NOTE ON WEIGHT SPACES OF IRREDUCIBLE LINEAR REPRESENTATIONS

F.W. Lemire
(received March 26, 1968)

Let L denote a finite dimensional, simple Lie algebra over an algebraically closed field F of characteristic zero. It is well known that every weight space of an irreducible representation (ρ, V) admitting a highest weight function is finite dimensional. In a previous paper [2], we have established the existence of a wide class of irreducible representations which admit a one-dimensional weight space but no highest weight function. In this paper we show that the weight spaces of all such representations are finite dimensional. More precisely, we prove:

THEOREM 1. If (ρ, V) is an irreducible representation of L which admits a finite dimensional weight space, then every weight space of (ρ, V) is finite dimensional.

Let U denote the universal enveloping algebra of L; then each representation (irreducible representation) (ρ, V) of L can be uniquely extended to a representation (resp. irreducible representation) of U which we shall again denote by (ρ, V). A map χ from the centre Z of U to the field of scalars F is called a character [1] of (ρ, V) if

$$
\rho(z) v=X(z) v \quad(\forall z \in Z)(\forall v \in V)
$$

Using Theorem 1 we prove:
THEOREM 2. If (ρ, V) is an irreducible representation of U which admits a finite dimensional weight space, then (ρ, V) admits a character.

1. Weight spaces. Let $\left\{\mathrm{Y}_{\beta}, \mathrm{H}_{\alpha}, \mathrm{X}_{\beta} \mid \alpha \in \Delta, \beta \in \Gamma^{+}\right\}$denote the Cartan basis of L where Δ and Γ^{+}denote the simple and positive roots of L with respect to a fixed Cartan subalgebra $\&$ of L. Then by the Poincaré - Birkhoff - Witt Theorem, U admits a basis B consisting of all elements of the form:

Canad. Math. Bull. vol. 11, no. 3, 1968

$$
\Pi_{\beta \in \Gamma^{+}} Y_{\beta}^{\mathrm{m}(\beta)} \prod_{\alpha \in \Delta} H_{\alpha}^{\mathrm{k}(\alpha)} \cdot \prod_{\beta \in \Gamma^{+}}^{\Pi} \mathrm{X}_{\beta}^{\mathrm{n}(\beta)}
$$

where the exponents $m(\beta), k(\alpha)$ and $n(\beta)$ are non-negative integers and the products Π each preserve a fixed order over their respective index sets. Let U_{ξ} denote the linear subspace of U generated by the set of all elements of B for which

$$
\sum_{\beta \in \Gamma}+(\mathrm{m}(\beta)-\mathrm{n}(\beta)) \beta=\xi .
$$

Clearly the underlying space of U is equal to the direct sum of all subspaces U_{ξ} where ξ ranges over all linear integral combinations of the simple roots of L.

For any element $\lambda \in \Re^{*}$, the dual space of the Cartan subalgebra, we define

$$
V_{\lambda}=\{v \in \mathrm{~V} \mid \rho(\mathrm{H}) \mathrm{v}=\lambda(\mathrm{H}) \mathrm{v}(\forall \mathrm{H} \in \mathcal{X})\}
$$

The linear functional λ is called a weight function and V_{λ} is called the corresponding weight space of (ρ, V) if and only if $\mathrm{V}_{\lambda} \neq\{0\}$. The following lemma connects the weight spaces V_{λ} of (ρ, V) and the subspaces U_{ξ} of U.

LEMMA 1. If (ρ, V) is an irreducible representation of U, V_{λ} is a weight space of (ρ, V), and v_{o} is a non-zero element of V_{λ} then for any weight space V_{γ} of (ρ, V) we have

$$
\rho\left(U_{\gamma-\lambda}\right) v_{0}=V_{\gamma} .
$$

Proof. Using the properties of the Cartan basis of L for each $H \in \mathcal{A}$ and each $u \in U_{\xi}$ we have $[H, u]=\xi(H) u$. From this observation it follows that $\rho\left(\mathrm{U}_{\xi}\right) \mathrm{v}_{0} \subseteq \mathrm{~V}_{\lambda+\xi}$. On the other hand since (ρ, V) is irreducible we have

$$
\mathrm{v}=\dot{\sum}_{\xi} \rho\left(\mathrm{U}_{\xi}\right) \mathrm{v}_{\circ} \subseteq \sum_{\xi}^{\dot{\Sigma}} \mathrm{v}_{\lambda+\xi}=\mathrm{V} .
$$

Therefore, for each $\xi, \rho\left(U_{\xi}\right) v_{o}=V_{\lambda+\xi}$.
Now let $\left\{E_{1}, E_{2}, \ldots, E_{m}\right\}$ be a fixed order on the Cartan basis of L. Then we may associate with each $Y \in B$ an ordered m-tuple $\left.Y_{(1)}, \ldots, Y_{(m)}\right)$ where $Y_{(i)}=$ the exponent of E_{i} in Y. We define a partial order on B setting $X \leq Y$ if and only if $X_{(i)} \leq Y_{(i)}$ for
$\mathrm{i}=1,2, \ldots, \mathrm{~m}$. Moreover we set $\mathrm{X}<\mathrm{Y}$ if and only if $\mathrm{X} \leq \mathrm{Y}$ and $X \neq Y$. For each linear integral combination ξ of simple roots of L we define an ξ-minimal element to be an element $Y \in U_{\xi} \cap B$ such that for each element $Y^{\prime} \in U_{\xi} \cap \beta$ with $1 \neq Y^{\prime} \leq Y$ we have $Y^{\prime}=Y$.

LEMMA 2. There exists only a finite number of ξ-minimal elements for each linear integral combination ξ of simple roots of L.

Proof. (This proof was communicated to me by I. Bouwer and represents a considerable simplication of my original proof.)

It clearly suffices to show that there exists a constant K such that for each ξ-minimal element $Y, Y_{(i)} \leq K$ for $i=1,2, \ldots, m$.

Select any ξ-minimal element X and define

$$
\mathrm{K}_{1}=\max \left\{\mathrm{X}_{(\mathrm{i})} \mid \mathrm{i}=1,2, \ldots, \mathrm{~m}\right\}
$$

It follows from the definition of ξ-minimality that each ξ-minimal element Y has at least one component less than or equal to K_{1}.
Inductively assume that we have already defined an integer K_{r} such that each ξ-minimal element Y has at least r components less than or equal to K_{r}. We now define K_{r+1} as follows:

Let $I^{(r)}=\left\{\left(n_{1}, \ldots, n_{r}\right) \mid n_{i}\right.$ integer with $\left.1 \leq n_{1}<n_{2}<\ldots<n_{r} \leq m\right\}$ and $J^{(r)}=\left\{\left(m_{1}, m_{2}, \ldots, m_{r}\right) \mid m_{i}\right.$ integer with $0<m_{i} \leq K_{r}$ for $i=1,2, \ldots, m\}$. For each pair $(\underline{n}, \underline{m}) \in I^{(r)} \times J^{(r)}$ define

$$
P(\underline{n}, \underline{m})=\left\{Y \mid Y \text { is } \xi \text {-minimal and } Y_{\left(n_{i}\right)}=m_{i} \text { for } i=1,2, \ldots, r\right\} .
$$

If $P(\underline{n}, \underline{m})=\phi$ ignore it. If, however, $P(\underline{n}, \underline{m}) \neq \phi$ choose $X \in P(\underline{n}, \underline{m})$ and define $K(\underline{n}, \underline{m})=\max \left\{X_{(i)} \mid i=1,2, \ldots, m\right\}$. Since the set $I^{(r)} \times J^{(r)}$ is finite we define $K_{r+1}=\max \left[\left\{K(\underline{n}, \underline{m}) \mid(\underline{n}, \underline{m}) \in I^{(r)} \times J^{(r)}\right\}\right.$ $\left.U\left\{\mathrm{~K}_{\mathrm{r}}\right\}\right]$.

We now claim that for each ξ-minimal element Y there are at least $r+1$ components of Y which are less than or equal to K_{r+1}. Assume to the contrary that Y is ξ-minimal and has exactly r components say $\left(n_{1}, n_{2}, \ldots, n_{r}\right)$ such that $Y_{\left(n_{1}\right)} \leq K_{r+1}$. By definition of K_{r} we may assume that $Y_{\left(n_{i}\right)} \leq K_{r} \leq K_{r+1}$ for $\mathrm{i}=1,2, \ldots, \mathrm{r}$. Then by definition of $\mathrm{K}_{\mathrm{r}+1}$ there exists an ξ-minimal
element Y^{\prime} such that $Y^{\prime}\left(n_{i}\right)=Y_{\left(n_{i}\right)}$ for $n_{i} \in\left\{n_{1}, \ldots, n_{r}\right\}$ and $Y_{(i)}^{\prime} \leq K_{r+1}$ for all other components. This contradiction proves our claim.

By continuing this construction to the $\mathrm{m}^{\text {th }}$ step we obtain the required bound on the components of ξ-minimal elements.

A straightforward proof using induction on the number of factors shows that $U_{\xi_{1}} U_{\xi} \subseteq U_{\xi_{1}}+\xi_{2}$. In particular $U_{o} U_{o} \subseteq U_{o}-$ i.e. U_{o} is a subalgebra of U which is called the cycle subalgebra of U. With this in mind we have the following immediate corollary of Lemma 2.

COROLLARY. Each subspace U_{ξ} of U is a finitely generated U_{0}-module. In fact the ξ-minimal elements form a generating set of U_{ξ} qua U_{0}-module.

Using the above lemmas we can now prove the first theorem.
THEOREM 1. If (ρ, V) is an irreducible representation of L admitting a finite dimensional weight space, then every weight space of (ρ, V) is finite dimensional.

Proof. Let V_{λ} denote a finite dimensional weight space of (ρ, V). Then by Lemma 1, if v_{o} is a non-zero element of V_{λ} we have $\rho\left(U_{o}\right) v_{o}=V_{\lambda}$. Since V_{λ} is finite dimensional there exists elements $e_{1}, e_{2}, \ldots, e_{n} \in U_{o}$ such that $\left\{\rho\left(e_{i}\right) v_{o} \mid i=1,2, \ldots, n\right\}$ forms a basis for V_{λ}.

If V_{γ} denotes a second weight space of (ρ, V) then by Lemma 1

$$
V_{\gamma}=\rho\left(U_{\gamma-\lambda}\right) v_{o} .
$$

Let $\left\{u_{1}, u_{2}, \ldots, u_{k}\right\}$ denote the set of $(\gamma-\lambda)$-minimal elements. Then applying Lemmas 1 and 2 it is clear that $\rho\left(U_{\gamma-\lambda}\right) v_{o}$ and hence V_{γ} is generated by

$$
\left\{\rho\left(u_{i} e_{j}\right) v_{o} \mid i=1,2, \ldots, k ; j=1,2, \ldots, n\right\}
$$

as a vector space over F. Therefore V_{γ} is a finite dimensional vector space over F.
2. Characters. As an application of the results of § 1 we have

THEOREM 2. Every irreducible representation (ρ, V) of L ; which admits a finite dimensional weight space admits a character.

Proof. Let (ρ, V) denote an irreducible representation of L then each weight space V_{λ} of (ρ, V) induces an irreducible representation $\left(\rho_{\lambda}, V_{\lambda}\right)$ of U_{0} where $\rho_{\lambda}(c) v=\rho(c) v\left(\forall c \in U_{0}\right)$ $\left(\forall v \in V_{\lambda}\right)$. Applying Theorem 1 every weight space of (ρ, V) is finite dimensional. Thus we may apply Schur's Lemma to observe that for each element x of the centre of $U_{0}, \rho_{\lambda}(x)$ is a scalar multiple of the identity map on the weight space V_{λ}.

If Z denotes the centre of U, then it is clear that Z is a subset of the centre of U_{0}. Thus for each weight function λ of (ρ, V) we define a map $X_{\lambda}: Z \rightarrow F$ by the condition that

$$
\rho_{\lambda}(z)=x_{\lambda}(z) 1_{V_{\lambda}}
$$

Since (ρ, V) is an irreducible representation, V is equal to the direct sum of its weight spaces. To complete the proof we need only show that for any two weight functions λ and γ of (ρ, V) we have $X_{\lambda}(z)=x_{\gamma}(z)$ for all $z \in Z$.

Select two non-zero vectors $v \in V_{\lambda}$ and $w \in V_{\gamma}$.
Since (ρ, V) is irreducible, there exists an element $u \in U$ such that $\rho(u) v=w$. Then for any $z \in Z$ we have

$$
\begin{aligned}
X_{\gamma}(z) w & =\rho(z) w=\rho(z) \rho(u) v=\rho(u) \rho(z) v \\
& =X_{\lambda}(z) \rho(u) v=X_{\lambda}(z) w .
\end{aligned}
$$

REFERENCES

1. Harish Chandra, Some applications of the universal enveloping algebra of a semi-simple Lie algebra. Trans. Amer. Math. Soc. 70 (1951) 28-99.
2. F. W. Lemire, Irreducible representations of a simple Lie algebra admitting a one dimensional weight space. Proc. Amer. Math. Soc. (to appear).
3. Jean-Pierre Serre, Algèbres de Lie semi-simples complexes. Benjamin, New York, 1966.

University of British Columbia

