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Integro-differential equations
of Volterra type

M. Rama Mohana Rac and Chris P. Tsokos

The aim of this paper is concerned with studying the stability
properties of an integro-differential system by reducing it into
a scalar integro-differential eguation. A theorem is stated
about the existence of a maximal solution of such systems and a
basic result on integro-differential inequalities. Utilizing
these results we obtain sufficient conditions for uniform
asymptotic stability of the trivial solution of the

integro-differential system of the form

@' (t) = Fe, =(¢), az) , (' = gdf)

vhere F € C[R, x 5, x ¢(9)] , 4 €c[c,, c()] with

CH=LxEC(J):|IX|I<HJ , d=0=St=qg<ow,
5y = [x € @ : llz(e)l <H, B>0 for t€dJ] , C(J) denotes

the space of continuous functions, A a continuous operator such
that 4 maps C((J) into ((J) . The fruitfulness of the

results of the paper are illustrated with two applications.

1.

Corduneanu [1], Levin [3] and Nohel [6] among others have studied the
stability properties of solutions of integro-differential equations of
Volterra type and many interesting results have been accumulated. Quite

recently Lakshmikantham and Rama Mohana Rao [2] investigated such a
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problem by choosing an appropriate minimal class of functions so that it
would be possible to estimate the derivative of the Lyapunov function in

terms of a scalar function.

Our aim in this paper is to study the stability properties of the
integro-differential system by reducing it into a scalar
integro-differential equation. In Section 2, we introduce the notation
and a lemma which is used in the study. In Section 3, we shall develop &
theorem about the existence of a maximal solution of integro-differential
systems and a basic result on integro-differential inequalities. Applying
this theory of integro-differential inequalities, we obtain sufficient
conditions for uniform asymptotic stability of the trivial solution of
integro-differential systems in Section 4. This study includes the
results of Corduneanu [1] as a special case. Two applications are given

in Section 5 to illustrate the fruitfulness of our results.
2.
We shall use the following notations:
R = space of #n-vectors,

izll = any convenient norm of x € RK* ,

J=ost<g<o®,

SH=[x€Rn:Hx(t)II<H, BE>0, for te€dJ],
R+ = non-negative real line,

C[E, F] = the class of functions defined and continuous on E taking

values in F , where E and F are any convenient spaces,
K = the class of continuous functions b(r) , defined and continuous

on 0=<=»<H, b(0) =0 and monotone increasing in r ,

C+ = the class of non-negative functions defined and continuous on

R, .

In the presentation of this paper, whenever we employ a vector
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inequality, it is to be understood that the inequality is satisfied

componentwise.

Let E; and F; be two partially ordered sets with the partial
ordering "<" for both sets. We shall assume that the following

conditions hold:

(2.1) T, Yy, 2 €E , vy, y <z implies x =z ;
(2.2) z,y €Ey , x = yr, Yy <x implies x =y ;

(2.3) z,y,2€F , x<y, y<3z implies X <3z ;
(2.4) z €F, ,then <& .

Furthermore, let P; be an operator defined on £Z; taking its values in
F) , the function €; be defined on E; x E; taking its values in F,

and m to denote the maximal solution [5] of equation
(2.5) Py(x) = @i(x, x)

For x, y1, Yo € E; , we shall assume that
(2.6) y1 <y, implies @(x, y;) = @(x, y5)
and we define a set U; as follows:
(2.7) Uy = [z € E} : Py(x) = g(x, x)] .

We now state a lemma about the existence of the maximal solution of

equation (2.5), the proof of which follows a similar argument as in [5].

LEMMA 2.1. Let P, and Q) be as defined above. Assume that @
possesses the property (2.6) and that there exists a funetion 3z
defined on E); such that z,(E|) € E; satisfying the conditions

(2.8) P1(31(y)) = & (z1(y), y)
and
(2.9) Pi(x) = @i(x, y)

together imply that

z = 2,(y) .

Let the set U; defined in (2.7) be non-empty. Then,

(2.10) zl(El) Uy .
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Moreover, the existence of supl, implies the existence of supz;(U;)
and vice versa. Also, suplU; = supz(U;) . Their common value is then

the maximal solution of (2.5).

3.

Let ((J) denote the space of continuous functions u € C[J, F']
and A4 be a continuous operator such that A4 maps C(J) into C(J)

For any two continuous functions u, v € CE], Rn] the operator A is

assumed to satisfy the following property:
u(t) =v(¢) , 0st =<ty , t; € {0, =)
implies

(3.1) Au = Av for t =t

Let f € C[g x R x c(J), R*] ana M a constant vector greater than zero
such that for (¢, u, v) € J x ' x ¢(J)
|7(t, us 0)| =¥,

with the function f possessing the quasi-monotone property, that is,

for each 71 , fi(t’ Uy UDy eoss U Vs Uy voes vn) is monotonic

n 3

increasing in w1, uz, u and V), Up, «ees V

s Hio10 ¥iaa > "n n

Now consider the integro-differential system
(3.2) w'(8) = £e, ult), ) , u(0) =u
THEOREM 3.1. Let f(¢, u, v) satisfy the above conditions along

with (3.1). Then there exists a maximal solution m(t) of (3.2) on J .

If ¢(t) <Zs a continuous vector function satisfying the inequalities

(3.3) $(0) = m(0)
and

(3.4) pYo(t) = f(t, ¢(¢), 49) ,
then,

A

o(t) =m(t) on J .
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Proof. Let E; be the set of continuous functions 1§ € CE?, Rn] R
such that

Y(t) =m(o) + M, te€d .
For ¢ , p€E , Y =p we have
Y(t) =plt) , ted.

Similarly, F; is a set of vector-valued functions om J with the
components of its elements belonging to [-=, ©] and having the same
order relationships as the set E, , that is, for & , n€F; , £ =n

we have
g(t) =nle) .
From this it is clear that conditions (2.1) to (2.4) hold. Define the
operator P; and the function @; as follows:
+ .
Pi(y) = {D wi(t)} s t=1,2, «..,m
and
Ql(ws P) = fi(t: pl(t)g seey pi—l(t) 3 wi(t) s pi+l(t), ev ey Dn(t) s
Ap1, Ao, -oy AP} -
It follows from the behavior of f that @, satisfies (2.6). For
P € E; , we define
f‘i(t: u) = fi(t’ pl(t): *ee pi—l(t), u: p'l:+l(t)’ te pn(t)’

APly oens Apn) .

Let o(t) be the maximal solution for each 7 of

u' = }‘i(t’ u)

such that
o(0) = m(0) .

The existence of o0(f) on J is assured because of the assumptions on
f . How, we define a function z;(p) such that zl(p(t)) = o(¢) .

From the basic theorem on differential inequalities it follows that the

function z,(p) satisfies (2.9) and obviously (2.8) holds. Moreover,
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the set U; 1is not empty since m(0) — Mt € U; and
lo' ()| =M .
Hence; the family of functions {Oi(t)} are equi-continuous and uniformly

bounded. This proves that supz;(U;) = supo(t) is a continuous vector

function on J . The assertion of the theorem now follows from Lemma 2.1.

4.

With respect to the objectives of this paper, consider the following

integro-differential system

(4.1) x' (&) = F(t, =(t), Ax)

where F € C[R+ x S, x ¢(J), R"} , 4€cfc, )] witn
cy = [x € ¢(d) : |lzll < H] . We shall assume that F(¢, 0, 0) = 0 . Let
x(t) = x(t, to’ xo) be any solution of (4.1). In order to avoid

repetition we shall only concentrate on uniform asymptotic stability of
the trivial solution of the integro-differential system (4.1). For

convenience, we shall next define uniform asymptotic stability.

DEFINITION 4.1. The trivial solution of the integro-differential
system (4.1) is said to be uniformly asymptotically steble if the

following two conditions hold:
(i) for every € >0 , t, € J , there exists a function

8§ = 8(e) > 0 such that the inequality onH < 6 implies

(£, tys xo)!l <e, tzt

(ii) for every € >0 , t_ € J , there exist positive numbers §

(o} [¢]

and T = T(e) such that whenever onﬂ < 60 .
llac (2 ty xo)ll <e, tzt +T

holds.
THEOREM 4.1. Assume that

(i) gec[r xR xR,,E, g(t, 0,0) =0 and g(¢, u,v) is
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non-decreasing in v for each (t, u) ;
(ii) V€ c[Rr, x 0 R]) , V(t, 0) =0, V(t,x) is Lipschitzian

in z for a constant L = L(H) > 0 and for t € J ,
z(¢) € c(J)

p'v(t, =(t)) = ;lzi18+ sup %[V[ﬂh, x(t)+hF(t, x(t), Ax)} - v{¢, x(t))]

< g[t, vit, x(¢)), BV] s

where B ¢ C[C+, R+] N

(iii) there exists a function a € K such that for

(t,x)eJxSH,

a(llzll) = v(t, =) .

Then the uniform asymptotic stability of the trivial solution of the

scalar equation

()4.2) . r' = g(t’ r, BI‘) ’ r(to) = 1’0

implies the uniform asymptotic stability of the trivial solution of the
integro-differential system (L.1).

Proof. Suppose that the trivial solution of (L.2) is uniformly
asymptotically stable. This implies that it is uniformly stable. Let

0<e<Hd, t, €J be given. Then, given a(e) > 0 , there exists a

8§ = 8(e) > 0 , such that, whenever r, s § we have

(4.3) r(t, tg, ) <ale) , ¢zt

o o’
where r(t) = r(t, t,» ro) is any solution of (4.2). Let us choose

s xo) =r_ . Now we

r, = Lon” 50 that by assumption (7%) we have V(¢ o

o
choose 6;(g) = é%?l . Furthermore, we claim that if onH = 8,(g) , we
have

lz(t, t,, s )l <e, tzze,.
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Suppose that this claim is not true, then for ¢; > to we have

e (61, ¢, 2 )l = €

le(t, ¢, el se, t o st=t,

which implies that
(L.h) ale) = v(t,, x(t,))
and

l=(e)ll < &, ¢ € [e, a1] .
Utilizing the assumption (Z7Z) and standard computation yields
+
D'm(t) = g(t, m(t), Bn) , ¢ € [t , ]

where
m(t) = v(t, z(t))

Now, taking r as defined above and applying Theorem 3.1 we obtain

¢}
(4.5) v{t, =(t)) sr(e) , ¢ € ¢, ¢ ]

Inequalities (4.3), (4.4) and (L4.5) lead to the following contradiction
a(e) b V{tl, x(tl)] = r(tl) < a(e) .
Hence, the first condition of Definition 4.1 holds. Now, for € = H and

30 = §;(#) it follows that

(4.6) vit, =(t)) sr(2) , tzt .

Also from the uniform asymptotic stability of the trivial solution of
(4.2), we have, given af(e) >0 , to € J , there exists a positive number

60 and T(e) such that for r s 60 it implies that

(4.7) r(t, ts ro] <ale) , tzt +7T.
Let 63 = min[cSo, T} . Suppose that there exists a sequence {tk} s
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o t,zt,+ T with ¢, +® as k + o , such that

k= k
laoltyr g0 2 )il 2 €

where x(t, tyo xo) is any solution of (4.1) starting in ”xo” = 63 .
Thus in view of assumption (Z77) of the theorem and inequalities (L.6) and
(4.7) we have the following contradiction

a(e} = V[tk, x(tk)] = r(tk) < ale) .
Hence, the second condition of Definition 4.1 holds and the proof is
complete.
REMARK. In particular, if

t
Ft, x, Ax) = G(t, x) + j x(t, 8, z(s))ds ,

t
o

then equation (4.1) reduces to a perturbed differential system with
integral perturbations, that is,
t

z'(t) = G(¢t, =(¢)) + j K(t, 8, x(s))ds .

%

5. Applications
Consider the system of ordinary differential equations,
(5.1) x' = G6(¢, x)

and integro-differential equations

¢
(5.2) z'(t) = G(t, =(¢)) + Jt k(t, s, z(s))ds
[¢]

+ H?
x for a constant A(H) > 0 and G(t, 0) =0 . Let X(t, 8, x) be

defined and continuous on 0 <sg =<t <®, |zl <H =, K(t, s, 0)

where G € C[% x 8 Rn] , G(t, x) satisfies a Lipschitz condition in

11
o

COROLLARY 5.1. Assume that

(i) the trivial solution of the unperturbed system (5.1) is
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uniformly asymptotically stable;

(i1} H € c[R+ X R_x R, R+] , H(t,s,0) =0, H(t,s,r) is
nondecreasing in r and

IK(t, o, @) S H(z, 5, Jl) o ¢, 8 €T, @€,

A%

(2i1) for every d > 0 , there exists a ;20 and a function

hd(t, s} continuous on ;=8 = t < » guch that

B(t, s, a t(r)) = hy(t, s) , a€k
for all d=r and 0=<g =t , with

t+1l (&
Gd(t) = Jt {It hd(g, s)ds}dE >0 a8 t >,
o

Then the trivial solution of the perturbed system (5.2) is uniformly

asymptotically stable.

Proof. Since the trivial solution of (5.1) is uniformly
asymptotically stable, applying Massera's theorem [4], there exists a

Lyapunov function V(t, x) satisfying

(5.3) calllell) =Vit, ) , a€k,
(5.4) fv(t, z)-v(¢, y)| = Lilx—yll

and

(5.5) D+V(5.l)(t, z) <-c(V(t, x)) , CE€K.

From condition (ZZ) of Theorem 4.1, inequalities (5.3), (5.4%), (5.5),
assumption (7ZZ) of the corollary and the monotonic property in H , we

obtain

t

Dm(¢) = -C(m(t)) + LJ H[t, s, a-l(m(s)]]ds
t

(o]

where m(t) = V(t, z(¢)} . Therefore

¢ -1

g(t, r, Br) = -C(r) + LJ H[t, s, a (r(s)))ds .
t
O

https://doi.org/10.1017/50004972700045603 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700045603

Equations of Volterra type 19

Now, it remains to verify the uniform asymptotic stability of the trivial
solution of

(5.6) r' =g(¢t, r, Br) .

This can be done by applying condition (77ZZ) of the corollary and a
similar argument as presented in [7]. The solution of equation (5.6)

can be written as

£

H[g, s, a—l(r(s))]dsdi
t
o

¢ R
r(t, tys ro) =r - L cr(s))ds + L jt f
o o

and for 0 < d = r(s) between t, and ¢ , we have

t t (&
r(t, t, r) sr -—J Clr(e))ds + L J I h(E, s)dsdE .
0 d
t t t
o )
For ¢ 2 ¢ 21 and applying Lemma 3.4 in (7] ve obtain
t t
(5.7) r(t) =»(e, tos r} = r, - L C(r(s))ds + L L . G (&)de .
o )

Define Qd(t) = supﬂqd(i) : t=l £ & < “ﬂ . Then Qd(t) > 0 as
t > ® and
(5.8) r(t) s v - o(d) -t ] + 1g,(e,) [t~z +1] -

Let € >0 and choose &§ = 8(g) so that 0 < 28 < € . Also choose
Ty = Ti(e) = T;+t1 so that

(5.9) 21Q,(7;) < min[c(8), €] .
Now, for r = § and t, =2 T1 , ve claim that
(5.10) r(t) <e for t =t <.

Suppose this is not true. Let T3 be the first point such that
r(T3) =€ and let T, < T3 be the last point such that r(T,) = § .
Then S =r(¢t) =€ on [Ty, T3] , hence by (5.8),
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£ = r(T3) s [LQ(T,)-c(8)] [75-T2] + L@ (Ty) + v = IQ4(Ty) + 7,

2

£ €
< =~ 4+ = =
I Tl
a contradiction, proving (5.10). This proves the uniform stability of the
trivial solution of (5.6). For the rest of the proof, choose 60 = §(e) ,

= 3 > < . .
TO Ty(e) . PFix to > To and r = 60 . Then (5.10) implies that

r(t, ¢, r)) <€ on (t,» =)

For n >0, choose §&{n) and T;(n) as before so that (5.9) holds.

Choose

7 = [c(8)Ty (n)+21g (1)+28] [c(8)]™F = 1y (n)
which does not depend on to or r . We now claim that
(5.11) r(t1, tg, roj < § for some t1 in [t +T), ¢t +T] .

Suppose that our claim is false, then

r(ty, t . r,) 28 on [t +71, t ] .

o’
Let y, =r(t,*T1, t,, r)) . Then

0 < & =r(t T, t 471, y,) = [LQg(t,+71)-C(8)]IT-T1] + L@ (¢ +T1) + y,

k4

< - Q%?l [7-7,] + LQG(l) +8=0
a contradiction, proving (5.11). Thus by (5.10)
r(t, t1, (), tys ro)J <n,on [t;, =],
since ¢) 2t +7) 2T and r[tl, tys ro) < § . Hence

r(t, ¢, r) <n for ¢zt .

o
Since n 1is arbitrary r(t, to’ ro) + 0 as t >» ., Also as T depends

only on n and & depends only on € , the trivial solution of (5.6) is
uniformly asymptotically stable. Consequently by Theorem 4.1 the stated

result follows.

COROLLARY 5.2. Assume that
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(i) the trivial solution of the unperturbed system (5.1) is
exponentially stable;

(i2) the function K(t, &, x) 18 defined and continuous on

0<s=<t<ewo, |lzff <H=w
k(t, s, x)|l = X (¢, s)u(s, |z|)

where K)(t, s) z 0 is defined and continuous on
0Ossg=<t<eo, wlt,r) €C|R+XR+,R| , w(t, 0) =0,

satisfies a Lipschitz condition in r and non-decreasing in

ry
(iii) there exists a function h(t, s) defined and continuous on
0 =s =t <o agnd satisfying the inequality
n(t, 8) < Mlexp[-)\l(t-s)] , for 0<s=<¢t,
Ay, M) > 0, where
. t
h(t, g) = J ki (T, s)exp[—)\l(t-—‘[)]d‘r .
8

Then the trivial solution of the perturbed system (5.2) is exponentially
stable.

Proof. Since the trivial solution of (5.1) is exponentially stable,
there exists a Lyapunov function V(#, x) satisfying the following:
(1) el = v(2, x) ;
(i1) [v(¢, ) - V(t, y)| = Lllz-yll ;
+
(iii) D'V

(5_1)(t, x) = - AV(t, x) , A>0.

It is easy to show that
t
glt, r, Br) =~ dr + L J Kk (t, shw(s, r(s))ds .
o
Now, by using similar arguments as in [1], it is easy to show that the

trivial solution of (5.6) is exponentially stable and applying Theorem 4.1

we obtain the desired result.
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