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1. Introduction and basic general facts. The research presented in this paper
started by extending a theorem of Swetits [18] about barrelledness of subspaces of
metrizable AK-spaces to general AK-spaces of scalar sequences. The extension reads as
follows.

(1) A subspace A,, of a barrelled A K-space A such that Ao => <p is barrelled if and only if
its dual A,', is weak* sequentially complete. If in addition A(, is monotone, then it is barrelled
if and only if A,', equals the Kothe dual A(? of A,,.

As an easy consequence of this extension, we obtained the following result of
Elstrodt and Roelcke [8, Corollary 3.4].

(2) If k is a barrelled monotone A K-space, then also its subspace 2£{k), consisting of
all sequences in A with zero-density support, is barrelled.

At this point it was natural to ask whether the AK hypothesis was essential here; in
particular, we were interested in knowing if the space 2£{r) was barrelled. We
approached this problem as follows. We first established that the Boolean ring 3f
consisting of the subsets of N with density zero has Property (N); that is, the Nikodym
uniform boundedness theorem holds for bounded finitely additive measures on St. This
curious fact is of crucial importance for us, and it should also be of independent interest
for people working in measure theory because the ring 2E fails to satisfy any known
conditions that ensure Property (N). Using it, along with the obvious fact that the
projections PA(x,,) = (XA(n) • xn)(A e 2£) form an equicontinuous Boolean ring of projec-
tions in I", we could extend the result (2) above to the case when A = /°°. Very soon it
turned out that, actually, the last result is valid in even much greater generality, namely
for any barrelled locally convex space E with an equicontinuous Boolean ring of
projections Vm, where the "representing" ring of sets £% has Property (N). This is
presently the contents of Section 3 of our paper.

Since these results are valid for spaces more general than sequence spaces, it became
desirable to achieve some sort of conformity with our earlier results (1) and (2) given for
sequence AK-spaces. We decided, therefore, to leave the territory of scalar sequence
spaces, and to generalize those earlier results to locally convex spaces with Schauder (or
Markushevich) decompositions. This is done in Section 2 of our paper. In short, our main
results are Theorem 1 in Section 2 and Theorem 2 in Section 3, and they are broad
generalizations of the above results (1) and (2), respectively.

We refer the reader to [12], [14] or [20] for the terminology concerning locally
convex spaces. However, we recall here the notion of Banach-Mackey spaces and two
general facts.

Let £ be a (Hausdorff) locally convex space. Then, as usual, E' denotes the
topological dual of E, and E* the algebraic dual of E. The space E is said to be
Banach-Mackey [20, p. 158] if it has the following uniform boundedness property: every
subset of E' that is pointwise bounded on E is uniformly bounded on every bounded
subset of E. In other words, the requirement is that every o(E', £)-bounded subset of E'
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is /?(£', £)-bounded. Of course, the name for this class of spaces comes from the
well-known Banach-Mackey Theorem asserting that a sequentially complete space E has
always the above property.

We will need below the following two facts concerning barrelled and quasi-barrelled
locally convex spaces. For Fact A, see e.g. [14, Ch. 4 and 5] or [20, Problem 10-4-108 on
p. 161]. Since we have been unable to locate a reference for Fact B (which is certainly
well-known), we include a proof for the sake of completeness.

FACT A. For a locally convex space E the following are equivalent.
(a) E is barrelled.
(b) E is quasi-barrelled and E' is o(E', E)-sequentially complete.
(c) E is quasi-barrelled and Banach-Mackey.

FACT B. A sequentially dense subspace F of any barrelled locally convex space E is
quasi-barrelled.

Proof. Identifying F' with E', it is enough to show that if a set Mc^E' is
P(E', F)-bounded, then it is o(E', E)-bounded. Let x e E. Then there is a sequence (xn)
in F converging to x. By assumption, M is bounded on the bounded set {xn :n e N) c F;
thus K:=sup{\(u,xn)\:u e M, neN}<™. Since (u,.*:„)-» (u,x) as n—»°° for every
u eM, it follows that sup{|(u, x ) | : u e M } =£/(<°o.

COROLLARY 1. A sequentially dense subspace F of a barrelled locally convex space E
is barrelled if and only if (E1, o(E', F)) = (F1, o(F', F)) is sequentially complete.

2. Barrelled subspaces of spaces with subseries decompositions. As we mentioned
in the introduction, the results in this section will be given for spaces with decomposi-
tions, in particular, sequence spaces. If one writes using as little terminology as possible,
the main general results (Corollaries 2 and 4) can be stated as follows.

THEOREM 1. Let E be a barrelled locally convex space with a Schauder decomposition
(Pn). Let F be a subspace of E containing all the summands En := Pn(E)(n e N). Then F is
barrelled if and only if (E', a(E', F)) is sequentially complete.

Moreover, if for every x e F its expansion S Pnx is subseries convergent in F, then
the following are equivalent.

(a) F is barrelled.

(b) / / a sequence u = (un)e Tl E'n is such that the series {u,x):= ^ (un,Pnx)

converges for all x e F, then it also converges for all x e E (or, equivalently, the linear
functional u defined on F by the formula above is continuous).

For the sake of clarity, and also to facilitate the comparison, we now review briefly
some of the basic concepts and facts of the theory of sequence spaces, and some standard
terminology used for spaces with decompositions.

TERMINOLOGY FOR SEQUENCE SPACES. Following [11] or [15], co stands for the vector
space of all sequences of (real or complex) numbers, and (p f ° r the space of finitely
non-zero sequences. A sequence space (or K-space) A is a linear subspace of (a that
contains (j) and is endowed with a locally convex topology finer than the topology of
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coordinate-wise convergence. Let A be a sequence space. We say that A is an AK-space if
the sequence (en) of unit vectors is a Schauder basis in this space. The space A is said to
be monotone (resp. solid ) if (xnzn) is in A whenever x = (xn) e A and (zn) is a sequence of
zeros and ones (resp. \zn\ ̂  1, for all n e N). The f5-dual of A is defined as the space Â  of

all sequences y = (yn)eco such that the series £ xnyn converges for all x = (xn)ek.

When the ordinary convergence of the series in this definition is replaced by the absolute
convergence, we obtain the space Ax, the well-known a-dual or Kothe dual of A. When A
is monotone, these duals Â  and Ax coincide. In this way we obtain dual pairs (A, A'3) and

oo

(A, Ax), with the obvious duality mapping (x,y) = £ xnyn. Consequently, the spaces A'3

and Ax are usually treated as spaces of linear functionals: Ax <= A'3 c A*. In particular, note
that A' c Xp if A is an AK-space.

TERMINOLOGY FOR SPACES WITH DECOMPOSITIONS. Let E be a locally convex space.
Following Singer [17, 15.20 on p. 514], an M-decomposition ("M" after Markushevich) of
£ is a total sequence (Pn) of pairwise orthogonal continuous linear projections in E.
(Total means that if Pnx = 0 for all n, then x = 0.) The closed subspaces En := Pn(E) are
called the summands of the decomposition. Any space E with an M-decomposition may
be viewed algebraically as a space of vector-valued sequences; namely, as a subspace of
the product space FI En, via the linear isomorphic embedding x >-» (Pnx). Every sequence

neN
space has an obvious M-decomposition.

Throughout the remainder of this section, £ is a locally convex space with a fixed
M-decomposition (Pn) with summands (£„).

The space £ (or the decomposition) is said to be monotone if for every x e E and
A c N there exists a (unique!) xA e E such that Pn(xA) = Pnx for neA, and 0 otherwise.
Of course, then the mappings PA:x>-^xA thus obtained are linear projections in £ (not
necessarily continuous), and the family {PA :AcN} is a Boolean algebra of projections in
£ (see Section 3). More generally, a subspace F of £ is said to be monotone if it contains
all the summands £„ and is monotone with the induced M-decomposition (Pn \ F) (i.e.,
PA(F) czF for &\\ A cH).

We say that (Pn) is a Schauder decomposition of E if x = £ Pnx for every x e E. A

monotone Schauder decomposition is sometimes called a subseries Schauder decomposi-
tion. Spaces with Schauder decompositions are a generalization of AK-spaces. (In fact,
Noll and Stadler [13] define AK-spaces as locally convex spaces having a suitable "system
of sections" with "sectional convergence"; it is easy to see that their AK-spaces are
precisely spaces with Schauder decompositions. On the other hand, Elstrodt and Roelcke
[8] refer to monotone Schauder decompositions as "projection invariant"
decompositions.)

If (Pn) is a Schauder decomposition, then for every u e E' one has

oo

/ \ K"1 / n \ r n r->
( / / Y ) """" 7 ( I V r V > TOT* £111 V* f~ r4 *

\u,x/ — £j \u, rnx], ror d i u t t ,
n = l

hence u is determined by the sequence («„) e Yl E'n, where un := u \ En (n e N).
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In general, whether we have a Schauder decomposition or merely an M-
decomposition, we define (see [17, p. 514] or [13, Section 2, p. 147]) the (}-dual Ep of E as
the subspace of E* consisting of all those functionals u that can be written in the form

°° (*)

(u,x) = X (un,Pnx), forallxe£,

for some sequence (un)el[E'n. The functionals u e Ep for which the series in (*)
n

converges absolutely for every x e E form a subspace called the a-dual or Kothe dual of E
and denoted by Ex. Finally, we denote by £* the space of all functionals u of the form
(*) that are determined by sequences (un) with un = 0 for large enough n. Wherever
convenient, we tacitly identify E^, Ex, and £* with the corresponding defining subspaces
of UE'n.

n

The following facts can be easily checked:
(a) £*c£\
(b) E* c Ex c: Ep c E*,
(c) if (Pn) is a Schauder decomposition, then E' a Ep, and
(d) if E is monotone, then E& = Ex.
Directly from the above definitions we have the following results.

PROPOSITION 1. If E is a locally convex space with an M-decomposition (Pn), then E*
is sequentially dense in (Ep, o(Ep, E)). Hence, if (Pn) is a Schauder decomposition, then

(a) E' is sequentially dense in (E^, o(Ep, £));
(b) E' = Ep, provided that (£ ' , o{E',E)) is sequentially complete.

COROLLARY 2. Let E be a barrelled locally convex space with a Schauder decom-
position (Pn), and let F be a subspace of E containing all the summands En. Then F is
barrelled if and only if (E', o(E', F)) is sequentially complete. In this case Fp = Ep = E'.

Proof. Apply Corollary 1 and Proposition 1.

This corollary comprises the first statement of Theorem 1. The next result is an
extension of an analogous result for scalar sequence spaces (see [2, Proposition 3 (p. 55)]
or [11, 4.2.2 (p. 188)]).

PROPOSITION 2. Let E be a locally convex space with a monotone M-decomposition. If
all the summands En have weak* sequentially complete duals E'n, then (Ex, a{Ex, E)) is
also sequentially complete.

Proof. We have to show that Ex is sequentially closed in (E*, o(E*,E)). Take a
sequence (uk) in Ex and assume that there is u e E* such that lim (uk,x) = (u,x) for all
x e E. For each keN, let uk be determined by equality (*) by a sequence (ukn)neNe

FI E'n- Fix x e E and consider the finitely additive set functions nk, [i: ^(N)—»IK defined
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by the formulas (ik(A) = (uk, PAx) and n(A) = (u, PAx). Since £ \{ukn, Pnx)\ <°° and
n=\

E (ukn,Pnx),

the functions ^ are countably additive. By assumption, lim nk{A) = n{A) for every

A e £?(N), and so by Nikodym's countable additivity theorem JJ. is countably additive.
Hence fi is determined by its values fi({n}) = (u, Pnx); in particular,

<M,JC>=ju(W)=i <«,/>„*)= £ (vn,Pnx),

where vn := u \ En (n e N). Note that the series above is absolutely convergent because fi
is countably additive. Fix neN. For every x e En we have lim (ukn,x) = (vn,x) for

x e £„. Since for every k eN we have «*„ e E'n and £,!, is weak* sequentially complete, it
follows that vn e E'n.

Thus « is determined via formula (*) by the sequence (vn) e IT E'n, and so u e Ex.
n

COROLLARY 3. Let E be a locally convex space with a monotone Schauder
decomposition (Pn). Then E is barrelled if and only if it is quasi-barrelled, each of its
summands En has a weak* sequentially complete dual E'n, and E' = Ex.

Proof. Remembering that complemented subspaces of barrelled spaces are bar-
relled, it is enough to apply Fact A and Propositions 1 and 2.

From the last result and Fact B we obtain immediately the following corollary.

COROLLARY 4. Let E be a barrelled locally convex space with a Schauder decomposi-
tion (/*„), and let F be a monotone subspace of E. Then F is barrelled if and only if
E' = FX.

The "moreover" part of Theorem 1 stated in the beginning of this section is simply a
straightforward formulation of Corollary 4. As a consequence of Corollary 4 we can
derive the following extension of [13, Corollary 3] (their result does not include the case
p = \).

EXAMPLE 1. Let (Q, 2, fi) be a a-finite measure space and let (Qn) be a partition of
Q into a sequence of sets of finite measure. Fix 1 <p < °°. Then the projections f-*fxan-
form a monotone Schauder decomposition of Lp{fi) with the corresponding summands
L^(fi) = Xan • L

p(n). Applying Corollary 4 in this situation, we obtain the following result:
a solid subspace E of Lp(n) containing all the subspaces Lp

n(n) is barrelled if and only if

whenever g is a measurable function on Q with f.ge L~x(n) for all f e E, then g e Lq(/x)

(=Lp(n)' = Lp(fi)x), where p~l + q~l = 1.

REMARK 1. The above results (Corollaries 2, 3 and 4) contain, when written in the
usual terminology for sequence spaces, namely as in (1) in Section 1, a result given by
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Swetits [18, Theorem 3.1] for the case when A is a Frechet AK-space. His proof makes
use of a theorem about inclusions between metrizable sequence spaces due to Bennett
and Kalton [3, Theorem 1] that cannot be used in the more general situation of our result
above. For this reason, the proofs are entirely different from each other. Also note than
an example given in [18] shows that the hypothesis that A is an AK-space cannot be
dropped.

An interesting situation that, as we shall see in a moment, has received particular
attention is the following: for A a N and n e N, let

da(A) = -\^n {1,2,... ,n}\=-txA(})-n n ,= i

If lim dn(A) = 0, then the set A is said to be of density zero. Let ££ denote the family of all

sets of density zero in N. Clearly, 2£ is an ideal in the power set 0*(N). Now, let A be a
monotone sequence space and consider the subspace 2£(X) (in some papers denoted by
2(A)) of all sequences in A that have their supports in 2£, i.e. those sequences of the form

1 "
(anxn), where x = (xn) e A and (an) is a sequence of zeros or ones lim - S <*,

n II j=\

= 0. The definition of £(A) is due to Webb [19, p. 358] and it can be proved that
2E(K) is the union of the so-called scarce copies of A (see [2, Section 5, Theorem 10] or
[11, 4.3.41]). The space 2(A) is also monotone and (3?(A))X = AX ([11, 4.2.21], [13,
Lemma (p. 116)]) so that we can apply Corollary 4 above to obtain the following result.

COROLLARY 5. Let A be a monotone barrelled AK-space. Then 3?(A) is a barrelled
subspace of A.

REMARK 2. The evolution of this result went as follows: Kothe [12, Section 27.1]
stated it for A = I1. Webb [19, Lemma D.(l)] obtained it for perfect spaces in the sense of
Kothe [12, Section 30]. For solid (or, which is the same in this case, monotone) Frechet
AK-spaces it appears in Bennett [1, Theorem 10]; see also Swetits [18, Corollary 3.4].
The next extension was Gupta and Kamthan's [11, 4.2.22] valid for solid AK-spaces. Noll
and Stadler [13, Proposition 7] proved it for monotone (=solid) Banach AK-spaces with
dual an AK-space (apparently not realizing that this case was already covered by
Bennett's or Swetits' result). Finally, Elstrodt and Roelcke [8, Corollary 3.4 on p. 180],
gave it in the above form. We think that the proof given here is much simpler than theirs.
Concerning the scope of Corollary 5, some examples are given in [8, Sections 4 and 5]
proving that it is not valid if one does not assume A to be monotone.

We are now going to extend Corollary 5 to the setting of spaces with Schauder
decompositions. First, we prove an analogue of the equality (2"(A))X = Ax that was
needed above to derive Corollary 5 from Corollary 4.

PROPOSITION 3. Let E be a locally convex space with a monotone Schauder
decomposition (Pn), and let

2£(E) :={xeE:x = PAx,for some A e %}.
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Then

Proof. We only have to show that 2£(E)X c Ex. Let u e 2f(£)x be determined via

equality (*) by a sequence («„) e\\E'n. Then £ \{un, Pnx)\ <°° for all x e2£(E), and we
n n = \

should verify that the same holds for all x e E.

oo

Suppose that for some x e E we have E \{un, Pnx)\ = °°. Then, by [7, Theorem 1] or
n = l

[13, Lemma on p. 116], there exists a set Ae9£ such that £ \{un, Pnx)\ = °°. But

£ |<uB,/>„*>| = £ \(un, Pn(xA))\ <°°. A contradiction.
rce/l n = l

As an immediate consequence of Corollary 4 and Proposition 3, we obtain the
version for Schauder decompositions of the main result in Elstrodt and Roelcke's paper
[8, Theorem 3.1 on p. 176] (they work in the slightly more general setting of
pseudodecompositions).

COROLLARY 6. Let E be a barrelled locally convex space with a monotone Schauder
decomposition (/>„). Then 3H(E) is a barrelled subspace of E.

In the following section we will see that Corollary 6 remains valid for arbitrary
barrelled locally convex space with equicontinuous monotone M-decompositions that
need not be Schauder decompositions.

3. Barrelledness of spaces whose elements are of zero-density support.

DEFINITION. Let 91 be a ring of subsets of a set 5. A (Boolean) 9t-ring of projections
in a locally convex space E is a map P^ that assigns to every A e Sfr a linear projection PA

in E so that the following conditions are satisfied:
0) PAHB = PAPB for all A, B e M.

(ii) PAUB = PA + PB for all disjoint A, Be 91.
We will sometimes write P^ = {PA :A e 91).

If E is a locally convex space with a fixed ring of projections P a , then we define

3L{E) = {xeE: PA(x) = x for some Ae9l}.

Clearly, PA maps E into 9?(£) for every A e 91, and 9l(E) is a P^-invariant subspace of E.
Monotone sequence spaces A are standard examples of spaces with a ^>((\J)-algebra of

projections. In this case, of course, for every set A c N the linear projection PA in A is the
map X>-*XA •x = (XA(n)xn). More generally, as was already noted in Section 2, spaces
with a monotone M-decomposition have a natural ^(N)-algebra of projections. (How-
ever, there are 0*(N)-algebras of projections that do not arise from M-decompositions;
see Example 2 at the end of this paper.) Actually, what will really matter below is not the
whole algebra of projections P<yW = {PA :A e 0>(N)}, but its subring P^ = {PA: A e 2£}.
Here, as in Section 2, S. denotes the ideal in &(N) consisting of all sets of density zero.
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The promised result generalizing Corollary 6 is Theorem 2 below. It can be applied
to spaces like F° or m() (the space of sequences with finite range) that are barrelled but
non-AK. Thus, as consequences of Theorem 2, we have that the space 3?(/oo), as well as
the space m(,(i£) = 3f(m0) of all 3f-simple scalar functions on Py (both with the sup-norm),
are barrelled. (The latter fact follows also from Proposition 6 below.)

THEOREM 2. Let E be a locally convex space with an equicontinuous ring of
projections V% = {PA: A e 3?}. / / E is Banach-Mackey, or quasi-barrelled, or barrelled,
then so is respectively, the subspace 2£(E) of E.

In fact, as will be shown in Propositions 4 and 5, and Corollary 7 below, this result
holds in the more general setting of rings with Property (N), of which 2£ is a particular
case (Proposition 6 below).

Let *3l be a ring of subsets of a set 5. Denote by ba(Sft) the Banach space of all
bounded finitely additive scalar measures on 9t (equipped with the variation norm or with
the equivalent sup-norm), and by ca{3l) its closed subspace consisting of countably
additive measures. Following [16, p. 10], we say that the ring 91 has the Nikodym
Property, or Property (N) for short, if every set M c ba(9i) that is pointwise bounded on
9t is uniformly bounded on 91. (That is, when sup{|ju(y4)|: neM}<<*> for all A e 91
always implies that sup{|^(/4)|: [i e M, A e 9t) < °°). It is well-known that this property of
91 is equivalent to the barrelledness of the space l i n ^ : A e9i} of all ^-simple scalar
functions on S equipped with the sup-norm. In particular, every a-algebra has Property
(N) [6, 1.3.1].

PROPOSITION 4. Let E be a locally convex space with an equicontinuous ring of
projections PM. Assume that the ring 91 has Property (N) and that for every A e 31 the
subspace PA(E) of E is Banach-Mackey. Then also the subspace 01{E) is Banach-
Mackey.

Proof. To simplify notation, write X = 3l(E). Suppose X is not Banach-Mackey.
Then there is a o(X', Ar)-bounded sequence (un) in X', and a bounded sequence (xn) in
X, such that \(un,xn)\—>«>, as /z-»°°.

Define a sequence (fin) of finitely additive scalar measures on 91 by ,̂,(^4) = (un,
f/iOO)- F°r every n, by the equicontinuity of ¥&, the set {PA(xn)'- A eSft,} is bounded in
X; hence fin is a bounded measure.

Now, we verify that the sequence (nn) is pointwise bounded on 9t. Let A e 91. By the
continuity of PA, the sequence (PA(xk)) is bounded in PA(E). But, by assumption, the
subspace PA(E) is Banach-Mackey, hence

sup 1^(^)1 =£sup !<«„, PA(xk))\ <oo.
n n ,k

Since 91 has Property (N), we conclude that the sequence (nn) is uniformly bounded
on 9t. However, by the definition of X, for every n e N there is An e 91 such that
xn^PAn(x,,y, hence |/*,,(/ln)| = \{un,xn)|-»oo, as «-»°°, a contradiction.

PROPOSITION 5. Let E be a locally convex space with an equicontinuous ring of
projections PM. If E is quasi-barrelled, then also its subspace 9t(E) is quasi-barrelled.
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Proof. Let Vbea bornivorous barrel in 5ft(E). Recall that if A e £% then PA maps E
into 32(£), and define

U = {xeE: PA(x) e V for all A e 91} = H PA\V).
AeSH

Since the projections PA, Ae^t, are equicontinuous, it is clear that U is a bornivorous
barrel in E. But E is quasi-barrelled; hence U is a neighborhood of 0 in E. To finish,
observe that U D 3?(£) c V so that V is a neighborhood of 0 in $l(E).

The following result is now a direct consequence of Propositions 4 and 5, and Fact A.

COROLLARY 7. Let E be a barrelled locally convex space with an equicontinuous ring
of projections Pgj, where the ring of sets 5? has Property (N). Then also the subspace 9l(E)
of E is barrelled.

We now return to Theorem 2. In order to see that it is indeed a particular case of the
above results, it suffices to prove the following proposition.

PROPOSITION 6. The ring St. of all subsets of N of density zero has Property (N).

We shall use the following three lemmas.

LEMMA 1. For every sequence (Ak) of infinite sets in St there exist finite sets FkcAk

(k e N) such that U (Ak\Fk) e SL.
k = \

Proof. There is a strictly increasing sequence (n,-) in N with nt > 1 such that for y ^ 1

dn{Ak) <j~2, for 1 =s A: =£/ and n 3=«,.

For / s= 1 set

Fj=Ajn{l,2,. . . ,nj-l} and B, = AJ\FJ,

oo

and let B = U B,. Given n^n,, there is j ^ 1 for which n^n< «,+,. Then

B n {1,2,. . . , n) = U fi* D {1, 2,. . . , n) c U ^ D {1, 2,. . . , n);
k=\ k=\

hence

It follows that lim dn{B) = 0, i.e. B e %..
n

Note. Lemma 1, as we discovered at the final stage of working on this paper, is
closely related to some old results of Buck [4, Theorem 9 and Corollary on p. 573].

LEMMA 2. (a) Let M be a subset of l\ Then M is norm bounded if (and only if)

S U P { 2 * / •xeM\< oo, for all A e St.
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(b) Let M be a subset of ca(@(N)). Then M is uniformly bounded on 0»(N) if (and
only if) it is pointwise bounded on ££.

Proof, (a) The assumption means precisely that M is o(l\ 3f(m0))-bounded. Now,
2f(/n0) is a monotone space and, by [11, 4.2.21] or [13, Lemma (p. 116)] (or by
Proposition 3 above), we have (^(mo))x = (mo)x = I1. Therefore, 2£(m()) is Banach-
Mackey for the topology a(3T(m0),/'), and it follows that M is /?(/', 3T(m0))-bounded.
Finally, note that /?(/', 2£(m0)) is the norm topology of Z1 because it is finer than B(l\ <f>)
and coarser than B(l\ /°°), and these two are the norm topology on /'.

In order to make Proposition 6 more accessible to measure theorists, we also sketch
an alternative direct proof of (a). Suppose M is not norm bounded. Then, as is easily
seen, we can find a sequence (xk) in M, xk = (xki), and a sequence (Ak) of finite subsets of
M such that sup | E xki\ = °°. Now, following the pattern of the proof of [13, Lemma on

k ieAk

p. 116] (with some obvious modifications), we can produce a strictly increasing sequence

(k(j)) and sets Bj<^Ak(j) so that sup | £ **(/),! = °° a r | d B := U By e 2£. However, from

the assumption on M it is quite obvious that sup{||P4(jc)||i: x e M) <°° for every AeZ.
Thus we have arrived at a contradiction.

(b) Since ca(0>(N)), equipped with the variation norm, is isometrically isomorphic to
/', (b) is simply a reformulation of (a).

In our next lemma, and in the proof of Proposition 6 that we give below, we are
implicitly using the Yosida-Hewitt decomposition of measures [i e ba(3£) into the
countably additive part /i" and the purely finitely additive part \ip (see [6, p. 30]).

LEMMA 3. For every \i e ba(2£) one has S |ju({rc})| <o°; hence the formula
n = \

=2 Kin})

defines a countably additive scalar measure on ^L (and even on ^(f^J)). Moreover, if a set
M a ba(2£) is pointwise bounded on 2t, then also the set Mc = {//: fi e M} is pointwise
bounded on 3£.

Proof. The first part is obvious. The prove the "moreover" part, let M c ba(2£) be
pointwise bounded on 2£. Take any AeS£ and observe that 2P(A) a 2£. Hence if peM,
then

and K<oo because &(A), being a a-ring, has Property (N).

Proof of Proposition 6. Let M be a pointwise bounded subset of ba(2£); we have to
show that M is uniformly bounded on 2£. Define the subset Mc of ca(2P(M)) as in Lemma
3. According to Lemma 3, Mc is pointwise bounded on ST. Hence, by Lemma 2, Mc is
uniformly bounded on 2£.
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For every (i e ba(Z£) let [ip := \i — \ic (the purely finitely additive part of \i). It
remains to verify that the set M1' := {fip: fi e M} is uniformly bounded on 2£. Suppose this
is false, so that we can find a sequence (ju,,) in M and a sequence (An) in S£ such that
l/^EC^n)!"*00 a s «^°°- Applying Lemma 1, we find finite sets Fnc:An such that

oo

B = U Bne2£, where Bn= An\Fn. Now note that for each neM, its purely finitely
i

additive part \ip vanishes on all finite subsets of N; hence \np(Bn)\ = \np
n{An)\^><x

Bn e 9>(B) <= S£ for all n. Since Mp is pointwise bounded on 9>(B) and 9>(B), as a a-ring,
has Property (N), we have arrived at a contradiction.

REMARK 3. It is worth noting the following analogue of Lemma 3 for linear
functionals.

Let E be a locally convex space with an equicontinuous ring of projections P a , and
oo

denote Pn = P{n) for n e N. LetueE'. Then £ \(u, Pn(x))\ <<*> for every x e E, and the

formula
oo

(uc,x)= 2 (u,Pn(x))

defines an element uc e E'.

Proof. If x e E then, by the equicontinuity of P^, the set {PA(x): A a finite subset of

N} is bounded. It follows easily that S \{u, Pn(x)}\ <°°. Thus the above formula makes

sense. To see that uc e E' it is enough to observe that (uc,x) = lim (u°Qn)(x), where
Qn — P{i.2 ,.)> and apply the equicontinuity of P a one more time.

REMARK 4. It appears to be still an open problem to find an intrinsic characterization
of rings of sets with Property (N). The same can be said about the Vitali-Hahn—Saks
Property (VHS) and the Grothendieck Property (G); see [16] for the definitions of these
properties and more information. As far as we know, one of the most recently given
sufficient conditions for (VHS) (=(N) + (G)) is the following one introduced by Freniche
[9]: a ring of sets 91 is said to have the Subsequential Interpolation Property (SI) if for
every disjoint sequence (An) in 91 and for every infinite set M cN, there exist a set A e 9t
and an infinite NcM such that AnczA if neN, and A(~\An = 0 if n$N. Freniche
himself provided in [10] an example showing that (VHS) does not imply (SI): namely, the
algebra of those subsets of the unit interval that are simultaneously Fa and Gd sets,
considered earlier by Dashiell [5].

It is easy to see that also the ring 3? fails to have (SI) although, as we have proved in
Proposition 6, it has (N). Indeed, simply consider the sequence of sets An:={2",
2" + 1,. . . , 2"+l - 1} e 2£, and observe that none of its subsequences is covered by a set
in %. At this point it is worth noticing the following direct consequence of Lemma 1
(suggested to us by Z. Lipecki): the quotient ring £3?/£F, where &> is the ideal of finite sets,
has (SI)\ (Hence, in the final part of the proof of Proposition 6 we could have used
Freniche's VHS-type result from [9]; our direct argument was, however, much simpler.)
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Let us also observe that if we define (countably additive) measures (in on 2£ by
Hn(A) = 2~"\A C\An\, where An are as above, then the resulting sequence (//„) is bounded
in ba{H) and converges to zero pointwise, but is not uniformly exhaustive because
Hn(An) = 1 for each n. Thus 2£ does not have (G).

EXAMPLE 2. Let E be the Banach space ba(@(N)). For ju e E and A <= py consider the
measure \iA given by HA(B) := fi(A n B). Then P ^ J J ) = \iA is a linear projection on E,
and the set P = {PA: AcN} is an equicontinuous Boolean algebra of projections on E.
By Theorem 2, the subspace 0£{E) is barrelled.

Let now F be the closed subspace of ba(3P(N)) consisting of purely finitely additive
measures (i.e., measures that vanish on the singletons). Then F is invariant under the
projections PA and, consequently, also the subspace S£(F) is barrelled. Note that for
neither of these two spaces the projections Pn = P{n) form an M-decomposition.
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