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We present a comprehensive study of the mesoscale eddy forcing in the ocean by proposing
spatially local filtering of the high-resolution double-gyre ocean circulation solution into
its large- and small-scale (eddy) components. The large-scale component is dominated
by the mid-latitude gyres, the western boundary currents and their highly transient
eastward jet extension; the eddy component is concentrated around the eastward jet and
strongly interacts with it. The proposed decomposition method achieves flow filtering
based on the local spatial correlations. This is different from the existing decomposition
methods, e.g. classical Reynolds decomposition and moving-average (spatial) filtering
with a constant filter size based on the first baroclinic Rossby deformation radius. Next,
we characterize the dynamical impacts of the resulting eddy forcing on the large-scale
flow in terms of their mutual time-lagged spatial correlations, formulated as product
integral characteristics. Its temporal statistics uncover robust causality between the eddy
forcing and the induced large-scale potential vorticity anomalies – referred to as the eddy
backscatter. The results also prove the significance of the transient eddy forcing and
the time lag dependence of the eddy backscatter. We argue that these properties are to
be considered by eddy parametrization schemes. We further used the decomposed eddy
fields to augment a coarse-resolution ocean model. The augmented solution statistically
reproduces the missing eastward jet extension, enhances the eddy activities around it and
recovers the essential large-scale low-frequency variability. This justifies a reduced-order
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statistical emulation of the eddies – an emerging methodology for including eddy effects
in non-eddy-resolving ocean models.

Key words: ocean circulation, quasi-geostrophic flows, ocean processes

1. Introduction

The ocean circulation is a complex, multiscale turbulent phenomenon characterized
by many different space and time scales, and by coherent flow features, such as jets,
vortices, gyres, etc., all nonlinearly interacting with each other. When the circulation is
modelled, the underpinning nonlinearity manifests itself on a new level, each time the
spatio-temporal resolution of the numerical model is refined (e.g. Shevchenko & Berloff
2015). Therefore, all oceanic general circulation models (GCMs) include parametrizations
of the unresolved subgrid-scale (eddy) effects on the large-scale motions, even at the
(so-called) eddy-permitting resolutions. Numerous deterministic (Holloway 1987; Gent
& McWilliams 1990; Gent et al. 1995; Zanna et al. 2017; Berloff 2018) and stochastic
(Frederiksen 1999; Berloff 2005; Crommelin & Vanden-Eijnden 2008; Mana & Zanna
2014; Gugole & Franzke 2020) parametrization approaches for the oceanic mesoscale
eddies demonstrate the spectrum of ideas and vigorous intensity of the ongoing research
(reviewed by Hewitt et al. 2020). A new emerging trend is the development of stochastic
eddy parametrizations which are data-driven rather than physics-based. Within this
approach, the available observations can be used to train some underlying statistical model
of the eddies or their essential properties via different methods (e.g. Kondrashov & Berloff
2015; Kondrashov, Chekroun & Berloff 2018; Bolton & Zanna 2019; Ryzhov et al. 2020).

Among the many problems associated with the development of accurate and efficient
eddy parametrizations, one problem is a reliable decomposition of a turbulent flow into
resolved and unresolved (subgrid) scale components. Note that the ‘resolved/unresolved’
scale terminology is different from ‘large-/eddy-scale’ adjectives, as the former type
mostly relates to the numerical modelling results (at different resolutions), whereas the
latter to intrinsic scale separation using statistical decompositions. Nevertheless, in both
cases, scale separation is problematic, because the ocean circulation possesses multiple
and intricately interacting active scales without a spectral gap. In this study, we aim to
focus on the problem of efficient scale separation, review the existing methods, propose a
novel scale decomposition method and perform an extensive analysis of the resulting eddy
effects.

The Reynolds flow decomposition (into the static time mean and fluctuations around
it) is the classical choice in turbulence theory, but it does not provide any information
on the spatio-temporal scales that characterize the decomposed flow fields. Furthermore,
it only deals with the time-mean state and the corresponding statistical balances –
which is not acceptable from both the eddy parametrization perspective and pragmatic
ocean modelling. Information on the temporal scales is not that important, since the
time resolution is quite adequate in GCMs, but in the spatial domain the situation
is different. This is because GCMs are limited by the horizontal grid resolution and,
therefore, initially require parametrizations to deal with the horizontal length scales.
Recently, moving-average decomposition methods with appropriate kernel sizes/shapes
(Leonard 1975) have found applications in numerous ocean modelling problems (e.g.
Zanna et al. 2017; Aluie, Hecht & Vallis 2018; Berloff 2018) and in other types of
turbulence (Piomelli et al. 1991; Vreman, Geurts & Kuerten 1994; Aluie & Eyink 2009).
Such decompositions, unlike the Reynolds one, yield spatio-temporal variabilities in both
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large- and small-scale flow components and, therefore, allow to study their instantaneous
nonlinear interactions. For mesoscale eddies it may sound reasonable to choose the
kernel size based on the first baroclinic Rossby deformation radius, e.g. several radii.
However, using a single characteristic length scale (even spatially varying) for spatially
inhomogeneous and multiscale oceanic subgrid scale fields, developed on the underlying,
inhomogeneous and multiscale resolved flow, is an obvious simplification that has to be
verified against the actual length scales operating in the flow.

Researchers also use the spatial resolutions of the coarse- and fine-grid solutions to
guide their filter size, but the issue of choosing the right one for determining the subgrid
scales (for analyses and parametrization) is a lot more complicated than filtering the
high-resolution solution down to the coarse resolution. This is because (i) there is no
clear scale separation, and (ii) the nominally resolved flow features at the coarse grid
may not necessarily be dynamically resolved, e.g. derivatives and nonlinearities may be
misrepresented. Such model resolutions may be referred to as the ‘grey zone’ of partial
resolution, and they arise due to the fact that a typically resolved dynamical feature, such as
advection terms with strong nonlinear interactions, requires at least approximately 10 grid
intervals to represent the underlying dynamics correctly. This implicit requirement can be
even worse because of the non-local scale interactions. This typical situation complicates
the choice of an appropriate moving-average kernel size/shape and suggests an exploration
of the broad range of filters or even alternative dynamical filtering approaches (e.g. Berloff,
Ryzhov & Shevchenko 2021); this is precisely what motivates us in this work. We use
an alternative purely statistical approach for achieving large/eddy scale separation with
no explicit hyperparameter involved (such as the filter size in case of simple moving
average). We emphasise that finding an objective way to separate eddies is a fundamental,
critically important and unresolved problem. One of the goals of our study is to intensify
its discussion for developing more accurate eddy parametrizations.

In the first part of this paper, we propose a statistically consistent correlation-based
flow decomposition method that employs the Gaussian filtering kernel with geographically
varying topology – consistent with the observed local spatial correlations – to achieve the
scale separation. We term the decomposed flows as the large-/eddy-scale fields because
we consider simulations from only one model resolution, and intend to decompose it into
the flow components where one represents the solutions of a typical non-eddy-resolving
ocean model and the other presents the missing eddying features. For the reference oceanic
flow, we consider an eddy-resolving solution of the classical midlatitude double-gyre
quasigeostrophic (QG) circulation.

The second part of our study aims to reveal dynamical interactions between the eddies
and large-scale flow, such as eddy backscatter – characterized by the feedbacks of eddies
on the large-scale flow via the transient part of the eddy forcing. These interactions are
generally parametrized by a stochastic forcing in comprehensive ocean circulation models
(Kraichnan 1976; Leith 1990; Frederiksen & Davies 1997; Duan & Nadiga 2007; Nadiga
2008; Kitsios, Frederiksen & Zidikheri 2012; Grooms & Majda 2013). Ryzhov et al.
(2019) showed that improving a low-resolution model by additionally forcing it with the
coarse-grained eddy forcing history inferred from a high-resolution model solution by
standard flow decomposition is possible, and our study aims to elaborate on the involved
mechanism and the roles of different filters. Here, we define the time-lagged product
integral characteristic and use its time series to study the eddy-mean dynamical feedbacks,
as given by the proposed flow decomposition and the other standard decompositions.
Before doing this, we obtain the eddy forcings and study their statistical properties,
which include spatio-temporal correlation scales to elucidate the differences between two
statistically very different yet interacting flow fields. Finally, we verify the dynamical
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relevance of the correlation-based decomposition (CBD) eddy field by supplying it to
augment a coarse-resolution model and by studying the augmented solution (similar to that
done by Ryzhov et al. 2020). The augmented solution shows a significant reconstruction of
the jet and its ambient eddy variability, as well as recovers the missing intrinsic large-scale
low-frequency variability. In comparison, an equivalent fixed-size moving-average filter
fails to achieve any of these improvements. This suggests that low-order data-driven
modelling based on our treatment of the eddies is promising for use in coarse-resolution
ocean circulation models.

The paper is organized as follows. Section 2 describes the double-gyre model and its
eddy-resolving reference solution; § 3 discusses the proposed flow decomposition method
(i.e. part one of the two described above); § 4 presents the eddy effects on the large-scale
flows (i.e. the second part); and § 5 discusses the results and conclusions.

2. Double-gyre ocean circulation model and the reference solution

The eddy-resolving reference solution is obtained from the double-gyre QG ocean
circulation model operating at a large Reynolds number and representing an idealized
North Atlantic (or North Pacific) circulation (Berloff 2015). The flow dynamics is
governed by the following three-layer QG potential vorticity (PV) equations:

∂q1

∂t
+ J(ψ1, q1)+ β

∂ψ1

∂x
= 1
ρ1H1

W(x, y)+ ν∇4ψ1, (2.1a)

∂q2

∂t
+ J(ψ2, q2)+ β

∂ψ2

∂x
= ν∇4ψ2, (2.1b)

∂q3

∂t
+ J(ψ3, q3)+ β

∂ψ3

∂x
= −γ∇2ψ3 + ν∇4ψ3, (2.1c)

where qi and ψi denote PV anomalies (PVAs) and velocity streamfunctions, respectively,
for layers i = 1, 2 and 3. Here, J(, ) denotes the Jacobian operator; β is the meridional
gradient of the planetary vorticity; the isopycnal layer i has density ρi at the state-of-rest
layer thickness Hi; the basin is a square with 2L = 3840 km side; and the only external
forcing is given by the asymmetric stationary wind curl W(x, y):

W(x, y) = −πτ0A
L

sin
[
π(L + y)
L + Bx

]
, y ≤ Bx, (2.2a)

W(x, y) = +πτ0

LA
sin

[
π( y − Bx)

L − Bx

]
, y > Bx, (2.2b)

where A is the asymmetry parameter, B is the non-zonal tilt parameter and τ0 is the
wind-stress amplitude. Partial-slip boundary conditions are employed on the lateral walls,
which involve first- and second-order derivatives normal to the boundary,

∂2ψi

∂n2 − 1
α

∂ψi

∂n
= 0, (2.3)

with α = 120 km as a boundary sublayer length scale. The asymmetrically forced
double-gyre solutions becomes non-physical in the free- and no-slip limits (Berloff &
McWilliams 1999). The wind forcing is only in the top-layer (2.1a), whereas the eddy
viscosity (with ν as the coefficient) acts in all layers ((2.1a)–(2.1c)), and the bottom
friction (with coefficient γ ) acts in the deepest layer (2.1c). The PVAs qi from the
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Model Parameters Values

Basin size (square) 3840 km
Total depth 4 km
Layer depths H1 = 250 m, H2 = 750 m and H3 = 3000 m.
Spatial Resolution 7.5 km
Time step 1 day
τ0 0.08 N m−2

A 0.9
β 2 × 10−11 m−1 s−1

ν 10 m2 s−1

γ 4 × 10−8 s−1

f0 0.83 × 10−4

Rd1 and Rd2 40 km and 20.6 km, respectively
Boundary Conditions Partial slip
Partial-slip parameter (α) 120 km

Table 1. Parameter values of the idealized ocean circulation model.

prognostic ((2.1a)–(2.1c)) are inverted into the corresponding streamfunctions using the
vorticity–streamfunction relationship given by the diagnostic equations:

q1 = ∇2ψ1 + S1(ψ2 − ψ1), (2.4a)

q2 = ∇2ψ2 + S21(ψ1 − ψ2)+ S22(ψ3 − ψ2), (2.4b)

q3 = ∇2ψ3 + S3(ψ2 − ψ3) . (2.4c)

The stratification parameters are given as

S1 = f 2
0

H1g′
1
, S21 = f 2

0
H2g′

1
, S22 = f 2

0
H2g′

2
, S3 = f 2

0
H3g′

2
, (2.5a–d)

where g′
1, g′

2 are reduced gravities corresponding to the two isopycnal interfaces and are
chosen such that the baroclinic deformation radii, Rd1,Rd2, given as

Rd1 = g′
1

√
H1H2

f0
√

H1 + H2
, Rd2 = g′

2

√
H2H3

f0
√

H2 + H3
, (2.6a,b)

are equal to 40 km and 20.6 km, respectively. No-normal-flow is assumed on all boundaries
for inversion, and the resulting Dirichlet boundary condition is determined using the
mass conservation constraint at each layer. The model was discretized on a uniform grid
with 5132 grid points and 7.5 km spatial resolution. The equations were solved with an
efficient numerical scheme called CABARET (Karabasov, Berloff & Goloviznin 2009).
The reference solution was obtained for a total of 15 000 days (≈ 41 years), after being
spun up for approximately 100 years, and saved daily (in terms of PVA snapshots), which
is adequate for representing the eddies. Parameters of the model and other details can be
found in table 1.

The flow snapshots (figure 1) clearly show two asymmetric gyres of opposite circulation,
separated by a strong eastward jet, formed due to the merging western boundary currents
and nonlinear eddy interactions. The flow is an idealization of the Gulf Stream in the North
Atlantic and Kuroshio in the North Pacific.
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Figure 1. Snapshots of the reference solution. Shown are evolving upper-layer fields: (a) PVA, and (b) velocity
streamfunction. The colourbars are in dimensionless units, with the length scale equal to the grid interval 7.5 km
and velocity scale 0.01 m s−1. The positive (red) and negative (blue) values of PVA correspond to the cyclonic
and anticyclonic motions, respectively.

For simplicity, from this point onward, we will show our results and analysis mostly for
the top and middle layers, since the results for the bottom and middle layers are, usually,
qualitatively similar (to be mentioned where they differ).

3. Flow decomposition

In this paper, our first goal is to implement a non-uniform, statistically constrained filtering
of the reference flow fields into the large-scale and eddy components. Next, we want to
compare the outcome with that of the moving-average filtering based on the baroclinic
Rossby deformation radius, and to carry out a comprehensive analysis of the resulting eddy
forcing and its relation to the large-scale flow. The generally decomposed streamfunction
and PVA fields can be written as

ψ(x, t) = ψ̄(x, t)+ ψ ′(x, t), q(x, t) = q̄(x, t)+ q′(x, t), (3.1a,b)

where the bars and primes indicate the large-scale and eddy fields, respectively.
Several different methods to obtain (3.1a,b) exist in the literature (e.g. Sagaut 2006),

such as Reynolds decomposition, moving-average filtering, spectral filtering, etc. As
discussed in § 1, Reynolds decomposition provides no information about the separated
scales in eddy-mean decomposed fields, and the latter two, generally, use a constant
filter size for the entire domain – parts of which are evolving on entirely different
length/time scales. For this reason, we propose an alternative flow decomposition with
spatially-varying filter size across the domain, as discussed below. The application and
results from moving-average and spectral filterings are provided in Appendices A and B,
respectively.

3.1. Correlation-based decomposition
In this section, we discuss a non-uniform flow decomposition method developed here using
local correlation information. This method augments the moving-average filtering while
exploiting its advantages. The idea is to filter around each location according to the local
length scale of the spatial correlation, as opposed to using a fixed kernel size based on the
Rossby deformation radius (for QG this is equivalent to the same kernel size for the whole
domain). Below the method is described in detail.
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Let us consider the spatio-temporal flow field F to be decomposed. For any reference
spatial location x0 = (x0, y0), we first compute its zero-lag cross-correlation with every
other spatial location in the domain (note that every spatial location in F has a time
series) to obtain the corresponding spatial correlation map C(x0, x), and then fit a
two-dimensional (2-D) Gaussian function to |C(x0, x)| – the absolute value of the
correlation map – to diagnose the effective correlation length scale. The absolute value
is used because we are only interested in finding locations with a strong influence on x0;
so the sign of the correlation does not matter.

Figure 2(a,d,g,b,e,h) shows correlation maps C(x0, x) for reference locations x0 in the
eastward jet, subpolar gyre and subtropical gyre regions, all in the upper-ocean PVA
field (i.e. F = q1). The correlation maps (figure 2a,d,g) show that the correlations are
spatially local in both the jet and the gyre regions and decay exponentially away from the
reference locations. A zoomed-in view of the correlations around the reference locations
(figure 2b,e,h) further demonstrates that the correlations are nearly isotropic in the
subpolar gyre and eastward jet regions but are significantly anisotropic in the subtropical
gyre region. For a few reference locations in the subtropical gyre region, we also found
the local correlations to be anisotropic at a certain angle (not shown here), whereas those
along the western boundary were found to be aligned with the meridional direction, due to
the strong western boundary currents. Therefore, to precisely account for the correlation
geometry, we fitted a rotated anisotropic Gaussian function positioned at x0 to the full
correlation map |C(x0, x)| and determined the effective length scale using the standard
deviation of the Gaussian along each axis.

The form of the Gaussian function used is

f (x, y; x0, y0) = exp(−X2/a2) exp(−Y2/b2), (3.2)

where X and Y are the rotated and translated coordinate axes, given as[
X
Y

]
=

[
cos θ sin θ

− sin θ cos θ

] [
x − x0
y − y0,

]
(3.3)

and a and b are the standard deviations along them, respectively. Note, that at the
reference location x = x0, both f and C are equal to 1. The fitted Gaussians (figure 2c,f,i)
appropriately assign the weights according to the decay of the correlations away from
the reference location and adjusts the shape according to the direction and extent of
anisotropy. The values of a and b determine the correlation length scale operating along
each direction, whereas the overall effective correlation length scale (say, L) can be
illustrated by L = √

ab. Fitting such a Gaussian function f to the correlation map for
each x0 produces the spatial maps a(x;F), b(x;F), θ(x;F) and L(x;F) for the given
flow field F . The length scale maps L(x;F) and the inferred anisotropy, computed as
A(x;F) = a(x;F)/b(x;F) (gridpoint-wise division), for the three layers of PVA (i.e.
F = qi, i = 1, 2, 3) are shown in figure 3. We do not show θ(x; qi) as it is relatively
noisy, and geographical variations in θ are not particularly interesting.

Significant geographical variations in L(x; qi) attest multiscale and inhomogeneous
properties of the mesoscale turbulence (figure 3a,c,e). In the upper ocean (figure 3a),
the eastward jet region exhibits mean L(q1) equal to 91 km, which is comparable to
the filtering based on 2.25Rd1, whereas the subpolar and subtropical gyres have mean
correlation length scales equal to 108 and 133 km, respectively. The mean and median
length scale for the entire domain is roughly 105 km, i.e. slightly higher than 2.5Rd1. A
region of even larger L(x) exists in the centre of the basin in the middle layer (figure 3c),
where typical L values are 250–500 km. This is because this part of the basin is dominated
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Figure 2. Visualisation of |C(q1(x0, x))| contours (a,d,g), its zoomed-in three-dimensional view around the
reference location x0 (b,e,h) and the fitted Gaussian function (c,f,i) for three randomly chosen reference
locations in the eastward jet (a–c), the subpolar gyre (d–f ) and the subtropical gyre (g–i) regions. The entire
length of PV anomaly, equal to 15 000 days, is used for computing cross-correlations. The z-axis in (b,e,h) and
(c,f,i) represents the correlation magnitude and the Gaussian weights, respectively. These have been additionally
colour coded to match the contour levels in (a,d,g).

by a large-scale interdecadal variability pattern with long-range correlations (figure 4).
Large differences between the correlation length scales at the two layers infer the need to
emulate eddies as horizontally and vertically inhomogeneous, and multiscale entities. In
the bottom layer (figure 3e), L(x) is relatively short along the western boundary and long
along the eastern one (south of the eastward jet). This is consistent with the prevalence
of small-scale eddies in the former region and long waves radiating from the eastern
boundary in the latter one.

The A(x; qi) maps (figure 3b,d,f ) infer that the correlations are mostly anisotropic in
the large-length-scale regions, except near the western and eastern boundaries, where it
is inherently stretched in the meridional direction (i.e. a/b < 1). Anisotropy along the
lateral boundaries is due to the strong western boundary current and zonal radiation from
the eastern boundary (it is more intense in deep layers). The A(x) values for the top-layer
PV anomaly (figure 3b) also infer that the correlations in the jet region are nearly isotropic
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Figure 3. Maps of correlation length scale L(x; q) (a,c,e) and the correlation anisotropy A(x) = a/b (b,d,f )
for the three layers of PV anomaly in the top (a,b), middle (c,d) and bottom (e,f ) layers. The units of length
scale are in km, and the anisotropy estimates are dimensionless.

– mainly due to the rich eddy activities in this region leading to localised coherent isotropic
structures. However, in the deeper layers (figure 3d,f ), as the eastward jet gets weaker, the
flow around it becomes more anisotropically correlated with its neighbouring locations.

The length scale and anisotropy maps together reveal the complex and multiscale nature
of the flow, and suggest that a fixed-size kernel can substantially underfilter or overfilter
eddies depending on the location; therefore, a differential filter size over the domain is
justified. For practical applications, correlation length scales are to be determined from
observational data and, in some cases, from eddy-resolving model solutions. Note that the
CBD provides additional flexibility of imbuing temporal dependency in the correlation
length scales by employing time-lagged correlation (i.e. C(x0, x; τ), where τ is the
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Figure 4. The empirical orthogonal function (EOF) representing the large-scale interdecadal variability in q2,
responsible for producing large L in the middle of the domain (see figure 3c). The decorrelation time scale for
this pattern is roughly 16.7 years, as obtained from the temporal autocorrelation of its principal component.
A stripe of 30 grid points is removed from all four boundaries of q2 before its EOF decomposition to get this
as the first EOF; otherwise, boundary trapped eddies dominate a large chunk of leading EOFs, thus making it
harder to detect this variability. Units are non-dimensional.

anticipated time scale of variation in the length scales) instead of instantaneous correlation
(C(x0, x)) discussed here.

We filtered each spatial location of the PVA fields using a rotated anisotropic Gaussian
kernel as defined in (3.2), with the diagnosed parameters a, b and θ . This can be expressed
as

q̄(xi, yj, t) =
∑

i′

∑
j′

G(xi′, yj′ ; xi, yj)q(xi′, yj′, t); 1 ≤ i′, j′ ≤ 513, (3.4)

where G is the normalized Gaussian kernel,

G(xi′, yj′ ; xi, yj) = f (xi′, yj′ ; xi, yj)

Af
, (3.5)

and Af = ∑
i′
∑

j′ f (xi′, yj′ ; xi, yj) ≡ πab is the sum of the Gaussian weights per (3.2).
Note that only the grid points within the Gaussian ellipse would contribute significantly
in (3.4) because the Gaussian weights decay exponentially with distance from the ellipse
centre.

Using (3.4) and (3.1a,b), the large- and small-scale components of PVA fields were
obtained for each layer, and the corresponding streamfunctions were obtained by inversion
of (2.4) (figure 5). On comparing these eddy fields with the corresponding full flow
snapshots (figure 1), we see (especially for ψ1) vigorous eddy activity along the eastward
jet extension and near boundaries. Note that the process can be reversed, i.e. by filtering
streamfunction fields first, then by obtaining PVA using (2.4); however, we found that this
algorithm generates discontinuities in PVA upon the differentiation (note that the inversion
is intrinsically a smoother operation).
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Figure 5. Snapshots of (a) q̄1, (b) q′

1, (c) ψ̄1, (d) ψ ′
1 obtained using the CBD method. (a,b) show that gyres

and the eastward jet are well captured by the large-scale flow component; (c,d) shows vigorous eddies all over
the basin but with the largest concentration in the eastward jet region and around the boundaries. The colour
scales are in non-dimensional units.

4. Results

4.1. CBD eddy forcing
In the following, we analyse eddy feedbacks on the large-scale flow by considering eddy
forcing, which is argued to play an important role in the maintenance of large-scale
flow features such as the eastward jet and its adjacent recirculation zones (Nadiga 2008;
Shevchenko & Berloff 2016). Revealing the essential and poorly understood statistical
characteristics of the eddy forcing is our next goal. This information should help to improve
statistical eddy models by constraining them to preserve these characteristics.

The eddy forcing is obtained by substituting the decomposed flow (3.1a,b) into the
governing equation (2.1), and by rewriting it as the evolution equation for the large-scale
component as (illustrated only for the top layer but applicable for each layer)

∂(q̄1 + q′
1)

∂t
+ J(ψ̄1 + ψ ′

1, q̄1 + q′
1)+ β

∂(ψ̄1 + ψ ′
1)

∂x
= 1
ρ1H1

W(x, y)+ ν∇4(ψ̄1 + ψ ′
1),

(4.1)
which on rearrangement gives

∂ q̄1

∂t
+ J(ψ̄1, q̄1)+ β

∂ψ̄1

∂x
= H(q̄1, ψ̄1)+ I(q′

1, ψ
′
1)+ N (q̄1, ψ̄1, q′

1, ψ
′
1), (4.2)
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where

H(q̄1, ψ̄1) = 1
ρ1H1

W(x, y)+ ν∇4ψ̄1, (4.3a)

I(q′
1, ψ

′
1) = −∂q′

1
∂t

− β
∂ψ ′

1
∂x

, (4.3b)

N (q̄1, ψ̄1, q′
1, ψ

′
1) = −J(ψ ′

1, q̄1)− J(ψ̄1, q′
1)− J(ψ ′

1, q′
1). (4.3c)

Clearly, the final expression (4.2) provides both linear I(q′
1, ψ

′
1) and nonlinear

N (q̄1, ψ̄1, q′
1, ψ

′
1) terms expressing the feedbacks from the eddy- to large-scale fields.

The linear term was found to be much smaller than the nonlinear one (also seen by Ryzhov
et al. 2019). Therefore, we approximated the eddy forcing by the nonlinear term N , i.e.:

Ei(x, y; t) = −[J(ψ̄i, q′
i)+ J(ψ ′

i , q̄i)+ J(ψ ′
i , q′

i)] (4.4a)

= −[J(ψi, qi)− J(ψ̄i, q̄i)], (4.4b)

where i is the layer index, overbar indicates the large-scale component and prime indicates
the eddy component; the others are the full fields. The eddy forcing can also be written in
the flux divergence form as

Ei(x, y; t) = −[∇ · uiqi − ∇ · ūiq̄i], (4.5)

where u is the non-divergent geostrophic velocity. Note that this is different from the
commonly used large-eddy simulation (LES)-based definition of instantaneous eddy
forcing:

ELES
i (x, y; t) = −[∇ · uiqi − ∇ · ūiq̄i]. (4.6)

The differences between the expressions are as follows. First, (4.6) is only applicable to
the filtering methods which commute with partial derivatives (otherwise ∇ · uiqi becomes
∇ · uiqi). So, it does not hold for the CBD, as it involves a spatially varying filtering
kernel and does not commute with spatial derivatives. However, (4.5) is more flexible and
holds for all filtering methods, as it is obtained by direct substitution of the filtered fields
into the governing equation. Second, for ELES, we need the same characteristic length
scales of uq, u and q, but they are unlikely to be the same. Because we cannot filter the
governing equations using multiple filters, the whole process is either infeasible or leads
to inconsistent results if an approximate length scale is used for all three. In contrast, E
is easier to generalize for filtering based on variable kernel sizes and shapes. Moreover, it
only involves the filtering of u and q, which are connected by the PV inversion. Third, the
dynamics of E has clearly interpreted nonlinear advection terms, whereas the nonlinear
terms in ELES are harder to interpret (e.g. they are not advection) because they involve
double filterings.

We diagnosed E from the data using the energy and enstrophy conserving Arakawa’s
Jacobian discretization (Arakawa 1966). From the spatio-temporal statistics of E, it is clear
that the eddy forcing is most intense in the upper-ocean eastward jet region, and it weakens
away from it and becomes more homogeneously distributed with depth (figure 6a,b). The
time-mean E1 (figure 6c) has very small values in the jet region and even less elsewhere.
By decomposing E1 into its time-mean (〈E1〉(x, y)) and transient (E′

1(x, y, t)) components,
we found that in the eastward jet region the standard deviation of E′

1 is an order of
magnitude larger than 〈E1〉 (figure 6d), thus, suggesting that E′

1(x, y, t) dominates over
〈E1〉(x, y).
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Figure 6. Patterns of the instantaneous eddy forcing E from CBD for the (a) top and the (b) middle isopycnal
layers. The colourbars are in non-dimensional units. Clearly, the eddy forcing is concentrated in the upper-ocean
eastward jet region. (c) Time-mean and (d) standard deviation of E1. The time-mean field is weaker by an order
of magnitude, suggesting that the eddy forcing feedback is mostly due to the fluctuations, which are most
pronounced in the jet region.

To characterize the correlation length scales of the eddy forcing, we used the Gaussian
fitting method described in § 3.1 and obtained the length scale map L(x; Ei) and the
anisotropy map A(x; Ei). The L(x; E1) map (figure 7a) shows approximately 20 km long
correlation scales around the eastward jet and in the subpolar gyre region, but they are
approximately 5 km longer to the south of the jet and towards the eastern boundary. The
latter region of relatively long correlation length scales extends out with depth (figure 7b),
but the eastward jet region still retains short L values. This shows that the eddy forcing
is the most tightly correlated where it is the most intense. Furthermore, the ratio of the
L values for the PVA and eddy forcing fields shows that, on average, the eddy forcing L
values are approximately 5 times smaller (figure 3a,c,e) than the PVA ones, both globally
and around the eastward jet. Since one needs at least two grid intervals to approximate a
length scale, this implies that at least 10 grid intervals are needed to represent an eddy
forcing dynamically. The eddy forcing E is expected to be dominated by small spatial
scales as all the computations are performed on the fine grid and that it is a triply
differentiated field (in streamfunction) involving the eddy fields. Small-scale dominance of
the eddy forcing is also true for the standard LES-type eddy forcing, e.g. the one derived
by Mana & Zanna (2014) using a similar QG ocean model. Furthermore, the A(x; E1)
map (figure 7c) implies that the eddy forcing correlations are nearly isotropic in the entire
domain (mean A(x) = 1.1), but relatively more so in the subpolar gyre (mean A(x) = 1)
than in the eastward jet and the subtropical gyre region (mean A(x) = 1.2).
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Figure 7. Correlation length scale maps L(x) (in km) for the CBD-decomposed outputs: (a) E1 and (b) E2,
(c) the anisotropy map A(x; E1) and (d) the time scale map (in days) for E1. Relative to PVAs, the eddy forcing
is characterized by significantly smaller length and time scales (compare with figure 3(a,c,e); the time scale
map for PVA is not shown for brevity).

To characterize the eddy forcing further, we diagnosed the temporal scale for each grid
point – defined as the lag at which the corresponding autocorrelation drops by a factor
of exp from the zero-lag value – and analysed the resulting correlation time scale map.
The fast evolving nature of the eddy forcing is visible in its top-layer time scale plot
(figure 7d). In particular, the eastward jet region is dominated by the shortest correlation
time scales and is characterized by the average correlation time scale of 1 day, which is
approximately 3 times shorter than in the interior gyres and is approximately 25 times
shorter than PVA time correlations in the eastward jet region (not shown for brevity).
Locally, eddy forcing on the north and south flanks of the eastward jet has correlation time
scales of approximately 1.8 and 3.5 days, respectively, whereas its basin-averaged value is
approximately 2.7 days. Overall, the spatio-temporal correlation study of the eddy forcing
suggest that it can be modelled as a stochastic field with short spatio-temporal correlations
in the regions where it is most intense.

In comparison, q1 yields correlation time scales of 25 days in the eastward jet and ∼104

days in the gyre regions (not shown). The corresponding basin averaged correlation time
is ∼9500 days, which is more than 3500 times that for the eddy forcing – annotating the
differences between the two very different yet interacting flow fields.

Therefore, we learned that (i) the eddy forcing is characterized by grid-scale level
correlation in space and O(1) days correlation in the temporal domain – much smaller
than the induced PVA field, (ii) the eddy forcing is least spatially correlated where it is
the most intense – the jet eastward region, and (iii) the transient component of the eddy
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Figure 8. Product integral I(t) between q̄1 and coarse-grained E1 for (a) τ = 0 and (b) τ = 1 day. The red
lines indicate I(t) = 0, which is used to define instants of positive I. The curve in (b) illustrates presence of the
underlying eddy backscatter, as it shows positive correlation between the eddy forcing and the large-scale flow
response for most of the time.

forcing is more dominant than its time-mean. How exactly can this small-scale and highly
transient eddy forcing feed back on the much larger and slower evolving large-scale flow
features? Studying this process is the main subject of the next section.

4.2. Product integral analysis
Next, we intend to study the dynamical characteristics of the eddy forcing and the induced
large-scale flow, and quantify their possible interactions using a suitable metric. The
goal here is to illuminate the eddy backscatter mechanism, which supports the eastward
jet and its adjacent recirculation zones, and, thus, is characterized statistically by a
positive correlation between the transient eddy forcing and large-scale flow response. To
achieve this, we used an approach based on analysing the product integral I(t), defined
instantaneously as the spatial integral of the point-wise (Hadamard) product � of two
standardized snapshots (i.e. point-wise subtracting the time-mean and dividing by the
standard deviation) from flow fields, say, F1 and F2:

I(t) = 1
A

∫∫
Ω

F̂1(x, y; t)� F̂2(x, y; t) dx dy , (4.7)

where A is area of the domain Ω .
We calculated I(t) for F1 = q̄1 and F2 = E1. The resulting instantaneous product

integral was found to have mixed positive and negative values with a negative time-mean
(figure 8a), but this value should be treated cautiously, as the two flow variables (i.e. q̄1
and E1) evolve on very different space and time scales (as shown in §§ 4.1 and 3.1), and the
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Figure 9. Plot of the time-lag dependence of the product integral correlation between coarse-grained E1 and
q̄1 (a) for the full domain and (b) for the eastward jet region. The jet region was defined over the locations
where the standard deviation of E1 is more than 50 (in non-dimensional units). The two dashed lines indicate
I(t) values within two standard deviations from the mean. Both (a,b) characterize the eddy backscatter and its
response time scale.

flow response to eddy forcing may accumulate over time rather than being instantaneous.
Therefore, a time-lagged extension of (4.7) was applied to get more insight into the relation
between the eddy forcing and the large-scale flow response after time lag τ , i.e.

I(t, τ ) = 1
A

∫∫
Ω

F̂1(x, y; t + τ)� F̂2(x, y; t) dx dy, (4.8)

with F1 = q̄1 and F2 = E1. The time-lagged I(t, τ ) curve with τ = 1 day (figure 8b)
clearly shows a positive feedback from the eddy forcing to the flow response, and,
therefore, suggests the eddy backscatter mechanism. Such a positive time-lagged
correlation between E1 and q̄1 is not obvious, because (i) there are other terms in the
governing equation, and (ii) no such lagged correlation exists for white-noise forcing in
the same governing equation. By considering the time-lagged relation, we advanced the
results of Berloff (2018) where only zero lag was considered, and the resulting product
integral (between large-scale PV anomaly and eddy forcing) was found to be positive due
to the excessively large filter size – equal to 5Rd1. Therefore, the correct conclusion was
based on the less general diagnostics. Here, our time-lagged detection of the main eddy
backscatter characteristics is a lot more solid and substantially reinforces the previous
conclusions. Dynamical interpretation of this result is that the flow adjustment due to the
eddy feedback happens not instantly but with some delay. To see if the eastward jet region
is particularly susceptible to the eddy backscatter, we repeated the analyses only for the
eastward jet region, but the outcome was the same.

We considered values of τ up to 20 days, to find that the time-mean product integral
〈I(t, τ )〉 = (1/T)

∫ T
0 I(t, τ ) dt – or spatial time-lagged correlation – increases with τ

monotonically, peaks at around 9 days and then decays monotonically towards zero
(figure 9a). The standard deviation of 〈I(t, τ )〉 is also very small for small lags but
increases thereafter, reaching the maximum at τ = 9 days. Note that although the values
of 〈I(t, τ )〉 are small, on randomizing Ê1 in (4.8) we obtained three orders of magnitude
smaller values, which inferred the significance of the illuminated spatio-temporal
correlation between the two dynamically complex and structurally very different flow
fields that were shown to evolve on different space and time scales. We refer to the time

924 A5-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

60
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.604


Correlation-based decomposition and eddy forcing analysis

lag of the maximum correlation as the backscatter response time scale. Using a few other
normalization techniques, such as L2 norm, scaling between [0, 1], etc., we also proved the
insensitivity of the τ -dependence curve to the chosen normalization.

We also analysed the 〈I(t, τ )〉 curve for the eastward jet region (figure 9b) and there are
a few key differences to note: (i) the zero-time-lag correlation is small but positive in the
jet region; (ii) the backscatter response time scale is almost half for the jet region, which
proves the insignificance of long memory effects of the eddy feedback over there; (iii) for
each τ the standard deviation of I(t, τ ) is higher for the jet region than on average, thus
indicating more multiscale nonlinear interactions.

Additionally, we explored the time-lagged product integral correlation between F1 =
dq̄1/dt and F2 = E1 and obtained positive instantaneous correlation between the two,
which is also the maximum; and the correlation decreased monotonically with the lag.
The magnitude of the correlation was also found to be somewhat higher in the eastward
jet region. Together with the product integrals between E1 and q̄1, it suggests that the
positive (negative) part of the transient eddy forcing instantaneously drives the tendency
of positive (negative) flow anomalies, and this effect manifests itself in the induced flow
field after a definite time scale – different for the jet and the gyre regions. Note that
this conclusion cannot be drawn only using the positive correlation seen between E1 and
∂ q̄1/dt, as feedback between opposite polarities of E1 and q̄1 anomalies is also possible
under such a positive correlation.

Next, we studied the global and jet-regional 〈I(t, τ )〉 curves for q̄1 and E1 obtained using
the fixed-size moving-average decomposition method with three filter sizes: 11, 20 and 40
grid intervals (hereafter referred to as F11, F20 and F40), which correspond to 82.5 km,
150 km and 300 km, respectively (in terms of Rd1, these are approximately 2Rd1, 3.75Rd1
and 7.5Rd1). Note, that F11 is the most obvious choice for a filter size based on Rd1 when
using the fixed-size moving average method; F20 and F40 are among other reasonable
choices of larger filter sizes. Additionally, the mean length scale diagnosed for the top-layer
PVA using CBD (figure 3a) is approximately equal to 105 km and, therefore, is in between
the F11 and F20 filter sizes. For the full field correlation plot (figure 10a), the overall
shape of the curve was the same for all cases, but F11 and CBD outcomes resembled
each other the most; especially up to the backscatter response time scale, beyond which
F11 correlations decayed faster. Overall, the CBD produced equal or higher correlations
than F11, at all time lags. However, the outcomes were very different for the eastward jet
region (figure 10b), as the CBD-produced eddy forcing showed a much higher correlation
(with q̄1) than F11, and this correlation was strongest around the backscatter time scale,
which was roughly equal to 5 days. In effect, the CBD-produced eddy forcing yields a
stronger feedback on to the large-scale flow field in the eastward jet region, where the
backscatter is most pronounced. On the other hand, F20 and F40 filtering kernels result
in larger backscatter response time scales, both globally and in the eastward jet region. In
general, the time scale increases with an increase in moving-average filter size, whereas
the amplitude of correlation goes down. The full-domain zero-lag correlation is also small
and positive for F20 and F40 filters, contrary to CBD and F11. A similar 〈I(t, τ )〉 analysis
for the interior gyres showed small differences between the F11 and CBD results, whereas
the F20 and F40 ones differed vastly from them. For the subtropical gyre, F11 and CBD
correlation curves resembled those for the full field, but, in the subpolar gyre, the F11
correlations remained generally lower than the CBD ones.

Overall, this suggests that the performance of moving average filters is critically
sensitive to the choice of filter size, and looking for and developing a less subjective
filtering approach is totally justified. We also tried including a spectral filtering approach
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Figure 10. Comparison of the correlation curves (between coarse-grained E1 and q̄1) from CBD and the
three moving-average cases (F11, F20, F40) for (a) the full domain and (b) the eastward jet region. As
the moving-average filter size increases, the correlation curves becomes flatter, their correlation amplitudes
decrease, and the backscatter time scale information is lost. Also, CBD captures the highest correlation in the
jet region, which indicates the backscatter in a most pronounced way.

in the comparison list but obtained highly noisy and inconsistent decomposed fields for q1
– due to the non-locality of coherent vortices and the eastward jet region in the spectral
domain (discussed and shown in Appendices B).

Therefore, considering the lack of knowledge about the optimal filter sizes for
eddy-/large-scale decompositions, CBD provides a powerful alternative with no explicit
hyperparameter dependence of its characteristics. Another advantage of CBD is its
usefulness for the unstructured grid systems, where uniform moving average filtering can
cause significant distortions. In the next section, we investigate the dynamical relevance of
CBD eddy fields by using them to augment a low-resolution non-eddy-resolving model
solution. In the future, we will exploit the comprehensive study done here to build
low-order data-driven models for CBD eddy fields and use them for such low-resolution
model augmentations.

4.3. Augmentation of the coarse-resolution solution
In this section, we test the dynamical relevance of the CBD-produced eddy fields by
applying an augmentation procedure of the corresponding coarse-resolution model and
compare the augmented solution against the high-resolution reference. The augmentation
procedure is comprehensively introduced by Ryzhov et al. (2020). It involves supplying
small-scale fields into the coarse-resolution model during its run, thus correcting its
solution interactively as (valid for all three layers)

∂qc

∂t
+ J(ψc, qc)+ β

∂ψc

∂x
= H(ψc, qc)+ E(ψc, qc, ψ

′, q′), (4.9)

where the subscript c denotes coarse-resolution (or low-resolution) solutions; H represents
all terms involving the coarse-resolution solutions ψc, qc; and E presents the interactive
eddy forcing computed using the coarse-resolution solutions and the supplied eddy fields
ψ ′, q′ from the eddy-/large-scale decomposition of the high-resolution solution (the eddy
fields are coarse grained to the available coarse resolution before adding). Note that
the expression (4.9) is analogous to (4.2), but the coarse-resolution solutions qc and ψc
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are not the same as q̄ and ψ̄ – this is a known problem in model augmentation and
parametrization in general and addressing it is outside the scope of the paper. A similar
coarse-resolution model augmentation technique can also be applied using the eddy
forcing history E (4.4a) itself (Ryzhov et al. 2019). However, the corresponding off-line
eddy forcing history additionally involves the high-resolution (‘true’) large-scale fields,
which is more demanding in terms of external data availability as compared with using
only the high-resolution eddy field in the on-line eddy forcing computation. Moreover, our
approach allows for the interactive (hence part of the solution) feedback from the eddy
component to the large-scale one.

We considered an eddy permitting coarse-resolution model with a grid resolution of
129 × 129, compared with an eddy-resolving 513 × 513 for the high-resolution model.
The coarse-resolution model by itself fails to produce the eastward jet (which is
mostly eddy-driven) and its adjacent recirculation zones – attested both by the flow
snapshot (figure 11a) and the temporal standard deviation (figure 11b); conversely, the
high-resolution solution produces a pronounced eastward jet separating the two gyres
(figure 11c,d).

For coarse-resolution augmentation, we (i) decomposed the high-resolution PVA into
its large- and small-scale components (as described in § 3.1), followed by their inversions
to get the corresponding streamfunctions, (ii) coarse-grained the eddy streamfunction
to a 129 × 129 grid resolution by applying local averaging over 4 by 4 high-resolution
grid intervals (the difference between the high- and coarse-resolution counterparts), (iii)
obtained coarse-grained eddy PVA using the vorticity–streamfunction relationship (2.4),
and finally (iv) added both eddy fields to the coarse-resolution model, as described in (4.9),
through on-line calculation of eddy forcing at each time step (note that the coarse-grid ψ ′
and q′ can also be obtained by coarse-graining q′ directly in step (ii) and inverting it to
get ψ ′ at the same resolution.). We spun up the coarse-resolution model – until it reached
its statistically equilibrated state – before integrating it for an additional 15 000 days of
the available external small-scale fields, and comparing its statistical properties with those
of the coarse- and high-resolution solutions (of similar time length). The augmentation
is performed for both F11- and CBD-produced eddy fields, as the two filters provide
nearly similar product integral correlations, as seen in the previous section. For both, the
components of the eddy forcing are the corresponding coarse-resolution solutions and the
externally supplied small-scale (eddy) fields.

The augmented flow snapshot for F11 (figure 11e) shows poor jet reconstruction and
weak eddy activities around it, whereas the CBD augmented solution (figure 11g) shows
considerably more eddying features and a stronger eastward and also meandering jet, with
all these features being closer to the reference ‘truth’ – the high-resolution solution. The
standard deviation of the augmented solutions for the two methods (figure 11f,h) further
distinguishes between the induced variabilities around the jet region. The CBD produces
much more variability around the jet, with more pronounced eastward extension of it, as
compared with F11, which yields marginal improvement relative to the coarse-resolution
model solution (figure 11b). However, there are still some notable differences between the
standard deviation of the CBD-augmented solution and the high-resolution reference flow,
as the latter shows even higher values near the eastward jet. This suggests that the evolving
states of the CBD augmented model lie on a different attractor than the high-resolution
reference (similar to that observed by Nadiga & Livescu 2007). Consequently, this means
that the supplied eddy fields operate differently than the corresponding perfect eddy
field – i.e. those extracted from a perfect decomposition with qc = q̄ and the same
initial condition for both high-resolution and the augmented model. Here, the eddy
fields get quickly decorrelated from the coarse-grid model solution they are augmenting.
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Figure 11. Comparison of the coarse-resolution, high-resolution, F11- and CBD-augmented model solution
snapshots (panels a,c,e,g) of the top-layer PV anomaly and their standard deviations (panels b,d,f,h,
respectively) for 15 000 days of data. Starting from the top, the four rows belong to coarse-, high-resolution,
F11- and CBD-augmented model solutions, respectively.
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Figure 12. Comparison of the standard deviations of the online eddy forcing computed using (a) F11 and
(b) CBD eddy fields for the coarse-resolution solution augmentation. (c) The product integral correlations
between the augmented PV anomaly and the corresponding eddy forcings for F11 and CBD decompositions.
(d) Same as (c) but covariance. The covariance is obtained by using (4.8) but without normalizing the two flow
fields by their standard deviations.

This inherent property of the eddy fields makes them suitable for stochastic treatment
to develop parametrizations while also accounting for the effects of initial condition
perturbations.

The reason behind poor augmentation by the F11 eddy field is the weak interactive
eddy forcing generated in conjunction with ψc and qc (figure 12a). In comparison, the
CBD eddy forcing (figure 12b) is much stronger and more eastward-extended than its F11
counterpart, thereby providing a much better augmentation. To understand the impact of
this discrepancy in the eddy forcing on eddy backscatter, we analysed the corresponding
product integral correlations between the augmented PVA and the online eddy forcing E
(figure 12c). The results suggest that both F11 and CBD eddy forcings possess similar
correlations with the induced PV anomaly, and the same backscatter time scale; the CBD
eddy forcing is only marginally highly correlated with its induced PVA at short time-lags
(1–10 days). Recall that, even in § 4.2 (figure 10a) we found the product integral correlation
(i.e. backscatter) characteristics of F11 and CBD to be nearly the same; the current
results verify them for online eddy forcing. However, on analysing the corresponding
covariances – obtained using (4.8) but without normalizing the two flow fields by their
standard deviations – we found an order of magnitude of difference between F11 and CBD
(figure 12d). The correlation and covariance results together suggest that, although the F11
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Figure 13. Comparison of the power spectral density (PSD) estimates for coarse-resolution, high-resolution,
F11- and CBD-augmented solutions. The PSD is computed using the robust multitaper method, as introduced
by Percival et al. (1993).

eddies feedback similarly on the induced PV anomalies, the low magnitude of its eddy
forcing fails to deliver a significant jet reconstruction and, therefore, the resulting induced
PVA is also weak compared with CBD, which shows significantly strong variabilities
around the jet. This collective intensity of the eddy forcing and the induced dynamical
response is captured in the covariance magnitude, which is an order of magnitude smaller
for F11 than CBD. The contribution of the eddy forcing intensity alone on the covariance
magnitude can be quantified using semi-covariance – i.e. those obtained using (4.8)
with normalized induced PVA but un-normalized eddy forcing. Such a semi-covariance
magnitude is also significantly high for CBD compared with F11 (not shown). It may sound
sensible to use a larger filter size instead of F11 to enhance the eddy forcing strength and
thereby improve the jet characteristics, but it is already shown in § 4.1 that such big filter
sizes (e.g. F20, F40) lead to poor backscatter; therefore, this is not an option.

Finally, we performed Fourier spectral analysis of the basin-average potential energy
time series, given as

P(t) = 1
2

3∑
i=2

Hi(δi2Si2 + δi3Si)

V

∫∫
Ω

(ψi − ψi−1)
2 dy dx, (4.10)

where Sij and Si are the stratification coefficients, Hi is the height of the ith isopycnal
and V = LxLyH is the volume of the basin with H = ∑3

i=1 Hi. We computed P(t)
for both F11 and CBD solutions, and compared them against those for the coarse-
and high-resolution solutions. Total available potential energy is an essential global
characteristic of the solutions, and here we seek the manifestation of the intrinsic
large-scale low-frequency variabilities (LFVs), which are interrelated to other large-scale
flow features, such as the eastward jet extension and its adjacent recirculation zones
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Figure 14. Effects of filter size on the large-scale and eddy fields. Snapshots of the top-layer large-scale
and eddy PVAs, q̄1 and q′

1, obtained using moving-average filtering with various filter sizes. Panels (a,c,e)/
(b,d,f ) show large-scale/eddy patterns for the (a,b) F11, (c,d) F20 and (e,f ) F40 filters. The colour scales are in
non-dimensional units.

(Berloff, Hogg & Dewar 2007b). Berloff et al. (2007a) also showed that such LFVs
feedback on the atmosphere in ocean–atmosphere coupled models and, therefore, are of
significant dynamical importance. At high spatial resolutions, the reference flow regime
possesses broadband energy modulations around 17 years variability, i.e. at a frequency
value of 0.06 years−1, whereas the coarse-resolution solution fails to simulate this, because
of the poorly resolved eddies (figure 13). Therefore, feeding in dynamically consistent
eddy statistics is necessary for strengthening the eastward jet and the associated LFV. The
Fourier spectra of the total potential energy (figure 13) for CBD suggests the presence of
pronounced broadband LFV, as contrasted to F11, with an order of magnitude difference
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between the corresponding spectral powers. This is a remarkable characteristic of CBD,
as earlier, Ryzhov et al. (2020) showed that imbuing LFVs in the augmented solutions
by merely feeding the eddies from fixed-size moving average filtering is hardly possible
(even for larger filter sizes, e.g. F20). Reconstruction of the LFV is a significant advantage
of CBD, and it additionally proves that the decomposed eddy fields interact with the
coarse-resolution solutions in a more dynamically correct sense, so that these solutions
closer resemble the high-resolution reference flow regime.

Overall, our study confirmed that augmentation of the model restored the key large-scale
flow features (e.g. the eastward jet) and the important LFV in the coarse-resolution
solutions. This was made possible by plainly supplying the eddy fields extracted from
a high-resolution solution. But this requires a more objective and precise scale separation
method, such as those based on actual operating correlation length scales, their anisotropy
and their orientation. The success of CBD encourages us to look for efficient statistical
emulators to model the corresponding eddy fields and supply them instead of the true
eddy fields, but this is left for future work.

5. Conclusions and discussion

This study aims to develop methods and approaches for exploring the properties of oceanic
mesoscale eddies, study their dynamical feedbacks on the underlying large-scale flow
and use them to augment non-eddy-resolving ocean model solutions. For this purpose,
we used an eddy-resolving, double-gyre, classical quasigeostrophic model solution as
an idealized representation of the North Atlantic or North Pacific ocean circulations.
Defining and understanding fundamental statistical and dynamical properties of the
oceanic mesoscale eddies is important for their parametrization in the non-eddy-resolving
and eddy-permitting oceanic general circulation models. In this regard, dealing with
the correct and relevant eddy statistics is crucial. The existing flow decomposition (i.e.
scale separation) methods, such as the Reynolds decomposition, moving average, etc.,
which filter out an eddy component from the flow field, proved their usefulness but
also have significant shortcomings. While the classical Reynolds decomposition does not
incorporate any scale information, the moving-average decomposition imposes a filter size
that is fixed across the domain and based on some scale assumption, such as assuming
that the eddies operate on the first baroclinic Rossby deformation radius everywhere.
Such an assumption is not necessarily accurate given the intrinsically multiscale nature
of the eddies and of their underlying large-scale flow field. Another common strategy is
to choose the filter size based on the resolution of the coarse-grid model, which needs
eddy parametrizations. However, a nominally resolved flow feature in a dynamical model
is not necessarily dynamically resolved with needed accuracy, and there is a broad ‘grey
zone’ of partially resolved scales that further complicates the choice of filter size. This
motivated us to explore a range of other filtering possibilities and look at the underlying
differences to develop a better understanding of the eddy scales. Here, we have proposed a
correlation-based decomposition (CBD) method which decomposes the flow using the
concept of a differential filter size varying across the domain and based on the local
correlation length scale diagnosed from the spatial correlation maps. In other words,
instead of imposing an a priori assumption, we let the flow correlation statistics make
its own decision on the filtering scale, which is now allowed to vary across the domain
and be independent of the Rossby radius. We extracted the spatially varying length scale
statistics using a Gaussian-shape fit to the local correlation maps, which additionally infers
anisotropy and orientation from the correlation maps. Later on, we use a map of Gaussian
kernels with the inferred parameters and filter out the reference flow field. In practice,
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the correlation length scales are to be diagnosed from the available observations and/or
realistic model-generated solutions.

We applied the CBD method to the potential vorticity anomaly (PVA) datasets and
inverted them to get the corresponding streamfunction (ψ) fields. Encouraging structural
differences were found between the CBD decomposed eddy fields and the original flow
features, as the former clearly absorbed the small-scale content of the latter. Furthermore,
for comparison purpose, we considered uniform moving-average and spectral filtering
methods. For the moving-average, we considered three filter sizes (F11, F20 and F40),
where the smallest one (F11) was nearest to the mean (and median) length scale of
the spatial correlation map. The eddy fields from both F11 and CBD were found to
be reasonable but notably different. On the other hand, the results from the spectral
filtering, with a cut-off wavenumber equivalent to the F11 filter size, was found to be
heavily noisy due to the sharp-gradient regions in the flow that make the eddies spectrally
non-local. Therefore, this method was discarded from further analyses, with the results
briefly presented as a practical warning for other researchers.

In the second half of the paper, on the basis of the novel flow decomposition, we studied
the causality between the reference eddy forcing and the induced large-scale flow. This
causality – referred to as the eddy backscatter mechanism – was analysed by using the
time-lagged product integral correlation time series. Here, the product integral correlation
is the spatial diagnostic characteristic, which proved to be useful for the analyses by
illuminating the dynamical importance of the transient eddy forcing. Both CBD- and
F11-decomposed fields showed active eddy backscatter, which is the correlation of the
large-scale PV anomalies with the transient eddy forcing, and captured its response time
scale of approximately a week. However, CBD showed more efficient backscatter in
the eastward jet region, where the eddies are most active. These results suggest that
positive/negative transient eddy forcing enhances positive/negative PV anomalies, which
eventually results in the maintenance of the eastward jet. We argue that the backscatter
properties of the mesoscale eddies studied here should be taken into account by eddy
parametrization schemes, e.g. as in the work of Berloff (2018), where a similar effect was
achieved by amplifying the tendency term.

The other moving-average filters (F20 and F40) underestimated the correlation
magnitude and overestimated the backscatter time scale, both being proportional to the
filter size. This suggests that the CBD approach is intrinsically more robust, as the
optimal filter size is chosen automatically. It can also have additional advantages for
the unstructured grids, where moving-average filtering will have additional problems.
Finally, we proved the dynamical importance of the CBD-produced eddy fields by feeding
them to a coarse-resolution model solution. The results showed that the augmented
solution recovers the otherwise missing eastward jet extension, the eddy variability around
it and the intrinsic interdecadal low-frequency variabilities. The revival of the robust
low-frequency variabilities points to a much superior dynamical correction produced by
the CBD eddy fields compared with the fixed-size moving-average filters, which require
additional information from the high-resolution solutions even for the most intuitive
filter sizes (Ryzhov et al. 2020). This motivates us to explore in future studies statistical
emulation methods (Kondrashov et al. 2018; Agarwal et al. 2021) for building low-order
data-driven eddy emulators for use in coarse-resolution model augmentation.

On the downside, we note that CBD filters are computationally more expensive due
to the involved Gaussian shape fitting for each grid node. For serial implementation,
the Gaussian parameter computation takes longer time than the CBD decomposition of
one flow snapshot, but both processes can be parallelized. Another shortcoming of CBD
is that the length scale maps would be different for different variables in the case of
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the primitive equations, and determining the most relevant one would be difficult and
would require more analyses. Subsequently, it remains to be seen how accurate CBD is
near the continental boundaries in realistic solutions of comprehensive general circulation
model solutions, as we only concentrated on reproducing the jet features in the current
implementation. The boundary regions generally possess more anisotropic correlations,
and, hence, CBD can be more effective in these regions than other isotropic and fixed-size
filters.

The presented results can be extended along the following lines. The first and
straightforward path is to extend our analyses for higher spatial resolutions and solutions of
comprehensive general circulation models with realistic continental boundaries. Second,
it is worthwhile to advance the CBD further using time-lagged correlation to provide both
the spatial and temporal dependence of the length scales (Kondrashov, Ryzhov & Berloff
2020). A scale separation based on such non-stationary, spatially varying length scales
can be more consistent dynamically. Next, the statistical properties of the eddy forcing
studied in this paper can be effectively used for developing statistically and dynamically
consistent, data-driven eddy emulators for use in eddy parametrizations. Subsequently, the
eddy emulators can be more efficiently used to augment low-resolution models, similar
to what was achieved recently by Ryzhov et al. (2020) for a simple moving-average flow
decomposition. Here, we focused on finding novel ways of defining eddies, studying their
feedbacks on the induced large-scale flow structures and their possible augmentation skills,
and these aspects provide the basis for further advances. Finally, looking for connections
between local convolution-based filters and dynamical filtering (e.g. Berloff et al. 2021) is
also a matter for future research.
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Appendix A. Moving-average filtering

This is the most basic type of filtering, in which a kernel of appropriate geometry and size
is convoluted with the flow variable to obtain the large-scale flow field, and the eddy field
is obtained as the difference. Mathematically, if φ is a space–time dependent variable, then
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Figure 15. Same as in figure 14 but for the transport streamfunctions ψ̄1 and ψ ′

1.

φ̄(x; t) =
∫
φ(ξ ; t)G(x − ξ ; t) dξ , (A1a)

φ′(x; t) = φ(x; t)− φ̄(x; t), (A1b)

where G is a circular and normalized top-hat filtering kernel, whose size (e.g. radius)
depends on the cut-off length scale; and the integration is applied over the whole domain.
In geophysical fluids, the cut-off length scale can be related to the first baroclinic Rossby
deformation radius Rd1 and, as described in the text, we used three values of the cut-off
length scale: 11, 20 and 40 grid intervals (hereafter, referred as F11, F20 and F40
filters), which correspond to 77.5 km, 150 km and 300 km, respectively (in terms of Rd1
this corresponds to approximately 2Rd1, 3.75Rd1 and 7.5Rd1). Near the boundaries the
filtering is done by convoluting with the partial (within the domain) circles.
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Figure 16. Spectral filtering results: (a) q̄1 and (b) q′
1, obtained using a cut-off wavenumber equivalent to

F11 moving-average filter size. (c) Difference between q′
1 from spectral and moving-average filterings shows

non-locality of the spectral filtering method. The noise in the decomposed fields is due to the problems of the
spectral filtering method on the high gradients/discontinuities in the double-gyre flow fields.

The filtering is applied layer-wise and to q, whereas ψ is obtained by inverting
((2.4a)–(2.4c)). Many eddy features can be seen in the eddy fields, and their number and
amplitude increase with the filter size; at the same time the large-scale fields become
smoother (figures 14 and 15).

In the context of geophysical fluids, moving-average filtering has problems, and the main
one is to choose the cut-off scale. Inhomogeneous, anisotropic and confined turbulence, in
addition to the baroclinic Rossby deformation radii, has other relevant and geographically
varying length scales characterizing the eddies. Here, we expect smaller and more vigorous
eddies to populate the eastward jet region, and this is likely to be expressed by shorter
spatial correlations. However, much longer correlations are expected in the interior gyres,
which are mostly populated by well-seen large-scale transient planetary waves distorted
by the circulation in the gyres.

Appendix B. Spectral filtering

Spectral filtering can be described as a spectral-domain analogy of the physical-space
moving-average; its high-pass content constitutes the eddies. A spectral filter is local in
the Fourier space but non-local in the physical space and, intuitively, it is expected to be
optimal in the situation of homogeneous turbulence populated by plane waves.
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We carried out the following: (i) applied Fourier transform to the spatial field; (ii) set
to zero the spectral coefficients for wavenumbers higher than a certain threshold; (iii)
performed the inverse Fourier transform of the outcome. The algorithm was implemented
on the double-periodic domain – obtained by copying the mirror image of the data in both
x and y directions – to deal with the boundary effects. We applied this filtering to PVA
fields using a cut-off wavenumber (kc) equivalent to the F11 filter size, i.e. kc = 2π/22�x
(figure 16a,b).

By comparing with figure 14(a,b), it can be concluded that both flow components from
the spectral filtering are spuriously patterned and noisier than the moving-average ones,
especially the eddy field. The reasons behind these discrepancies are the large-gradient
regions, such as the eastward jet and numerous coherent vortices. They act like
step-functions which are composed of many non-locally distributed harmonics in the
Fourier domain. Therefore, the fields corresponding to the residual power in high/low
wavenumbers appear in small-/large-scale flow components in the form of noisy structures
(figure 16c).

Therefore, we conclude that spectral filtering is not optimal for decomposition of our
flow solutions. Note that alternatives such as wavelet filtering and short-term Fourier
transform can be used to overcome the high-gradient and boundary conditions issues, but
such methods have additional technical difficulty in terms of dealing with the size and
filtered content of the wavelets/window and, therefore, do not fit into the scope of this
study.
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