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cylindrical channel: spontaneous motion at small
Péclet numbers
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Spontaneous motion due to symmetry breaking has been predicted theoretically for both
active droplets and isotropically active particles in an unbounded fluid domain, provided
that their intrinsic Péclet number Pe exceeds a critical value. However, due to their
inherently small Pe, this phenomenon has yet to be observed experimentally for active
particles. In this paper, we demonstrate theoretically that spontaneous motion for an
active spherical particle closely fitting in a cylindrical channel is possible at arbitrarily
small Pe. Scaling arguments in the limit where the dimensionless clearance is ε � 1
reveal that when Pe = O(ε1/2), the confined particle reaches speeds comparable to those
achieved in an unbounded fluid at moderate (supercritical) Pe values. We use matched
asymptotic expansions in that distinguished limit, where the fluid domain decomposes
into several asymptotic regions: a gap region, where the lubrication approximation
applies; particle-scale regions, where the concentration is uniform; and far-field regions,
where solute transport is one-dimensional. We derive an asymptotic formula for the
particle speed, which is a monotonically decreasing function of Pe = Pe/ε1/2 and
approaches a finite limit as Pe ↘ 0. Our results could pave the way for experimental
realisations of symmetry-breaking spontaneous motion in active particles.

Key words: active matter, coupled diffusion and flow

1. Introduction

Chemically active particles can undergo self-diffusiophoresis in liquid solutions by
engendering concentration gradients through chemical reactions (Paxton et al. 2004;
Moran & Posner 2017). In their influential work, Golestanian, Liverpool & Ajdari (2007)
proposed the first macroscale model for self-diffusiophoresis. It assumes Stokes flow
conditions and diffusive transport of solute. On the particle boundary, chemical reactions
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are represented by a prescribed distribution of solute flux; mechanical interactions with
solute molecules are assumed to occur within a thin boundary layer relative to the
particle size, hence modelled by an effective diffusio-osmotic slip (Anderson 1989). Due
to the linearity of the governing equations and boundary conditions, self-propulsion is
predicted only for particles exhibiting asymmetry in their shapes or physicochemical
properties.

A nonlinear extension of that model, incorporating advective transport of solute, was
later proposed by Michelin, Lauga & Bartolo (2013). The extended model predicts that
a spherical particle with homogeneous physicochemical properties can self-propel via a
symmetry-breaking mechanism. Two necessary conditions are: (i) the particle activity
and slip coefficient must have the same sign; and (ii) the intrinsic Péclet number Pe,
indicating the strength of advection relative to diffusion, must be greater than 4. While
particles typically do not satisfy the latter condition (Moran & Posner 2017), active
droplets were observed experimentally to move spontaneously as a result of an analogous
symmetry-breaking mechanism (Izri et al. 2014).

The macroscale description of Michelin et al. (2013) has since served as the basis
for multiple subsequent analyses of both asymmetry-driven (Michelin & Lauga 2014;
Yariv 2016, 2017; Yariv & Kaynan 2017) and spontaneous (Desai & Michelin 2021,
2022; Saha, Yariv & Schnitzer 2021; Picella & Michelin 2022; Peng & Schnitzer 2023;
Schnitzer 2023) motion, and has also been adopted as a reference model for active droplets
(Michelin 2023). In particular, several recent extensions of Michelin et al. (2013) have
investigated the dynamics of isotropically active spheres constrained by solid boundaries
(Yariv 2016, 2017; Desai & Michelin 2021, 2022; Picella & Michelin 2022). In purely
hydrodynamic settings, the presence of boundaries leads naturally to increased viscous
resistance to particle motion (Happel & Brenner 1965). Nonetheless, it has been shown that
confinement promotes the spontaneous motion of active particles, leading to symmetry
breaking at smaller Pe (Desai & Michelin 2021, 2022).

In a recent study, Picella & Michelin (2022) presented a particularly dramatic effect
of confinement on the spontaneous motion of active particles. Those authors performed
time-dependent simulations of an active spherical particle moving through a cylindrical
channel, the latter being represented by a large but finite computational domain truncated
at two remote cross-sections. (See §§ 3 and 4 of that paper for a detailed description of the
numerical method employed.) In a frame of reference moving with the particle, reportedly
the simulated system reaches a stable steady state where the centre of the particle is
aligned with the channel axis; the geometry of this axisymmetric configuration can be
characterised by ε, the ratio of the minimum particle–channel clearance to the particle
radius. Focusing on axisymmetric steady states, Picella & Michelin (2022) reported a
bifurcation from a stationary symmetric state when Pe exceeds a critical threshold. The
reported critical Pe is a function of ε, say Pec(ε), that decreases rapidly with decreasing ε

(Pec ≈ 4 for large ε, and Pec ≈ 0.1 for ε ≈ 1). Unfortunately, Picella & Michelin (2022)
could not investigate closely fitting particles (ε � 1) as their numerical method is not
accurate for small ε; in fact, they could not determine Pec accurately even for moderately
small ε (ε � 1).

Picella & Michelin (2022) supplemented their simulations with analytical arguments,
including a steady-state integral solute balance ((5.3) therein) in a reference frame moving
with the particle, assuming an infinitely long channel. We draw attention to two direct
consequences of that balance. First, the problem is ill-posed for Pe = 0, indicating that
the small-Pe limit is singular. Second, any solution for Pe > 0 must involve particle
motion at a non-zero speed relative to the channel walls, accompanied by a fore–aft
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Active particle closely fitting in a cylindrical channel

asymmetric solute concentration. Consequently, there cannot be a bifurcation at finite Pe
from a symmetric solution with a stationary particle to an asymmetric solution involving
spontaneous motion. This latter conclusion, seemingly overlooked by Picella & Michelin
(2022), reveals that the reported bifurcations and the calculated values of Pec can be
interpreted only as numerical artefacts.

Despite the above difficulties in the interpretation of the numerical results in Picella &
Michelin (2022), their model – which is a direct extension of that in Michelin et al. (2013) –
provides a useful starting point for the analysis of confined active particles. Moreover,
their simulations suggest that achieving spontaneous motion at small values of Pe, which
is representative of typical active particles, is possible under confinement. Accordingly,
a systematic investigation of the spontaneous motion of confined active particles at
small Pe could pave the way for experimental demonstrations of this phenomenon
in particles.

Accordingly, the present paper aims to analyse the motion of an isotropically active
particle at small Péclet numbers (Pe � 1). As in Picella & Michelin (2022), we will adopt
the macroscale description of Michelin et al. (2013). We will focus on closely fitting
particles (ε � 1), corresponding to a regime where a detailed asymptotic description
of the problem can be constructed systematically following the method of matched
asymptotic expansions (Hinch 1991) – as in classical studies of moving particles closely
fitting in channels (see e.g. Bungay & Brenner 1973). We note that this regime has not
been considered by Picella & Michelin (2022) due to the aforementioned limitations of
their numerical method.

The paper is structured as follows. We describe the physical problem in § 2, and
formulate the mathematical problem in § 3. In § 4, we derive integral balances for the
mass and solute concentration. In § 5, we perform a scaling analysis in the small-ε and
small-Pe regime, which will allow us to determine the appropriate distinguished limit for
the problem. In § 6, we perform an asymptotic analysis of the problem in this distinguished
limit. We discuss our results in § 7.

2. Physical problem

Consider a chemically active spherical particle (radius a∗) moving within a cylindrical
channel (radius b∗ > a∗) filled with an otherwise quiescent fluid (viscosity μ∗) that
contains a single species of solute molecules (diffusivity D∗).

The particle exchanges solute with the fluid at a uniform rate per unit area A∗. This
activity generates variations in the solute concentration, which are transported across the
channel via advection and diffusion. Concurrently, changes in the concentration along
the particle surface induce an effective diffusio-osmotic slip directly proportional to
the surface gradient of the concentration. The proportionality constant, namely the slip
coefficient M∗, is also assumed uniform.

We will henceforth look for axisymmetric solutions of the problem where the particle
moves along the channel axis at a constant speed. (We note that in the time-dependent
simulations of Picella & Michelin (2022), those axisymmetric solutions were found to be
stable attractors for the problem.) Since the physicochemical properties of the spherical
particle are homogeneous, the problem lacks a preferred direction along the channel axis.
As demonstrated in previous works (Michelin et al. 2013; Picella & Michelin 2022), the
symmetry breaking leading to spontaneous motion can occur only if M∗ and A∗ have the
same sign. Motivated by that, we will assume M∗A∗ > 0.
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If the particle indeed exhibits symmetry-breaking spontaneous motion, then
dimensional arguments show that (Golestanian et al. 2007)

particle speed = W × M∗A∗

D∗ . (2.1)

Here, W is the dimensionless speed, which depends upon two strictly positive parameters,
namely the dimensionless clearance,

ε = b∗ − a∗

a∗ , (2.2)

and the intrinsic Péclet number,

Pe = M∗A∗a∗

D∗2 . (2.3)

It is convenient to discuss solute transport in the co-moving reference frame, where the
flow and concentration fields are steady. Far upstream, corresponding to the direction of
the particle motion in the laboratory frame, the solute concentration approaches a uniform
value, which by causality must be independent of the particle’s activity; far downstream,
the concentration saturates at a different uniform value due to the accumulation of solute
generated by the particle and advected by the flow. Dimensional arguments show that,
relative to its value far upstream,

solute concentration far downstream = C− × A∗a∗

D∗ . (2.4)

Just like W , the dimensionless downstream concentration C− depends upon ε and Pe.

3. Dimensionless formulation

We proceed to formulate the dimensionless steady-state problem in the co-moving
reference frame, as illustrated in figure 1(a).

We normalise lengths by a∗ and introduce the cylindrical coordinates (r, φ, z) with the
origin at the centre of the particle; r measures the radial distance from the channel axis,
φ is the azimuthal angle, and the z-axis coincides with the channel axis and points in
the direction of the particle’s motion relative to the channel. The surface of the particle,
denoted by S , is parametrised as r = f (z) with

f (z) =
√

1 − z2 for |z| ≤ 1, (3.1)

and the channel wall is located at r = 1 + ε. The fluid domain, denoted by F , is given by
f (z) < r < 1 + ε for |z| ≤ 1, and r < 1 + ε for |z| > 1.

We denote the excess solute concentration (normalised by A∗a∗/D∗), relative to its
upstream value, by c (if A∗ < 0, then c represents a concentration deficit), the pressure
(normalised by μ∗M∗A∗/a∗D∗) by p, and the velocity (normalised by M∗A∗/D∗) by u.
Axial symmetry dictates that the flow and concentration fields are independent of φ and
that the velocity field can be written as

u = ur̂ + wẑ, (3.2)

where r̂ and ẑ are unit vectors associated with the r and z coordinates, respectively.
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z

1 + ε

Z = z/ε1/2

n̂  · ∇c = 0

∇ · u = 0   ∇p = ∇2u

1
n̂ · ∇c = −1

Pe u · ∇c = ∇2c

u  = ∇sc

≈ 1 + (Z2/2)

u = −Wẑ

R = (−r + 1 + ε)/ε

r

c → C− (downstream)

c → 0 (upstream)
u → −W ẑ

(b)

(a)

Figure 1. Schematic diagrams depicting (a) the dimensionless problem in the co-moving reference frame and
(b) the geometry of the gap region.

The flow is governed by the Stokes equations

∇p = ∇2u, ∇ · u = 0 in F , (3.3a,b)

the diffusio-osmotic slip condition (Anderson 1989; Golestanian et al. 2007)

u = ∇sc on S, (3.4)

wherein ∇s = (I − n̂n̂) · ∇, with I being the idemfactor and n̂ the outward unit normal
(note that n̂ · u = 0), the no-slip condition

u = −W ẑ at r = 1 + ε, (3.5)

the far-field condition, specifying that the fluid is quiescent far from the particle in the
laboratory frame,

u → −W ẑ as z → ±∞, (3.6)

and the force-free condition

∫
S

n̂ · [−pI + (∇u) + (∇u)†] · ẑ dS = 0, (3.7)

with † denoting the tensor transpose, and dS denoting a differential area element.
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The concentration field satisfies the advection–diffusion equation

Pe u · ∇c = ∇2c in F , (3.8)

subject to the activity condition

n̂ · ∇c = −1 on S, (3.9)

the no-flux condition

n̂ · ∇c = 0 at r = 1 + ε, (3.10)

and the upstream and downstream conditions, respectively,

c → 0 as z → ∞, c → C− as z → −∞. (3.11a,b)

4. Integral balances

We now derive exact integral balances that will facilitate our analysis.
To begin, we integrate the advection–diffusion equation (3.8) over the entire fluid

domain and apply the divergence theorem together with (3.3b)–(3.6) and (3.9)–(3.11a,b).
This furnishes the relation

PeWC−(1 + ε)2 = 4, (4.1)

which has been derived previously by Picella & Michelin (2022) – see (5.3) therein. This
relation represents a balance between the net advective flux far downstream and the activity
(3.9) integrated over the particle surface; in particular, it allows us to determine C− once W
is known. Clearly, (4.1) implies that the problem is ill-posed for Pe = 0 and that stationary
solutions (W = 0) are impossible.

Next, we derive cross-sectional balances describing conservation of mass and solute
between a cross-section of the channel located far upstream (z → ∞) and another
cross-section located arbitrarily (z = Z) in the gap between the particle and the channel
wall (|Z| ≤ 1). To obtain the cross-sectional mass balance, we integrate the continuity
equation (3.3b) over the domain FZ = {(r, z) ∈ F | z ≥ Z} and apply the divergence
theorem in conjunction with (3.4)–(3.6). This yields

∫ 1+ε

f (Z)

w|z=Zr dr = −1
2W(1 + ε)2. (4.2)

(Note that the slip velocity (3.4) has zero normal component and hence does not contribute
to the mass balance.)

To obtain the cross-sectional solute balance, we integrate (3.8) over FZ and apply the
divergence theorem in conjunction with (3.3b)–(3.6) and (3.9)–(3.11a,b). This yields

∫ 1+ε

f (Z)

(
Pe wc − ∂c

∂z

)∣∣∣∣
z=Z

r dr = −1 + Z. (4.3)

The right-hand side represents the integration of the activity (3.9) over the spherical cap
S ∩ ∂FZ .
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Active particle closely fitting in a cylindrical channel

5. Closely fitting particle: scalings

We focus hereafter upon the narrow gap and small Péclet number regime, ε � 1 and
Pe � 1. We begin with a scaling analysis. In addition to providing insight into the
problem, our scalings will allow us to determine the appropriate distinguished limit for
the subsequent asymptotic analysis.

Let us first describe the local geometry of the gap between the particle and channel,
illustrated in figure 1(b). There, the surface of the particle is approximately paraboloidal,
and the particle–channel separation h(z) = 1 + ε − f (z) can be expanded as

h(z) = ε + 1
2 z2 + · · · as z ↘ 0. (5.1)

Examining the first two terms of this expansion, we see that the separation remains of
order ε over axial distances of order ε1/2. We postulate that the characteristic radial and
axial length scales in the vicinity of the gap are given by ε and ε1/2, respectively.

Regarding the flow in the gap, the cross-sectional mass balance (4.2) implies that the
axial velocity in the far field, of order W , is amplified by a factor ε−1 as the narrow
gap is approached. Therefore, the axial velocity in the gap scales as W/ε. The continuity
equation (3.3b) suggests that the radial velocity in the gap scales as W/ε1/2; the axial
component of the momentum equation (3.3a) suggests that the pressure in the gap
scales as W/ε5/2; and the diffusio-osmotic slip condition (3.4) suggests that the solute
concentration scales as W/ε1/2.

Given the above, we now consider solute transport in the gap. With the advective
flux Pe wc scaling as PeW2/ε3/2, and the diffusive flux −∂c/∂z scaling as W/ε, the
cross-sectional solute balance (4.3) leads to the scaling relation

(
PeW2

ε3/2 + W
ε

)
× ε ∼ 1. (5.2)

This relation indicates that W is of order unity for Pe at most of order ε1/2, and is
asymptotically small for Pe � ε1/2. (Curiously, our scalings also suggest that order-unity
speeds could be possible at small Pe even for ε of order unity. We return to this point in
§ 7.)

Balancing the three terms appearing in (5.2), the appropriate distinguished limit to be
considered in the subsequent asymptotic analysis is

Pe = O(ε1/2), (5.3)

with the particle speed being

W = O(1). (5.4)

Moreover, in this distinguished limit, (4.1) implies that

C− = O(ε−1/2). (5.5)

Importantly, our scaling arguments suggest that (5.3) is the only distinguished limit in the
regime where ε and Pe are small, as it corresponds to a general scenario where advection
and diffusion are accounted for in the gap region
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6. Closely fitting particle: asymptotic analysis

We now analyse the distinguished limit (5.3), represented by

ε � 1, Pe = ε1/2 Pe, (6.1a,b)

with Pe held fixed. In view of (5.4) and (5.5), we pose the expansions

W = W0 + · · · , C− = ε−1/2C−
−1/2 + · · · , (6.2a,b)

where the leading-order balance of (4.1) reads

PeW0 C−
−1/2 = 4. (6.3)

6.1. Remote regions
We commence our asymptotic analysis by examining the flow and solute transport in
the upstream (z > 0) and downstream (z < 0) remote regions of the channel. In those
regions, advection and diffusion balance (3.8) over a (dimensionless) length scale of order
(PeW)−1, which, by (5.3) and (5.4), is equivalent to ε−1/2. Accordingly, we introduce the
strained axial coordinate

z̃ = ε1/2z. (6.4)

Given that W is of order unity, the far-field condition (3.6) shows that the velocity in
the remote regions is also of order unity. Moreover, when written in terms of z̃, the Stokes
equations (3.3a,b) together with (3.5) and (3.6) demonstrate that this order-unity flow is
uniform. It then follows from (3.6) that the velocity possesses the expansion

u = −W0ẑ + · · · . (6.5)

With a uniform velocity, it is evident that the leading-order concentration must be a
function of z̃ alone. To analyse solute transport, we examine separately the upstream and
downstream regions. In the upstream region, we assume, based on (5.5), that the solute
concentration is of order ε−1/2. This motivates the expansion

c = ε−1/2 c̃+
−1/2 + · · · . (6.6)

Expanding (3.8) and (3.11a), we find that c̃+
−1/2 satisfies the one-dimensional

advection–diffusion equation

−PeW0
dc̃+

−1/2

dz̃
=

d2c̃+
−1/2

dz̃2 , (6.7)

subject to the far-field condition (cf. (3.11a))

c̃+
−1/2 → 0 as z̃ → −∞. (6.8)

The solution to the above problem is

c̃+
−1/2 = C+

−1/2 exp
(

− z̃

PeW0

)
, (6.9)

where the constant C+
−1/2 is yet to be determined.
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In the downstream region, the concentration is also of order ε−1/2, in accordance to
(5.5), so we pose the expansion

c = ε−1/2 c̃−
−1/2 + · · · . (6.10)

The leading-order concentration c̃+
−1/2 satisfies the same one-dimensional advection–diffusion

equation as in (6.7), but now subject to the condition c̃+ → C−
−1/2 as z̃ → ∞ (cf. (3.11b)).

The solution is
c̃−
−1/2 = C−

−1/2. (6.11)

Accordingly, the leading-order concentration decays exponentially in the upstream
remote region (6.9) and is uniform in the downstream remote region (6.11).

6.2. Particle-scale regions
In the downstream region adjacent to the particle, at distances of order unity and z < 0,
the concentration remains uniform to leading order and equal to (6.11). This is because the
order-unity activity (3.9) cannot affect the order-ε−1/2 concentration locally. (We also do
not expect an asymptotically large solute flux emanating from the gap, as any such flux
would imply a concentration in the gap � ε−1/2, contradicting our scalings.)

Similarly, the concentration is uniform to leading order in the vicinity of the particle
with z > 0. There, asymptotic matching with (6.9) shows that, to leading order, c is given
identically by ε−1/2C+

−1/2.
Therefore, in the vicinity of the particle, at distances of order unity, we expand the

concentration as

c =
{

ε−1/2C−
−1/2 + · · · , z < 0,

ε−1/2C+
−1/2 + · · · , z > 0.

(6.12)

As we will see, the constants C−
−1/2 and C+

−1/2 are generally distinct.

6.3. Gap region
Following the scalings in § 5, we introduce stretched coordinates in the gap region

R = (−r + 1 + ε)/ε, Z = z/ε1/2. (6.13a,b)

In terms of these, the particle–channel separation (5.1) can be written as

R = H(Z) + O(ε), H(Z) = 1 + Z2

2
. (6.14)

Moreover, we expand the solute concentration as

c = ε−1/2 C−1/2(R, Z) + · · · , (6.15)

the pressure as

p = ε−5/2 P−5/2(R, Z) + · · · , (6.16)

and the radial and axial velocity, respectively, as

u = ε−1/2 U−1/2(R, Z) + · · · , w = ε−1 W−1(R, Z) + · · · . (6.17a,b)
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Substituting (6.2a,b) and (6.14)–(6.16) into the integral balances (4.2) and (4.3), and
retaining leading-order terms, we obtain∫ H(Z)

0
W−1 dR = −1

2 W0, (6.18a)

∫ H(Z)

0

(
Pe W−1C−1/2 − ∂C−1/2

∂Z

)
dR = −1, (6.18b)

which are valid for all Z.

6.3.1. Solute transport
Expanding (3.8)–(3.10) using (6.13a,b)–(6.16), we find that the leading-order
concentration satisfies

∂2C−1/2

∂R2 = 0, (6.19)

with boundary conditions

∂C−1/2

∂R
= 0 at R = 0 and R = H(Z). (6.20)

Thus C−1/2 is independent of R. We can therefore evaluate the integral in (6.18b) using
(6.18a) to arrive at the transport equation

H(Z)
dC−1/2

dZ
+ 1

2
PeW0C−1/2 = 1. (6.21)

Moreover, asymptotic matching with (6.12) for z < 0 furnishes the far-field condition

C−1/2 → C−
−1/2 as Z → −∞. (6.22)

Solving (6.21) subject to (6.22), we find

C−1/2 = 2

PeW0
+

(
C−

−1/2 − 2

PeW0

)
exp

[
− PeW0√

2

(
π

2
+ arctan

Z√
2

)]
, (6.23)

which can be rewritten with the aid of (6.3) as

C−1/2 = 2

PeW0

{
1 + exp

[
− PeW0√

2

(
π

2
+ arctan

Z√
2

)]}
. (6.24)

For later reference, the derivative of C−1/2 with respect to Z is given by

dC−1/2

dZ
= − 1

H(Z)
exp

[
− PeW0√

2

(
π

2
+ arctan

Z√
2

) ]
. (6.25)

Taking Z → ∞ in (6.24) shows that the concentration field approaches a uniform value
at large distances in the gap. Thus asymptotic matching between (6.12) and (6.24) for z > 0
yields

C̃+ = 2

PeW0

[
1 + exp

(
− π PeW0√

2

)]
. (6.26)

Note that W0 remains to be determined.
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6.3.2. Lubrication flow
Expanding (3.3)–(3.5) using (6.13a,b)–(6.16), we find that the flow in the gap is governed
by

∂P−5/2

∂R
= 0,

∂2W−1

∂R2 = ∂P−5/2

∂Z
, (6.27a,b)

the no-slip condition

W−1 = 0 at R = 0, (6.28)

and the diffusio-osmotic condition

W−1 = dC−1/2

dZ
at R = H(Z). (6.29)

With P−5/2 independent of R (see (6.27a)), we can integrate equation (6.27b) using
(6.28) and (6.29). This furnishes an expression for the axial velocity in terms of the
pressure and concentration gradients:

W−1 = R(R − H)

2
dP−5/2

dZ
+ R

H
dC−1/2

dZ
. (6.30)

Next, integrating (6.30) from R = 0 to R = H(Z) using (6.18a) gives

−H3

12
dP−5/2

dZ
+ H

2
dC−1/2

dZ
= −1

2
W0, (6.31)

which can be rearranged as

dP−5/2

dZ
= 6

H3 W0 + 6
H2

dC−1/2

dZ
. (6.32)

6.4. Particle speed
We can now determine the particle speed W0. First, we note that the pressure drop along
the gap is given by

ε−5/2
∫ ∞

−∞
dP−5/2

dZ
dZ + · · · . (6.33)

This order ε−5/2 pressure drop must vanish (Bungay & Brenner 1973), i.e.

∫ ∞

−∞
dP−5/2

dZ
dZ = 0; (6.34)

if this condition is not met, then asymptotic matching with the particle-scale regions shows
that the pressure difference between the right hemisphere (z > 0) and left hemisphere
(z < 0) of the particle is of order ε−5/2, resulting in a net force of the same order, which
contradicts the force-free condition (3.7).
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Substituting (6.32) into (6.34) then gives

6W0

∫ ∞

−∞
dZ
H3 + 6

∫ ∞

−∞
dC−1/2

dZ
dZ
H2 = 0. (6.35)

The integrals can be evaluated in closed form upon substitution of (6.14) and (6.25). This
yields

W0 =
√

2
π

1 − exp (−π PeW0/
√

2)

PeW0 + 5 Pe
3 W3

0/32 + Pe
5 W5

0/256
, (6.36)

which provides W0 as a implicit function of Pe. The downstream concentration C−
−1/2 can

then be determined from (6.3):

C−
−1/2 = 2π

√
2W0

1 + 5 Pe
2 W2

0/32 + Pe
4 W4

0/256

1 − exp (−π PeW0/
√

2)
. (6.37)

In particular, we note the limits

W0 → 1, C−
−1/2 ∼ 4

Pe
as Pe ↘ 0. (6.38a,b)

6.5. Main results in unscaled variables
Equations (6.36)–(6.37) constitute the main results of our analysis. In terms of the unscaled
dimensionless variables, defined in (2.1)–(2.4), we have that

W ∼
√

2
π

ε5/2 1 − exp (−π PeW/ε1/2
√

2)

ε2 PeW + 5ε Pe3 W3/32 + Pe5 W5/256
(6.39)

and

C−∼2π
√

2
W
ε5/2

ε2 + 5ε Pe2 W2/32 + Pe4 W4/256

1 − exp (−π PeW/ε1/2
√

2)
. (6.40)

These relations have been derived by considering the distinguished ε � 1 and Pe =
O(ε1/2). The scaling arguments in § 5 suggest that this is the unique distinguished limit
in the regime where ε and Pe are both small, indicating that (6.39) and (6.40) remain
valid provided that ε � 1 and Pe � 1. (This can be verified explicitly by analysing the
regimes ε1/2 � Pe � 1 and Pe � ε1/2 � 1; those analyses are analogous to that already
presented in this section and hence are not shown.)

7. Discussion and future perspectives

We have investigated the spontaneous motion of an isotropically active spherical particle
closely fitting in a cylindrical channel (ε � 1) at small Péclet numbers (Pe � 1). Our
focus has been on scenarios where the particle moves along the channel axis and the
concentration and flow fields are steady in the co-moving reference frame. Despite
spontaneous motion being impossible for a particle in an unbounded domain at small
Pe, our analysis has demonstrated its existence for a particle in a channel, showing that
order-unity speeds are attained for Pe of order ε1/2. By analysing systematically this
distinguished limit, we have derived asymptotic approximations for the dimensionless
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Figure 2. Dimensionless particle speed W as a function of Pe. The solid line depicts the leading-order
approximation calculated using (6.36). The blue squares represent the numerical data extracted from figure 3
in Picella & Michelin (2022) for ε = 1/3.

particle speed W and downstream concentration C−, as well as for the flow and
concentration fields along the channel.

Figure 2 depicts the leading-order particle speed (6.36) as a function of the rescaled
Péclet number Pe = Pe/ε1/2. There is no bifurcation, in accordance with the integral
balance (4.1). Rather, a unique solution exists for all values of Pe, with W approaching
unity as Pe tends to zero (cf. (6.38a)), and decreasing monotonically with Pe. As the
problem is ill-posed for Pe = 0 (cf. (4.1)), the limiting value W = 1 cannot be attained in
practice. Despite W remaining finite, other physical quantities diverge as Pe tends to zero,
such as C− (6.38b) and the length scale (PeW)−1 over which the concentration decays far
upstream (see (6.9)). Accordingly, W = 1 provides an unattainable upper bound for the
leading-order speed in the small-ε and small-Pe regime. We note that this upper bound
also holds for all values of ε and Pe in the simulations of Picella & Michelin (2022).

In figure 2, we also compare our asymptotic results with the numerical data of Picella &
Michelin (2022) for ε = 1/3. Despite ε hardly being small, we observe a relatively good
agreement that appears to improve as Pe decreases until Pe ≈ 1. For smaller Pe, numerics
and asymptotic disagree, with the numerical speed decaying as Pe decreases further,
and seemingly reaching zero at a small but finite Pe value. This numerical bifurcation
violates (4.1), and hence must constitute a numerical artefact, which explains the observed
discrepancies between numerics and asymptotics.

The spurious numerical bifurcations in Picella & Michelin (2022) might originate
from how the computational domain is truncated at remote cross-sections. In detail,
the simulations employed a long but finite channel, with both ends of the channels
co-moving with the particle, and the concentration field subject to homogeneous Neumann
conditions at the ends. Simulations in the truncated domain with said conditions should
approximate the problem formulated herein for an infinite channel, provided that the
truncated channel is long relative to other length scales of the problem. In particular,
in the small Pe regime studied herein, the largest length scale of the problem is the
aforementioned (PeW)−1, which becomes arbitrarily large. Hence numerical end effects
inevitably introduce discrepancies between numerics and asymptotics.
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It is natural to ask whether previously unexplored physical mechanisms, as opposed to
numerical artefacts, might also become important at sufficiently small Pe. Incorporating
such mechanisms might also regularise the problem, making it well-posed for Pe = 0.
A regularised physical problem could involve a particle in a realistic finite channel, such
as a channel with open ends connected to large reservoirs. For Pe = 0, the solute would
leak to the reservoirs, and diffusion would cause the excess concentration to decay away
from the channel, thus regularising the problem. To extend our analysis to finite channels,
we could adopt a method analogous to that used by Sherwood & Ghosal (2021), who
considered the electrophoresis of a closely fitting sphere in a cylindrical channel with open
ends. A systematic analysis of finite channels would likely yield results that differ from
those in Picella & Michelin (2022), where the consideration of finite channels is merely
a consequence of numerical truncation. Indeed, the effective end conditions employed by
Picella & Michelin (2022) do not represent real finite channels, first because they do not
allow for any solute leakage, and second because the positions of the channel ends should
be fixed in the laboratory frame rather than in the co-moving frame.

Another physical mechanism that might regularise the problem is solute absorption due
to a chemical reaction in the fluid (de Buyl, Mikhailov & Kapral 2013). As advection
gets weaker, we expect that bulk absorption, however small, could hinder the solute from
penetrating further into the channel. Even in the case of a stationary particle, where a net
advective flux is absent, absorption would still lead the excess concentration to decay far
away from the particle, thus making the problem well-posed. Extending our analysis to
include weak bulk absorption should be straightforward, as absorption would be relevant
only far from the particle, leaving the analysis in the gap region intact.

Several other extensions of our analysis, not necessarily associated with regularisation
mechanisms, are also worth pursuing. For example, it would be interesting to analyse a
regime where ε is moderate and Pe is small. When ε increases from small to moderate
values with Pe held fixed, (6.36) shows that the speed grows and approaches unity. (This
limiting process corresponds to Pe ↘ 0; see (6.1a,b).) Accordingly, although (6.36) ceases
to be valid for ε = O(1), it nonetheless suggests that order-unity speeds are attainable at
arbitrarily small Pe for moderate values of ε. An analysis of this moderate-ε regime could
also bridge our small-ε solution to the corresponding solution for large ε. Regarding the
latter, we expect that the large-ε speed remains non-zero for all Pe, in accordance with
(4.1), but becomes asymptotically small in ε−1 for Pe ≤ 4; for Pe > 4, we expect a stable
solution with W of order unity, approaching the well-known solution for an active particle
in an unbounded domain (Michelin et al. 2013). Other natural regimes to explore include
small ε with moderate or large Pe. Although the scalings presented in § 5 do not suggest
other distinguished limits when ε � 1, a preliminary analysis for larger Pe indicates that
a distinguished limit emerges when Pe is of order unity.

An analysis of the distinguished limit ε � 1 with Pe = O(1) might also provide the first
steps towards extending our theory to active droplets, which typically exhibit moderate
to large values of Pe. Of course, a proper analysis of spontaneous motion in droplets
must account for the internal flow within the droplet, as well as Marangoni stresses
(Michelin 2023). In addition, a droplet substantially deforms inside a channel and becomes
nearly cylindrical as its volume increases; hence a closely-fitting droplet is fundamentally
different from the active spherical particles considered here. We note that the spontaneous
motion of active droplets with large Pe has been demonstrated recently by de Blois
et al. (2021), who observed that droplets attain large speeds in the channel relative to
unbounded domains. Those authors rationalised these findings using an intuitive analysis
based on an analogy with the classical (Bretherton 1961) problem. It would be worthwhile
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to revisit that analysis following a systematic approach using matched asymptotic
expansions.

Finally, we note that the focus on active droplets in the literature is due partly to a
commonly held view that spontaneous motion cannot occur for particles due to their
small Pe (Michelin 2023). However, recent theoretical results have challenged this view
by showing that spontaneous motion in confined particles can occur at values of Pe
that are significantly smaller than in unbounded domains (Desai & Michelin 2021,
2022; Picella & Michelin 2022). The present work not only provides a clear theoretical
demonstration of spontaneous motion of a strongly confined particle in a channel at small
Pe, but also shows that this motion is possible at arbitrarily small Pe. Thus our theory
has direct implications for the study of active particles and, in particular, could inform
experimental realisations of symmetry-breaking spontaneous motion. To this end, it would
be useful to study the stability of the axisymmetric steady-state solutions by analysing the
time-dependent problem in the presence of random fluctuations, which should be relevant
to experiments.
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