [9]) and Lemma 3.17,
(3)⇒ (2) is also true. �

Now we give a promised example of a minimal 2-chain having an RN-pattern but
not equivalent to one having a Lascar pattern. Denote [g,h] = ghg–1h–1. Consider
N ∗
n for some n ≥ 7 and let q = tp(ab) for a |= p and b |= pn, which is a strong type.

Theorem 3.19. Suppose G is not abelian. Then there is a minimal 2-chain in q
which has an RN-pattern but not equivalent to any Lascar pattern 2-chain.

Proof. Suppose G is not abelian. We can choose g1,g2,g3 ∈ G such that
[(g3g2)–1,(g2g1))] �= id. Let h1 := g1, h2 := g2, h3 := g3, h4 := h–1

1 [h1,(h3h2)], h5 :=
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h–1
2 [h2,(h4h3)], and h6 := h–1

3 [h3,(h5h4)]. Set xi = (hihi–1 ···h1)–1 ·x0 for 1 ≤ i ≤ 6.
Consider a 1-shell s = f01 +f12 – f02, where f01({01})≡ [x0x0], s = f12({1,2}) =
[x0x0], and f02({0,2}) ≡ [x6x0], and its endpoints are x0 and x6. Let fi =
hihi–1 ···h1 ∈G ⊆G∗ for 1≤ i ≤ 6. Then we have that

• f4 = f3f
–1
1 ;

• f5f
–1
1 = f4f

–1
2 ; and

• f6f
–1
2 = f5f

–1
3 .

This implies f̄4(x0x1) = x4x3, f5f–1
1 (x1x2) = x5x4, and f6f–1

2 (x2x3) = x6x5. Then
we have that x0x1 ≡ x4x3, x1x2 ≡ x6x5, and x2x3 ≡ x5x4.

x0 x1 x2 x3 x4 x5 x6
h̄1 h̄2 h̄3 h̄4 h̄5 h̄6

This gives a 2-chain α of length 7 having the 1-shell boundary s. Note that

f6 = (h6h5h4h3)h2h1

= (h5h4)h2h1

= (h4h3h
–1
2 h

–1
3 )h2h1

= (h4h3)(h–1
2 h

–1
3 )(h2h1)

= (h3h2)(h2h1)–1(h–1
2 h

–1
3 )(h2h1)

= [(h3h2),(h2h1)–1] �= id,

andf6 /∈�. By Theorem 3.18, s is not the boundary of 2-chain with a Lascar pattern
and B(s)≤ 7.

Let b,b′ |= pn where (b,b′) is an endpoint pair of a 1-shell s ′ of pn such that
B(s ′) = 7 in M1,n. Let α′ be a minimal 2-chain with an RN-pattern having the
1-shell boundary s ′ of length 7. Note that we can take such a 2-chain because pn
is a Lascar type. Consider a = (x0,b),a′ = (x6,b

′) |= q. Let s ′′ be a 1-shell induced
from s and s ′ with an endpoint pair (a,a′). Consider a 2-chain α′′ in q induced
from α and α′, which does not a Lascar pattern and has length 7. We claim that
α′′ is minimal. Since B(s) ≤ 7 and B(s ′) = 7, we have that B(s ′′) = 7 and so
α′′ is minimal. By the construction of α′′, it has an RN-pattern. Therefore, the
minimal 2-chain α′′ has an RN-pattern but is not equivalent to a Lascar pattern
2-chain. �
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