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We study air entrainment by a solid plate plunging into a viscous liquid, theoretically
and numerically. At dimensionless speeds Ca = Uη/γ of order unity, a near-cusp
forms due to the presence of a moving contact line. The radius of curvature of the
cusp’s tip scales with the slip length multiplied by an exponential of −Ca. The
pressure from the air flow drawn inside the cusp leads to a bifurcation, at which air
is entrained, i.e. there is ‘wetting failure’. We develop an analytical theory of the
threshold to air entrainment, which predicts the critical capillary number to depend
logarithmically on the viscosity ratio, with corrections coming from the slip in the
gas phase.
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1. Introduction
The dip coating process is commonly used in industry to coat solids with a liquid:

an object is dragged into a viscous liquid at speed so that it becomes covered by the
liquid. If the solid is dragged too fast, a thin film of air will be entrained between
the liquid and the solid, and the coating is no longer continuous: this is known as
wetting failure (Quéré 1999; Weinstein & Ruschak 2004); see figure 1. To be able to
coat as quickly as possible, one wants to operate at the highest speeds possible without
wetting failure occurring; in other words, we are interested in the critical speed Ucr
above which air is entrained. In particular, how does this speed depend on material
parameters of the system?

To address this problem systematically, many experimental studies (Blake &
Ruschak 1979; Benkreira & Khan 2008; Benkreira & Ikin 2010; Marchand et al.
2012; Vandre, Carvalho & Kumar 2012; Vandre et al. 2014) have considered an
idealized configuration in which a solid plate is pulled at speed U into a large bath
of liquid of viscosity η (see figure 2), making the problem close to two-dimensional.
Below the critical speed, a contact line separates the dry half of the solid above
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FIGURE 1. A sketch of the transition to air entrainment produced by a plate descending
vertically into a liquid bath. Below the transition (a), the interface meets the solid at a
contact line, above which the solid is dry, and below which it is covered with liquid.
Above the transition (b), a thin film of air has been entrained. (c) Shows an experiment
example of a quasi-steady interface before and after the transition to air entrainment,
taken from Vandre, Carvalho & Kumar (2013). At the lower edge of the entrained sheet,
sawtooth-shaped instabilities are often observed.
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FIGURE 2. (Colour online) Simulations and experimental data of Cacr for different M. The
experimental data are taken: from Vandre, Carvalho & Kumar (2014) for a glycerol–air
experimental set-up with θe ≈ 81◦ and baths of different widths H (µm); from Marchand
et al. (2012) for a silicone oil–air set-up with θe ≈ (51◦, 57◦) for either (I) the measured
speed at which rupture of the free interface is first seen or (II) the speed of the growth of
the rewetting ridge; from Benkreira & Khan (2008) for a silicone oil–air set-up (θe≈ 60◦);
from Burley & Kennedy (1976); and from Blake & Shikhmurzaev (2002). The numerical
data are from Sprittles (2017) and Vandre et al. (2014), with θe = 90◦ in both cases.

from the wetted half, which in the steady state is at a depth ∆ below the level of
the bath. Above the critical speed, a thin layer of air (or another gas) is entrained,
whose shape depends on the way the experiment is conducted. One final state that
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is observed frequently is that of the contact line assuming an irregular unsteady
sawtooth shape (Blake & Ruschak 1979), also seen in figure 1(c). Our focus
will be to calculate the critical speed Ucr, using a two-dimensional description.
The complicated three-dimensional, and usually unsteady, state past this transition is
beyond the scope of the present paper.

As recorded in figure 2, many experiments and simulations have determined Ucr

as a function of the viscosity ratio M = ηg/η, which is the most important control
parameter, where ηg is the viscosity of the gas. Assuming that the transition arises
from a competition of viscous forces and surface tension forces, the plate speed is
represented in dimensionless form as a capillary number Ca= ηU/γ , where γ is the
surface tension of the liquid–air interface. Plotting Cacr as a function of M, one finds
a consistent weak dependence on M, more or less independent of other parameters,
such as the equilibrium contact angle θe (Bonn et al. 2009). Here and for the rest of
this paper, we will make no attempt to account for a speed-dependent contact angle
on a microscopic scale, using θe to define the interface slope at the solid substrate.
Other dip coating experiments (e.g. Burley & Kennedy 1976; Blake & Shikhmurzaev
2002) also agree with this trend. An exception are the recent data of Marchand et al.
(2012), who for small values of M found somewhat larger critical capillary numbers.
The reason for this discrepancy is not understood.

Included in figure 2 are also recent numerical simulations (Vandre et al. 2014;
Sprittles 2015), which agree well with experimental data – see also Vandre et al.
(2014) for direct comparisons between simulation and experiment for specific
geometries and fluid parameters. Key to this success was the development of finite
element methods (FEMs) with sufficiently high resolution near the contact line, such
that length scales down to approximately 1 nm can be resolved (Sprittles 2015). Thus
we are able to focus our theoretical efforts on the relatively simple hydrodynamic
description used in some simulations: the two-dimensional Stokes equation, which
neglects inertia. This assumes that the fluid is sufficiently viscous for the Reynolds
number to be small; even if this is not the case, the local Reynolds number based on
flow features near the contact line is likely to be small. By adopting a two-dimensional
description, the contact line is assumed to be straight, and instabilities associated with
a wavy contact line are disregarded.

In the simulations considered by us, the contact line singularity (Bonn et al. 2009;
Snoeijer & Andreotti 2013) is regularized using a slip length, whose numerical value
for a fluid is typically between 1 and 10 nm (Lauga, Brenner & Stone 2008). In a
gas, on the other hand, the slip length λg is set by the mean free path (Sprittles 2017),
and thus may be quite different. We thus treat the slip lengths in the liquid and in
the gas as separate quantities, although in the particular simulations presented above
they are assumed equal. We also assume that the liquid bath is large, and approaches
a constant level far from the plate. As a result, the only relevant external length scale
is the capillary length lc =

√
γ /ρg of the liquid, where ρ is the density of the liquid

(the gas density being negligibly small) and g is the acceleration due to gravity.
Thus our task is to calculate the critical dimensionless plate speed as a function of

four dimensionless parameters:

Cacr =Cacr(M, θe, λ/lc, λg/lc). (1.1)

In the case of strong spatial confinement H of the bath (Vandre et al. 2014), lc would
have to be replaced by H. This continuum description leaves out kinetic effects
(Sprittles 2017), which come from the gas no longer being in local equilibrium.
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These effects are a possible explanation for the observed dependence of Cacr on
the gas pressure (Benkreira & Khan 2008), which otherwise would enter through λg
(Marchand et al. 2012).

Since for a liquid–gas system M is typically quite small, we will be interested in
the limit of small M, for which the critical capillary number becomes of order one, as
seen in figure 2. Past theories of dynamic wetting transitions have been based on the
idea that the transition is controlled by the stress divergence near a moving contact
line, cut off only by the regularizing effect of the slip length (Huh & Scriven 1971).
This idea has been applied to understand the dynamical wetting transition as a solid
plate is withdrawn from a liquid bath which wets the plate partially (Eggers 2004,
2005), and for which the effect of the surrounding gas can be neglected. Since viscous
stresses in a thin layer of fluid are strong, the transition towards a solid covered by
a liquid occurs at small capillary numbers, and is within reach of a small-capillary-
number expansion. Subsequently it was shown that the transition occurs by way of a
saddle-node bifurcation (Snoeijer et al. 2007b; Chan, Snoeijer & Eggers 2012), such
that no solution exists above a critical speed.

In the present case of a plate plunging into a bath, interface angles are no longer
small, so previous authors (Cox 1986; Kistler 1993) have used an expansion for
small capillary numbers valid for arbitrary angles (Voinov 1976; Cox 1986), based
on the Huh & Scriven (1971) solution for the viscous flow in a wedge. This yields
the interface angle θd (sometimes referred to as the dynamical or apparent contact
angle) at a given distance ld from the contact line in terms of the equilibrium
angle, evaluated at a microscopic distance from the contact line, set by the slip
length. Similar approaches, based on a local balance between capillary, viscous
and contact line forces, have been employed subsequently (Duez et al. 2007;
Ledesma-Aguilar, Hernández-Machado & Pagonabarraga 2013; Vandre et al. 2013) to
describe entrainment speeds in both experiment and numerical simulation. Cox (1986)
proposed that a transition occurs when θd has reached 180◦, although the underlying
theory breaks down in that limit, as does the assumption of small capillary number.
Using a constant value of ld, this predicts a logarithmic dependence of Cacr, which
appears to be qualitatively consistent with figure 2. However, to fit the data properly,
ld has to be adjusted (Duez et al. 2007; Ledesma-Aguilar et al. 2013; Vandre et al.
2013), while ld should really be determined self-consistently by the theory.

To deal with this problem, Snoeijer (2006) has generalized Cox’s (1986) description
to include gravity and the effect of boundary conditions into the theory in a
self-consistent fashion, valid for small Ca, resulting in a theory free of adjustable
parameters apart from the slip length, which is included in a phenomenological
fashion (Chan et al. 2013). In appendix A, we describe an improved theory which
removes the remaining freedom with regards to slip for contact angles close to 90◦.
The resulting description is known as the ‘generalized lubrication’ (GL) approximation.
It is written as a differential equation for the interface angle θ , which can be solved
numerically by shooting from the known contact angle θe at the contact line towards a
horizontal bath. In figure 3, the result is compared with FEM simulations for various
values of M. The depression of the contact line position below the bath is denoted
by ∆ (as defined in figure 1a), and plotted as a function of Ca.

FEM simulations (to be described in somewhat more detail below) are set up to
find stationary states, both stable and unstable. As the capillary number increases from
zero, ∆ increases, until a maximum value Cacr of the capillary number is found,
where the saddle-node bifurcation is taking place. The upper branch corresponds to
stable states, which are observed experimentally, while the lower branch is unstable,
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FIGURE 3. (Colour online) Bifurcation curves as obtained from FEM simulations for θe=

π/2 and different viscosity ratio M, compared to results of the GL approximation (A 1);
the slip length is λ= 10−5. The vertical lines represent the location of Cacr for the FEM
simulation (dotted) and the GL approximation (dashed). The upper branch is stable, the
lower unstable. For small M, the GL approximation bifurcates at much larger values of
Ca than predicted by numerical simulation.

along which in a time-dependent simulation ∆ continues to increase to dynamically
dry the solid. This structure agrees with that found analytically and computationally
for the withdrawal of a plate (Chan et al. 2012). Indeed, as long as M is of the order
of one or larger, the critical capillary number is small and the GL approximation
describes the entire bifurcation curve well. However, as M decreases, the agreement
deteriorates. Even for M = 10−2, there is qualitative agreement, which might explain
the success of local theories (Duez et al. 2007; Ledesma-Aguilar et al. 2011, 2013)
to explain experimental observations at moderate viscosity ratios. However, beyond
M = 10−2, the GL approximation far overpredicts Cacr, and for M = 10−3, we were
no longer able to detect a bifurcation in the GL approximation. If a bifurcation still
exists within the GL approximation, it would predict a critical capillary number far too
large to be realistic. However, if M is strictly zero (no gas), there is no transition even
in the full FEM numerical simulation, confirming that it is the presence of the gas,
trapped in a narrow gap between the liquid and the plate, which drives the transition.
In the present paper, we will address the small-M region 10−6 6M 6 10−2, for which
traditional theories based on a small-Ca expansion fail.

One might think that at least along the upper branch, when the air has not yet
become important for small values of M, the GL approximation might be a reasonable
description of the interface, as the bifurcation curves of figure 3 do not seem to be too
far off. However, we will see that the low-capillary-number theory for M= 0 does not
describe the shape of the interface correctly even on a qualitative level. Instead, as first
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FIGURE 4. A sketch of a plate plunging vertically into a bath. On some outer scale
(a), a near-cusp forms between the liquid interface and plate. This is the cusp region (I).
Assuming the bath to be very wide compared to ∆ (the distance from the contact line to
the bath), the interface eventually becomes very flat. This is represented by the bath region
(III). On some inner scale, R, the cusp must round and make contact with the plate (b).
This is known as the contact line region (II). The numbering reflects the order in which
the zones are analysed.

suggested by Jacqmin (2002), for Ca& 1 the interface becomes close to a cusp, with
an apparent contact angle of 180◦. The local solution corresponding to this contact
angle was described by Benney & Timson (1980). However, our simulations show that
directly at the contact line the tip is rounded at a very small radius of curvature R,
similar to a solution found by Jeong & Moffatt (1992) for a cusped interface created
by a bulk flow rather than the presence of a solid wall.

In the following two subsections we will recall the equations being solved
numerically, which also form the basis for our analytical description, and briefly
describe the numerical method being used. Then § 2 describes the solution for the
case M= 0 (no gas), in which case there is no transition. We show that the solution
can be broken up into three different regions (see figure 4). These are the cusp
(region I), described by Benney & Timson’s (1980) solution, and the tip (region II),
which regularizes the cusp tip on a scale R. The large-scale behaviour is described
by the bath solution (region III), which asymptotes to a flat interface. In § 3 we show
how, even for small M, the gas trapped inside the cusp region drives a transition.

1.1. Theoretical formulation
Consider the steady two-dimensional, two-phase Stokes flow generated by a plate
plunging at speed U into a liquid bath in a direction aligned with the gravitational
field (see figure 4); we assume that the bath is semi-infinite. The superscripts [ ]l,g
are used to distinguish the quantity ‘[ ]’ for the liquid and gas, respectively.

Neglecting inertial effects, both fluids satisfy the incompressible Stokes equation,

∇ · ul,g
= 0, ηl,g

∇
2ul,g
=∇pl,g

− ρ l,gg, (1.2)

where g is the acceleration due to gravity and the stress of each fluid is defined by

σ
l,g
ij =−δijpl,g

+ ηl,gel,g
ij , el,g

ij =
∂ul,g

i

∂xj
+
∂ul,g

j

∂xi
. (1.3a,b)
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This system of equations (1.2) for both flows is solved subject to kinematic and
dynamic boundary conditions at the interface (y= h(x) with normal n and tangent t):

ul
· t= ug

· t, ul
· n= ug

· n= 0, n · σ l
· t= n · σ g

· t,

n · σ l
· n− n · σ g

· n=−γ κ ≡−γ
d2h
dx2

[
1+

(
dh
dx

)2
]−3/2

.

 (1.4)

The far-field conditions of a semi-infinite bath imply that

y→∞, |ul,g
|→ 0. (1.5)

At the plate, the no-slip boundary condition leads to the ‘moving contact line
singularity’ (Huh & Scriven 1971). In order for the contact line to be able to move
over the solid, we allow the fluid to move with respect to the solid, at a speed
proportional to the shear rate; this is the Navier slip law (Navier 1827; Lauga et al.
2008). Defining the velocity of the fluid to be ul,g

= ul,gex + v
l,gey, the Navier slip

law is, at y= 0,

vl,g
= 0, ul

+U = λ
∂ul

∂y
, ug

+U = λg
∂ug

∂y
, (1.6a−c)

where λ and λg are the slip lengths in the liquid and in the gas, respectively. From
here on, we will make all lengths dimensionless using lc, unless stated. At the contact
line, we impose a fixed contact angle, disregarding non-equilibrium effects on the
scale of the slip length:

∂h
∂x
=−tan θe. (1.7)

The above system of equations defines a stationary state of the problem, which
is defined by the vanishing of normal velocities with respect to the interface or,
equivalently, the interface being a streamline. The dimensionless numbers determining
this problem are Ca, M, λ/lc and λg/lc.

1.2. Numerical formulation
We perform numerical simulations of (1.2)–(1.7) using the FEM, in order to find
stationary states, as described in Sprittles & Shikhmurzaev (2012) and Sprittles (2015).
The method is based on an arbitrary Lagrangian Eulerian mesh design which allows
for the free surface to be captured with high accuracy. The domain size is made large
enough so as not to affect the contact line dynamics. About the contact line, the mesh
is graded with small elements to enable the dynamics of the flow on the scale of the
slip length, and below, to be captured alongside the bulk flow where larger elements
are permitted. The above set of equations are solved for in the domain, except for the
far-field boundary condition (1.5), which would require an infinite domain. Instead,
a boundary is located at a fixed ‘large’ distance from the contact line where the
boundary conditions u · ex= 0, no tangential stress at the interface and a perpendicular
flat interface are set, equivalent to what one would expect at a plane of symmetry.

In simulations, the domain is taken to be a closed rectangle with dimensionless
width of up to Hb=103 and depth D=10 above and below the otherwise flat interface.
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The slip length is chosen to compare to FEM simulations performed by Vandre et al.
(2012), λ=λg=10−4, and benchmark calculations in Sprittles (2015) confirm excellent
agreement between the two codes. Simulations are performed for θe = π/2 unless
otherwise stated. This can be compared to the estimated values of θe found for the
experimental samples in the caption for figure 2. To find the bifurcation point, M is
held fixed while the distance from the contact line to the flat bath, ∆, slowly increases.
For each new ∆, the speed of the plate Ca is found. Continuing to increase ∆, a
bifurcation plot, as shown in figure 3, is obtained. This captures the unstable branch
of the solution, which cannot be obtained by increasing Ca and finding ∆.

As Ca increases past unity, calculations become significantly more challenging, even
for M= 0. Our findings (cf. figure 10) will rationalize such observations by showing
that the radius of curvature at the contact line scales with the slip length multiplied
by an exponential of −Ca. Interestingly then, even at moderate Ca, the bottleneck to
calculations is in resolving the interface’s curvature R and not just the scale of the
slip length λ, thus making computational requirements even more tough than already
thought and calling into doubt the ‘well-resolvedness’ of many high-Ca simulations.

Furthermore, for non-zero M, as Ca gets increasingly large, resolving past the
bifurcation point onto the unstable branch of the solution eventually becomes
impossible. One can see how sharp the turning from one branch onto the other
is becoming even at smaller Ca by looking at figure 3. Our work will show that this
complication occurs because the size of the perturbation from the M = 0 solution
depends on the magnitude of the velocity of the gas, which (we will show in § 3)
scales with M. Thus, since a larger Cacr corresponds to a smaller M, the perturbation
from the M = 0 solution will be smaller, and consequently more difficult to capture
numerically. Accurate resolution about the contact line thus rapidly gets increasingly
hard for greater Ca, and as a result, we restrict the analysis of numerical simulations
to plate speeds Ca62.51. The need for an accurate analytical theory of the bifurcation
for very small M thus becomes even more apparent. We will see that Ca & 0.5 can
already be considered ‘large’, and will be successfully described by an expansion for
large capillary numbers.

Typical results for the interface shape as found from numerical simulations are
shown in figure 5 at Ca ≈ 1. As illustrated in the schematic sketch of figure 4, on
the macroscale the interface approaches a cusp, which makes a 180◦ apparent contact
angle with the plate, so that the liquid flow becomes parallel to the plate. We show
the stationary profiles for M = 0, M = 10−6 and M = 10−5, close to the bifurcation
at which air entrainment occurs. However, even close to the bifurcation, the interface
shape hardly changes. This observation forms the basis of our approach: below in § 2
we first calculate the interface for M= 0, and then (see § 3) treat the presence of air
as a small perturbation in order to calculate the bifurcation.

This is illustrated in the inset of figure 5, which shows a highly enlarged region
around the contact line. At some very small inner scale (which will be discussed in
more detail in § 2.2 below), the interface turns to make contact with the plate at θ = θe.
Only at an intermediate scale, seen in the inset, is there a noticeable change of the
interface shape with M.

2. The interface in the absence of gas

A sketch of the different regions introduced to analyse the problem is shown in
figure 4. On a macroscopic scale (figure 4a), the contact angle is close to 180◦, since
U (or more specifically Ca) is very large, and drags down the interface. This produces
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FIGURE 5. (Colour online) The interface for Ca = 1.04 and M = 0 (solid line), M =
1.5× 10−6 (dot-dashed line) and M= 10−5 (dashed line). On the macroscale, the interface
approaches a 180◦ contact angle, but bends on some inner scale towards θe = π/2, as
seen in the inset. On the macroscale there is little difference as M increases; only on
some intermediate scale about the contact line (shown in the inset) can the effect of a
finite M be seen.

a cusp shape (which we call region I), which dominates the flow close to the plate.
This part of the flow is governed by viscous and surface tension forces. Eventually
the interface must level off towards the bath, so there is another region (region III),
which is dominated by viscous forces and gravity. However, as one comes close to
the plate, the interface must meet the plate at a prescribed contact angle θe as shown
on figure 4(b). This necessitates the existence of another region (region II) near the
tip.

2.1. Region I: the cusp singularity
At very high speeds, the interface is bent so severely that it appears to meet the plate
tangentially, at an apparent contact angle θe = π. We describe this situation using
the asymptotic solution of the contact line problem of Benney & Timson (1980) for
M= 0 and θe=π, and assuming a no-slip boundary condition. This is appropriate for
our case, as we are on an intermediate scale excluding the contact line region. Since
the interface is parallel to the plate at the contact line, the contact line singularity
is weakened and the local energy dissipation remains finite, as we will see. As a
result, the paradox discovered by Huh & Scriven (1971) does not exist, although the
curvature does still diverge.

For θe = π, since viscous stresses dominate gravitational effects about the contact
line, the liquid phase is described by the Stokes equation (1.2) with g = 0. This is
equivalent to solving the biharmonic equation for the streamfunction ψ , represented
in polar coordinates (r, φ), defined in figure 6(a),

12ψ = 0, ur =
1
r
∂ψ

∂φ
, uφ =−

∂ψ

∂r
, (2.1a−c)
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FIGURE 6. (Colour online) (a) Sketch of the cusp solution for a 180◦ contact angle.
(b) Solutions of (2.9).

subject to the boundary conditions

φ =π: ψ = 0, ur =Ca,
φ = g(r): ψ = 0, n · σ · n=−κ, n · σ · t= 0.

}
(2.2)

Here we have written velocities in units of the capillary speed γ /η, stress in units
of γ /lc, and κ , the curvature of the interface, in units of 1/lc. This corresponds to
the no-slip boundary conditions at the plate, the dynamical stress conditions at the
liquid–vacuum interface, and a further condition that the liquid–vacuum interface and
the liquid–solid interface are streamlines, where the dividing streamline is taken to
be φ = 0. Benney & Timson (1980) commit a sign error in front of the curvature
term which does not affect their method of calculation, but of course invalidates their
results. Ngan & Dussan V. (1984) noticed the sign error, but claim that the corrected
results lead to conclusions which are ‘physically meaningless’. Mahadevan & Pomeau
(1999) claim to have a found a singularity-free solution, and incorrectly conclude that
the interface shape should be regular in the case of a 180◦ contact angle. Here we
hope to set the record straight, and test our conclusions by direct comparison with
our numerical simulations.

Following Benney & Timson (1980), we find a similarity solution for this problem,
where the free surface, to leading order as one approaches the contact line, has the
power-law form

h(x)= axq. (2.3)

In order to produce a 180◦ contact angle, we must have q> 1 for consistency.
In the classical calculation of Huh & Scriven (1971), (2.1) and (2.2) (with the

exception of the normal stress balance) are solved in a wedge, such that h(x)= x tan θ
instead of (2.3). This gives a unique solution for the limit r→ 0, and the normal
stress balance will in general not be satisfied. The normal stress balance is then used
to calculate corrections to the wedge-shaped interface in a perturbative fashion.

In the present calculation, we use the additional freedom of choosing the exponent
q in order to satisfy the normal stress balance as well; the value of q then results from
a solvability condition, which makes this an example of self-similarity of the second
kind (Eggers & Fontelos 2015), as opposed to the Huh–Scriven problem, which is of
the first kind. The constant a in (2.3) sets the amplitude of the solution. In principle,
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it has to be determined by matching to an outer solution; we will find it below by
comparing to the numerical solution.

In polar coordinates (r, φ), see figure 6, the surface becomes φ= g(r)≈ arq−1. The
solution for ψ , with a uniform flow −Ca ex from the downwards velocity of the plate,
has the similarity form

ψ =−Ca r sin φ + rqF(φ)+O(r2q). (2.4)

This will ensure that, to leading order, the interface is the streamline ψ = 0, as long
as F(g(r))'F(0)= a Ca is satisfied. For ψ to be a solution of (2.1), F has the form
(if q 6= 2)

F(φ)= A cos qφ + B sin qφ +C cos (q− 2)φ + E sin (q− 2)φ, (2.5)

where A, B, C and E are unknown constants. To leading order, the curvature is κ ≈
aq(q − 1)rq−2, and using F(0) = A + C = a Ca, (2.2) can be written as a system of
four homogeneous equations for F, for which the determinant is

Det= 8q(q− 1)2(q− 2)(cos qπ)2(2Ca+ tan qπ). (2.6)

For a non-trivial solution to exist, this determinant must vanish. We are interested
in solutions such that, in the limit Ca→ 0, the profile converges towards a static
meniscus, so that q= 2. This results in a solution that is regular at the contact line,
characterized by finite curvature. Indeed, repeating the above calculation for q= 2, in
which case

F(φ)= A cos 2φ + B sin 2φ +C+ Eφ, (2.7)

the pressure becomes logarithmically singular:

p=−
4Ca a

π
ln r. (2.8)

The logarithmic behaviour of the pressure is reminiscent of the logarithmic pressure
behaviour of a closing ‘hinged plate’ and a plate in contact with a constant surface
stress (Moffatt 1964). This contradicts Mahadevan & Pomeau’s (1999) claim that the
q = 2 solution is singularity-free for any Ca. In fact, the normal stress balance is
satisfied to leading order only if Ca= 0.

Instead, to satisfy all boundary conditions (2.2) we make (2.6) vanish by choosing

tan(qπ)=−2Ca, (2.9)

the branches of which are shown in figure 6. The condition that q=2 for vanishing Ca
singles out the branch shown in red, since we expect q to decrease with increasing
Ca, such that the interface curvature increases with increasing speed. Solving for q,
we find

q=
arctan(−2Ca)+ 2π

π
∈

(
3
2
, 2
]
. (2.10)

Higher branches correspond to subdominant solutions, while lower branches are
unphysical. Our conclusions, to be confirmed by comparison to numerical simulation
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FIGURE 7. (Colour online) Plots of FEM profiles of the liquid interface (black curved
line) at different Ca. The (red) solid straight lines are best fits to the intermediate region
h= axq, where q is defined by (2.10), and the (red) dashed straight lines are those to the
cusp exponent 3/2. The prefactor a (in units of lc) is 0.76 and 0.49, respectively. The best
fits are made to approximate the shape of the free surface; the slip length is λ= 10−4.

below, are different from those of Mahadevan & Pomeau (1999) and of Benilov &
Vynnycky (2013), who find q > 2. For large Ca, the power law converges towards
q = 3/2, which is the generic cusp (Eggers & Suramlishvili 2017) found for the
problem without a solid plate (Jeong & Moffatt 1992).

Since the energy dissipation density ε behaves like the square of a velocity gradient,
it is seen from power counting (and confirmed by direct calculation) that ε ∝ r2(q−2),
so the total dissipation is finite for q > 1. This confirms that the usual contact line
singularity (Huh & Scriven 1971) is regularized in the region of interest. To compute
the velocity field, we use that A+C=Ca a, which leads to the streamfunction

ψ = −Ca r sin φ

+ arq

[
2− q

2
Ca cos qφ +

2− q
4

sin qφ +
q
2

Ca cos(q− 2)φ +
q
4

sin(q− 2)φ
]
.

(2.11)

In figure 7 we compare (2.3) and (2.10) to numerical simulations of the full problem
for two different values of Ca and θe = π/2. For each Ca, (2.3) is fitted in a region
1� h� R, where the prefactor a is used as a fitting parameter (see figure 8). The
fits are shown as solid straight lines, while corresponding fits using the asymptotic
value q= 3/2 are shown as the dashed straight lines. The quality of the fits increases
rapidly with Ca, and for Ca= 2.51 the fit is over three decades in x. Figure 7 also
demonstrates that, while q comes quite close to 3/2 (which is the value used by
Jacqmin (2002)), the value (2.10) given by theory still provides an improved fit. This
demonstrates that a is determined as a result of the matching between the solution
of Benney & Timson (1980) and an outer solution. By contrast, Ngan & Dussan V.
(1984) rejected (2.3) on the grounds that a was not determined as part of a local
solution.

2.2. Region II: cusp tip and the contact line
We begin by analysing the case θe = π/2. In the case of perfect slip, this would be
the same solution as that of no wall, with a line of symmetry at y= 0. For that case,
Jeong & Moffatt (1992) have found a local similarity solution of the form

h=
√

2Rx+ ax3/2, (2.12)
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FIGURE 8. The prefactor a in (2.3) as a function of Ca. The circles represent values of
a obtained by fitting (2.3) to numerical simulations as shown in figure 7. The solid line
is an empirical fit a= 0.45+ 0.82 exp(−1.31Ca), suggesting that a will rapidly approach
a finite value as Ca→∞.

where a is a constant and R is the radius of curvature at the tip. The profile (2.12)
is the generic form of the singularity of a smooth curve as it is about to make a
self-intersection (Eggers & Suramlishvili 2017), so we expect it to be valid generically,
independent of the flow geometry. In the case of a finite slip length, we now propose
on phenomenological grounds that the local cusp solution is

h=
√

2Rx+ axq, (2.13)

where q is the exponent (2.10). Just like the original solution of Jeong & Moffatt
(1992), this can be cast in the similarity form

h= Rq/(2q−1)H(ξ), ξ = R1/(1−2q)x, H(ξ)≈
√

2ξ + aξ q. (2.14a−c)

This brings out the fact that the cusp solution possesses a single characteristic length
scale, R.

Figure 9(a) shows excellent agreement between our asymptotic description (2.13)
and a numerical simulation for θe =π/2. Only when taking the first derivative can a
small discrepancy in the crossover region be detected. The adjustable parameters are
the amplitude a of the cusp solution and the radius of curvature R. It is clear that for
θe 6= π/2 the exponent 1/2 naturally cannot be valid all the way to the contact line.
However, figure 9(b) demonstrates that (2.13) is accurate for a remarkable portion of
the interface before eventually failing on a very small scale.

This shows that, contrary to the assumptions underlying the conventional theory
of the drying transition, the contact line region becomes all but obliterated. Even at
modest Ca ≈ 1 the crossover to the contact line region only takes place at a scale
of 10−6, which is two orders of magnitude below the slip length λ. The smallness
of R in the continuum description raises fundamental questions as to how the contact
line region should be modelled in a physical description, to which we return in the
discussion (§ 4). We were not able to provide a comparison for larger Ca, since we
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FIGURE 9. (Colour online) The composite solution (2.13) (red dashed line) fitted to a
FEM simulation of the free surface (black solid line) for two different contact angles;
λ= 10−4. The fitting parameters are R/λ≈ 3.4× 10−4 and a= 0.52 (a), and R/λ= 0.011
a = 0.66 (b). The inset on the left shows that the composite solution (2.13) slightly
underestimates the rate of increase of the interface near the crossover.

can no longer guarantee that the contact line region is fully resolved. We believe the
actual behaviour in the contact line region is not as important as is generally believed,
since R is the smallest scale that determines the transition. This is at least qualitatively
consistent with the conclusions of Eddi, Winkels & Snoeijer (2013), who find that
wetting effects are unimportant for the early stages of drop spreading. Similarly, in
Latka et al. (2018) it was found that the transition to splashing after drop impact on a
solid surface is insensitive to the wetting properties of the substrate. The conventional
theory of the drying transition based on the Cox–Voinov formula (Cox 1986; Kistler
1993; Vandre et al. 2013) aims to describe how the interface angle increases from
θe to a value close to π, making a convex shape. However, at the turning point, the
interface becomes concave, forming the cusp region, described above. This shows that
the conventional theory fails to describe the interface in even a qualitative fashion.

2.2.1. The radius of curvature R
Returning to the tip region, our main task is to develop a theory for the radius

of curvature R. This is important, since R determines the smallest scale of the cusp
into which the gas phase is confined. As a result, in analogy to Eggers (2001), R
determines the saddle-node bifurcation if gas is included. In the classical theory of
Jeong & Moffatt (1992) (in the absence of a plate), R depends exponentially on
the capillary number. In that paper, the authors report an argument by Hinch which
represents the cusp tip by a point force of strength 2γ , which comes from the vertical
upward pull of each side of the cusp. At the tip of the cusp, the upward velocity
generated by the point force (often called a stokeslet) must cancel the downward
velocity along the cusp walls. Since the speed generated by a stokeslet depends
logarithmically on the distance in two dimensions, this leads to an exponential
dependence of the tip scale on the imposed velocity field.

In order to adapt this idea to the present situation, we have to replace the free-space
stokeslet with its analogue in the presence of a wall. In order for the tip of the cusp to
be stationary, the speed generated at the contact line by a force F=γ ex at a distance r
above the contact line must equal U. This is the (x, x) component of the Stokes Green
function in the presence of a partial-slip wall, assuming that the force is situated on
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the wall y= 0:

U =
γ

η
GPS

xx (r, λ). (2.15)

In analogy with the three-dimensional case (Lauga & Squires 2005), the Green
function can be written as the sum of the free-space Green function, its image and a
correction factor WPS

xx (r, λ). Since the force is on the wall, the image is the same as
the Green function itself, and we obtain

GPS
xx (r, λ) =

1
4π
(1− ln r)+

∫
∞

0
e−u/2(ln r̂− 1) du

− 4λ2
∫
∞

0

(
1−

(
1+

1
2

)
e−u/2

)
1
r̂2

du, r̂=
√

x2 + (λu)2. (2.16)

The slip length λ enters as a weighted integral of the no-slip Green function with
respect to the slip length.

We have seen that the scale R in fact becomes small compared to λ, hence we
analyse (2.16) in the limit of small r, which results in

U =
γ

2πη
[−ln r/λ+ 1+ (γE + 1)] +O(r/λ), (2.17)

where γE is Euler’s constant.
Assuming that the radius of curvature R=Cr of the tip scales like r, we obtain

R= e2+γE Cλ exp(−2πCa), (2.18)

where C is an empirical constant. As a result of the point force now being at a
distance R from the fluid, the r−1 stress singularity encountered by Huh & Scriven
(1971) is now converted into an integrable r−1/2 singularity (Jeong & Moffatt 1992;
Moffatt 1993). One can also check that the scaling of (2.18) with Ca is what is needed
to make the local dissipation finite, independent of the fluid viscosity. To calculate its
exact numerical value of R, a complete theory of the flow in the tip region would be
necessary. In figure 10 we find excellent agreement with (2.18), fitting the constant to
find C= 4.29. Finally, figure 11 shows the dependence for different θe. We find that
(2.18) is still valid, at least for high enough Ca. This confirms our earlier conclusion
that the form of the cusp region is independent of θe; however, the value of C depends
significantly on θe.

2.3. Region III: the bath
To complete the description of the profile for M = 0, we consider how the profile
levels off towards a flat bath. The flow far from the interface should be well described
by a flow in a rectangular corner, driven by the moving vertical plate. The other
side of the corner is formed by the free surface. This amounts to using the GL
approximation (see appendix A) in the limit θ → π/2, for which F ≈ −4/(3π), as
found from (A 2). Surface tension is subdominant on a scale much larger than lc, as
we will confirm self-consistently; of course, we can set λ = 0 as well. Thus from
(A 1) we obtain to leading order in θ −π/2 in dimensional variables

4Uν
πgh2

= θ −π/2, (2.19)
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FIGURE 10. (Colour online) Plot of R/λ for θe = π/2 and different slip lengths. The
radius R is found by fitting (2.13) to FEM simulations. All data collapse according to
(2.18), with C= 4.29.
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FIGURE 11. (Colour online) Plot of R/λ for different θe. The radius R is found by fitting
(2.13) to FEM simulations, just like for θe = 90◦. As Ca increases, all curves eventually
collapse onto a line with exponent −2π. The value of C in (2.18) is C= 3.22 for θe= 80◦,
C= 4.29 for θe = 90◦ and C= 146 for θe = 100◦.

where ν = η/ρ. From (A 4) we obtain to leading order

dh
dx
=

1
θ −π/2

, (2.20)
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FIGURE 12. (Colour online) FEM simulations of the interface about the bath for Ca =
0.75, 1.04 and 1.49 (bottom to top) for Hb= 103 (black lines). The short (red) line in the
main panel represents the power law h∼ (∆− x)−1. In the inset we show the coefficient
of proportionality a1 as found by fitting FEM simulations to h= a1(∆− x)−1 and compare
to the theoretical prediction (2.22) (red line).

so that

4Uν
πg

dh
h2
= dx. (2.21)

Integrating, we find

h= a1
1

∆− x
, a1 =

4Uν
πg

. (2.22)

This agrees well with numerical simulations for Hb = 103 (dimensionally a domain
width 1000 times the capillary length); as shown in the inset in figure 12, data points
approach the theoretical prediction for large Ca.

3. The drying transition
We have found that, for high capillary numbers, the structure of the solution in the

absence of a gas atmosphere is very similar to the free-surface cusps found on the
surface of a viscous liquid in the absence of a solid (Jeong & Moffatt 1992; Eggers &
Fontelos 2013). To describe the bifurcation towards a state where gas is entrained, we
can therefore use the theory developed for free-surface cusps (Eggers 2001), which has
been confirmed experimentally (Lorenceau, Restagno & Quéré 2003; Kiger & Duncan
2012).

The idea is that the air being dragged into the narrow cusp produces a lubrication
pressure, which forces the two sides apart. Making use of the slenderness of the cusp,
we calculate the extra velocity generated by the gas forcing. The condition for a steady
profile leads to an integral equation for the perturbed profile, which has a saddle-node
bifurcation with a stable upper branch and an unstable lower branch, as in figure 3. A
key point is that the perturbation to the M= 0 profile necessary to create a bifurcation
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is very small, so that a quantitative description can be obtained by adding the velocity
generated by the gas as a perturbation.

We begin by testing this theoretical description using the full numerical profiles
for M = 0, adding the perturbation coming from the gas, finding good quantitative
agreement with the theoretical bifurcation curves. Then we present an approximate
description based on the theoretical approximation (2.13) for the cusp. At the same
time we use an approximate method to solve the integral equation, which still
reproduces all the essential features of the original solution, while giving analytical
insight into the bifurcation.

3.1. The bifurcation
We solve the gas flow in the narrow space between the liquid and solid for a given
M=0 solution. Since the geometry is slender, we can use lubrication theory (Eggers &
Fontelos 2015) to calculate the pressure inside the gap. As usual in lubrication theory,
the pressure is constant over a cross-section of the gap, and the normal stress the gas
exerts on the fluid is dominated by the pressure. The shear stress is subdominant in
lubrication theory. If u0(x) is the vertical velocity of the fluid on the interface, the
vertical velocity in the gap, using a quadratic approximation, is

ug(x, y)= a2y2
+ a1y+ a1λg −U, a2 =

px

2Mη
, a1 =

u0 +U − a2h2

h+ λg
. (3.1)

It is easily verified that, for y=h(x), the velocity is continuous, while for y=0 (on the
plate), the partial-slip condition (1.6) (third equation) is satisfied. From the condition
that the total flux

∫ h
0 ug dy through the gap must vanish, we obtain

dplb

dx
= 6Mη

(u0 −U)h+ 2u0λg

h2(h+ 4λg)
(3.2)

for the derivative of the lubrication pressure with respect to x. To obtain the pressure,
one can integrate (3.2) starting from the bath, where the pressure is that of the ambient
gas. The lubrication pressure increases rapidly as the gap becomes narrower, which is
the root cause of the bifurcation. The growth of the pressure is mitigated somewhat by
the presence of the slip λg. The liquid flow is calculated for M= 0, which supplies u0,
from which the lubrication pressure is calculated via (3.2). This produces a correction
to the stress balance on the free surface, which changes the liquid flow, so both liquid
and gas flow have to be calculated self-consistently. A scheme of calculating the effect
of the gas by lubrication theory was implemented numerically by Liu et al. (2016)
and Sprittles (2017). In both papers it is confirmed that, at least when the capillary
number is sufficiently high, results based on the lubrication approximation in the gas
are almost indistinguishable from numerical simulations where both phases are treated
equally.

However, this approach still requires a full numerical simulation of the liquid phase
for each value of M. In order to capture the effect of the gas analytically, as in Eggers
(2001) we observe that the cusp is similar to a crack in an infinite two-dimensional
fluid domain, with a normal load imposed on it. Exploiting the equivalence between
linear elasticity and the Stokes equation in two dimensions, one can use classical
results from elasticity (Sun 2011) to compute the extra velocity vM(x) coming from
the stress on the cusp surface:

vM(x)=
1
η

∫ ∆

0
plb(x′)m(x′/x) dx′, (3.3)
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where

m(x)=
1

2π
ln
∣∣∣∣1+√x
1−
√

x

∣∣∣∣. (3.4)

The upper limit ∆ represents the undisturbed bath, where the ambient pressure has
been reached. Note the crucial feature that vM is a non-local function of the load plb,
while in the GL approximation, where (3.2) enters into (A 1) through F(θ, M), the
interface description is affected by plb only locally.

Integrating (3.3) by parts gives

vM(x)=−
x
η

∫ ∆

0
plb

x (x
′)M(x′/x) dx′, (3.5)

where

M(x)=
∫ x

0
m(x′) dx′ =

1
π

[
√

x+
x− 1

2
ln
∣∣∣∣1+√x
1−
√

x

∣∣∣∣] . (3.6)

The requirement that the free surface be a streamline of the flow is

∂h
∂x
=
v(x)
u(x)
≈
v0(x)+ vM(x)

u0(x)
=
∂h0

∂x
+
∂hc

∂x
, h= h0 + hc(x), (3.7)

where we have assumed that vM can be added to the base flow in a perturbative
fashion, as explained before. Here h0(x) represents the initial M= 0 base profile, and
hc(x) the perturbation from this base profile for a given M. Since v0 and vM have
opposite signs, the effect of the air is to push the interface so as to make it steeper,
effectively narrowing the gap, decreasing h. According to (3.2), the pressure rapidly
increases with decreasing h, amplifying the effect of the air. This positive feedback
leads to a bifurcation at a critical value of the capillary number.

As described in the introduction and seen in figure 3, to find both stable and
unstable branches of the bifurcation curve, one fixes the depression ∆, and searches
for the corresponding value of Ca. However, since the base profile, which is available
to us numerically only, depends on Ca but is by definition independent of M, it is
more convenient to fix ∆ as well as Ca and search for M, as seen in figure 13. Once
the critical value of M has been found for different values of Ca, one can produce
the conventional plot of Cacr as a function of M (cf. figure 14).

Equations (3.5) and (3.7) are solved numerically for hc(x). The unperturbed profile
h0, as well as the base solution u0(x) and v0(x) for the velocity field, evaluated at
the free surface, are taken from the numerical simulation for M = 0. Starting from
∆(M= 0), the depression is increased slowly, and the value of M is sought, using the
previous solution as an initial condition. At each new value of ∆, the profile h(x) is
discretized, and (3.7) is solved using Newton’s method. Since the changes in both the
profile and M from the preceding step are very small, only a few iterations are needed
for both the new profile and value of M to converge to high accuracy. The process is
repeated and the value of M(1) recorded. Successive iterations result in a bifurcation
curve as shown in figure 13 as the solid black line, for Ca = 0.65 and Ca = 1.04.
Thus, to compare how the perturbation 1(M) and hc

M(x) increases compared to the
numerical simulations, we first compare bifurcation plots perturbing from the same
M = 0 solution, found from the FEM simulations. This is shown in figure 13.
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FIGURE 13. (Colour online) Bifurcation curve obtained from theory, using the base flow
obtained from numerical simulation at M = 0 for Ca = 0.65 and Ca = 1.04 (solid black
line), compared to full FEM simulations (red line). The contact angle is θe=π/2 and slip
lengths are λl = λg = 10−4. Vertical dashed lines mark the critical values Mcr.
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FIGURE 14. (Colour online) The critical capillary number Cacr as a function of M
according to FEM data (red squares) and theory (blue circles), for λ = λg = 10−4 and
θe =π/2. The solid line corresponds to the analytical prediction according to (3.14), and
the dashed line is the analytical prediction including slip between gas and the liquid; the
vertical dotted line denotes the theoretical limit (3.19) below which no bifurcation occurs.

The plots for M(∆) in figure 13 show a saddle-node bifurcation: there is a
critical Mcr at which the upper branch from this point is stable and the lower
branch is unstable. This bifurcation point corresponds to the point where a dynamic
drying transition would occur as the value of M is raised. The lower branch is
unstable. The red line corresponds to the result of the FEM simulation; it was
obtained by extrapolating the bifurcation curve Ca(∆) obtained numerically for a
range of M values to a curve M(∆) at fixed Ca. It is seen that, for the larger
value of Ca (Ca = 1.04), the agreement is almost perfect along the upper branch,
and the extrapolated value of M where the bifurcation occurs is very close to
the bifurcation point predicted by theory. However, owing to computational issues,
previously described, we were not able to capture the lower branch in numerical
simulations. We estimate the bifurcation point from a sudden increase of the curvature
of the bifurcation curve. Trying to extrapolate our data beyond the bifurcation point,
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we estimate that our critical values of M might be too low by as much as 10 %. For
the smaller Ca (Ca= 0.65), a lower branch is seen in both the numerical simulation
and theory. The price we have to pay is that our asymptotic description is not quite
as good, and the value of the critical M is overestimated by approximately 20 %.
Still, the bifurcation curve is predicted convincingly, without adjustable parameters.
The comparison between FEM results and theory is summarized in figure 14 for an
angle of θe = π/2 and slip lengths λ = λg = 10−4. The FEM data are the same as
given in figure 2, with slip lengths chosen to match the simulations of Vandre et al.
(2013). As shown in Sprittles (2017), the experimental results of figure 2 are well
reproduced by numerical simulations, if appropriate physical slip lengths are chosen.
Good agreement is found between our theory and simulations in figure 14 as long
as M values are sufficiently small for our asymptotic theory to be applicable. For
small M one observes a small rise of the critical capillary number over a generally
logarithmic behaviour. This is because the presence of slip reduces the amount of air
being dragged into the cusp region. To gain a better analytical understanding of these
behaviours, we now present a simplified analytical theory of the transition.

3.2. Similarity description
We formulate (3.5) and (3.7) in terms of the phenomenological cusp solution (2.13). In
order to be able to write the resulting equation in self-similar variables, we assume
that the velocity u0 = −U along the cusp is constant. If (2.14) represents the base
solution for M = 0, the full solution reads in similarity variables:

h= Rq/(2q−1)H(ξ), ξ = R1/(1−2q)x, H(ξ)=H0(ξ)+Hc(ξ), (3.8a−c)

where H0(ξ) is the unperturbed (M = 0) similarity solution described by (2.14), and
Hc(ξ) is the correction coming from the effect of air in the narrow gap. Using u0 =

−U, we have

dplb

dx
=−

12MηU(h+ λg)

h2(h+ 4λg)
, (3.9)

so using (3.7) and (3.6), the equation for Hc(ξ) becomes

dHc

dξ
=−12sξ

∫
∞

0

M(τ/ξ)(H(τ )+ λ̄g) dτ
H2(τ )(H(τ )+ 4λ̄g)

, (3.10)

where

s=MR3(q−1)/(1−2q), λ̄g = Rq/(1−2q)λg. (3.11a,b)

Together with (3.8), this is an equation for the perturbation Hc(ξ). From the
behaviour of the kernel,

lim
x→0

M(x)=
2x3/2

3π
, lim

x→∞
M(x)=

2
√

x
π
, (3.12a,b)

one can deduce that (dHc/dξ)ξ 1/2 for ξ → 0 and dHc/dξ ∝ ξ−1/2 for ξ → ∞. It
follows that Hc(ξ) behaves asymptotically as

lim
ξ→0

Hc(ξ)=−H0ξ
3/2, lim

ξ→∞
Hc(ξ)=−Hiξ

1/2, (3.13a,b)
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where H0 and Hi are constants, which need to be found as part of the solution of
(3.10). In particular, the integral in (3.10) is convergent at both the lower and upper
boundary, so non-universal effects having to do with either the bath or the contact line
region do not play a role asymptotically.

Now we solve (3.10) numerically for a given capillary number, putting H(ξ) =√
2ξ + aξ q

+Hc(ξ). This is essentially the same equation as that solved numerically in
Eggers (2001) using Newton’s method. We find a saddle-node bifurcation at a critical
value s = sc, above which there is no more solution, while below sc there are two
branches, one stable and one unstable. To identify both branches, we treat s as an
unknown in (3.10), holding Hi (cf. (3.13)) constant. Clearly, the larger values of Hi
correspond to the unstable branch, the smaller values to the stable branch; solving
(3.10), we find s for each value of Hi. The maximum of the curve s(Hi) corresponds
to sc.

With sc(q,a, λ̄g) in hand, we are able to make a theoretical prediction for the critical
capillary number shown in figure 14, without using a FEM simulation of the M = 0
solution. The dependence of the radius of curvature on Ca is given by (2.18), and so
the first equation of (3.11) yields

M = sc(q, a, λ̄g)(e2+γE Cλ)3(1−q)/(1−2q) exp
(
−

6π(q− 1)
2q− 1

Cacr

)
. (3.14)

This is the inverse of Cacr(M), and is shown as the solid line in figure 14. We have
used C = 4.29 (cf. figure 10), q as calculated from (2.10), and a using the fit from
figure 8. The rescaled slip length λ̄g in the gas is found from (3.11). The expression
(3.14) combines all theoretical results from this paper, providing a unified asymptotic
description of the critical capillary number in terms of all relevant parameters.

The solid line agrees well with both full FEM simulations (red squares) and the
abridged theory based on knowledge of the full solution for M = 0 (blue circles), as
long as Cacr is sufficiently high, meaning that M is smaller than approximately 10−4.
For moderate values of M, meaning that Ca is small, the rescaled slip length λ̄g is
small and can effectively be put to zero. Thus, apart from the weak dependence of
q and a on Ca, sc is a constant, and solving (3.14) for Cacr leads to the logarithmic
behaviour

Cacr =
2q− 1

6π(1− q)
ln

M
sc
+

2+ γE + ln(Cλ)
2π

, (3.15)

which is seen in figure 14 for M . 10−4. For smaller values of M, on the other hand,
Cacr becomes somewhat larger than predicted by this logarithmic law. The reason is
that slip between the gas and the solid wall regularizes the growth of the lubrication
pressure, so higher speeds are needed to trigger the bifurcation. However, as seen from
(3.10), even in the limit of λ̄g→∞, the gradient is reduced by a factor of 1/2 only,
compared to λ̄g = 0.

The reason for the insensitivity to λg is that we still do not allow slip between
the gas and the liquid, so that the gas is still dragged into the gap by the liquid’s
motion, with the channel effectively twice as wide, as the gas does not encounter any
resistance at the wall. If one were to treat the gas flow near the interface with the
same slip law as with the wall, as suggested by kinetic effects (Li 2016; Sprittles
2017), (3.10) would turn into

dHc

dξ
=−12sξ

∫
∞

0

M(τ/ξ) dτ
H(τ )(H(τ )+ 6λ̄g)

. (3.16)
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Clearly, the effect of the gas on the right-hand side now becomes small for large λ̄,
i.e. for small R. Instead of the solid line in figure 14, we now obtain the dashed
line, which rises rapidly at M ≈ 10−6, leading to a sharp deviation from the weak
logarithmic dependence usually associated with the drying transition.

To make this observation more quantitative, we consider the asymptotic limit of λ̄g
very large in (3.16), so that H(τ ) can be neglected in comparison. As a result, we
obtain

dHc

dξ
=−2s̄ξ

∫
∞

0

M(τ/ξ) dτ
H(τ )

, (3.17)

where we have introduced s̄= s/λ̄g. For large Ca, the cusp exponent (2.10) becomes
q=3/2, so the only remaining parameter in (3.17) is a; we take it to be its asymptotic
value a = 0.45. Solving the integral equation (3.17) as before, we obtain a critical
value s̄c= 0.0272 above which no solution exists. Combining the definition of s̄c with
(3.11), we obtain

M = s̄cλgR(3−2q)/(1−2q). (3.18)

Note that, for the asymptotic value q = 3/2, the exponent vanishes, so we have to
include the next order q = 3/2 + 1/(2πCa) to obtain 1/(2πCa) for the exponent in
(3.18) to leading order as Ca→∞. Together with the formula (2.18) for R, this yields,
to leading order as Ca→∞, that the right-hand side of (3.18) reaches a finite value
in the limit. This means there exists a critical value

Mc = 0.0272λg/e (3.19)

of M below which no bifurcation occurs, regardless of how large the capillary number
is. For the parameters of figure 14, this is log10 Mc=−6 (shown as the dotted vertical
line), in good agreement with the sharp rise of the dashed line at that point.

4. Discussion
In this paper, we present a theory of air entrainment which takes account of the

fact that critical capillary numbers are not small, so an expansion in the capillary
number fails. First we develop an asymptotic description of the interface for large
capillary numbers, for which the interface forms a cusp, described by (2.14). The
radius of curvature R at the contact line scales like the slip length, multiplied by an
exponential of the capillary number. As a result, the typical scale of the solution near
the contact line, below which wetting properties come into play, may be much smaller
than the slip length. In a second step we take into account the air by calculating
the lubrication pressure inside the narrow cusp, which affects the flow in a non-local
fashion. Changes in the no-slip boundary condition (for example, increasing the slip
length) can delay the onset of the transition significantly.

By contrast, the conventional theory of the drying transition is based on an
expansion for small capillary numbers (Voinov 1976; Cox 1986), which yields
for the angle θd at a distance ld from the contact line:

g(θd,M)= g(θe,M)+ ln(ld/λ)Ca. (4.1)

In the limit M = 0, the function g(θ,M) is

g(θ)=
∫ θ

0

u− sin u cos u
2u

du. (4.2)
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Cox (1986) proposed that a transition takes place when θd = π at some unspecified
distance ld, although he himself acknowledged that the theory breaks down in this
limit, even if Ca is small. In (4.1) we have taken the inner length scale to be
the slip length in the liquid, although the full picture may be more complicated;
see appendix A. For small M, g(π, M) ≈ −(π/6) ln(3πM/4); assuming θe = π/2,
g(π/2,M)≈ g(π/2)=G− 1/2, where G≈ 0.915 . . . is Catalan’s constant. Thus the
critical capillary number becomes

Cacr =−
π

6 ln(ld/λ)
ln

3πM
4
−

G− 1/2
ln(ld/λ)

. (4.3)

Assuming, somewhat arbitrarily, that ld is a constant independent of Ca, (4.3)
provides a prediction which contains a single adjustable constant. For example, fitting
to the slope of the right-hand portion of figure 14 (which yields ln(ld/λ)≈ 7.4), one
obtains a reasonable description of the corresponding portion of the graph. However,
the description (4.3) completely misses the upturn of the curve towards the left, for
which slip in the gas phase is responsible. This is because the low-capillary-number
theory is not able to account for the separate regularizing effect of gas slip in the
narrow gap. Even more importantly, (4.1), on which Cox’s theory is based, fails to
describe the concave shape of the cusp (2.13), as it has a concave shape, with the
angle θ increasing monotonically. By contrast, in our theory, the slip in the gas phase
enters in a way that is very different from the slip of the liquid. The latter sets the
local scale for the size of the cusp tip, while the former regularizes the flow inside
the cusp in a non-local fashion. In fact, it has been argued (Sprittles 2017) that this
regularizing effect is amplified even more if non-equilibrium effects are taken into
account in the gas. It would be a straightforward addition to our theory to account
for this when describing the gas flow in the gap.

Another important question is how (if at all) the wetting properties of the liquid
(i.e. the equilibrium contact angle θe) come into play. In the low-capillary-number
theory, wetting plays a crucial role, as (4.1) describes how the interface angle is bent
away from its initial value at the contact line. On the other hand, there is recent
experimental evidence (Eddi et al. 2013; Latka et al. 2018) that wetting properties
play no role for the spreading dynamics once the contact line speed is sufficiently
high. As seen from (3.15), in the present theory the wetting angle comes in indirectly
through the constant C. According to the values reported in figure 11, there can thus
be a variation of Cacr by approximately 0.6 even in the narrow range θe = 80◦–100◦.
However, as shown in figure 9(b), the crossover towards the equilibrium contact angle
takes place on a length scale that is much smaller than the slip length, which itself
is of the order of the size of a few molecules. Thus the smallest length scale at
an elevated capillary number may formally be smaller than a molecular scale. This
suggests that it might in fact not be physically correct to resolve the flow to the
smallest length scale produced by continuum theory. It remains an open question what
the boundary condition should be, which correctly accounts for the presence of a
molecular length scale.

Finally we mention that an interesting and important challenge would be to
move beyond the two-dimensional theory developed here, to be able to describe the
triangular air pockets which are often observed for Ca= Cacr, as seen in figure 1(c).
This problem has been looked at for the case of triangular liquid films formed when
a solid plate is withdrawn from a bath (Snoeijer et al. 2007a). In that case it was
found that the entire three-dimensional flow in the film plays a role, rather than the
inclination angle of the triangle being determined by a local argument alone.
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Appendix A. The GL approximation for a 90◦ contact angle
The GL approximation for two-phase flow has been developed by Chan et al.

(2013). The dependence of the model on the slip length is calculated phenomenologic-
ally by comparing to the result of lubrication theory at small contact angles θe. Here
we are interested in contact angles closer to π/2, needed to produce the data shown
in figure 3. We report on the results of a recent investigation, details of which are
to be published shortly (Chan et al. 2018). To this end we start from the structure
proposed by Chan et al. (2013), in which the effect of slip is accounted for by
assuming the structure found for small angles:

d2θ

ds2
=

3Ca
h(h+ cλ)

F(θ,M)− cos θ. (A 1)

Here θ is the angle between the interface and the vertical (such that θ = θe at the
plate), and s is the arclength of the interface from the contact line. The term on the
left is the gradient of the Laplace pressure (since dθ/ds is the curvature), the first term
on the right is the gradient of the pressure jump across the interface, as calculated
from the Huh–Scriven solution (Huh & Scriven 1971), and the second term on the
right comes from gravity. The function F(θ, M) is given in Chan et al. (2013); to
correct a small sign error, we report the result here:

F=−
2 sin3 θ

3
M2F1(θ)+ 2MF3(θ)+ F1(π− θ)

MF1(θ)F2(π− θ)+ F1(π− θ)F2(θ)
, (A 2)

where

F1 = θ
2
− sin2 θ, F2 = θ − sin θ cos θ, F3 = θ(π− θ)+ sin2 θ. (A 3a−c)

The profile h(x) is recovered from

dh
ds
= sin θ,

dx
ds
=−cos θ. (A 4a,b)

Integrating (A 1) in the absence of gravity one can show that for small Ca the
solution has the structure of the general form given by Cox (1986), but where the
constant c is unknown. Comparing (A 1) to lubrication theory with slip, one finds
c = 3 for small angles (Chan et al. 2013). To generalize this result to larger angles,
we make use of the total shear force on the solid plate generated by a moving contact
line with slip, which was calculated beyond the leading-order logarithmic behaviour
by Hocking (1977). Since the shear force must be balanced by the force supported
by the interface, leading to the interface being curved, we can calculate the constant
c in terms of the shear force. The result (Chan et al. 2018) is

c= sin θ exp
(

sin θ(h1 +Mh2)

3F(θ,M)

)
, (A 5)
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where, for θe =π/2,

h1 =
(1−M)ha + 2Mhb

1+M
, h2 =

−(1−M)ha + 2Mhb

1+M
, (A 6a,b)

and ha = (4/π)(γ − ln 2) and hb = −1.539. In particular, c ≈ 1.12 for M = 0,
significantly smaller than the lubrication result c= 3. Equation (A 1) with c as given
in (A 5) was used to produce the results in figure 3.
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