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Abstract. In this paper, we study a homotopy invariant cat(X, B, [ω]) on a pair
(X, B) of finite CW complexes with respect to the cohomology class of a continuous
closed 1-form ω. This is a generalisation of a Lusternik–Schnirelmann-category-type
cat(X, [ω]), developed by Farber in [3, 4], studying the topology of a closed 1-form.
This paper establishes the connection with the original notion cat(X, [ω]) and obtains
analogous results on critical points and homoclinic cycles. We also provide a similar
‘cuplength’ lower bound for cat(X, B, [ω]).
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1. Introduction. Michael Farber [3, 4] initiated a systematic study of a
generalisation of the classical Lusternik–Schnirelmann category with respect to a
real cohomology class ξ of degree 1, cat(X, ξ ), on a finite CW complex X . In [3]
the power of such a notion is demonstrated in the study of the topology of critical
points and the existence of homoclinic cycles on a closed manifold. Compared to the
Morse inequalities of a Morse closed 1-form, cat(X, ξ ) is applicable to more degenerate
conditions, but, in general, it is harder to compute. In [6, 8] Farber and Schütz improve
the previous results and give more detailed insights on this issue.

In this paper, we generalise the controlled version of the above notion to the relative
case on a finite CW pair (X, B), which coincides with the absolute one when the subset
B is empty. In particular, Section 2 introduces the definition of this relative category
cat(X, B, ξ ), and in Section 3 we describe the immediate properties of the object. As a
main result, we obtain the inequality relating the relative categories for the three pairs
of a triple. We summarise this in the following theorem:

THEOREM 1.1. Suppose X is a finite CW-complex and A, B are sub-complexes of
X with A ⊂ B, and let ξ ∈ H1(X, �) be a cohomology class of X and i∗ : H1(X ; �) →
H1(B; �) be the induced map of the inclusion map i : B → X, then we have the following
inequality:

cat(X, A, ξ ) ≤ cat(X, B, ξ ) + cat
(
B, A, i∗(ξ )

)
.

Note that ξ need not restrict to the trivial cohomology class on B. In the case of
ξ = 0, cat(X, A, ξ ) reduces to the usual relative Lusternik–Schnirelmann category, and
this result is given in [2].
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In Section 4, we relate this relative Lusternik–Schnirelmann category to the
existence of homoclinic cycles for gradient-like vector fields on a manifold with
boundary, generalising previous work of Farber [3].

THEOREM 1.2. Let M be a smooth compact manifold with boundary ∂M, and ω be a
closed 1-form on M satisfying certain transversality conditions on the exit set B ⊂ ∂M.
If the number of critical points of ω is less than cat(M, B, [ω]), then any gradient of ω

transverse on (∂M, B) contains at least one homoclinic cycle.

The transversality conditions above prescribe a ‘nice’ behaviour near the boundary
∂M, which is explained in more detail in Section 4. In particular, the exit set B is a
0-codimensional submanifold of ∂M possibly with boundary.

2. Definition of cat(X, B, ξ ). Firstly, we recall the definition for closed 1-forms on
topological spaces resembling the essential features of the conventional closed 1-forms
in differential topology. This is first defined in [3].

DEFINITION 2.1. Let X be a topological space, a continuous closed 1-form ω on X
is defined to be a collection {fU}U∈U of continuous real functions fU : U → �, where
U = {U} is an open cover of X such that for any pair U, V ∈ U , the difference

fU |U∩V − fV |U∩V : U ∩ V → �

is locally constant.

In [5, Chapter 10.2], Farber provides a comprehensive description of this notion,
here we only recollect the essential properties necessary for our study.

Two continuous closed 1-forms ω1 = {fU}U∈U , ω2 = {gV }V∈V are called equivalent
if the union {fU , gV }U∈U ,V∈V of the collections is a continuous closed 1-form, i.e. for
any U ∈ U and V ∈ V , the difference fU − gV of the two functions fU , gV is locally
constant on U ∩ V . A trivial example for such topological continuous closed 1-form
can be constructed as follows:

EXAMPLE 2.2. Suppose we take the whole space {X} as the open cover, then any
continuous function f : X → � defines a continuous closed 1-form on X , denoted as
df . It can be seen as the continuous version of an exact form in differential topology,
and we call it continuous exact 1-form.

In such an example, two exact 1-forms df, dg are equivalent df = dg if and only if
f − g : X → � is locally constant, i.e. constant on each connected component of X .

EXAMPLE 2.3. Consider the one-dimensional sphere S1 parametrised by t → eπ it

and cover it with U, V where U = (− 1
6 , 7

6 ) and V = ( 5
6 , 13

6 ). Let θU and θV be angular
functions, i.e. θU (x) = πx for x ∈ U and θV (y) = πy for y ∈ V . Then θV |U∩V − θU |U∩V

is locally constant, hence dθ = {θU , θV } is a continuous closed 1-form on S1. It is easy
to see that dθ is not exact.

We want to define integration for topological closed 1-forms, which leads to the
cohomology class.

DEFINITION 2.4. Suppose we have a closed 1-form ω = {fU}U∈U for some open
cover U = {U} of topological space X , and γ : [0, 1] → X is a continuous path on X .
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The line integral
∫
γ

ω is defined as follows:

∫
γ

ω =
n−1∑
i=0

(fUi (γ (ti+1)) − fUi (γ (ti))),

where t0 = 1 < t1 < · · · < tn = 1 is a partition of the closed interval [0, 1] such that
γ [ti, ti+1] ⊂ Ui with Ui ∈ U , for all 1 ≤ i ≤ n.

REMARK 2.5. This integration is independent of the choice of partitions and the
open cover U , and only depends on the homology class of the path relative to its end
points (see [5, Section 10.2]).

DEFINITION 2.6. Let ω be a closed 1-form on a topological space X , the
homomorphism of periods: π1(X, x0) → � is defined as

[γ ] 	→
∫

γ

ω,

where γ : [0, 1] → X is a loop representing a homotopy class of π1(X, x0) with base
point x0 = γ (0) = γ (1).

Now, according to [5], if X is a CW-complex, any singular cohomology class
ξ ∈ H1(X ; �) can be realised by a continuous closed 1-form on X , and two closed
1-forms differ by an exact form if and only if they induce the same homomorphism of
periods.

Now we have an adequate vocabulary to introduce the concept of category with
respect to a closed 1-form.

DEFINITION 2.7. Let (X, B) be a finite CW pair, ω a continuous closed 1-form on X ,
let N ∈ � be a positive integer and C > 0 be a real positive constant. A subset D ⊂ X
containing B is N-movable relative to B with control C with respect to ω if there exists a
continuous homotopy h : D × [0, 1] → X such that h0 is the inclusion map, ht(B) ⊂ B
for all t ∈ [0, 1] and for any x ∈ D, either h1(x) ∈ B, or we have∫ h1(x)

x
ω ≤ −N,

and for all t ∈ [0, 1], we have ∫ ht(x)

x
ω ≤ C

for all x ∈ D.

In this case, we will simply say D is (N, C)-movable relative to B. Roughly speaking,
a subset is (N, C)-movable relative to B if it can be continuously deformed in the space
X , such that any point either is pushed into B or travels over distance N as measured
by ω.

DEFINITION 2.8. Let (X, B) be a finite CW pair and ω be a continuous closed 1-
form on X with its cohomology class denoted as ξ = [ω] ∈ H1(X ; �). Then the relative
Lusternik–Schnirelmann category with respect to ξ , or cat(X, B, ξ ), is defined to be the
smallest integer k such that there exists C > 0 and for any integer N > 0, there exists
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an open cover of X , X = U ∪ U1 ∪ · · · ∪ Uk such that Ui ↪→ X is null-homotopic in X
for 1 ≤ i ≤ k and U is (N, C)-movable relative to B.

REMARK 2.9. As in the absolute case, cat(X, B, ξ ) is independent of ω in the
cohomology class ξ = [ω].

REMARK 2.10. When B = ∅ is empty, our cat(X, B, ξ ) coincides with the
controlled version of the absolute category with respect to a closed 1-form ccat(X, ξ ):
cat(X, B, ξ ) = ccat(X, ξ ), when B = ∅. The controlled category ccat(X, ξ ) was first
defined in [6], in order to generalise the product inequality of the Lusternik–
Schnirelmann category. The control is crucially used in the proof of Theorem 1.1;
however, no examples are known for which the two versions actually differ.

REMARK 2.11. When the cohomology class is trivial ξ = 0, our category is equal
to the relative version of the classical category, cat(X, B, ξ ) = cat(X, B). The notion
cat(X, B) has been defined and studied in a number of papers (see e.g. [2, 12, 13]).

This category is a homotopy invariant, the proof is analogous to the absolute case
given in [5, Section 10.2].

LEMMA 2.12. Let φ : (X, B) → (X ′, B′) be a relative homotopy equivalence between
finite CW-complex pairs (X, B) and (X ′, B′), and ξ ′ ∈ H1(X ′; �), ξ = φ∗(ξ ′) ∈ H1(X ; �),
then

cat(X, B, ξ ) = cat(X ′, B′, ξ ′).

�

3. Properties of cat(X, B, ξ ). We now want to prove an inequality for the relative
category:

THEOREM 3.1. Let A ⊂ B ⊂ X be finite CW complexes and ξ ∈ H1(X ; �) be the
cohomology class of X, then

cat(X, A, ξ ) ≤ cat(X, B, ξ ) + cat
(
B, A, i∗(ξ )

)
,

where the map i∗ : H1(X ; �) → H1(B; �) is induced by the inclusion map i : B → X.

Proof. Suppose cat(X, B, ξ ) = k and cat(B, A, i∗(ξ )) = l, let ω be a continuous
closed 1-form representing ξ , we need to show the existence of a real number R > 0,
such that for any N > 0, there is an open cover of X which consists of k + l null-
homotopic components and one (N, R)-movable component relative to A.

Firstly, we want to modify the open cover of B to be open in X . For this we do the
following trick of deformation retraction:

According to Hatcher [9, Appendix A.2], there exists an open neighbourhood N(B)
of B in X such that there exists a deformation retraction D′ : N(B) × [0, 1] → N(B) rel B
with D′

1(N(B)) = B. We extend its composition with the inclusion map N(B) × [0, 1] →
X to the whole space, denoted by D : X × [0, 1] → X with Dt|N(B) = D′

t for all t,
compare to [9, Example 0.15]. By the compactness of X , there exists K ∈ � such that∫ D1(x)

x ω < K for any x ∈ X .
Now, according to the definition of the category, there is C > 0 and for any integer

N, there exist open covers X = U ∪ U1 ∪ · · · ∪ Uk and B = V ∪ V1 ∪ · · · ∪ Vl, where
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Ui and Vj are null-homotopic for all i, j; U is (N + C + 1 + K, C)-movable relative to
B by a homotopy g, and V is (N + C + 2K, C)-movable relative to A by a homotopy h.

On the other hand, as N varies, N(B) is not necessarily contained in U for all
N > 0, therefore, let us consider the intersection N ′(B) = N(B) ∩ U and restrict the
deformation retraction to the closure of this intersection as d = D|N ′(B) : N ′(B) ×
[0, 1] → X . Note that we still have

∫ d1(x)
x ω < K for any x ∈ N ′(B). Also denote

by N ′′(B) an open subset of N ′(B) with N ′′(B) ⊂ N ′′(B) ⊂ N ′(B). In particular,
N ′′(B) ⊂ (d−1

1 (V ) ∪ d−1
1 (V1) ∪ · · · ∪ d−1

1 (Vl)).
Secondly, to comply with the definition of relative movability, let us modify g : U ×

[0, 1] → X such that points in A stay in A throughout the homotopy. Now, according
to the Lemma 3.2 below, there is an open neighbourhood N(A) of A in U with
gt(N(A)) ⊂ N(B) ∩ U for all t ∈ [0, 1]. Then let ϕ : U → [0, 1] be a map such that
ϕ|A = 0 and ϕ|U−N(A) = 1. Define a continuous homotopy g′ : U × [0, 1] → X as

g′(x, t) = D(g(x, ϕ(x)t), t).

Then g′
t(a) = a for all t ∈ [0, 1] and a ∈ A, and for any x ∈ U , either g′

1(x) ∈ B or∫ g′
1(x)

x ω < −N − C − 1 and for all x ∈ U and all t ∈ [0, 1],
∫ g′

t(x)
x ω < C + K .

Now we want to show there is an open cover of X modified from the ones of X
and B, namely

X = (U∗ ∪ V∗) ∪ (U∗
1 ∪ · · · ∪ U∗

k ) ∪ (V∗
1 ∪ · · · ∪ V∗

l ),

where U∗ ∪ V∗ is (N, R)-movable relative to A for some R > 0 and U∗
i , V∗

j are null-
homotopic in X .

We divide the argument into three parts:
(i) Null homotopy of V∗

j To get V∗
j , we firstly need to modify the value of Vj so

that they are open in X . Since d is continuous, we have Ṽ j = d−1
1 (Vj) ⊂ N ′(B)

is open in X . Now we set V∗
j = (g′

1)−1(Ṽ j) and define the null homotopy Hj :
V∗

j × [0, 1] → X as

Hj(x, t) =

⎧⎪⎪⎨
⎪⎪⎩

g′(x, 3t) 0 ≤ t ≤ 1
3 ,

d(g′
1(x), 3t − 1) 1

3 ≤ t ≤ 2
3 ,

hj(d1g′
1(x), 3t − 2) 1

2 ≤ t ≤ 1,

where hj is the null homotopy of Vj, and we see Hj continuously deform V∗
j to

a point in X .

(ii) Construction of V∗ Here we want to modify V and the accompanied homotopy
h so that the new V∗ is open in X and (N + C + K, C + K + 1)-movable relative
to A by some homotopy. Consider Vc = B − ∪jVj in B, we have d−1

1 (Vc)
closed in X and thus denote by Ṽ c = d−1

1 (Vc) ∩ N ′′(B) a closed subset in
X . Meanwhile, let Ṽ = d−1

1 (V ) ∩ N ′(B) ⊂ N ′(B) be open in X with Ṽ c ⊂ Ṽ .
Notice that there exists a homotopy h′ : Ṽ × [0, 1] → X for Ṽ defined as

h′(x, t) =
{

d(x, 2t) 0 ≤ t ≤ 1
2 ,

h(d1(x), 2t − 1) 1
2 ≤ t ≤ 1,
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such that for x ∈ Ṽ ,

either h′
1(x) ∈ A or

∫ h′
1(x)

x
ω < −N − C − 2K + K = −N − C − K ;

and
∫ h′

t(x)
x ω < C + K for all x ∈ Ṽ and t ∈ [0, 1].

Now according to Lemma 3.3 below, there is an open subset V ′ of X with
Ṽ c ⊂ V ′ ⊂ Ṽ and a homotopy H : X × [0, 1] → X such that H0(x) = x for all
x ∈ X , Ht(A) ⊂ A for all t ∈ [0, 1] and for all x ∈ V ′, either H1(x) ∈ A or∫ H1(x)

x
ω ≤ −N − C − K

and for all x ∈ X and all t ∈ [0, 1]∫ Ht(x)

x
ω < C + K + 1.

We set V∗ = (g′
1)−1(V ′).

(iii) Construction of U∗ Choose slightly smaller open subsets Uo
i ⊂ Ui such that

Uo
i ⊂ Uo

i ⊂ Ui and X ⊂ U ∪ Uo
1 ∪ · · · ∪ Uo

k ,

then we define

U∗ = X −
((

k⋃
i=1

Uo
i

)
∪ (g′

1)−1(N ′′(B))

)
.

Define the homotopy G :
(
U∗ ∪ V∗) × [0, 1] → X as

G(x, t) =
{

g′(x, 2t) 0 ≤ t ≤ 1
2 ,

H(g′
1(x), 2t − 1) 1

2 ≤ t ≤ 1.

It is easy to see that Gt(A) ⊂ A for all t ∈ [0, 1] as both g′ and H are built with
this feature. For x ∈ U∗ it will travel over distance N as∫ G1(x)

x
ω =

∫ g′
1(x)

x
ω +

∫ H1(g′
1(x))

g′
1(x)

ω ≤ (−N − C − 1) + (C + 1) = −N.

Similarly, for x ∈ V∗ = (g′
1)−1(V ′), after discounting the effect of g′ and

returning into V ′ ⊆ N(B), H either pushes the point into A or travel over
distance N as∫ G1(x)

x
ω =

∫ g′
1(x)

x
ω +

∫ H1(g′
1(x))

g′
1(x)

ω ≤ C + K + (−N − C − K) = −N.

Also, for all t ∈ [0, 1] and x ∈ U∗ ∪ V∗,
∫ Gt(x)

x ω < 2C + 2K + 1.
Finally, let us set U∗

i = Ui unchanged, then X is covered as

X = (U∗ ∪ V∗) ∪ (U∗
1 ∪ · · · ∪ U∗

k ) ∪ (V∗
1 ∪ · · · ∪ V∗

l ).
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This is true as (g′
1)−1(N ′′(B)) is covered by V∗ and V∗

j :

(g′
1)−1(N ′′(B)) ⊂ V∗ ∪ V∗

1 ∪ · · · ∪ V∗
l ,

where

N ′′(B) ⊂ d−1
1
2

(Vc) ∪ d−1
1 (V1) ∪ · · · ∪ d−1

1 (Vl)

⊂ V ′ ∪ Ṽ1 ∪ · · · ∪ Ṽ l;

and {U∗
i } covers the rest of X .

Now U∗ ∪ V∗ is (N, 2C + 2K + 1)-movable relative to A and the other
components are all null-homotopic. �

LEMMA 3.2. With the notations as in the proof of Theorem 3.1, there exists an open
neighbourhood N(A) of A in X with N(A) ⊂ N(B) ∩ U, such that gt(N(A)) ⊂ N(B) ∩ U
for all 0 ≤ t ≤ 1.

Proof. Given g : U × [0, 1] → X , we have gt(a) ∈ B ⊂ N(B) ∩ U for any a ∈ A,
according to the hypothesis. For such point (a, t) ∈ A × [0, 1], by the continuity of g,
we can find some neighbourhood Nt(a) × (t − δt, t + δt) of (a, t) in X × [0, 1] for small
δt, such that g(a′, t′) ∈ N(B) ∪ U for all (a′, t′) ∈ Nt(a) × (t − δt, t + δt).

Now because of the compactness of [0, 1], there exists t1, . . . , tn such that [0, 1] =⋃n
i=1(ti − δi, ti + δi). Set

N(a) =
n⋂

i=1

Nti (a),

we claim g(N(a) × [0, 1]) ∈ N(B) ∩ U .
Now define

N(A) =
⋃
a∈A

N(a).

We can see N(A) ⊂ N(B) ∩ U and gt(N(A)) ⊂ N(B) ∩ U for all t ∈ [0, 1]. �

The following lemma is a convenient generalisation of Lemma 10.1 in [6], stating
that the homotopy for a movable subset can be extended to the whole space X with
the control C + 1, and the proof follows essentially the same argument as in [6].

LEMMA 3.3. Let ω be a continuous closed 1-form on a finite CW complex X. Let
B ⊂ X be a sub-complex. Suppose further that there exists a C > 0 and for any integer
N > 0, we have an open subset U of X containing B and U is (N, C)-movable with respect
to B. Then for any given closed subset W ⊂ U with B ⊂ W, there exists an open set U ′

with W ⊂ U ′ ⊂ U and a homotopy H : X × [0, 1] → X satisfying the following:
(1) H0(x) = x for all x ∈ X and Ht(B) ⊂ B for all t ∈ [0, 1];
(2) For any x ∈ U ′ one has either H1(x) ∈ B or

∫ H1(x)
x ω < −N;

(3) For any x ∈ X and t ∈ [0, 1],
∫ Ht(x)

x ω < C + 1.
�
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If A = ∅ is empty, we get the following corollary:

COROLLARY 3.4. Let (X, B) be a finite CW pair and ξ ∈ H1(X ; �), then

cat(X, ξ ) ≤ cat(X, B, ξ ) + cat
(
B, i∗(ξ )

)
.

�
We can also derive a similar inequality for the category of a product of CW-complex

pairs, compare with [6].

THEOREM 3.5. Let (X, B), (Y, D) be two CW pairs, ξX ∈ H1(X ; �) and ξY ∈
H1(Y ; �) be the cohomology classes on X and Y, respectively. Suppose also

cat(X, B, ξX ) > 0 or cat(Y, D, ξY ) > 0,

Then

cat((X, B) × (Y, D), ξ ) ≤ cat(X, B, ξX ) + cat(Y, D, ξY ) − 1,

with ξ = ξX × 1 + 1 × ξY . �
We now want to provide a cohomology lower bound for cat(X, B, ξ ) similar to the

one in [6]. Let us begin with some basic notions.
For a CW complex X and a continuous closed 1-form ω, we have a regular covering

space p : X̃ → X corresponding to the kernel of the cohomology class ξ = [ω] ∈
H1(X ; �). The covering transformation group is H � �r = π1(X)/ ker(ξ ). Then the
cohomology class of the pullback of ω is trivial in the covering, [p∗ω] = 0 ∈ H1(X̃ ; �),
that is, there exists a real function f : X̃ → � such that df = p∗ω.

DEFINITION 3.6. A subset O ⊂ X is called a neighbourhood of infinity in X̃ with
respect to a cohomology class ξ ∈ H1(X ; �), if O contains the set {x ∈ X̃ : f (x) < c}
for a real number c ∈ �. Here f : X̃ → � is a real function obtained by pulling back a
closed 1-form ω with [ω] = ξ ∈ H1(X ; �).

Notice the definition of a neighbourhood of infinity O is independent of the choice
of real functions. The typical example of a neighbourhood of infinity is Oc = {x ∈ X̃ :
f (x) ≤ c}. This is, in general, not a sub-complex of X̃ , but there is a g ∈ H with ξ (g) ≥ 0
and a sub-complex N of X̃ with Oc ⊂ N ⊂ gOc (see [7, Lemma 3]). This sub-complex
has the property that for every neighbourhood of infinity O there is a g ∈ H with
hN ⊂ O.

DEFINITION 3.7. Let (X, B) be a finite CW complex pair and ω be a continuous
closed 1-form on X . Suppose p : X̃ → X is a regular covering corresponding to ker(ξ )
where ξ = [ω] ∈ H1(X) is the cohomology class of ω. Then a homology class z ∈
Hi(X̃, B̃) is movable to infinity with respect to ξ , if in any neighbourhood O of infinity
with respect to ξ , there exists a relative homology class in Hi(O, O ∩ B̃) whose image
is z under the map Hi(O, O ∩ B̃) → Hi(X̃, B̃) induced by inclusion.

NOTATION 3.8. Let H = H1(X ; �)/ ker(ξ ), denoteVξ = (�∗)r = Hom(H, �∗), which
we can think of as the variety of all complex flat line bundles L over X such that the
induced flat line bundle p∗L on X̃ is trivial.

DEFINITION 3.9. In Vξ a bundle L is called ξ -transcendental if the monodromy
MonL : �[H] → � is injective, and ξ -algebraic if not.
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The following two assertions are the relative versions of [6, Proposition 6.5 and
Theorem 4], their validity follows from algebraic arguments similar to those provided
in [6].

PROPOSITION 3.10. Suppose L ∈ Vξ is ξ -transcendental, and v ∈ Hq(X, B; L) is a
non-zero cohomology class. Then there exists a homology class z ∈ Hq(X̃, B̃; �) with
v � p∗(z) �= 0. �

THEOREM 3.11. Suppose a flat line bundle is ξ -transcendental and there is
cohomology class v ∈ Hq(X, B; L) with v � p∗(z) �= 0 for some z ∈ Hq(X̃, B̃; �) and
p∗(z) ∈ Hq(X, B; L∗), where L∗ is the dual bundle of L. Then z is not movable to infinity
with respect to ξ . �

We now state the cohomology estimate of the category:

THEOREM 3.12. Suppose L ∈ Vξ is ξ -transcendental, v0 ∈ Hd0 (X, B; L) and vi ∈
Hdi (X ; �) for i = 1, . . . , k such that di > 0 and

v0 
 v1 
 · · · 
 vk �= 0 ∈ Hd(X, B; L), (1)

with d = �idi, then

cat(X, B, ξ ) > k.

The maximal such k gives a lower bound for cat(X, B, ξ ), and it gives a cup length
estimate for cat(X, B, ξ ).

Proof. Let v = v1 
 · · · 
 vk, according to (1) and Proposition 3.10, we can find
a homology class z ∈ Hd(X̃, B̃; �) such that

(v0 
 v) � p∗(z) �= 0.

Fix such a homology class z ∈ Hd(X̃, B̃; �), then it is possible to choose a compact
polyhedron K ⊂ X̃ such that z is the image of some homology class in Hd(K, B̃ ∩
K ; �) under the inclusion-induced map i∗ : Hd(K, B̃ ∩ K ; �) → Hd(X̃, B̃; �). We
denote this homology class z′ ∈ Hd(K, B̃ ∩ K ; �). Now we assert the existence of a
neighbourhood of infinity O∞ which possesses the following property: if the image of
a homology class under the map H∗(K, B̃ ∩ K ; �) → H∗(X̃, B̃; �) has a pre-image in
H∗(O∞, O∞ ∩ B̃; �), then it is movable to infinity. Indeed, let O = f −1((−∞, 0]) ⊂ X̃
be a neighbourhood of infinity, and g : X̃ → X̃ be a covering transformation such that
ξ (g) < 0. Then

Vg = Im[H∗(gO, gO ∩ B̃; �) → H∗(X̃, B̃; �)] ∩ Im[H∗(K, B̃ ∩ K ; �) → H∗(X̃, B̃; �)]

is a finite-dimensional complex vector space.
We get a chain of finite-dimensional vector spaces:

· · · ⊂ Vgn ⊂ · · · ⊂ Vg2 ⊂ Vg ⊂ V

which stabilises after finitely many terms. Subsequently, there exists a sufficiently large
N > 0 such that Vgn = VgN for any n ≥ N. Therefore, fix such a N and the subset
O∞ = gNO will work.
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So let us have such a neighbourhood O∞, then the pullback function f : X̃ → � of
ω with p∗ω = df gives values to points in K and O∞. In particular, we have f (K) ⊂ [a, b]
and O∞ ⊃ f −1(−∞, c), for some c < a < b. Note that c < a is always possible by
increasing N if necessary.

Now assume the statement is false, then cat(X, B, ξ ) ≤ k, in particular, for N >

b − c and some C > 0, there exists an open cover of X :

X = U ∪ U1 ∪ · · · ∪ Uk,

where Ui ↪→ X is null-homotopic and U is (N, C)-movable relative to B.
Now observe that vi ∈ Hdi (X ; �) can be pulled back to some ui ∈ Hdi (X, Ui; �)

because of the null homotopy of Ui.
Therefore, by naturality of the cup product, v = j∗(u) ∈ Hd−d0 (X ; �) for some

u = u1 
 · · · 
 uk ∈ Hd−d0 (X, U1 ∪ · · · ∪ Uk; �), where j∗ is induced by inclusion j :
(X,∅) → (X, U1 ∪ · · · ∪ Uk).

Let w be the image of p∗(u) via the inclusion-induced map

i∗1 : Hd−d0 (X̃, Ũ1 ∪ · · · ∪ Ũk; �) → Hd−d0 (K, (Ũ1 ∪ · · · ∪ Ũk) ∩ K ; �),

and restrict the lift (X̃,∅) → (X̃, Ũ1 ∪ · · · ∪ Ũk) of j to K as

j̃ : (K,∅) → (K, (Ũ1 ∪ · · · ∪ Ũk) ∩ K),

then

j̃ ∗w � z′ ∈ Hd0 (K, B̃ ∩ K),

where j̃ ∗w ∈ Hd−d0 (K ; �) and z′ ∈ Hd(K, B̃ ∩ K ; �). Notice j̃ ∗w � z′ �= 0 as by
naturality of the cap product (see [14, Lemma 5.6.16, pp. 254]),

i∗(j̃ ∗w � z′) = i∗(j̃ ∗i∗1(p∗(u)) � z′) = i∗((i1j̃ )∗(p∗(u)) � z′)
= p∗(u) � i2∗(z′) = p∗(u) � j1∗i∗(z′)
= j∗2p∗(u) � i∗(z′) = (pj2)∗(u) � z

= (jp)∗(u) � z = p∗(j∗(u)) � z

= p∗(v) � z,

which is non-trivial according to our hypothesis. Here j∗2 : Hd(X̃, Ũ1 ∪ · · · ∪ Ũk) →
Hd(X̃) and i2∗ : Hd(K, B̃ ∩ K ; �) → Hd(X̃, B̃ ∪ (Ũ1 ∪ · · · ∪ Ũk)) are induced by the
inclusion map j2 and j1i with j1 : (X̃, B̃) → (X̃, B̃ ∪ (Ũ1 ∪ · · · ∪ Ũk)), respectively.

Again by naturality of the cap product,

i′∗(j̃ ∗w � z′) = w � ī∗(z),

where i′∗ is induced by i′ : (K, B̃ ∩ K) → (K, Ũ ∩ K) and ī∗ is from

ī : (K, B̃ ∩ K) → (K,
(
(Ũ1 ∪ · · · ∪ Ũk) ∩ K

) ∪ (
Ũ ∩ K

)
) = (K, K).

Therefore, ī∗(z) = 0 ∈ Hd0 (K, K) = 0, and i′∗(j̃ ∗w � z′) ∈ Hd0 (K, Ũ ∩ K) is trivial.
Consequently, the exact sequence

· · · → Hd0 (Ũ ∩ K, B̃ ∩ K) → Hd0 (K, B̃ ∩ K)
i′∗→ Hd0 (K, Ũ ∩ K) → · · ·

indicates the existence of a non-trivial pre-image z0 of j̃ ∗w � z′ in Hd0 (Ũ ∩ K, B̃ ∩ K).
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Now for the (N, C)-movable open subset U in X , its lift Ũ in X̃ has a homotopy
h : (Ũ, B̃) × [0, 1] → (X̃, B̃) starting with the inclusion, and f h1(x) − f (x) ≤ −N,
hence (h0)∗z0 = (h1)∗z0 ∈ Hd0 (X̃, B̃). But since h1 : (Ũ ∩ K, B̃ ∩ K) factors through
(Ũ ∩ K, B̃ ∩ K) → (O∞, O∞ ∩ B̃) due to our choice of N > b − c for Ũ , there exists a
homology class in Hd0 (O∞, O∞ ∩ B̃) that maps to (h1)∗(z0). In other words,

v0 � p∗((h1)∗z0) = v0 � p∗(i∗(j̄ ∗w � z′)) = v0 � p∗(p∗(v) � z)

= (v0 
 v) � p∗(z) �= 0,

in contradiction to Theorem 3.11. �

4. Homoclinic cycles and critical points. In this section, let M be a smooth
compact manifold with boundary ∂M. We relate the invariant cat(M, B, ξ ) to critical
points of smooth closed 1-form ω representing a cohomology class ξ ∈ H1(X ; �). Here
B ⊂ X and ω are related as follows:

Let ρ : M̄ → M be a regular covering space of M with π1(M̄) = ker([ω]), then
there exists a smooth function f : M̄ → � with df = ρ∗(ω). We equip the boundary
∂M of the M with a tubular neighbourhood structure ∂M × [0, 1) ⊂ M and lift it up
to a tubular neighbourhood ∂M̄ × [0, 1) ⊂ M̄ in the covering. Points in the tubular
neighbourhood will be denoted as (x, t) ∈ ∂M̄ × [0, 1). Fixing this neighbourhood, for
x ∈ ∂M̄ we get a well-defined partial derivative ∂f

∂t |(x,0) ∈ �. Notice it is equivariant
with respect to the action of the transformation group of ρ, which implies a smooth
map ∂f

∂t : ∂M → � on boundary of the base manifold.

DEFINITION 4.1. Given a fixed inner collaring ∂M × [0, 1) of the boundary ∂M of
M, the exit set B of ω is defined as

B =
{

x ∈ ∂M : −∂f
∂t

∣∣∣∣
(x,0)

≤ 0

}
.

By a gradient of ω we mean a vector field v which is dual to ω with respect to some
Riemannian metric.

NOTATION 4.2. Let � : � → M be the negative gradient flow of a gradient vector
field v of ω, where � ⊂ M × �.

We want to have that B is the set where the negative flow ‘exits’ the manifold. For
this we need some restriction on ω and the gradients.

We describe the conditions in terms of the pullback df = ρ∗ω:

Assumptions on ω on ∂M:

A1 The function f has no critical point on ∂M̄. Without loss of generality we assume
that f has no critical points in the entire collaring ∂M̄ × [0, 1).

A2 The partial derivative ∂f
∂t , where t is the coordinate for [0, 1), is a smooth function

on ∂M̄ × {0} and hence on ∂M, and zero is a regular value of ∂f
∂t (x, 0). Denote

by � = {x ∈ ∂M : ∂f
∂t (x, 0) = 0}, this is equivalent to say � is a 1-codimensional

closed submanifold of ∂M.
A3 Fix a tubular collaring of � in ∂M, � × [−1, 1] ⊂ ∂M, with � × [−1, 0] ⊂ B.

So if a point lies in the cubical neighbourhood of � in M, we write it in local
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coordinates:

(x, s, t) ∈ � × [−1, 1] × [0, 1),

where x = (x1, . . . , xm−2), then we assume

∂f
∂s

(x, 0, 0) > 0.

Notice that the conditions A1, A2 and A3 do not depend on the particular choice
of collarings. Conditions A1 and A2 are generic conditions, A3 is more special and
roughly says that � is the ‘top’ of B, in that if we move from � into B along the collar,
the value of f will decrease.

If B is a union of components of ∂M, then � is the empty set and condition A3 is
trivially satisfied.

EXAMPLE 4.3. A typical situation with non-empty � is the following: let g : ∂M →
� be a smooth function with 0 ∈ � a regular value, B = g−1((−∞, 0]) and � = g−1(0).
If η is a closed 1-form on �, then on � × [−1, 1] × [0, 1) ∼= g−1((−ε, ε)) × [0, 1) ⊂ M
the closed 1-form ω = η + d(g · (1 − t)m) with m > 0 satisfies A1–A3.

We want that B serves as the exit set for the negative gradient flow, and for this we
need a restriction on the gradients. We formalise the idea by the following notion:

DEFINITION 4.4. Let ω be a closed 1-form that satisfies A1, A2 and A3. A gradient
v of ω is called transverse on (∂M, B) if the Riemannian metric is the product metric
on � and on ∂M with respect to the same tubular neighbourhoods as in A2 and A3.

With this condition on gradients, we get the following lemma on the ‘timing’ of
the moment at which each point reaches B:

LEMMA 4.5. Let v be a gradient of ω transverse on (∂M, B) and denote by

UB = {x ∈ M : there exists t ∈ �, such that x · t ∈ B},
where x · t is a shorthand notation of the negative gradient flow �(x, t) for each x and
t. Then the function β : UB → � defined as β(x) = min{t : x · t ∈ B} is continuous, and
UB is open in M. �

The idea of the proof is the following: assume x · t ∈ B − �, and let p : ∂M ×
[0, 1) → [0, 1) be projection. Near (x, t) we have a smooth function given by p(x · t),
and

∂

∂t
p(x · t) = p∗(−v(x · t)).

Now p∗(v) = − ∂f
∂t for gradients transverse on (∂M, B), so the Implicit Function

Theorem applies by A2 and gives a neighbourhood U of x and a smooth function
on U with y 	→ ty such that y · ty ∈ B − �. If y · t ∈ �, condition A3 and the particular
form of the flow ensures that t = 0 and x 	→ tx is continuous also near �. Details are
given in the first author’s thesis [11, Section 1.2].

REMARK 4.6. In [1, Section 1.2], similar conditions on ω on the boundary are given.
Their conditions (B1) and (B2) agree with A1 and A2, while (B3) is more general than
A3. Lemma 4.5 may also hold under (B3), however, as the most important examples
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are of the form in Example 4.3, compare also [1, Example 1.3], we will not pursue this
further here.

Now let us recall the definition of homoclinic cycle which is a generalisation of
homoclinic orbit. Here we implicitly assume that ω has only finitely many critical
points. For a more general treatment see [10].

DEFINITION 4.7. A sequence of trajectories {γi(t) : � → M}1≤i≤n on a manifold M
is called a homoclinic cycle of length n if for each γi its limit limt→±∞ γi(t) exists and the
following is satisfied:

lim
t→+∞ γi(t) = lim

t→−∞ γi+1(t) for 1 ≤ i ≤ n − 1, and lim
t→+∞ γn(t) = lim

t→−∞ γ1(t).

DEFINITION 4.8. A trajectory γ is said to have displacement N by ω if its integral
with respect to ω equals N: ∫

γ

ω = N,

a homoclinic cycle {γi} has displacement N by ω if

∑
i

∫
γi

ω = N.

THEOREM 4.9. Let M be a smooth compact manifold with boundary ∂M, and ω be a
closed 1-form on M with exit set B ⊂ ∂M satisfying assumptions A1, A2 and A3 below.
If the number of critical points of ω is less than cat(M, B, [ω]), then any gradient of ω

transverse on ∂M contains at least one homoclinic cycle.

Proof. For any real number N > 0, assume there is a gradient of ω transverse on
(∂M, B) without homoclinic cycle of displacement less than N. For some C > 0 and
any such N > 0 we need to show the existence of an open cover M = U ∪ U1 ∪ . . .

∪ Uk according to the definition of cat(M, B, ξ ), where ξ = [ω] ∈ H1(M; �) is the
cohomology class of ω.

The idea is to use the negative gradient flow as the prototype for the homotopies
and partition the manifold according to the destination of each point travelling along
its flow line.

Because the homotopy is modified from the negative gradient flow, the integral∫
ω ≤ 0 is always non-positive along the trajectories, so we can choose C = 0. Let us

fix N > 0, we want to construct an open cover of M as

M = U ∪ U1 ∪ · · · ∪ Uk.

Firstly, we define U as the open subset of all the points either reach B in finite time
or travel over displacement N in the negative direction:

U = {x ∈ M : there exists some tx > 0 such that either x · tx ∈ B, or
∫ x·tx

x
ω < −N}.

Secondly, for Ui, we first need a so-called gradient-convex neighbourhood Vi for
each critical points pi, in order to construct open subsets. For each critical point pi, the
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gradient-convex neighbourhood Vi is a small closed disc containing pi, such that the
points on the boundary of Vi who are leaving Vi under the negative gradient flow have
to travel over displacement N before returning to intVi. The existence of Vi is derived
from the no homoclinic cycle condition in the hypothesis, for a detailed argument see
[3, 10]. Then we define Ui for each pi as follows:

Ui = {x ∈ M : x · tx ∈ intVi for some tx ∈ � and
∫ x·tx

x
ω > −N}.

The null homotopy of Ui can also be found proved in [3, 10].
Now we are left to show the movability of U . The subset U is open since

it is the union of two open subsets, namely {x ∈ M :
∫ x·tx

x ω < −N for some tx >

0, where N > 0} and {x ∈ M : x · tx ∈ B for some tx > 0}, they are both open by
Lemma 4.5 and continuity of the flow.

According to the construction, for each x ∈ U , there exists tx ∈ �, such that either
x · tx ∈ B or

∫ x·tx

x ω = −N. Moreover, the map x → tx is a real continuous function
on U by the Implicit Function Theorem. Therefore, we can define the homotopy
h : U × [0, 1] → M as

h(x, τ ) = x · (τ tx).

This proves Theorem 4.9, hence Theorem 1.2. �

Notice that the homotopy h : U × [0, 1] → M in the proof above fixes B, so we
could consider modifying the definition of cat(X, B, ξ ) by demanding the homotopy
to fix B. However, this leads to the same number (see [11]).
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