
A GENERALIZATION OF EPSTEIN ZETA FUNCTIONS 

S. MINAKSHISUNDARAM 

(With a supplementary note by HERMANN WEYL) 

§ 1. An Epstein zeta function (in its simplest form) is a function repre
sented by the Dirichlet's series 

TV expi Q i a i + - • •+ nkak) 
(1) L (ni.+ ^ + . . . + „,.)•• 5 = <r + ,r 

where ai. . . ak are real and wi, n^ • . . nk run through integral values. The 
properties of this function are well known and the simplest of them were 
proved by Epstein [2, 3]. The aim of this note is to define a general class of 
Dirichlet's series, of which the above can be viewed as an instance, and to 
discuss the problem of analytic continuation of such series. 

The point of view is the following: The exponential functions exp i(n\X\ 
+ • * •+ fikXk) may be viewed as the eigenfunctions of 

k d2u 

(2) Au + \u = £ —- + \u = 0 
i = l dXi2 

in the domain D = (0 < xi, . . . , xk< 2ir), the boundary condition being 

w(0, x2, . . . , Xk) = u(2ir, X2J . . • , Xk) 
(3) u(xi, 0, x%, . . . , XL) = w(xi, 27T, x3, . . . , Xk) 

u(xi, . . . , ocifc-i, 0) = u(xi, . . . , Xfc-i, 2TT). 

The associated eigenvalues may be verified to be ni2-\-, . . + nk2. If we arrange 
the eigenf unctions and eigenvalues into sequences «„(#), Xn we observe that 
(1) may be written as 

E ' ^ , x = (Xl Xk) 
LÀ \ s 

(we have only to set ai= Xi— yi'va (1)), where Sr indicates that the zero eigen
value is omitted in the summation. 

Taking this point of view, we shall consider the eigenfunctions of (2) for a 
general class of domains and for the I and II boundary value problems and 
study the corresponding Dirichlet's series which may be easily defined. 
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§ 2. In the ^-dimensional Euclidean space, let D denote a bounded domain 
with a regular boundary B, so that the following boundary value problem 

(4) Au + \u = £ —- + \u = 0, 

I w(x) = u(xu . . . , Xk) = 0 on 5 
or 

II — (*) = 0 on B 
dn 

where — denotes the derivative along the normal, has an infinite number of 
dn 

non-negative eigenvalues with the associated eigenfunctions. We denote the 
eigenvalues and eigenfunctions by \n and œn(x) respectively1 and assume that 
the eigenvalues are arranged according to non-decreasing order of magnitude 
and that the eigenfunctions form a complete normal orthogonal set. We 
observe, that in the case of the second boundary value problem viz. II, X0= 0 

1 
is a simple eigenvalue with the eigenfunction coo(#) = —7= , where V is the 

V V 
volume of D, while in I, all the eigenvalues are positive. So it will be con
venient to assume that the suffix n runs through 1 , 2 , 3 , . . . in case I and through 
0, 1, 2, . . . in case II and that Xi> 0. 

With the above notations we have the following 
00 

THEOREM. The series J2 O3n(oc)u>n(y)/\n
8
y s = a + ir, which has a finite 

abscissa of absolute convergence, represents an entire function of 5, if x and y are 
distinct points in D, with the so-called utrivial zeros" at s =0 , — 1, — 2, . . . in case 
I and at s = — 1 , —2, — 3, . . . in case II. 

CO 

On the other hand the series £ o)n
2(x)/\n

8 which also has a finite abscissa of 
« = 1 

convergence, represents a meromorphic function of s with a simple pole at s — fc/2 

and residue l/r(£/2)(2\Ar) fc and with the so-called utrivial zeros11 at s = 0 , — 1, 
—2, . . . in case I and at s = — 1 , —2, —3, . . . in case II. 

§ 3. The proof of the theorem depends on a lemma on the Green's function 
for the heat equation 

du 
(5) Au - - = 0 

which we state below. Let G(x, y\ t) denote the Green's function for the heat 

^ a c h eigenvalue being repeated according to its multiplicity and the eigenfunctions being 
real. 
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equation (5) associated with either of the boundary conditions21, II and further 
satisfying the initial condition 

lim G(x, y; t) = 0, x, y in D, x j£ y. 

It is known that G(x, y; i) can be expressed in the form 

1 / 2(*,— y*)* 
(6) 

where 

G(x,y;t) = exp 

1 
exp 

(2V**)fc 

/ __ z(xi- yiy\ 

/ zfc- yiy\ g(x,y;t) 

is the fundamental solution of (5). We 
(2\Z£*)* 

have then the following 
LEMMA. If ly denotes the minimum distance between y and points on B, then, 

in any finite interval of t, 

(7) ?(*.y;0| <jr,e~l"Ut 

for all x in D, where c is a constant independent of x and t. 
Assuming the lemma for the present we shall prove the theorem. We first 

observe that 
G(x, y;t) = E o)n(x)a)n(y)e~*nt 

the summation on the right running from 1 to co or 0 to œ according as the 
first or the second boundary condition is under consideration. So we can 
write the above equation in a more convenient form, viz.: 

00 £ 

(8) E œn(x)œn(y)e-^t= G(xf y; I) - -
« = i V 

where 8 = 0 or 1 according as I or II boundary problem is taken into consider
ation. Multiplying both sides of (8) by t8~l and integrating with respect to 
t from 0 to oo , we note that if R{s) is sufficiently large the left side gives 
(9) T(s) E un{x)un{y)/\n8 

the series being absolutely convergent.3 We now have to evaluate 

^(G(X, y ; t ) - Ô 

_ ) 

(10) G(x,y,t) t8~ldt - h 
s.V 

oo oo 

E 03n(x)un(y)e-^H8-ldt 
n=l 

oo oo 

E (^n(x)œn(y)e-^ntts-1dt 

ri 

sV + G{x, y\ t) ts ldt + Ho)n(x)o)n(y) e-
Xntts-ldt 

if R(s) > 0. ° l 

2Though the Green's functions are different in the two boundary problems we use the same 
notation G(x, y; t) and there need be no confusion. 

3The iterated Green's function of Aw will belong to L2 for a sufficiently high order of iteration, 
from which it will follow that Xo)n

2(x)/Xn
a is convergent if a is large and X(jOn(x)oon(y)/A^0" will 

be absolutely convergent for large a. 
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The last integral on the right of (10) is easily seen to be an entire function 
of 5, while the second is 

(ID 
i r i 

(2v^)*J 
-ft/. 

Z(xi-yi)2} 

2 - 1 exp \ — 
4/ 

it - g(x, y; fy'-W. 

The first integral in (11) is an entire function of s, if x ^ y and the second is 
also an entire function of 5 on account of the lemma since ^ 0 as long as y 
is an interior point. So combining (9) and (10) we note that 

(12)- z 
« = 1 

œn(x)œn(y) 

Xn
8 + 

Ô E(s) 

V.T(s+l) ~ T(s) 

where E(s) denotes an entire function of 5. (12) proves everything stated in 
the theorem about the series on the left. Incidentally it shows that while the 
analytic continuation of the Dirichlet's series vanishes at 5 = 0 in case I, it 

does not vanish in case 11 ; in fact it takes the value — — . 
V 

If the two points x and y coincide, we have only to put x = y in (9), (10), 
and (11) and observe that if R(s) is large enough 

00 o i l 
r (*) £ C0»2(x)An* = - — + — — 

« = i sV (2VTO 

(13) g(x, x; t) ts E con
2(x) 

5 - k/2 

While the last integral is easily seen to be an entire function of 5, the last 
but one can be seen to be an entire function of s by the lemma as long as x is 
an interior point. Hence we have 

" C0W
2(X) 

(14) 
1 

+ 
E(s) 

nfi Xn
8 (2V*)k T(s)(s-k/2) VT(s + l) ' T(s) 

which proves everything about S con
2(x)/\n

8 stated in the theorem.4 

REMARKS: 1. It may be of interest to remark that by applying Ikehara's 
Tauberian theorem to (14) we obtain the following asymptotic distribution 
of eigenfunctions: 

(15) £ C0n2W nft/2 

\n<T (2V7r)fcr(V2+ i) 

a result which can also be proved by applying Hardy-Littlewood's Tauberian 
theorem on Dirichlet's series to (8) with x = y (see (2) in [5]). 

4This series for the two dimensional domain was first studied by T. Carleman [1]. 
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2. Another point of interest5 is to study the nature of the series 2 1/Xn
a 

If R(s) is large and positive 

T(s) E 1/Xn
8 = 

w = l 

(16) 

dx 

dx 

2<ûn2(x) "^'"W 

r i 

+ dx 

As usual the second integral on the right of (16) is an entire function while 
the first is 

Ô V 

s + (2VS)fc 

1 

* - 7 2 

and by the lemma 

dx g(x,x;i) t*-xdt < c 

< c 

dx 

dlx 

g(x, x;t)ts ldt 

f-k/2-ie-ix
2htdt 

e uu *du tr_fc/2-* dv 

on using the transformation lx/M-= u; t = v. The above integral on the 
extreme right is finite if <r > k/2 — \ , so that the first integral on the right 
of (16) is regular for a > k/2 — \ . Thus 

(17) + 
V 1 

+ 
F(s) 

xn
s r(5 + i) ' (2V*)k r(s)(s-*/0 ' r(^) 

where F(s) is regular for 2?(5) > V2 — è- Again by an application of 
Ikehara's Tauberian theorem to (17) we have the following well-known 
asymptotic distribution of eigenvalues: If N(T) is the number of eigen
values < T, 

N(T) ~ T h . 
i n i ) ( 2 V ^ ) 4 r ( V 2 + D 

§ 4. Now it remains to prove the lemma. For this purpose we introduce 
slightly different notations. We denote by capital letters P , Q . . . points 
interior to D and by small letters p, q, . . . points on its boundary B. If P = 
(xi, . . . , xk), Q = (yu • • • , Jk) we write 

rpQ2= L ipa- Ji)2, 

M^^;Q.O 
1 rpQ 

r^exp V Ht - s)), (2V?)& ( / - * ) " 
cos rpqnp= cos m = cosine of the angle between the radius vector rvq and the 
normal nv at r. According to these notations 

G(x, y; t) = G(P, Q; t) = h0, k/2(P, 0; Q, t) - g(P, Q; t). 
5The author is indebted to Professor H. Weyl for this remark. 
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As a function of (Q, /), g(P, Q', t) is a solution of the heat equation tending 
to zero as / —» 0, and takes the same boundary values as h0, k/2 on B for all t in 
case I, while in the case II its normal derivative has the same value as the 
normal derivative of ft0, fc/2 on B. 

We shall first prove the lemma in the case of the II boundary value problem. 
In this case we can set 

rt 
h, k/2(p, s, Q, t)\[/(p, s)dpds 

B 0 

where \l/(p, s) is an unknown function to be determined. It is clear our lemma 
will follow if we can show that a function \p{p, s) which is bounded in every 
finite interval 0 < 5 < T, uniformly on B can be determined to satisfy (18). 
To show this we note that \[/(p, s) is a solution of the following integral equation : 

(is) g(P,Q\ty 

(19) *(q, t) + hi, k/2+i(P, s, q, i) cos rnxpip, s)dpds 

B o 

= — g(P, 2> 0 = *i,*/2+i(^» °> 4> t) = *(ff» 0» 
an 

say. Then yp(q, i) can be determined as a Neumann's series: 

(20) 0o(ff,/j = *(ff,0» 
**(2, 0 = *i» V2+i(£> 5î 3' *) c o s m<l>i-i(P> s)dpds. 

B o 
If |0(g, /)[ < M, as is certainly the case in 0 < / < T, one proves by 

induction 

where iV is a constant independent of / and i, which can be determined.6 This 
shows that if <j>(q, t) is bounded in any finite interval 0 < / < T, so is yp{q, t). 
Hence the lemma. 

Corresponding argument can be made use of in the case of the first boundary 
value problem. 
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Andhra University 

SUPPLEMENTARY NOTE BY HERMANN WEYL 

At Minakshisundaram's request I add another proof of his fundamental 
lemma. This alternative proof is restricted to the boundary value problem I, 
but for this case yields a more complete result. Take for y a fixed interior 
point y0 and set lVQ = I. The maximum of the main part of Green's function 
along the boundary is 

(4,irt)-k/2 exp ( - l2/et) = j(t), 

and this function jit) is on the increase as long as t moves from 0 to J\= I2/2k. 

Instead of splitting the integrals 

mT0 

poo 

into 
i 

does, one splits into + 

+ , as Minakshisundaram 
i 

I maintain that in the first part, i.e. for 

To 

0 < t < TQ, the compensating function u(x; t) = g(x, y$ ; t) satifies the in
equality 

0 < u(x; t) < j{t). 
Proof. (1) For any t in this interval let m(t) and M(t) denote minimum and 

maximum of uix\ t) as a function of x. Suppose that, contrary to the state
ment, m{ti) is negative for a certain t\ between 0 and T0, and that u{x\\ ti) = 
m(ti). Since the boundary values of u(x; ti) are positive, Xi must be an interior 
point, and one must have Au ^ 0 for x = xi, t = t\. Hence the equation 

— = Au shows that — ^ 0 for the same values. Choose a positive constant 
dt dt 

a and form 

-at du at $v 

v = e l . u, — — au = e . — ; 
dt dt 

dv 
one then sees that — > 0 for x = Xi, t = h. Hence v(xi] t) actually decreases 

dt 
during a short time, t{> t > t\, while t decreases starting with the value t\. 
Set e~at. m{t) = m*(t). As rn*(t)< v(x\\ t) we have a fortiori rn*(t)< tn*(ti) in 
that interval. Thus rn*(t) goes down and continues to be negative while / 
decreases. That makes it possible to repeat the argument and to conclude 
that in the whole interval ti> t > 0 the function ?n*(t) decreases along with t 
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and thus stays less than or equal to m*{t\). But this is a contradiction, since 
v(x; f)-*0 for *-» 0. 

(2) Suppose that, contrary to the proposition, M{t\) > j(t\) ^or a definite 
value t\ in the interval 0 < t\ < TV Then the maximum M(h) is taken on at 

ou 
an interior point x = x\. We have Au < 0 and hence — < 0 for x = x'i, 

dt ~ 

t = tu and thus < 0 for the same values and u*(x; t) = u{x\ t) — j(t). As 

M(t)> u(x\) /), the "span" AT*(/) = M(t) — j(t) thus increases during a short 
time while J decreases from £1 downward. It therefore stays positive, and 
repetition of the argument shows that the span is increasing with decreasing t 
during the whole time t\>. t > 0, a result that contradicts the limit equations 
u(x; i) -» 0, j(t) -» 0 for t -> 0. 

Institute for Advanced Study 
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