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It is generally believed that the velocity and passive scalar fields share many similarities
and differences in wall-bounded turbulence. In the present study, we conduct a series
of direct numerical simulations of compressible channel flows with passive scalars and
employ the two-dimensional spectral linear stochastic estimation and the correlation
function as diagnostic tools to shed light on these aspects. Particular attention is paid to the
relevant multiphysics couplings in the spectral domain, i.e. the velocity–temperature (u −
T), scalar–temperature (g − T) and velocity–scalar (u − g) couplings. These couplings
are found to be utterly different at a given wall-normal position in the logarithmic and
outer regions. Specifically, in the logarithmic region, the u − T and u − g couplings
are tight at the scales that correspond to the attached eddies and the very large-scale
motions (VLSMs), whereas the g − T coupling is robust in the whole spectral domain.
In the outer region, u − T and u − g couplings are only active at the scales corresponding
to the VLSMs, whereas the g − T coupling is diminished but still strong at all scales.
Further analysis indicates that although the temperature field in the vast majority of zones
in a channel can be roughly treated as a passive scalar, its physical properties gradually
deviate from those of a pure passive scalar as the wall-normal height increases due to
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the enhancement of the acoustic mode. Furthermore, the deep involvement of the pressure
field in the self-sustaining process of energy-containing motions also drives the streamwise
velocity fluctuation away from a passive scalar. The current work is an extension of our
previous study (Cheng & Fu, J. Fluid Mech., vol. 964, 2023, A15), and further uncovers
the details of the multiphysics couplings in compressible wall turbulence.

Key words: compressible boundary layers, turbulent boundary layers, turbulence theory

1. Introduction

The study of passive scalars evolving in wall turbulence is of great practical significance.
For example, it is representative of the diffusion of pollutants, and the evolution of the
temperature field in low-Mach-number flows with small temperature differences (Cebeci
& Bradshaw 2012; Lim & Vanderwel 2023). As accurate measurements of statistics of
the passive tracers are quite challenging (Gowen & Smith 1967; Kader 1981; Nagano
& Tagawa 1988), direct numerical simulation (DNS) has become an excellent tool for
investigating the passive scalar in wall-bounded turbulence, which can provide ample
information related to the details of the passive scalar field. A growing body of knowledge
about the physical characteristics of the passive scalar has been accumulated due to
enhanced computing power.

As early as the 1980s, Kim & Moin (1989) firstly performed the DNSs of passive
scalars in incompressible turbulent channel flows at Reτ = 180 (Reτ = uτ h/νw denotes
the friction Reynolds number; uτ is the friction velocity, νw the kinematic viscosity at the
wall and h the channel half-width; the subscript w refers to the quantities evaluated at the
wall surface) with various molecular Prandtl numbers Pr by adding a uniform volumetric
body force into the passive scalar transport equation. Subsequently, Kawamura, Abe &
Matsuo (1999) and Abe, Kawamura & Matsuo (2004) further extended the Reynolds
number of the simulation to achieve a discernible scale separation. All these pioneer works
reported the similarities between the passive scalar and streamwise velocity fields in the
near-wall region when Pr is close to unity, which conform to the celebrated Reynolds
analogy (Kader 1981). Specifically, the passive scalar is observed to organize in a streaky
manner, which resembles the low- and high-speed velocity streaks in the vicinity of
the wall. The length scales of these streaky scalars are found to be scaled in viscous
units. High-Reynolds-number simulations have been achieved in the last decade. Pirozzoli,
Bernardini & Orlandi (2016) and Alcántara-Ávila, Hoyas & Pérez-Quiles (2021) simulated
the incompressible channel flows with passive scalars at Pr ≤ 1 when Reτ ≈ 4000 and
Reτ ≈ 5000, respectively. Very recently, Pirozzoli et al. (2022) conducted a simulation
of pipe flow at Reτ ≈ 6000, including a passive scalar field with Pr = 1. With the
accumulation of the DNS database, some differences between the passive scalar and
streamwise velocity fields have been uncovered. Based on the dataset built in a previous
study (Abe et al. 2004), Abe & Antonia (2009) reported that flawed similarities can be
traced in the regions where the streamwise pressure gradient is large due to the existence
of near-wall vortices. Pirozzoli et al. (2016) also observed that the interfaces between
the adjacent motions of the scalar field are sharper than those of the velocity fields. It
is worth noting that these results are all qualitative, and other analytical approaches should
be developed to quantify these differences. This is one of the objectives of the present
study.

For the high-fidelity simulation of the passive scalar in compressible wall-bounded
turbulence, however, the existing works are quite scarce. This is mainly due to the huge

983 A38-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

16
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.166


Velocity, temperature and scalar fields in compressible flows

computational resources required to solve the compressible Navier–Stokes (NS) equations
along with a passive scalar transport equation. Friedrich, Foysi & Sesterhenn (2006)
performed a series of DNSs of compressible turbulent channel flows, including passive
scalar transport with Mach numbers ranging from 0.3 to 3.5. The passive scalar is added to
the flow through one channel wall and removed through the other. However, the semilocal
friction Reynolds numbers Re∗

τ of their cases are not high (Re∗
τ = Reτ

√
(ρ̄c/ρ̄w)/(μ̄c/μ̄w);

ρ is the density, μ the dynamic viscosity; the subscript c refers to the quantities evaluated
at the channel centre; ·̄ denotes the average value). We take special care of the Re∗

τ of
the simulations because previous studies indicate that Re∗

τ can reasonably clarify the
Reynolds-number effects on the statistics involving the thermodynamic and the velocity
variables in compressible channel flows (Gerolymos & Vallet 2014; Patel et al. 2015;
Griffin, Fu & Moin 2021; Huang, Duan & Choudhari 2022; Cheng et al. 2024). The
magnitude of Re∗

τ should be high enough to obtain a discernible logarithmic region, which
is a primary condition for investigating the multiscale eddies and their interactions in
depth.

In our previous work (Cheng & Fu 2023a), we resorted to the spectral linear stochastic
estimation (SLSE) to dissect the coupling between the velocity and temperature fields
in compressible channel flows. It has been demonstrated that this coupling is tight at
the scales corresponding to the energy-containing motions in the wall-normal position
under consideration, such as the self-similar attached eddies in the logarithmic region
(Townsend 1976), and the very large-scale motions (VLSMs) in the outer region (Hutchins
& Marusic 2007). One of the referees posed a profound question concerning this result,
that is, how much of this observed coupling can be attributed to a genuine dynamical
interaction between the energy and momentum equations, and how much is a simple
transport effect? The equivalent question is: to what extent can the temperature field in
compressible wall turbulence be considered as a passive scalar? A derivative question is
in which part of the boundary layer do the features of the temperature field depart from
those of a passive scalar field most? It is undeniable that a wide variety of previous studies
have reported the similarities between the streamwise velocity and temperature fields in
compressible wall-bounded turbulence, for example Cheng & Fu (2022b) and Chen et al.
(2023a,b), to name a few. However, these existing works cannot measure the degree of
similarity between the temperature, streamwise velocity and passive scalar fields. In light
of this, there is no doubt that performing DNSs of compressible wall turbulence with
passive scalars at moderate Reynolds number and appraising the multiphysics couplings
by appealing to the SLSE is a cogent approach to elucidate the proposed problems. It also
helps to address the lack of statistics on the passive scalar in compressible wall turbulence
in the literature.

In the present study, we are thus dedicated to the multiphysics couplings
in the subsonic/supersonic turbulent channel flows, which are comprised of the
velocity–temperature (u − T), scalar–temperature (g − T) and velocity–scalar (u − g)
couplings. We first elaborate on clarifying the differences between the streamwise
velocity and the passive scalar. Through the lens of governing equations, the underlying
mechanisms of these differences can be attributed to two factors: one is the distinct form of
the viscous terms in the streamwise momentum equation and the passive scalar transport
equation (for incompressible flows, their forms are identical); another is the inclusion of
the pressure field in the streamwise momentum equation of the NS equations, instead of
the passive scalar transport equation. Hence, we will analyse their effects separately by
conducting well-designed DNSs and employing the SLSE as the diagnostic tool. Based on
these novel understandings, we will then concentrate on the role of the temperature in the
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flow field, i.e. to what extent can the temperature be treated as a passive scalar? Moreover,
we will also focus on the connection between the multiphysics couplings and the pressure
field.

The remainder of this paper is organized as follows. In §§ 2 and 3, the designed DNS
cases and the SLSE approach are introduced, respectively. The effects of the different
forms of the viscous terms and the inclusion of the pressure field on the multiphysics
couplings are investigated in §§ 4 and 5, separately. In § 6, some discussions are given,
such as the relationship between the temperature and passive scalar fields, the relationship
between the pressure and velocity fields, and the Reynolds-number and Mach-number
effects on the multiphysics couplings. Concluding remarks are present in § 7.

2. Numerical simulation set-ups

We conduct numerical simulations of supersonic channel flows at a series of Mach
numbers Mb = Ub/Cw (Ub is the bulk velocity, and Cw is the speed of sound at wall
temperature) and Reynolds numbers Reb = ρbUbh/μw. All these cases are performed
in a computational domain of 4πh × 2πh × 2h in the streamwise (x), spanwise (z) and
wall-normal ( y) directions, respectively. Numerous previous studies have verified that
these set-ups of dimensions can resolve most of the energy-containing motions in the
logarithmic and outer regions of a boundary layer (Agostini & Leschziner 2014; Cheng
& Fu 2023a). Both the Reynolds (denoted as φ̄) and the Favre averaged (denoted as φ̃ =
ρφ/ρ̄) statistics are used in the present study. The corresponding fluctuating components
are represented as φ′ and φ′′, respectively.

The simulations have been conducted with a finite-difference code, by mainly solving
the non-dimensional three-dimensional compressible NS equations along with a standard
passive scalar transport equation (not the single transport equation solved in the present
study), which take the form of

∂ρ

∂t
+ ∂ (ρui)

∂xi
= 0,

∂ρui

∂t
+ ∂

(
ρuiuj + pδij

)
∂xj

= 1
Reb

∂σij

∂xj
+ fi,

∂ρe
∂t

+ ∂
[
uj(ρe + p)

]
∂xj

= −∂qj

∂xj
+ 1

Reb

∂
(
σijui

)
∂xj

+ fiui,

∂ρg
∂t

+ ∂
(
ρguj

)
∂xj

= 1
RebSc

∂

∂xj

(
μ

∂g
∂xj

)
+ fg,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.1)

where ui, p, qj, g and σij denote the velocity component, the pressure, the components
of the heat-flux vector, the scalar and the viscous stress tensor, respectively. Here e =
cvT + uiui/2 is the total energy per unit mass, where T and cv denote the temperature and
the specific heat at constant volume, respectively. The heat flux qj is calculated through
Fourier’s law, i.e. qj = −k∂T/∂xj, where k = cpμ/Pr with cp being the specific heat at
constant pressure and Pr = 0.72. The Kronecker symbol is δij. For the scalar transport
equation, Sc represents the Schmidt number. In the present study, u, w and v denote
the velocities along the streamwise (x), spanwise (z) and wall-normal ( y) directions,
respectively, and a specific heat ratio γ of 1.4 is employed with cv = 1/(M2

bγ (γ − 1))

and cp = γ cv .
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Case Mb Reb Reτ Re∗
τ Nx Ny Nz 
x+ 
z+ 
y+

min 
y+
max Tuτ /h

Ma08Re3K 0.8 3000 194 169 270 125 270 8.9 4.5 0.43 4.5 42.5
Ma15Re3K 1.5 3000 217 145 256 128 192 10.7 7.0 0.33 8.2 28.6
Ma30Re5K 3.0 4880 446 148 700 223 700 8.0 4.0 0.47 5.5 15.2
Ma15Re9K 1.5 9400 594 395 1024 273 1024 7.3 3.7 0.5 5.9 10.2

Table 1. Parameter settings of the first type compressible DNS database (D1) by solving the NS equations with
(2.4). Here, Nx, Ny, Nz denote numbers of computational grid points in streamwise, wall-normal and spanwise
directions, respectively, and 
x+ and 
z+ denote the streamwise and spanwise grid resolutions in viscous
units, respectively. Here 
y+

min and 
y+
max denote the finest and the coarsest resolution in the wall-normal

direction, respectively, and Tuτ /h indicates the total eddy turnover time used to accumulate statistics.

The convective terms are discretized with a seventh-order upwind-biased scheme, and
the viscous terms are evaluated with an eighth-order central difference scheme. Time
advancement is performed using the third-order strong-stability-preserving Runge–Kutta
method (Gottlieb, Shu & Tadmor 2001). The dependence of dynamic viscosity μ on
temperature T is given by Sutherland’s law, i.e.

μ = μ0
T0 + S
T + S

(
T
T0

)3/2

, (2.2)

where S = 110.4 K and T0 = 273.1 K. The fluid is Newtonian with the viscous shear stress
modelled as

σij = 2μ(Sij − 1
3 Skkδij), (2.3)

where Sij = (∂ui/∂xj + ∂uj/∂xi)/2 is the rate of the strain tensor.
The isothermal no-slip conditions are imposed at the top and bottom walls, and the

periodic boundary condition is imposed in the wall-parallel directions, i.e. the x and z
directions. For the scalar field, g is set as zero at the walls. All simulations begin with a
fully developed field of similar parameter set-up obtained in our previous studies (Cheng
& Fu 2022b, 2023a; Bai, Cheng & Fu 2023a; Bai et al. 2023b; Cheng, Shyy & Fu
2023) (see tables 1 and 2 of the current study). The initial scalar field is copied from the
instantaneous streamwise velocity field at this instant. A body force fi is imposed in the
streamwise direction to maintain a constant mass flow rate, and a corresponding source
term fiui is also added to the energy equation. For the passive scalar, fg in (2.1) is also
used to keep the flow rate of ρg to be constant (similar to the body force added to the
streamwise momentum equation). It represents a circumstance where the passive scalar is
created internally and removed from both walls. In other words, the boundary and initial
conditions are identical for u and g. Similar set-ups were also built by Pirozzoli et al.
(2016) to simulate the incompressible channel flows with passive scalars. The validation
of the code is provided in Appendix A.

In the present study, Sc is fixed at unity. This treatment ensures that the scalar transport
equation in (2.1) resembles the streamwise momentum equation to the utmost extent.
Under this condition, the u − g coupling is the tightest without doubt, and the major
factors that contribute to the differences between u and g fields can be isolated. They can
be divided into two types from the prism of the governing equations. The first one is the
pressure-term-related factor (PRF), which manifests as the involvement of the pressure
field in the streamwise momentum equation, but not in the standard scalar transport
equation. In this case, different from g′, u′ is not passively advected, and it can react to the
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Case Mb Reb Reτ Re∗
τ Nx Ny Nz 
x+ 
z+ 
y+

min 
y+
max Tuτ /h

Ma08Re8K 0.8 7667 442 385 1024 223 400 5.4 6.9 0.44 5.4 7.8
Ma08Re17K 0.8 17 000 882 778 1024 371 850 10.8 6.5 0.63 6.4 5.4
Ma15Re9K 1.5 9400 594 395 1024 273 1024 7.3 3.7 0.5 5.9 6.1
Ma15Re20K 1.5 20 020 1150 780 1550 449 1550 9.3 4.7 0.49 6.9 5.0

Table 2. Parameter settings of the second type compressible DNS database (D2) by solving (2.1).

formation of the fronts by feedback pressure (Pirozzoli et al. 2016). The PRF also exists
in incompressible flows (Kim & Moin 1989; Abe & Antonia 2009), though it is not as
complicated as in compressible ones due to the absence of the energy governing equation.
The second is the viscous-term-related factor (VRF), which shows that the velocity and
scalar gradients are involved in the momentum and scalar transport equations in distinct
styles. For compressible wall turbulence, the compressibility plays a non-negligible role
in the VRF, which is manifested as the inclusion of the expansion term � · u in σij.
Additionally, the dynamic viscosity μ is temperature-dependent, which can also influence
the magnitude of σij. This intricate scenario does not exist for incompressible wall
turbulence. The VRF can be studied in depth by comparing the u and g fields in specially
established cases via solving an off-standard scalar transport equation along with the
standard NS equations, namely,

∂ρg
∂t

+ ∂
(
ρguj + pδ1j

)
∂xj

= 1
RebSc

∂

∂xj

(
μ

∂g
∂xj

)
+ fg. (2.4)

In this way, the scalar also becomes active like the streamwise velocity, and the main
differences between these two fields should be ascribed to the VRF, rather than the PRF.
Small differences between the momentum and passive scalar equations may originate from
the nonlinearity in the momentum equation. As we will see in § 4.2, it exerts negligible
effects on the multiphysics couplings.

Based on the above analyses, the simulations conducted in the present study are
well-designed. First, the VRF is dissected alone by solving (2.4) along with the
NS equations. Details of the parameter settings of the formed database are listed in
table 1. This type of data is named D1 herein and can be considered as a kind of
numerical experiment. After all, this type of scalar field does not exist in reality. The
cases Ma08Re3K, Ma15Re3K and Ma30Re50K in D1 are employed to examine the
Mach-number effects. The semilocal friction Reynolds numbers of these cases are nearly
identical to varying Mach numbers. The cases Ma15Re3K and Ma15Re9K are used to
investigate the Reynolds-number effects. We will show in § 4 that the VRF takes effect
in the near-wall region only. Second, the PRF is studied by solving (2.1). Our analyses
in the following contents reveal that the PRF is dominant in the logarithmic and outer
regions. The enlargement of the simulated Reb is beneficial for obtaining a discernible
logarithmic region for the facilitation of investigation. Details of the parameter settings of
this type of database are listed in table 2, and named as D2. The maximum number of grid
points is in excess of 1 × 109. The cases Ma08Re17K and Ma15Re20K with the highest
Re∗

τ are mainly used to show the results in following sections. The cases Ma08Re8K and
Ma08Re17K are of similar Re∗

τ with those of Ma15Re9K and Ma15Re20K, which are
adopted in § 6.4 to clarify the Mach-number and Reynolds-number effects. As a side note,
the ratio between the Batchelor scalar dissipative scale (ηg) and the Kolmogorov scale (η)
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is approximately Sc−0.5 (Batchelor 1959). As Sc is maintained as unity in the present study,
ηg approaches η. Hence, the grid resolutions of these cases are sufficient for capturing the
typical structures of the scalar field. In Appendix B, the effects of the grid resolution
on the statistical properties of passive scalar and the related multiphysics couplings are
investigated. It is demonstrated that the grid resolutions listed in table 2 are sufficient for
resolving them when Sc = 1.

Throughout the study, we use the superscript + to represent the normalization with
ρw, the friction velocity uτ , the friction temperature (denoted as Tτ , Tτ = qw/ρwcpuτ , qw
is the mean heat flux on the wall), the viscous length scale (denoted as δν , δν = νw/uτ ,
νw = μw/ρw) and the friction scalar gτ , which is defined as (Friedrich et al. 2006)

gτ = μ

Sc
∂g
∂y

∣∣∣∣∣
w

/
(ρwuτ ). (2.5)

We also use the superscript ∗ to represent the normalization with the semilocal wall units,
i.e. u∗

τ = √
τw/ρ̄ and δ∗

ν = ν( y)/u∗
τ .

3. Diagnostic tool: spectral linear stochastic estimation and correlation function

In our previous study, we introduced the SLSE to dissect the coupling between the
velocity and temperature fields in compressible wall turbulence and also demonstrated
its effectiveness (Cheng & Fu 2023a). In the present study, we extend it to study the
multiphysics interactions associated with the u, g and T fields here. The SLSE employed
in the present study can be divided into two branches, and are briefly introduced here in
return.

The DNS instantaneous fields at a given wall-normal height can be decomposed into
Fourier coefficients along the streamwise and spanwise directions by leveraging the
homogeneity along these two directions. The SLSE fully takes advantage of this. The
comparison between the u − T and g − T couplings can shed light on the differences
between velocity and passive scalar fields resulting from the PRF and VRF. Because if they
do not exist, u − T and g − T couplings must be totally identical in the spectral domain.
Hence, the first branch of SLSE takes the form of

T ′
p ( y) = F−1

x,z
{
HΦT (λx, λz; y) Fx,z

[
Φ ′ ( y)

]}
, (3.1)

where T ′
p denotes the predicted value of the variable T ′, and Φ can be u or g. Here Fx,z

and F−1
x,z denote the two-dimensional (2-D) fast Fourier transform and the inverse 2-D fast

Fourier transform in the streamwise and the spanwise directions, respectively. Here HΦT is
the transfer kernel, which evaluates the correlation between T̂ ′( y) and Φ̂ ′( y) at streamwise
length scale λx and spanwise length scale λz, and can be calculated as

HΦT (λx, λz; y) =
〈
T̂ ′ (λx, λz; y) ˘̂Φ ′ (λx, λz; y)

〉
〈
Φ̂ ′ (λx, λz; y) ˘̂Φ ′ (λx, λz; y)

〉 , (3.2)

where 〈·〉 denotes the ensemble averaging, Φ̂ ′ and T̂ ′ are the Fourier coefficients of Φ ′

and T ′, respectively, and ˘̂Φ ′ represents the complex conjugate of Φ̂ ′. In some sense, T ′
p( y)

in (3.1) is the component of T ′( y) that is linearly correlated with the Φ ′( y) at a given
wall-normal height y. In Cheng & Fu (2023a), we utilized the density-weighted streamwise

983 A38-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

16
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.166


C. Cheng and L. Fu

velocity fluctuation (
√

ρu′′) as the input signal Φ ′ in (3.1). As we have observed that the
results of the employment of u′ are nearly identical with those of

√
ρu′′, we use u′ in the

present study for the sake of conciseness. To further measure the coherence between T ′( y)
and Φ ′( y), a 2-D linear coherence spectrum (LCS) is also introduced here by following
previous studies (Baars, Hutchins & Marusic 2017; Baars & Marusic 2020; Cheng & Fu
2022a), and can be cast as

γ 2
ΦT (λx, λz; y) =

∣∣∣〈T̂ ′ (λx, λz; y) ˘̂Φ ′ (λx, λz; y)
〉∣∣∣2

〈∣∣T̂ ′ (λx, λz; y)
∣∣2

〉 〈∣∣Φ̂ ′ (λx, λz; y)
∣∣2

〉 , (3.3)

where | · | is the modulus. Here γ 2
ΦT evaluates the square of the scale-specific correlation

between Φ ′( y) and T
′
( y) with 0 ≤ γ 2

ΦT ≤ 1 (Bendat & Piersol 2011). Here γ 2
ΦT = 1

indicates a perfectly linear correlation between the T ′ and Φ ′ signals at a wavelength
pair (λx, λz), whereas γ 2

ΦT = 0 implies a purely uncorrelated relationship. Moreover, the
overall intensity of Φ − T coupling can be further quantified by calculating the relative
deviation (RD), which reads as

RDΦT = T ′2 − T ′2
p

T ′2 . (3.4)

The smaller RDΦT , the tighter Φ − T coupling, and vice versa.
Another branch of SLSE aims to inspect the u − g coupling directly, namely,

g′
p ( y) = F−1

x,z
{
Hug (λx, λz; y) Fx,z

[
u′ ( y)

]}
. (3.5)

Similarly, the kernel function Hug can be expressed as

Hug (λx, λz; y) =
〈
ĝ′ (λx, λz; y) ˘̂u′ (λx, λz; y)

〉
〈
û′ (λx, λz; y) ˘̂u′ (λx, λz; y)

〉 . (3.6)

The related LCS reads as

γ 2
ug (λx, λz; y) =

∣∣∣〈ĝ′ (λx, λz; y) ˘̂u′ (λx, λz; y)
〉∣∣∣2

〈∣∣ĝ′ (λx, λz; y)
∣∣2

〉 〈∣∣û′ (λx, λz; y)
∣∣2

〉 . (3.7)

Finally, the corresponding relative deviation can also be defined as

RDug = g′2 − g′2
p

g′2 . (3.8)

As can be seen, T ′ in the first branch of SLSE serves as a bridge between the u′ and
g′ fields. This treatment is not arbitrary. On the one hand, T ′ is typically considered as
a passive scalar in incompressible wall turbulence (Abe & Antonia 2009; Antonia, Abe
& Kawamura 2009) and compressible wall turbulence at low Mach number (Chen et al.
2023a; Cheng & Fu 2023b), just like g′. On the other hand, T ′ can strikingly influence
the u′ field through the interactions between the momentum and energy equations in
compressible wall turbulence, whereas g′ cannot. Hence, the T ′ field is highly linked
with both u′ and g′ concurrently, and thus choosing it as the connection is logical.
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Moreover, investigating the PRF and the VRF from the prism of the u − T and g − T
couplings can reveal a wealth of information about the multiphysics interactions in
compressible wall turbulence.

At last, we briefly introduce another classical method adopted in the present study to
cast light on the multiphysics couplings, namely, the correlation function. For a variable
Φ (similarly, Φ can be u or g), its correlation with T ′ can be defined as

CΦT =
〈
Φ ′T ′〉

Φ ′
rmsT ′

rms
, (3.9)

where the subscript ‘rms’ denotes the root-mean-square (r.m.s.) of the corresponding
variable. The larger CΦT , the tighter Φ − T coupling, and vice versa. Compared with
RDΦT defined in (3.4), the correlation function CΦT is a more direct metric to measure the
degree of the Φ − T coupling as a whole. Similarly, the function Cug reads as

Cug =
〈
u′g′〉

u′
rmsg′

rms
. (3.10)

In the next sections, we will deploy these tools introduced here to clarify the multiphysics
couplings.

4. Effects of the VRF

The major differences between the u and g fields can be ascribed to the emergence of
the VRF and the PRF. The cooperation of the pressure field in the convective term of the
non-standard scalar transport equation (namely, (2.4)) would make the scalar be active,
and aid in isolating the effects of the VRF. The formed DNS database D1 is analysed in
the present section, and we pay extensive attention to the differences between the u′ and g′
fields and their couplings with the third-party variable T ′.

4.1. General turbulence statistics
In this subsection, we are dedicated to dissecting the effects of VRF on the general
turbulence statistics. These analyses can give us an overview of the effects originating
from VRF. Figure 1(a,b) compares the viscous-scaled mean (figure 1a) and second-order

(Φ ′2+
) statistics (figure 1b) for the cases in D1 with different Mach numbers but similar

Re∗
τ , i.e. Ma08Re3K, Ma15Re3K and Ma30Re5K. It is noted that the magnitudes of uτ

and gτ are very close to each other. Both the mean and second-order profiles of the cases
with larger Mb are up-shifted. At a fixed Mb, the profiles of u and g overlap with each other.
It suggests that the VRF cannot lead to the disparity of the low-order statistics related to
the two fields. However, when high-order moments are taken into account, the differences
emerge. Figure 1(c,d) shows the corresponding profiles of the skewness (SΦ) (figure 1c)
and the flatness (figure 1d) (FΦ), respectively. It can be seen that Sg and Fg are remarkably
smaller than those of u′ in the near-wall region ( y∗ < 20) at a given Mb. It indicates that the
u′ field is more intermittent than the g′ field due to the occurrence of VRF. This scenario
is significant in the near-wall region, where the viscous effects and the compressibility
are the strongest (Coleman, Kim & Moser 1995). Moreover, the differences between the
high-order moments of u′ and g′ are more obvious for a larger Mb. It indicates that the
VRF leads to the distinct frequencies of occurrence of the extreme events for u′ and g′ in
the vicinity of the wall more or less. We have also checked the instantaneous fields and
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Figure 1. Variations of (a) the viscous-scaled mean statistics, (b) the second-order statistics, (c) the skewness
and (d) the flatness of u′ and g′ as functions of y∗ for the cases in D1 with different Mach numbers. All cases
are of Re∗

τ ≈ 150.

the spectra of these two variables at a given y∗. Both u′ and g′ bear streaky shapes in the
near-wall region, just like the patterns in incompressible flows (Abe et al. 2004; Abe &
Antonia 2009), and no visible difference can be found. We do not show them here for the
sake of brevity.

Next, we pay attention to the VRF effects in cases with different Reynolds numbers.
Figure 2(a,b) shows the variations of the skewness (figure 2a), and the flatness (figure 2b)
as functions of y∗ for the cases Ma15Re3K and Ma15Re9K in D1. The two cases are
of identical Mach numbers but different Reynolds numbers. It is not difficult to observe
that for both cases, the distributions of the high-order statistics of u′ and g′ only show
differences below y∗ < 100. It signifies that the effects of VRF are restricted to the
near-wall region. This is expected because in the logarithmic and outer regions, the
influences originating from the molecular viscosity are negligible (Pope 2000), so are the
viscous terms in (2.1) and (2.4).

All in all, the VRF mainly affects the intermittency of u′ and g′ in the near-wall region
( y∗ < 100), and the enlargement of the Mach number enhances this difference.

4.2. Multiphysics couplings
The subtle modification of the intermittency by the VRF might affect the multiphysics
couplings in the vicinity of the wall. In this subsection, we will resort to the diagnostic
tool introduced in § 3, namely the SLSE, to shed light on this effect.
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Figure 2. Variations of (a) the skewness, and (b) the flatness of u′ and g′ as functions of y∗ for the cases
Ma15Re3K and Ma15Re9K in D1.

Let us examine the variations of RDuT and RDgT first, which are helpful for the reader
to have an overview of the u − T and g − T couplings. Figure 3(a) shows the variations of
RDΦT as functions of y∗ for cases in D1 with Re∗

τ ≈ 150 but different Mach numbers. The
linear model can recover over 95 % of T ′2 for both u and g below y∗ = 10. This relative
error, however, rapidly increases as the wall-normal height increases. As expected, the
profiles of RDuT and RDgT collapse with each other above the near-wall region in each
case, regardless of the Mach number. It suggests that the VRF can only affect the u − T
and g − T couplings in the vicinity of the wall. A similar scenario can be observed in
the cases with Mb = 1.5 but different Reynolds numbers, whose results are displayed in
figure 3(b). Interestingly, the RDgT of a case is slightly larger than RDuT in the vicinity of
the wall. Figure 3(c,d) shows the same results, but as functions of y/h. It can be seen that
only the profiles with similar Re∗

τ collapse well beyond the near-wall region. Figure 3(e, f )
shows the counterparts for u − g coupling. The maximum value of RDug is less than 3 %
along the whole boundary layer, regardless of the Mach and Reynolds numbers. These
results suggest that u − g couplings in these cases are rather robust. We also inspect the
LCSs related to the u − T and u − g couplings at a given wall-normal height. No evident
difference can be found. It indicates that the VRF cannot alter the scale-based correlations
among u − T and g − T .

Next, figure 4 reports the corresponding results with regard to the correlation functions.
It is not difficult to observe that they are highly consistent with those of the SLSE.
Combining the observations in figures 3 and 4, we can conclude that changing the
Reynolds number has more remarkable effects on the degree of the u − T and g − T
couplings than the Mach number beyond the near-wall region. In § 5, our analyses
suggest that u − T coupling at a given wall-normal position is highly linked with the
energy-containing motions populating this region. The enlargement of the Reynolds
number would result in a more significant scale separation and thus intensifying the u − T
coupling. The changing of the Mach number cannot bring about such an effect, at least
within the cases under investigation. Furthermore, Cug ≈ 1 is maintained in all cases,
regardless of the Reynolds and Mach numbers, see figure 4(e, f ), which demonstrates
again that the VRF bears little effect on the u − g coupling. In Appendix C, we compare
the variation tendencies of 1 − RDΦT and CΦT by plotting them together. It can help the
readers to have an overview of the consistency between these two quantities.
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Figure 3. (a,b) Variations of RDΦT as functions of y∗ for (a) the cases with Re∗
τ ≈ 150 but different Mach

numbers, and (b) the cases with Mb = 1.5 but different Reynolds numbers; (c,d) variations of RDΦT as
functions of y/h for (c) the cases with Re∗

τ ≈ 150 but different Mach numbers, and (d) the cases with Mb = 1.5
but different Reynolds numbers; (e, f ) variations of RDug as functions of y∗ for (e) the cases with Re∗

τ ≈ 150
but different Mach numbers, and ( f ) the cases with Mb = 1.5 but different Reynolds numbers.

In summary, the effects of VRF are extremely limited. They only exert influences on
the intermittency of the near-wall flow and barely influence the multiphysics couplings
in the whole boundary layer. This observation implies that the main differences between
the velocity and scalar fields should be ascribed to the PRF. The Reynolds number acts
as a key parameter in shaping the u − T coupling. In the next section, we are dedicated
to investigating its effects in the logarithmic and outer regions through the lens of the
multiphysics couplings.
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Figure 4. (a,b) Variations of CΦT as functions of y∗ for (a) the cases with Re∗
τ ≈ 150 but different Mach

numbers, and (b) the cases with Mb = 1.5 but different Reynolds numbers; (c,d) variations of CΦT as functions
of y/h for (c) the cases with Re∗

τ ≈ 150 but different Mach numbers, and (d) the cases with Mb = 1.5 but
different Reynolds numbers; (e, f ) variations of Cug as functions of y∗ for (e) the cases with Re∗

τ ≈ 150 but
different Mach numbers, and ( f ) the cases with Mb = 1.5 but different Reynolds numbers.

5. Effects the PRF

So far, we have excluded the possible influences from the VRF on the differences between
the velocity and scalar fields in the logarithmic and outer regions by scrutinizing the
dataset D1. Hence, particular attention should be paid to the remaining factor, i.e. the PRF.
In this section, we concentrate on the effects of the PRF on the multiphysics couplings by
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Figure 5. Variations of (a) the viscous-scaled mean statistics, (b) the second-order statistics, (d) the skewness,
and (d) the flatness of u′ and g′ as functions of y∗ for the cases Ma08Re17K and Ma15Re20K in D2 with
different Mach numbers. All cases are of Re∗

τ ≈ 780.

appealing to the dataset D2, in which the standard passive scalar transport equation (2.1)
is solved at higher Reynolds numbers to obtain stable logarithmic regions.

5.1. General turbulence statistics
The comparisons of the statistics related to the scalar and the streamwise velocity in
incompressible wall-bounded turbulence have been reported by a myriad of studies, such
as Kim & Moin (1989), Abe et al. (2004), Abe & Antonia (2009), Antonia et al. (2009),
Alcántara-Ávila et al. (2021) and Pirozzoli et al. (2022), to name a few. However, the
corresponding results of compressible wall turbulence at moderate Reynolds numbers are
very limited. As a sanity check, we report them in this section first. Figure 5(a,b) compares
the viscous-scaled mean (figure 5a) and the second-order statistics (figure 5b) for the cases
Ma08Re17K and Ma15Re20K in D2 with different Mach numbers and nearly identical
Re∗

τ . The mean profiles of u and g at a higher Mach number are up-shifted; however, the
profiles of g are slightly lower than those of u in the logarithmic and outer regions for both
the two cases. This observation is different from the results shown in figure 1(a), which
indicates that the involvement of the pressure term in the streamwise momentum equation
has remarkable effects on the mean field of the streamwise velocity. For the variances
of u and g, their discrepancies are more significant, as shown in figure 5(b). Notably,
the magnitude of the scalar peak is larger than that of the streamwise velocity at a given
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Figure 6. (a) Premultiplied normalized spanwise spectra of u′ and g′ at y = 0.14h and y = 0.3h for the case
Ma15Re20K; (b) normalized spanwise spectra of u′ and g′ at y = 0.3h for the case Ma15Re20K.

Mach number. Pirozzoli et al. (2022) also reported a similar scenario in incompressible
pipe flows with passive scalars at various Reτ . They conjectured that the inclusion of the
pressure term equalizes kinetic energy across all three velocity components. On the other
hand, the magnitudes of the energy production terms of u and g are nearly identical in the
buffer layer. These two factors jointly lead to the different distributions of the variances in
the near-wall region displayed in figure 5(b). Figure 5(c,d) exhibits the variations of the
skewness and the flatness of these two variables in cases Ma08Re17K and Ma15Re20K of
D2. As can be seen, their variation tendencies are not identical in the logarithmic region
at a fixed Mach number. In a word, the effects of PRF are remarkable. Similar phenomena
cannot be observed in dataset D1.

More detailed scrutiny of their differences can be revealed by inspecting the spectra,
which is carried out in figure 6. Figure 6(a) shows the premultiplied normalized spanwise
spectra of u′ and g′ at y = 0.14h and y = 0.3h for the case Ma15Re20K. The spectral peaks
of u′ and g′ are identical, that is, λz = 0.7h and λz = 1.1h for y = 0.14h and y = 0.3h,
respectively. It suggests that the characteristic length scales of these two variables grow
simultaneously as the increase of wall-normal height. One thing that merits discussion is
that the peak magnitudes of g′ are smaller than those of u′, whereas at smaller wavelengths,
the energy contents of g′ are larger. Figure 6(b) compares the spectra of u′ and g′
at y = 0.3h. Particular attention is paid to the inertial range. It can be found that the
celebrated k−5/3

z scaling can be traced in the u′ spectrum, whereas the spectrum of g′

exhibits k−4/3
z behaviour. This is consistent with the theoretical prediction for the passive

scalar in shear flows (Lohse 1994), and has also been observed in an incompressible
pipe flow at moderate Reynolds number (Pirozzoli et al. 2022). The current study shows
that mild compressibility cannot alter this scaling, and the theoretical analysis is still
applicable.

At last, it is sensible to take a look at the instantaneous flow fields of these two variables,
which are shown in figure 7. Figures 7(a) and 7(b) display a z − y plane of u′+ and g′+ of
the case Ma15Re20K, respectively. It can be seen that these two fields bear similar flow
patterns in general. This observation is consistent with the spectra shown in figure 6(a).
However, the scalar can be recognized to have sharper fronts, whereas the interfaces of u′
motions are coarser. This difference should be attributed to the PRF (Pirozzoli et al. 2016).
Its effects on the multiphysics couplings will be dissected in the next subsection.
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Figure 7. Instantaneous normalized (a) streamwise velocity fluctuation u′+, and (b) passive scalar g′+
contours in a z − y plane of the case Ma15Re20K.

5.2. Multiphysics couplings
Before proceeding with the detailed analysis, it is better to have a rough idea of the overall
picture of the multiphysics couplings. Figure 8(a) shows the distributions of RDΦT (Φ = u
or g) for the cases Ma08Re17K and Ma15Re20K in D2. Notably, RDuT and RDgT are
nearly identical within y∗ < 10. Although there are some gaps between the RDuT and
RDgT profiles, they are relatively small compared with those in the logarithmic and outer
regions. Therefore, it still can be accepted that u′ and g′ fields are coupled with T ′ in the
same degree in the viscous sublayer. However, prominent differences begin to emerge
in the buffer layer and become significant in the logarithmic region. Taking the case
Ma15Re20K as an example, 50 % and 88 % fluctuation intensity of T ′ can be adequately
captured by the linear couplings with u′ and g′ at y∗

p ≈ 100, respectively. It underlines
the fact that the influences originated from PRF decouple u′ and T ′ evidently in the
logarithmic and outer regions. On the contrary, T ′ and g′ are coupled rather robustly in
the whole channel. Conspicuously, there is still 50 % fluctuation intensity of T ′ that can be
satisfactorily captured by their coupling at the channel centre for Ma15Re20K. Apparently,
the enlargement of the Mach number weakens the corresponding coherence. Figure 8(b)
shows the variations of RDug as functions of y∗. The magnitudes of RDug increase rapidly
in the logarithmic and outer regions. It shows once again that their coupling is diminished
by the PRF in these regions. Figures 8(c) and 8(d) display the variations of CΦT (Φ = u or
g) and Cug, respectively. As expected, CuT and Cug attenuate gradually beyond the viscous
sublayer, whereas CgT only decay strikingly in the outer region. These observations are
consistent with those of RDΦT and RDug shown in figures 8(a) and 8(b). In the following
subsections, we will investigate the multiphysics couplings in the logarithmic and outer
regions separately.

5.2.1. Multiphysics couplings in the logarithmic region
The γ 2

uT and γ 2
gT spectra of the case Ma15Re20K for y∗ = 3.9

√
Re∗

τ (namely the centre of
the logarithmic layer (Mathis, Hutchins & Marusic 2011), ym ≈ 0.14h for Ma15Re20K) are
displayed in figures 9(a) and 9(b), respectively. We recall from (3.3) that γ 2

ΦT is a measure
of coherence between T ′ and Φ ′ at a given wall-normal position (γ 2

ΦT = 1 indicates a
prefect coherence, and γ 2

ΦT = 0 indicates no coherence). For γ 2
uT , there exists only a small
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Figure 8. (a,b) Variations of (a) RDΦT and (b) RDug as functions of y∗ for the cases Ma08Re17K and
Ma15Re20K in D2; (c,d) variations of (c) CΦT and (d) Cug as functions of y∗ for the cases Ma08Re17K
and Ma15Re20K in D2.

portion of the scale range where the LCS is prominent. This range is roughly bounded by

λx > λz, λx > 10y, λz > 2y. (5.1a–c)

Cheng & Fu (2023a) pointed out that these range boundaries correspond to the length
scales of the celebrated attached eddies (Marusic & Monty 2019). It hints at the fact
that u′ and T ′ are linearly coupled at scales larger than those of the self-similar eddies.
More fruitful discussion about this feature can be found in our previous work (Cheng
& Fu 2023a), and is not given here. For γ 2

gT , however, things are totally different. It is
apparent that g′ and T ′ are highly coupled at all scales, including the small-scale range. By
comparison, it is not difficult to make a conclusion that the loss of the coherence between
T ′ and u′ at scales beyond (5.1a–c) should be ascribed to the effects originated from the
pressure field, namely, the PRF. Hence, it is sensible to inspect the LCS associated with p′
and T ′, which reads as

γ 2
pT (λx, λz; y) =

∣∣∣〈T̂ ′ (λx, λz; y) ˘̂p′ (λx, λz; y)
〉∣∣∣2

〈∣∣T̂ ′ (λx, λz; y)
∣∣2

〉 〈∣∣p̂′ (λx, λz; y)
∣∣2

〉 . (5.2)

Figure 9(c) presents its result at the same wall-normal position. Interestingly, γ 2
pT is

prominent at a scale range with low λx (λx < λz), beyond the boundaries given by (5.1a–c).
This observation is reminiscent of some previous studies, which reported that p′ is more
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Figure 9. The (a) γ 2
uT , (b) γ 2

gT , (c) γ 2
pT and (d) γ 2

ug spectra for the case Ma15Re20K when y∗ = 3.9
√

Re∗
τ . The

dashed oblique lines in (a,c,d) denote λx = λz, and the dashed transverse and the vertical lines denote λz = 2y
and λx = 10y, respectively.

energetic at small scales (Tsuji et al. 2007; Tsuji, Marusic & Johansson 2016; Cheng & Fu
2022b). For example, in our previous work (Cheng & Fu 2022b), we revealed that the scale
feature of the self-similar p′ motions in supersonic channel flows can be characterized
by λx = 1.8y, which is significantly shorter than that of the self-similar u′ motions at a
given wall-normal position, that is λx = 15.5y. In this vein, the energetic p′ motions at
small-scale range decouple u′ and T ′ at these scales. Hence, there must be a mechanism
to achieve this. We hypothesize that it is related to the self-sustaining process of the
energy-containing eddies in the logarithmic region, and the relevant discussion is given
in § 6.3. Figure 9(d) shows the distributions of γ 2

ug. It can be seen that this spectrum is
akin to that of γ 2

uT shown in figure 9(a). Especially, the boundaries of the energetic range
are identical to those of γ 2

uT . It indicates the similarities between g′ and T ′, which will be
discussed in § 6.1. The spectra obtained from the Ma08Re17K are similar, and we do not
show them here for brevity.

Figure 10(a,c,e) shows the 2-D joint probability density functions (p.d.f.s) between u′+
and T ′+ (figure 10a), u′+ and g′+ (figure 10c) and g′+ and T ′+ (figure 10e) when y∗ =
3.9

√
Re∗

τ for the case Ma15Re20K. The shapes of the p.d.f.s between u′+ and T ′+, and u′+
and g′+ are both elliptical with dominance in the first and third quadrants. By contrast, the
shape of the p.d.f. between g′+ and T ′+ looks more like a straight line. These observations
suggest that the correlations between u′+ and T ′+ and u′+ and g′+ are not as strong as the
one between g′+ and T ′+ in the logarithmic region.

5.2.2. Multiphysics couplings in the outer region
According to the profiles of RDgT , RDuT and RDug shown in figure 9, the coupling between
g′ and T ′ can be observed to be depressed in the outer region, and the counterpart of u′ and
T ′(g′) is the weakest within the whole boundary layer. Hence, it is intriguing to inspect this
change by resorting to the SLSE. The results presented below are all collected at y = 0.8h.
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Figure 10. (a,c,e) The 2-D joint p.d.f.s between (a) u′+ and T ′+, (c) u′+ and g′+, (d) g′+ and T ′+ when
y∗ = 3.9

√
Re∗

τ ; (b,d, f ) 2-D joint p.d.f.s of (b) u′+ and T ′+, (d) u′+ and g′+, ( f ) g′+ and T ′+ when y = 0.8h.
The data is taken from the case Ma15Re20K.

Figure 11(a) illustrates the γ 2
uT spectrum of the case Ma15Re20K. Intriguingly, the

spectrum is only non-trivial at the scale range corresponding to the VLSMs (Del Álamo
& Jiménez 2003; Hutchins & Marusic 2007; Cheng et al. 2019), namely, λx > 4h and
λz > h, which is significantly different from the scenario in the logarithmic region (see
figure 9a). Combining the energetic range of γ 2

uT in the logarithmic region, we can
conclude that u′ and T ′ are coupled with the medium of the energy-containing motions at
each wall-normal position. In other words, their coupling ties in with the energy-containing
motions due to the presence of the PRF. Figure 12 shows the instantaneous fields of u′+
(figure 12a), g′+ (figure 12b) and T ′+ at y = 0.8h (figure 12c) in the case Ma15Re20K.
The large-scale structures of u′ are visible, whereas for g′ and T ′, they are not. In contrast,
both g′ and T ′ are characterized by spotted extreme events without discernible large-scale
streaky shapes. Hence, in compressible channel flows, the large-scale structures of g′ with
λx > 4h also do not dominate in the outer region when Sc is close to unity, just like the
scenario in incompressible cases (Abe et al. 2004; Pirozzoli 2023). The appearance of the
coupling between u′ and g′ at the scales of the VLSMs does not indicate the dominance
of the large-scale structures of g′ in the outer region. It only suggests that u′ and g′ are
well-coherent in the scale range corresponding to the energy-containing motions in the
outer region.

On the other hand, though the coupling between g′ and T ′ is recognized to be diminished
in the outer region, however, the driving mechanism behind it is totally different from
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Figure 11. The (a) γ 2
uT , (b) γ 2

gT , (c) γ 2
pT and (d) γ 2

ug spectra for the case Ma15Re20K when y = 0.8h.
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Figure 12. Top view of the instantaneous (a) streamwise velocity fluctuation u′+, (b) passive scalar
fluctuation g′+ and (c) temperature fluctuation T ′+ at y = 0.8h.

that of u′ and T ′, see the γ 2
gT spectrum in figure 11(b). Comparing with the γ 2

gT in the
logarithmic region (figure 9b), the coherence between g′ and T ′ at all scales is undermined
but still maintained to be relatively large with γ 2

gT > 0.5. It underlines the fact that the
coupling between g′ and T ′ is not entirely related to the energy-containing motions. In
§ 6.1, we will dissect the relationship between the two variables. The γ 2

pT spectrum is
shown in figure 11(c). It can be seen that the energetic scales are still shorter than those
of γ 2

uT , though they increase with the wall-normal height. This scenario is consistent with
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that in the logarithmic region, which implies that the effects of PRF are identical in these
two zones. Figure 11(d) displays the γ 2

ug spectrum. It is akin to the γ 2
uT spectrum. It hints

at the fact that T ′ is a passive variable by and large, just like g′.
Figure 10(b,d, f ) shows the 2-D joint p.d.f.s between u′+ and T ′+ (figure 10b), u′+ and

g′+ (figure 10d) and g′+ and T ′+ (figure 10f )when y = 0.8h for the case Ma15Re20K.
From a general view, the shapes of all these p.d.f.s are elliptical. One thing worth noting is
that the correlation between g′+ and T ′+ is attenuated in the outer region, compared with
the results in the logarithmic region (figure 10e). We will try to explain it in § 6.2.

In summary, analyses in § 5 shed light on the fact that the u − T and u − g couplings at
a given wall-normal height are maintained by the energy-containing motions populating
this region, whereas the g − T coupling is not. Most of the previous studies investigate the
multiphysics couplings via the correlation function (Abe et al. 2004; Abe & Antonia 2009;
Gerolymos & Vallet 2014). Though it can measure the degree of one coupling generally, it
cannot reveal the relationship between this coupling and the multiscale energy-containing
motions, as well as the underlying physical mechanism. By deploying the SLSE as a
diagnostic tool, the present study has overcome this limitation.

6. Discussion

6.1. Relationship between temperature and passive scalar fields
Heretofore, the multiphysics couplings in the logarithmic and outer regions are revealed.
We can appeal to the exhibited results to answer the questions raised in the introduction.
Namely, if the temperature field in a compressible wall turbulence can be considered as
a passive scalar in most cases, in which part of the boundary layer do the features of the
temperature field depart from those of a passive scalar field most? These issues have never
been addressed by previous studies.

For the first question, our answer is yes. The temperature field in the vast majority of
zones in a channel can be treated roughly (not totally) as a passive scalar. The evidence is
listed as follows.

(i) The u − g coupling approaches the u − T coupling, and the g − T coupling is robust
within the whole boundary layer. This outline is evident as per the RDs shown in
figure 8. More details are revealed by the γ 2

gT spectra illustrated in figures 9(b) and
11(b), which are totally different from the γ 2

uT spectra. Concurrently, the γ 2
ug spectra

display similar shapes with the γ 2
uT spectra.

(ii) The distributions of 2-D joint p.d.f.s between u′+ and T ′+ resemble those between
u′+ and g′+ in the logarithmic and outer regions (see figure 10). This observation
can be considered as a piece of evidence.

(iii) The turbulent Prandtl number (Prt) and Schmidt number (Sct) are of equal
magnitudes in most regions of a boundary layer. Their definitions take the form
of

Prt = ρv′u′∂yT̄

ρv′T ′∂yū
, (6.1)

and

Sct = ρv′u′∂yḡ

ρv′g′∂yū
. (6.2)
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Figure 13. (a) The Prt and Sct as functions of y/h, and the empirical formula Prt = 0.9 − 0.3( y/h)2 given by
Abe & Antonia (2017) for incompressible flow is represented by blue line; (b) variation of λ
z/h as a function
of yp/h in the logarithmic region for Ma15Re20K. In (b), the red dashed line denotes λ
z = 3.6y.

The variations of these two parameters in the cases Ma08Re17K and Ma15Re20K
of dataset D2 are shown in figure 13(a), and the empirical formula given by Abe &
Antonia (2017) for incompressible flow is included for comparison. This formula is
in accordance with the DNS results for y > 0.2h. What is more, the magnitudes of
Sct of the two cases are approximately equal to those of Prt. Hence, there is no doubt
that T ′ behaves like g′ in turbulent transport. This perspective is also put forward in
our previous study (Cheng & Fu 2023a). It is acceptable, since the typical structures
of T ′ and g′ are shown to be similar, even in the outer region, see figure 12.

(iv) The length scales that are responsible for the variations of γ 2
uT and γ 2

ug in
the logarithmic region are identical. In Cheng & Fu (2023a), we defined a
γ 2

uΦ−weighted average spanwise wavenumber k

z ( y), and the corresponding length

scale λ
z = 2π/k

z ( y). The former reads as

k

z ( y) =

∫
Ω

kzγ
2
uΦ ( y; kx, kz) dkx dkz∫

Ω

γ 2
uΦ ( y; kx, kz) dkx dkz

, (6.3)

where Ω is the spectral domain defined by (5.1a–c), i.e. the energetic scale range
of γ 2

uT and γ 2
ug in the logarithmic region. Thus, λ
z represents the length scale that is

responsible for the variation of γ 2
uΦ . Figure 13(b) shows the variations of λ
z/h with

Φ = T and Φ = g as functions of y/h in the logarithmic region for Ma15Re20K. It
can be seen that there is a linear relationship between λ
z/h and y/h. This observation
underscores the fact that the T ′ and g′ fields are linearly coupled with u′ within the
same self-similar scale range in the logarithmic region. Both the variations of γ 2

uT
and γ 2

ug spectra along the wall-normal direction in the logarithmic region are chiefly
ascribed to the self-similar eddies.

(v) Figure 14(a) shows the normalized spanwise spectrum of T ′ at y = 0.3h for the
case Ma15Re20K. The corresponding Taylor microscale Reynolds number Reλ is
79.2, based on the local mean density and the dynamic viscosity, which meets the
requirement for developing the inertial range, namely, Reλ ≥ 50 (Motoori & Goto
2019). Interestingly, the spectrum exhibits a k−4/3

z scaling in the range of 1.3 <
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Figure 14. Normalized spanwise spectra of T ′ at y = 0.3h for the case (a) Ma15Re20K and (b) Ma15Re9K.

kzy < 3.8, and bears a k−5/3
z scaling in the range of 2.6 < kzy < 9.8, respectively.

This observation is consistent with Lohse (1994), who proposed that the spectrum
of a passive scalar field in a high-Reynolds-number shear flow would exhibit k−4/3

z

scaling, followed by a k−5/3
z range. It also provides compelling evidence in favour of

the statement that T ′ in compressible channel flows can be considered as a passive
scalar. Figure 14(b) shows the normalized spanwise spectrum of T ′ at y = 0.3h for
the case Ma15Re9K in D2 (Reλ ≈ 49.3). It can be seen that only the k−5/3 range is
detectable. It suggests that only at high Reynolds numbers can the k−4/3 scaling be
traced.

However, though T ′ performs like g′ in most regions of a channel at first glance,
the effects of the interaction between the energy and momentum equations can also be
monitored. The properties of T ′ would deviate from those of g′ gradually in the logarithmic
and outer regions in supersonic flows, especially, the zone in the vicinity of the channel
centre. This is the answer to the second question. As a proof, the coupling between g′ and
T ′ is significantly weakened in the logarithmic and outer regions. This proposition can be
validated by inspecting the distributions of RDgT shown in figure 8(a). In addition, it is not
difficult to observe that RDgT of the cases Ma08Re17K and Ma15Re20K in D2 increase
rapidly when y∗ > 400. The mechanism of this transition will be further clarified in § 6.2
by decomposing the temperature field into the acoustic and entropic modes.

6.2. Acoustic and entropic modes of temperature field
The Kovasznay decomposition is often adopted to decompose the thermodynamic
variables into the acoustic and entropic modes under the condition of weak compressibility
(Kovasznay 1953; Chassaing et al. 2002; Gauthier 2017; Wang et al. 2019). The acoustic
mode of the temperature fluctuation is defined as (Chassaing et al. 2002; Gauthier 2017)

T ′
a = (γ − 1)T̄p′

γ p̄
, (6.4)

and the entropic mode is given by T ′
e = T ′ − T ′

a (Chassaing et al. 2002; Gauthier 2017).
In this manner, the intensity of the temperature fluctuation can be decomposed as

T ′2 = T ′2
e + T ′2

a + 2T ′
eT ′

a. (6.5)
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Figure 15. (a) Variations of the ratios T ′2
a /T ′2, T ′2

e /T ′2 and 2T ′
eT ′

a/T ′2 of the cases Ma08Re17K and
Ma15Re20K in D2; (b) variations of RDgT , RDgTa and RDgTe of the cases Ma08Re17K and Ma15Re20K
in D2.

Figure 15(a) shows the variations of the ratios T ′2
a /T ′2, T ′2

e /T ′2, and 2T ′
eT ′

a/T ′2 of
the cases Ma08Re17K and Ma15Re20K in D2. One observation is that the correlations
2T ′

eT ′
a/T ′2 of the two cases are only non-negligible in the vicinity of the wall and the

outer region. Undoubtedly, the interaction between the modes is pronounced in these two
regions, which is in accordance with the proposition that the two modes are not statistically
independent, and can interact with each other (Kovasznay 1953). Another prominent
observation is that the magnitudes of the acoustic modes in the two cases are gradually
increasing in the logarithmic and outer regions. For the supersonic case Ma15Re20K, the
magnitude of the acoustic mode approaches that of the entropic mode near the channel
centre. We notice that this scenario bears some similarities with the variation tendencies
of RDgT shown in figure 8. It may suggest that the deviation of the properties of T ′
from a pure passive scalar in the logarithmic and outer regions is related to the enhanced
acoustic mode. Hence, it is of interest to investigate the couplings of the two modes with
g′ separately to shed light on this effect.

Figure 15(b) shows the variations of RDgT , RDgTa and RDgTe , and figure 16 displays the
γ 2

gTa
(figure 16a,c) and γ 2

gTe
(figure 16b,d) spectra at two selected wall-normal positions in

the logarithmic and outer regions. The following comments can be made with regard to
these two figures.

(i) Here RDgTa ≈ 100 % within the whole channel indicates that the acoustic mode is
not coherent with the passive scalar at all. Moreover, the energetic regions in γ 2

gTa

spectra (figure 16a,c) at the two selected wall-normal positions collapse with those
of γ 2

pT shown in figures 9(c) and 11(c). These observations are consistent with the
mechanisms of the acoustic mode (Kovasznay 1953).

(ii) The magnitudes of γ 2
gTe

shown in figure 16(b,d) bear a strong similarity to those of
γ 2

gT in figures 9(b) and 11(d). It underlines the fact that the coherence between T ′

and g′ fields is dominated by the entropic mode of T ′.
(iii) The magnitudes of RDgTe are larger than those of RDgT in the logarithmic and outer

regions. This observation signifies that T ′
e is also not a pure passive scalar like g′.

In fact, Eyink & Drivas (2018) already revealed that the entropy in compressible
turbulence is not a pure passive scalar via theoretical analysis. This is not good
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Figure 16. The (a) γ 2
gTa

, (b) γ 2
gTe

spectra at y∗ = 3.9
√

Re∗
τ ; (c) γ 2

gTa
and (d) γ 2

gTe
spectra at y = 0.8h for the

case Ma15Re20K.

news for turbulence modelling, as it shows that the temperature field in compressible
wall-bounded turbulence is rather intricate.

(iv) The larger magnitudes of RDgTe in the outer region than those of RDgT also indicates
that the interaction between T ′

e and T ′
a contributes to the T − g coupling. It is

consistent with the results displayed in figure 15(a) that the ratios 2T ′
eT ′

a/T ′2 are
non-trivial in the outer region.

In summary, the key finding of this subsection is that the deviation of T ′ from a pure
passive scalar in the logarithmic and outer regions is chiefly due to the acoustic mode.
Furthermore, the entropic mode is not a pure passive scalar, and the interaction between
the two modes also contributes to the coupling between T ′ and g′. The degree of the g − T
couplings is the outcome of their combined effects.

6.3. Relationship between pressure and velocity fields
Up to now, a remaining question has not been answered, i.e. how does the PRF affect
the streamwise velocity fluctuation and drive it away from a passive scalar (like g′ or
T ′)? We notice that u′ is highly linked with T ′ (g′) within the scales corresponding to
the energy-containing eddies in the logarithmic and outer regions (see figures 9 and 11).
Hence, we hypothesize that it is the role PRF plays in the self-sustaining process of these
eddies that leads to the decoupling of u′ and T ′ (g′) at smaller scales.

It is gradually admitted by the turbulence community that the energy-containing eddies
in the logarithmic and outer regions bear an analogous self-sustaining process as the
near-wall turbulence (Flores & Jiménez 2010; de Giovanetti, Hwang & Choi 2016; Hwang
& Bengana 2016; Lozano-Durán, Bae & Encinar 2020). It is generally accepted that the
so-called self-sustaining process is composed by three steps. First, the streaks are amplified
by the streamwise vortices via the lift-up effect, and the energy is transferred from the
mean shear to the u′ (Landahl 1990; Kim & Lim 2000; Hwang & Cossu 2010); second,
the amplified streaks would break down due to secondary instability or transient growth
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(Hamilton, Kim & Waleffe 1995; Schoppa & Hussain 2002); third, the streamwise vortices
would be generated under the nonlinear mechanisms (Hamilton et al. 1995; Schoppa &
Hussain 2002). The pressure field is directly involved in the third step (Cho, Hwang &
Choi 2018; Kawata & Tsukahara 2021), and detailed discussion is given as follows.

In a statistically steady compressible wall turbulence, the Reynolds stress equation takes
the form of

0 = Cij + Pij + Dij + Πij − Φεij + Mij, (6.6)

where C, P, D, Π , Φε and M denote the advection, production, viscous diffusion,
pressure-strain correlation, viscous dissipation and mass flux associated with density
fluctuations, respectively. The pressure field is mainly included in the pressure-strain term,
which reads as

Π11 = 2p′ ∂u′′

∂x
, Π22 = 2p′ ∂v′′

∂y
, Π33 = 2p′ ∂w′′

∂z
, (6.7a–c)

for the streamwise (ρu′′u′′), wall-normal (ρv′′v′′) and spanwise (ρw′′w′′) turbulence
intensities, respectively.

Figure 17(a) shows the variations of Π+
11, Π+

22 and Π+
33 as functions of y/h in the case

Ma15Re20K of D2, and the profile of −(Π+
22 + Π+

33) is also included for comparison. It
can be seen that only Π+

11 is negative, whereas both Π+
22 and Π+

33 are positive throughout
the logarithmic and outer regions. Furthermore, the relation, Π+

11 + Π+
22 + Π+

33 ≈ 0, is
strictly kept in the logarithmic and outer regions. On the other hand, for the wall-normal
and spanwise turbulence intensities, their production terms do not exist. It indicates that the
pressure-strain correlations play an important role in the turbulence kinetic energy (TKE)
redistribution; especially, as only Π+

11 < 0, Π+
11 plays a leading role in transferring TKE to

other velocity components. The percentage of energy produced in the streamwise direction
transferred to the other components can be measured by calculating the ratio (Duan,
Beekman & Martin 2010)

R = p′(∂u′′/∂x)

ρu′′v′′(∂ ũ/∂y)
. (6.8)

Figure 17(b) shows the variations of R as functions of y∗ in the case Ma15Re20K and
Ma08Re17K of D2. It can be seen that R is nearly constant in the logarithmic region
for a selected case and is not sensitive to the magnitude of Mb. It suggests that the TKE
redistribution is a typical mechanism in this region. On the other hand, it is well known that
the streamwise vortices are the dominant carriers of the wall-normal velocity fluctuations
(Hwang 2015; Cheng et al. 2019), hence, it can be speculated that the interaction between
the pressure field p′ and ∂u′′/∂x draws TKE from u′ and injects it into the streamwise
vortices. As a consequence, the coherence between u′ and g′(T ′) is diminished at the scales
corresponding to the streamwise vortices. This is the scenario shown in figures 9 and 11.
To further reveal their relationship quantitatively, we define a correlation function between
the instantaneous pressure strain ps = 2p′∂u′′/∂x and the wall-normal fluctuation, that is,

Cpsv =
〈
psv

′〉
ps,rmsv′

rms
. (6.9)

Figure 17(c) plots the distributions of Cpsv as functions of y∗ for the case Ma15Re20K
and Ma08Re17K of D2. In the logarithmic region, Cpsv of the two cases are negative. It is
worth noting that the mean ps (i.e. Π11) of a given case is also negative in the logarithmic
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Figure 17. (a) Variations of Π+
11, Π+

22 and Π+
33 as functions of y/h in the case Ma15Re20K of D2;

(b,c) variations of (b) the ratio of streamwise pressure-strain term to production R and (c) the correlation
between the pressure strain and the wall-normal fluctuation Cpsv as functions of y∗.

region (see figure 17a). It indicates that ps is actively correlated with the positive v′ in this
region. Figures 18(a) and 18(b) display the contours of instantaneous u′+ (colour) and g′+

(colour) in the logarithmic region y∗ = 3.9
√

Re∗
τ of a subdomain of the case Ma15Re20K,

respectively. The contour of v′+ (line) is also included in figure 18(a). It can be found that
the majority of the flawed similarities between u′+ and g′+ can be traced in the regions
where v′ is positive. This scenario is in sync with the values of Cpsv in the logarithmic
region.

Figure 19 shows the premultiplied 2-D spectra of v′ and p′ at y∗ = 3.9
√

Re∗
τ , and

y = 0.8h. It can be observed that each spectrum is energetic at the scale range where
the magnitudes of γ 2

uT and γ 2
ug are low. Furthermore, the spectral shape of v′ resembles

that of p′ at a given wall-normal position. These observations are consistent with the
analyses above. Moreover, the role of PRF can be hypothesized to be unchanged in the
logarithmic and outer regions of low-speed wall turbulence or turbulent boundary layers
at higher Mach numbers. As proofs, Gerolymos & Vallet (2023) showed very recently that
the viscous-scaled variances of p′ are universal in the logarithmic and outer regions of
turbulent channel flows at a wide range of Mach numbers. Abe & Antonia (2009) also
reported that flawed similarities between u′ and g′ can be traced in the regions where
the streamwise pressure gradient is large due to the existence of the near-wall vortices
in incompressible channel flows. This scenario is also in line with our analyses here.
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Figure 18. Instantaneous contours of (a) u′+ (colour) and (b) g′+ (colour) in the logarithmic region y∗ =
3.9

√
Re∗

τ of a subdomain of the case Ma15Re20K. In panel (a), the contours of v′+ (line) is also included; red
solid and black dashed lines refer to positive and negative values of v′+, respectively; the line increment is 1.5.
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Figure 19. (a,b) Premultiplied 2-D spectrum of v′ at (a) y∗ = 3.9
√

Re∗
τ , and (b) y = 0.8h for Ma15Re20K;

(c,d) premultiplied 2-D spectrum of p′ at (c) y∗ = 3.9
√

Re∗
τ , and (d) y = 0.8h for Ma15Re20K. Each spectrum

is normalized by its maximum value.

In fact, in incompressible wall turbulence, previous studies have already observed that
the pressure-strain terms are closely related to the regeneration of the streamwise vortices
in the self-sustaining process of energy-carried eddies at a given length scale (Cho et al.
2018; Kawata & Tsukahara 2021). For example, Kawata & Tsukahara (2021) observed that
the instantaneous pressure-strain term of streamwise TKE is significant when low-speed
streaks are wavy with the evolutionary streamwise vortices in a Couette flow. However,
none of these studies connects this mechanism to the u − T and u − g couplings. To the
best knowledge of the authors, the present study clarifies it for the first time. As a side note,
Π+

11 + Π+
22 + Π+

33 = 0 can be found to be not strictly maintained in the near-wall region
where compressibility is non-negligible. For incompressible wall turbulence, this relation
is well-established due to the continuity. This is one of the main differences between these
two kinds of flows.

Though the present study only takes the compressible wall turbulence into
consideration, the performance of the u − T coupling in the incompressible flows can
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also be predicted by leveraging the findings of the present study. According to the analyses
above, the coupling between the streamwise velocity fluctuation and the passive scalar at
a given wall-normal height is maintained by the energy-containing motions populating
this region. Furthermore, the temperature field is a pure passive scalar in incompressible
flows (Kim & Moin 1989; Kawamura et al. 1999; Abe et al. 2004), and the self-sustaining
process is similar in incompressible and compressible flows. Hence, the variation of the
degree of the u − T coupling in incompressible wall turbulence would follow that of the
u − g coupling reported in the present study, just as the results shown in figures 8(b) and
8(d). Namely, it would be gradually undermined as the wall-normal height increases. In
the spectral space, the u − T coupling would be only strong at the scales corresponding
to the energy-containing motions residing in this wall-normal position, just like results
shown in figures 9 and 11.

6.4. Reynolds-number and Mach-number effects on the multiphysics couplings
In § 4.2, we have concluded that the magnitude of the Reynolds number is the vital
shaping factor for the u − T coupling. In this subsection, we are dedicated to investigating
the Reynolds-number and Mach-number effects on the u − g and g − T couplings by
leveraging dataset D2.

Figures 20(a) and 20(b) show the distributions of Rug and Cug in dataset D2,
respectively. A notable aspect discernible in the two figures is that the cases with similar
Re∗

τ share like profiles of the two functions. This scenario is reminiscent of those of
u − T coupling displayed in figure 3. This is attributed to the fact that both u − T and
u − g couplings at a given wall-normal position are maintained by the energy-containing
motions residing in this region, according to our analyses above. On the other hand, the
magnitude of the Reynolds number determines the degree of scale separation. Therefore,
the Reynolds number is a key parameter in controlling the u − g coupling, rather than the
Mach number, at least within the cases under investigation.

Figures 20(c) and 20(d) display the variations of RgT and CgT in dataset D2, respectively.
It is apparent that the Reynolds number has more remarkable effects on this coupling.
For a fixed Mb, the enlargement of the Reynolds number weakens the degree of the g −
T coupling in the outer regions and enhances it in the logarithmic region. For a given
Re∗

τ , the effects of increasing Mb are not that obvious. In § 6.2, we demonstrate that the
g − T coupling is not sustained by the energy-containing motions, but dependent on the
competition among the acoustic and entropic modes of the temperature field, as well as
their interaction. Each component is highly correlated with the degree of g − T coupling.
As a result, the g − T coupling is more intricate than the u − T and u − g couplings.

7. Concluding remarks

In the present study, through conducting numerical simulations and employing the
SLSE and the correlation function as diagnostic tools, the multiphysics couplings in
compressible channel flows are dissected. Particular attention is paid to the differences
between the streamwise velocity and passive scalar fields. Additionally, the relationship
between the passive scalar and temperature fields is also clarified. The key findings are
summarized below.

(i) The VRF, namely, the difference between the viscous terms of the streamwise
momentum and passive-scalar transport equations, only results in the distinct
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Figure 20. (a,c) Distributions of (a) Rug and (c) RgT in the dataset D2; (b,d) distributions of (b) Cug and
(d) CgT in the dataset D2.

intermittent behaviours of u′ and g′ in the near-wall region and rarely influences
the multiphysics couplings in the whole boundary layer.

(ii) The multiphysics couplings in the logarithmic and outer regions are highly linked
with the inclusion of the pressure field in the streamwise momentum equation.
The mean, fluctuating and high-order statistics of u′ and g′ in these two regions
are disparate. Their spectra in the inertial region also exhibit different scaling
laws.

(iii) In the logarithmic region, the u − T and u − g couplings are found to be tight
at the scales that correspond to the attached eddies and the VLSMs, whereas
the g − T coupling is robust in the whole spectral domain. In the outer region,
the u − T and u − g couplings are only active at the scales corresponding to
the VLSMs, whereas the g − T coupling is diminished but still strong at all
scales.

(iv) The temperature field in the vast majority of zones in a channel can be treated
roughly as a passive scalar. However, its physical properties gradually deviate from
those of a pure passive scalar as the normal height increases due to the acoustic
mode. Moreover, detailed analyses indicate that the entropic mode is not a pure
passive scalar, and the interaction between the two modes also contributes to the
g − T coupling.

(v) The pressure field is involved in the regeneration of the streamwise vortices
in the self-sustaining process of the logarithmic and outer regions. In this
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stage, the pressure-strain correlation of u′ component plays a leading role in
transferring TKE to other velocity components. As a consequence, the coherence
between u′ and g′(T ′) is diminished at the scales corresponding to the streamwise
vortices.

(vi) The Reynolds number acts as a key parameter in shaping the u − T and u − g
couplings. These two couplings at a given wall-normal position are highly linked
with the energy-containing motions populating this region. The enlargement of
the Reynolds number would result in a more significant scale separation and thus
intensify the couplings. For a fixed Mb, the enlargement of the Reynolds number
weakens the degree of the g − T coupling in the outer regions and enhances it in the
logarithmic region.

Though the similarities between the temperature and passive scalar fields are reported
broadly in a wide variety of the literature, the current study demonstrates that the
dynamical interaction between the energy and momentum equations can inevitably lead to
the differences between them in compressible wall turbulence. At last, we hypothesize that
the size of the differences is related to the geometry of the flow. For a turbulent channel
flow, the acoustic mode in the outer region would be more significant than a turbulent
boundary layer with similar Mach number and wall temperature, because the geometrical
features of an internal flow would result in the accumulation of the acoustic perturbations.
If this is true, it suggests that the temperature field in compressible wall turbulence is rather
complicated. More approaches are needed to analyse its physical behaviour and pave the
way for its modelling.
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Appendix A. Code validation

This appendix provides an example to demonstrate the code validation in the context of
a passive scalar in compressible channel flow by simulating the reference case reported
by Friedrich et al. (2006) with (2.1). The Mach number and Reynolds number of the case
are 1.5 and 3000, respectively, and Pr and Sc are set as 0.7 and 1.0, respectively. The wall
boundary condition of the passive scalar transport equation is

g(x, 0, z, t) = 1, g(x, 2h, z, t) = −1, (A1a,b)
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ḡ/
g w

g′ rm
s/

g w

0

0.04

0.08

0.12
1

0.5 1.0

y/h
1.5

Present study

Friedrich et al. (2006)

2.0 0.2 0.4 0.6

y/h
0.8 1.0

(b)(a)

Figure 21. Variations of the (a) mean and (b) r.m.s. scalar statistics as functions of y/h.

which indicates the passive scalar is injected at the lower wall ( y = 0) with vanishing
momentum and removed through the upper wall ( y = 2h). Other set-ups are identical
to those described in § 2. Figures 21(a) and 21(b) show the variations of the mean and
r.m.s. statistics of the scalar as functions of y/h, and the results of Friedrich et al.
(2006) are added for comparison. It can be seen that the results of the present study
agree well with those of Friedrich et al. (2006), which confirms the accuracy of the
present code.

Appendix B. Effects of the grid resolution on the statistical properties of passive
scalar and the related multiphysics couplings

The effects of the grid resolution on the statistical properties of passive scalar and the
related multiphysics couplings are investigated. We concentrate on the case Ma08Re17K in
dataset D2, because its grid resolution is the coarsest. The grid used here in the streamwise
direction is two times finer than the original grid listed in table 2. They are denoted as fine
and coarse cases hereafter, respectively. Other settings and parameters are the same.

Figures 22(a) and 22(b) compare the variations of the viscous-scaled mean and r.m.s.
statistics of the scalar. The results of the fine and coarse cases agree well with each
other. Figure 22(c) displays the distributions of Cug and CgT of the two cases. It can be
observed that their profiles agree reasonably well with each other. Figure 22(d) shows
the normalized streamwise spectra of g′ at y = 0.8h. Apparently, the spectra of the two
cases collapse well in the shear-dominant and inertial regions, whereas the energy of the
dissipative-range motions is better resolved in the fine case. Our results shown in the main
body demonstrate that the u − g coupling is maintained by the energy-containing eddies,
not the dissipative-range ones. All these suggest that the grid resolutions shown in table 2
are sufficient for resolving the typical structures of the passive scalar and their associated
multiphysics couplings when Sc = 1.

Appendix C. Comparison between 1 − RDΦT and CΦT

The consistency between 1 − RDΦT and CΦT is demonstrated by plotting them together
in this appendix. Figure 23 shows their variations for the case Ma15Re3K in dataset D1.
Both the values of these two quantities approach unity in the near-wall region, and begin
to decay beyond y/h > 0.1. Although their definitions are not the same, their variation
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tendencies are similar. They can be deployed as two metrics of the intensities of the
multiphysics couplings.
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