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Integro-differential equations
of Volterra type

M. Rama Mohana Rao and Chris P. Tsokos

The aim of this paper is concerned with studying the stability

properties of an integro-differential system "by reducing it into

a scalar integro-differential equation. A theorem is stated

about the existence of a maximal solution of such systems and a

"basic result on integro-differential inequalities. Utilizing

these results we obtain sufficient conditions for uniform

asymptotic stability of the trivial solution of the

integro-differential system of the form

x'{t) = F(t, x(t), Ax) , V=jfc)

where F i C[R+ X 5f f x C(J)] , A i C[Cf f , C(J)] w i t h

CE = \se € CU) : \\X\\ < fij , J = 0 5 t 5 a < « > ,

SH = {x € iP : \\x(t)\\ < H , H > 0 for t i j] , C{J) denotes

the space of continuous functions, A a continuous operator such

that A maps C{J) into C(J) . The fruitfulness of the

results of the paper are illustrated with two applications.

1.

Corduneanu [/], Levin [3] and Nohel [6] among others have studied the

stability properties of solutions of integro-differential equations of

Volterra type and many interesting results have been accumulated. Quite

recently Lakshmikantham and Rama Mohana Rao [Z] investigated such a
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problem by choosing an appropriate minimal class of functions so that it

would be possible to estimate the derivative of the Lyapunov function in

terms of a scalar function.

Our aim in this paper is to study the stability properties of the

integro-differential system by reducing it into a scalar

integro-differential equation. In Section 2, we introduce the notation

and a lemma which is used in the study. In Section 3, we shall develop a

theorem about the existence of a maximal solution of integro-differential

systems and a basic result on integro-differential inequalities. Applying

this theory of integro-differential inequalities, we obtain sufficient

conditions for uniform asymptotic stability of the trivial solution of

integro-differential systems in Section 4. This study includes the

results of Corduneanu [1] as a special case. Two applications are given

in Section 5 to illustrate the fruitfulness of our results.

2.

We shal l use the following notations:

K = space of n-vectors,

|ja;|| = any convenient norm of x € iP ,

= [l f «" : ll*(t)|| < H , H > 0 , for t (. J] ,

R = non-negative real line,

C[E, F] = the class of functions defined and continuous on E taking

values in F , where E and F are any convenient spaces,

K = the class of continuous functions b(r) , defined and continuous

on 0 5 r < H , b ( 0 ) = 0 and monotone increasing in r ,

C = the class of non-negative functions defined and continuous on

In the presentation of this paper, whenever we employ a vector
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inequality, it is to be understood that the inequality is satisfied

componentwise.

Let Ei and Fj be two partially ordered sets with the partial

ordering "-" for both sets. We shall assume that the following

conditions hold:

(2.1) x, y, z € E\ , x S y , y 5 2 implies x 5 z ;

(2.2) x, y € £j , I S J , y < x implies x = y ;

(2.3) x, y, z € Fi , x 5 y , y 5 i implies x < 5 ;

(2.it) 5 € Fx , then x Sx .

Furthermore, let P\ be an operator defined on E\ taking its values in

F\ , the function Q\ be defined on E\ x E\ taking its values in Fj

and m to denote the maximal solution [5] of equation

(2.5) Pi(x) = Qiix, x) .

For x, y±, y2 € Ei , we shall assume that

(2.6) j/! s i/2 implies QjOc, j^) < Si (a:, y2)

and we define a set J/j as follows:

(2.7) Vi = [x I Ei ; Px{x) £ Qi(x, x)] .

We now state a lemma about the existence of the maximal solution of

equation (2.5), the proof of which follows a similar argument as in [5].

LEMMA 2.1. Let Pi and Qi be as defined above. Assume that Q\

possesses the property (2.6) and that there exists a function sj

defined on 2?i such that si(E'i) c Ei satisfying the conditions

(2.8)

and

(2.9) PiU) £ «iU, y)

together imply that

Let tfce set Ui defined in (2.7) be non-empty. Then,

(2.10)
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Moreover, the existence of suptfi implies the existence of supsi(f/i)

and vice versa. Also, swpUi = supsjCi/j) . Their common value is then

the maximal solution of (2 .5) .

3.

Let C{J) denote the space of continuous functions u £ c[j, if"]

and A be a continuous operator such that A maps C(J) into C(J) .

For any two continuous functions u, v € c\j, Rn'\ the operator A is

assumed to satisfy the following property:

u(t) 5 v{t) , 0 < t 5 £j , ti € (0, °°)

implies

(3.1) Au 5 Av for £ = tx .

Let / € C[t7 x if x C(J), rt j and Af a constant vector greater than zero

such that for ( t , w , u ) € J x f l " x C(J)

\f(t, u, v)\ < M ,

with the function / possessing the quasi-monotone property, that i s ,

for each i , f.(t, u\ , U2 , • . . , u , Vi, U2, . . . , V ) is monotonic

increasing in u\ , u2
 ui-\> Ui+X' " ' ' Un a n d Vl ' Vl' ' " ' Vn '

Now consider the integro-differential system

(3.2) u'(t) = f{t, u{t), Au) , M(0) = UQ .

THEOREM 3 .1 . Let f(t, u, v) satisfy the above conditions along

with (3-1). Then there exists a maximal solution m{t) of (3.2) on J .

If <)>(£) is a continuous vector function satisfying the inequalities

( 3 - 3 ) <f>(0) ^ m(0)

and

(3-1*) D+<$>(t) 5 f[t,

then,

5 m(t) on J .
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Proof. Let Bj be the set of continuous functions i(/ € c\j, K \ ,

such that

- m{0) + tit , t € J .

For ty , p € Ei , \p 5 p we have

S p(t) , t U .

Similarly, Fj is a set of vector-valued functions on" J with the

components of its elements belonging to [-°°, °°] and having the same

order relationships as the set E\ , that is, for £ , r) £ Fj , £ 5 n.

we have

From this it is clear that conditions (2.1) to (2.k) hold. Define the

operator Pj and the function Q\ as follows:

, i> = 1, 2 n

and

=/;(*> Pi(*)

It follows from the behavior of f that

p € Ei , we define

satisfies (2.6). For

, Pl(t) P ^ ! ^ ) ' ".

Let o(t) be the maximal solution for each i. of

u' = ̂ (t, u)

such that

a(0) =

The existence of o(t) on J is assured because of the' assumptions on

/ . How, we define a function 3i(p) such that Zi[p(t)) = a(t) .

From the basic theorem on differential inequalities it follows that the

function S\{p) satisfies (2.9) and obviously (2.8) holds. Moreover,
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the set U\ is not empty since m(0) - Mt (. l)\ and

|o'(t)| 2 M .

Hencej the family of functions io.(t)} are equi-continuous and uniformly

bounded. This proves that supa^i/i) = supa(t) is a continuous vector

function on J . The assertion of the theorem now follows from Lemma 2.1.

4.

With respect to the objectives of this paper, consider the following

integro-differential system

(U.I) x' (t) = F(t, x(t), Ax)

where F d C\R+ X 5fi x C{J), fl"j , A € c\fR, C(J)~\ with

Cg = [x € C(J) : \\x\\ < H] . We shall assume that F(t, 0, 0) i 0 . Let

x(t) = x[t, t , x ) be any solution of (U.l). In order to avoid

repetition we shall only concentrate on uniform asymptotic stability of
the t r iv ia l solution of the integro-differential system (U.l). For
convenience, we shall next define uniform asymptotic stability.

DEFINITION 4.1. The t r ivia l solution of the integro-differential
system (U.l) is said to be uniformly asymptotically stable if the
following two conditions hold:

(i) for every e > 0 , t € J , there exists a function

6 = 6(e) > 0 such that the inequality ||xo|| S 6 implies

\ \ x { t , tQ, x Q ) \ \ < e , t > t Q ;

( i i ) for every e > 0 , t (. J , there exist positive numbers 6Q

and T = T(e) such that whenever \\x || 5 6 ,

IK*» V *0)H < E • t ^ V ?

holds.

THEOREM 4 . 1 . Assume that

(i) g i c[R+ x i?+ x i?+, R] , g(t, 0, 0) = 0 and g(t, u, v) is
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non-decreasing in v for each it, u) ;

(ii) V € c[R+
 X Sg, flj j Vit, 0) E 0 , V(t, x) is Lipschitzian

in x for a constant L = LiH) > 0 and for t € J ,
xit) t CiJ)

D+V(t, xit)) = lim sup j- \V \t+h, xit)+hF{t, xi't), Ax)\ - v(t, x

uhere B € CC + , i?+ ;

(Hi) there exists a function a f K such that for
it, x) i J x Sg ,

ai\\x\\) < Vit, x) .

Then the uniform asymptotia stability of the trivial solution of the

scalar equation

(U.2) r' = git, r, Br) , r{tQ) = rQ

implies the uniform asymptotia stability of the trivial solution of the
integro-differential system (it.l).

Proof. Suppose that the tr ivial solution of C*.2) is uniformly
asymptotically stable. This implies that i t is uniformly stable. Let
0 < e < f l , t € J be given. Then, given a(e) > 0 , there exists a

6 = 6(e) > 0 , such that, whenever r < 6 we have

(U.3) r(t, tQ, rQ) < aie) , t > tQ ,

where rit) = r[t, t , r ) i s any s o l u t i o n of (I*.2). Let us choose

r = L\\x || so t h a t by assumption (ii) we have v(t , x ) 5 r . Now we

choose 6 i ( e ) = ' . Furthermore, we claim t h a t i f ||a; || 5 6 i ( e ) , weL o

have

ll*(*. * 0 . xo)\\ < e t t > tQ .
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Suppose that this claim is not true, then for t\ > t we have

^ 0' O

and

which implies that

(4.4) a(e) s v[ti, x(tl))

and

Utilizing the assumption (ii.) and standard computation yields

D+m(t) S g{t, m(t), Bm) , t € [tQ, t{]

where

m(t) = V(t, «(*)) .

How., taking r as defined above and applying Theorem 3.1 we obtain

(4 .5) V(t, x(t)) < r{t) , t i [t , t ] .
U

Inequalities (4.3), (4.1*) and (4.5) lead to the following contradiction

a(e) S v{ti, x(ti)) 5 r(tj) < a(e) .

Hence, the first condition of Definition 4.1 holds. Now, for e = H and

6 Q = 6!(ff) it follows that

(4.6) V(t, x(t)) <r(t) , t > tQ .

Also from the uniform asymptotic stability of the trivial solution of

(4.2), we have, given <z(e) > 0 , t € J , there exists a positive number

6 and T(e) such that for r < & it implies that

(4.7) r(t, tQ, rQ) < a(e) , * > tQ + 2
1 .

6 , -r- . Suppose that there exists a sequence {t1 } ,
o i> j ft
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t, > t + T with t. •*•<*> as k -*•<*>, such thatk o Sc '

H*(*fc. *0. *o)il
 2 e ,

where x(t, t , x ) is any solution of (It.l) starting in ||x || « 6* .

Thus in view of assumption (Hi) of the theorem and inequalities (h.6) and

(U.7) we have the following contradiction

a(e) < v\tk, x(tfe)j sr(tk) < a(e) .

Hence, the second condition of Definition U.I holds and the proof is

complete.

REMARK. In particular, if

ft
F(t, x, Ax) = G(t, x) + K.(t, s, x(s))ds ,

o

then equation (U.l) reduces to a perturbed differential system with

integral perturbations, that is,

rt
G{t, x(t)) + K{t, s, x(8))ds

5. Applications

Consider the system of ordinary differential equations,

(5.1) x' = G(t, x)

and integro-differential equations

rt

(5.2) x'it) = G[t, x(t)) + x(t, s, x{s))ds

o

where G € C i? x S , i?" , G(t, x) sa t i s f ies a Lipschitz condition in

x for a constant \(H) > 0 and G{t, 0) = 0 . Let # ( t , s , a;) be

defined and continuous on 0 5 s £ t < ° ° , ||x|| < H 5 <» , X(t, s , 0) = 0

COROLLARY 5 . 1 . Assume that

(i) the trivial solution of the unperturbed system (5.1) is
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uniformly asymptotically stable;

(ii) H € C\R+ x i?+ x i?+, f?+] } H(t, s , 0) = 0 , H(t, s, r) is

nondeoreasing in r and

\\K(,t, s, x)\\ < H(t, s, ||a;||) , t , s € J 3 x i SH ;

(Hi) for every d > 0 } there exists a T , > 0 and a function

hAt, s) continuous on T-, £ s 5 i < °> swe
a a

S ( t , s , a " 1 ^ ) ) £ hd(t, s) , a i K

for all d < r and 0 5 s < t , with

J UGdit) = J U hd(£,, s)ds\d£, -»• 0d , ) as

*o

tfce trivial solution of the perturbed system (5.2) i s uniformly

asymptotically stable.

Proof. Since the ' t r ivial solution of (5.1) is uniformly

asymptotically stable, applying Massera's theorem [4], there exists a

Lyapunov function V(t, x) satisfying

(5.3) . a ( lk | | ) < V(t, x) , a d K ,

( 5 - U ) \V{t, x)-V(t, y)\ S L\\x-y\\

and

(5-5) D + F ( 5 l ) ( t , x) < - C ( 7 ( t , «)) , C € X .

From condition (ii) of Theorem k.l, inequalities (5-3), (5.M. (5.5).

assumption (ii) of the corollary and the monotonic property in H , we

obtain

D m(t) £ -C\m{t)) + L R\t, s, a
' t "•

where m(t) = v[t, x(t)} . Therefore

, r, Br) = -C(r) + L \ R\t, s, a~

o
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Now, it remains to verify the uniform asymptotic stability of the trivial

solution of

(5-6) r' = g(t, r, ft?) .

This can be done by applying condition (Hi) of the corollary and a

similar argument as presented in [7]. The solution of equation (5.6)

can be written as

j fe 1())dsd£,*"(*» V ro^ = ro " J c(r(«)}^s + L I j #|5> s, a" (r(s)) I
*o £o to

and for 0 < d £ r(s) between t and t , we have

r^' V ro) £ ro " ( C(r(s))ds + L f f V € *

For t > t 2 1 and applying Lemma 3.h in [7] we obtain

,t (t
(5.7) r{t) = r(t, tQ, rQ) 5 rQ - C(r(s))ds + £

Define 6 J ( * ) = sup[(3j(C) : t -1 5 5 < °°] • Then Qj(t) ->• 0 as

t •*•<*> a n d

(5.8) *̂(t) £ r - C(d)[t-t~\ + LQjt )[t-t +l] .

Let e > 0 and choose 6 = 6(e) so that 0 < 26 < e . Also choose

21! = Tjfe) > x , + 1 so that

(5.9) 2LQAT\) < min[c(6), e] .

How, for r < 8 and t > T\ , we claim that

(5.10) r{t) < e for tQ 5 t < «> .

Suppose this is not true. Let T3 be the first point such that

r{T-$) = e and let T2 < 2"3 be the last point such that r(T2) = 6 .

Then 6 £ r(t) 5 e on [T2» 2"3l » hence by (5-8),
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e = r(T3) <

a contradiction, proving (5.10). This proves the uniform stability of the

trivial solution of (5-6). For the rest of the proof, choose 6 = 6 ( E ) ,

TQ = 2"i(e) . Fix tQ i TQ and TQ £ 6 Q . Then (5-10) implies that

r(t, t r) < e on [t, -) .

For n > 0 , choose 6(n) and

Choose

as before so that (5.9) holds.

which does not depend on t or r . We now claim that

(5-11) r(ti, tQ, rQ) < 6 for some t\ in [^+2*1, tj

Suppose that our claim is false, then

r(*l, *0, r0) > 5 on [ t ^ , to+r] .

Let t/0 = r(tQ+Tlt tQ, rQ) . Then

0 < 6 5 r(to+r, to+Ti, j/0) < [LQ6{t

a contradiction, proving (5.11). Thus by (5.10)

n , on [tx,

since tj 2; *0
+2"i i ffj and r{tx, tQ, rQ) < 6 . Hence

r(*' *o« ro) < n for * " V1" '

Since n is arbitrary r(t, t , r ) •* 0 as *-»•">. Also as T depends

only on n and 6 depends only on e , the trivial solution of (5.6) is

uniformly asymptotically stable. Consequently by Theorem k.l the stated

result follows.

COROLLARY 5.2. Assume that
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(i) the trivial solution of the unperturbed system (5-1) is

exponentially stable;

(ii) the function Kit, s, x) is defined and continuous on

O £ s £ t < ° ° J ||a;|| < H £ «

\\Kit, s, x)\\ <Xj(t, s)w(s, ||a:||)

where Kyit, s)_> 0 is defined and continuous on

0 £ s £ t < °° j u ( t , r ) € C|if+ x fl+, i?| , wit, 0) = 0 ,

satisfies a Lipschitz condition in r and non-decreasing in

(Hi) there exists a function hit, s) defined and continuous on

0 £ s £ t < °° and satisfying the inequality

hit, s) £ AfiexpQ-Xi it-s)~J j for 0 £ s £ t ,

\ \ , Mi > 0 j where

, s) = XJCT, s
' s

Then the trivial solution of the perturbed system (5.2) is exponentially

stable.

Proof. Since the trivial solution of (5.1) is exponentially stable,

there exists a Lyapunov function V{t, x) satisfying the following:

(i) Uxll < V(t, x) ;

( i i ) \V(t, x ) - V(t, y ) \ 5 L \ \ x - y \ \ ;

( i i i ) D+K(5 l ) ( t , x) £ - XV(t, x) , X > 0 .

I t is easy to show that

tt
git, r, Br) = - Xr + L K\{t, s)w[s, r(s))ds .

Now, by using similar arguments as in [7], it is easy to show that the

trivial solution of (5.6) is exponentially stable and applying Theorem U.I

we obtain the desired result.
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