NOTE ON WEIGHT SPACES OF IRREDUCIBLE LINEAR REPRESENTATIONS

F.W. Lemire

(received March 26, 1968)

Let L denote a finite dimensional, simple Lie algebra over an algebraically closed field F of characteristic zero. It is well known that every weight space of an irreducible representation (ρ , V) admitting a highest weight function is finite dimensional. In a previous paper [2], we have established the existence of a wide class of irreducible representations which admit a one-dimensional weight space but no highest weight function. In this paper we show that the weight spaces of all such representations are finite dimensional. More precisely, we prove:

THEOREM 1. If (ρ, V) is an irreducible representation of L which admits a finite dimensional weight space, then every weight space of (ρ, V) is finite dimensional.

Let U denote the universal enveloping algebra of L; then each representation (irreducible representation) (ρ , V) of L can be uniquely extended to a representation (resp. irreducible representation) of U which we shall again denote by (ρ , V). A map χ from the centre Z of U to the field of scalars F is called a <u>character[1]</u> of (ρ , V) if

 $\rho(z) v = \chi(z) v \quad (\forall z \in Z) (\forall v \in V).$

Using Theorem 1 we prove:

THEOREM 2. If (ρ, V) is an irreducible representation of U which admits a finite dimensional weight space, then (ρ, V) admits a character.

1. Weight spaces. Let $\{Y_{\beta}, H_{\alpha}, X_{\beta} \mid \alpha \in \Delta, \beta \in \Gamma^{+}\}$ denote the Cartan basis of L where Δ and Γ^{+} denote the simple and positive roots of L with respect to a fixed Cartan subalgebra \nexists of L. Then by the Poincaré - Birkhoff - Witt Theorem, U admits a basis \mathcal{B} consisting of all elements of the form:

Canad. Math. Bull. vol. 11, no. 3, 1968

(1)
$$\prod_{\beta \in \Gamma^+} Y^{\mathbf{m}(\beta)}_{\beta \alpha \in \Delta} \prod_{\alpha \in \Delta} H^{\mathbf{k}(\alpha)}_{\alpha} \prod_{\beta \in \Gamma^+} X^{\mathbf{n}(\beta)}_{\beta}$$

where the exponents $m(\beta)$, $k(\alpha)$ and $n(\beta)$ are non-negative integers and the products Π each preserve a fixed order over their respective index sets. Let U_{ξ} denote the linear subspace of U generated by the set of all elements of β for which

$$\sum_{\beta \in \Gamma} + (m(\beta) - n(\beta)) \beta = \xi.$$

Clearly the underlying space of U is equal to the direct sum of all subspaces U_{ξ} where ξ ranges over all linear integral combinations of the simple roots of L.

For any element $\lambda \in \mathcal{H}^{*}, \ \, the dual space of the Cartan subalgebra, we define$

$$V_{\lambda} = \{ v \in V \mid \rho(H) v = \lambda(H)v \quad (\forall H \in \mathcal{F}) \}$$

The linear functional λ is called a <u>weight function</u> and V_{λ} is called the corresponding <u>weight space</u> of (ρ, V) if and only if $V_{\lambda} \neq \{0\}$. The following lemma connects the weight spaces V_{λ} of (ρ, V) and the subspaces U_{μ} of U.

LEMMA 1. If (ρ, V) is an irreducible representation of U, V_{λ} is a weight space of (ρ, V) , and v_{ρ} is a non-zero element of V_{λ} then for any weight space V_{γ} of (ρ, V) we have

$$\rho(\mathbf{U}_{\gamma-\lambda}) \mathbf{v} = \mathbf{V}_{\gamma}$$

<u>Proof</u>. Using the properties of the Cartan basis of L for each $H \in \mathcal{H}$ and each $u \in U_{\xi}$ we have $[H, u] = \xi(H)u$. From this observation it follows that $\rho(U_{\xi})v_{0} \subseteq V_{\lambda+\xi}$. On the other hand since (ρ, V) is irreducible we have

$$\mathbf{V} = \overset{\cdot}{\Sigma} \rho(\mathbf{U}_{\xi}) \mathbf{v}_{o} \stackrel{\cdot}{=} \overset{\cdot}{\Sigma} \mathbf{V}_{\lambda+\xi} = \mathbf{V}.$$

Therefore, for each ξ , $\rho(U_{\xi})v_{o} = V_{\lambda+\xi}$.

Now let $\{E_1, E_2, \ldots, E_m\}$ be a fixed order on the Cartan basis of L. Then we may associate with each $Y \in \mathcal{B}$ an ordered m-tuple $(Y_{(1)}, \ldots, Y_{(m)})$ where $Y_{(i)}$ = the exponent of E_i in Y. We define a partial order on \mathcal{B} setting $X \leq Y$ if and only if $X_{(i)} \leq Y_{(i)}$ for

i = 1, 2, ..., m. Moreover we set X < Y if and only if $X \le Y$ and $X \ddagger Y$. For each linear integral combination ξ of simple roots of L we define an ξ -minimal element to be an element $Y \in U_{\xi} \cap \beta$ such that for each element $Y' \in U_{\xi} \cap \beta$ with $1 \ddagger Y' \le Y$ we have Y' = Y.

LEMMA 2. There exists only a finite number of ξ -minimal elements for each linear integral combination ξ of simple roots of L.

<u>Proof</u>. (This proof was communicated to me by I. Bouwer and represents a considerable simplication of my original proof.)

It clearly suffices to show that there exists a constant K such that for each ξ -minimal element Y, $Y_{(i)} \leq K$ for i = 1, 2, ..., m.

Select any ξ -minimal element X and define

$$K_1 = \max \{X_{(i)} \mid i = 1, 2, ..., m\}$$

It follows from the definition of ξ -minimality that each ξ -minimal element Y has at least one component less than or equal to K_1 . Inductively assume that we have already defined an integer K_r such that each ξ -minimal element Y has at least r components less than or equal to K_r . We now define K_r as follows:

Let $I^{(r)} = \{(n_1, \dots, n_r) | n_i \text{ integer with } 1 \le n_1 < n_2 < \dots < n_r \le m\}$ and $J^{(r)} = \{(m_1, m_2, \dots, m_r) | m_i \text{ integer with } 0 < m_i \le K_r \text{ for}$ $i = 1, 2, \dots, m\}$. For each pair $(\underline{n}, \underline{m}) \in I^{(r)} \times J^{(r)}$ define

$$P(\underline{n},\underline{m}) = \{Y | Y \text{ is } \xi \text{-minimal and } Y_{(\underline{n}_i)} = m \text{ for } i = 1, 2, \dots, r \}$$

If $P(\underline{n}, \underline{m}) = \phi$ ignore it. If, however, $P(\underline{n}, \underline{m}) \neq \phi$ choose $X \in P(\underline{n}, \underline{m})$ and define $K(\underline{n}, \underline{m}) = \max \{X_{(i)} \mid i = 1, 2, ..., m\}$. Since the set $I^{(r)} \ge J^{(r)}$ is finite we define $K_{r+1} = \max [\{K(\underline{n}, \underline{m}) \mid (\underline{n}, \underline{m}) \in I^{(r)} \ge J^{(r)}\} \cup \{K_r\}].$

We now claim that for each ξ -minimal element Y there are at least r + 1 components of Y which are less than or equal to K_{r+1} . Assume to the contrary that Y is ξ -minimal and has <u>exactly</u> r components say (n_1, n_2, \ldots, n_r) such that $Y_{(n_i)} \leq K_{r+1}$. By definition of K_r we may assume that $Y_{(n_i)} \leq K_r \leq K_{r+1}$ for $i = 1, 2, \ldots, r$. Then by definition of K_{r+1} there exists an ξ -minimal element Y' such that $Y'_{(n_i)} = Y_{(n_i)}$ for $n_i \in \{n_1, \ldots, n_r\}$ and $Y'_{(i)} \leq K_{r+1}$ for all other components. This contradiction proves our claim.

By continuing this construction to the m^{th} step we obtain the required bound on the components of ξ -minimal elements.

A straightforward proof using induction on the number of factors shows that $U_{\xi_1} \bigcup_{\xi_2} \bigcup_{\xi_1+\xi_2} U_{\xi_1+\xi_2}$. In particular $U_0 \bigcup_0 \subseteq U_0$ --- i.e. U_0 is a subalgebra of U which is called the <u>cycle subalgebra</u> of U. With this in mind we have the following immediate corollary of Lemma 2.

COROLLARY. Each subspace U_{ξ} of U is a finitely generated U_{0} -module. In fact the ξ -minimal elements form a generating set of U_{ξ} qua U_{0} -module.

Using the above lemmas we can now prove the first theorem.

THEOREM 1. If (ρ, V) is an irreducible representation of L admitting a finite dimensional weight space, then every weight space of (ρ, V) is finite dimensional.

<u>Proof.</u> Let V_{λ} denote a finite dimensional weight space of (ρ, V) . Then by Lemma 1, if v_0 is a non-zero element of V_{λ} we have $\rho(U_0)v_0 = V_{\lambda}$. Since V_{λ} is finite dimensional there exists elements $e_1, e_2, \ldots, e_n \in U_0$ such that $\{\rho(e_i)v_0 \mid i = 1, 2, \ldots, n\}$ forms a basis for V_{λ} .

If V denotes a second weight space of $(\rho\,,\,V)$ then by Lemma 1 we have

$$V_{\gamma} = \rho (U_{\gamma-\lambda}) v_{o}.$$

Let $\{u_1, u_2, \ldots, u_k\}$ denote the set of $(\gamma - \lambda)$ -minimal elements. Then applying Lemmas 1 and 2 it is clear that $\rho(U_{\gamma - \lambda})v_0$ and hence V_{γ} is generated by

$$\{\rho(u_i e_j)v_o \mid i = 1, 2, ..., k; j = 1, 2, ..., n\}$$

as a vector space over F. Therefore V is a finite dimensional $$\gamma$$ vector space over F.

2. Characters. As an application of the results of §1 we have

THEOREM 2. Every irreducible representation (ρ, V) of L; which admits a finite dimensional weight space admits a character.

<u>Proof.</u> Let (ρ, V) denote an irreducible representation of L then each weight space V_{λ} of (ρ, V) induces an irreducible representation $(\rho_{\lambda}, V_{\lambda})$ of U_{o} where $\rho_{\lambda}(c)v = \rho(c)v$ ($\forall c \in U_{o}$) ($\forall v \in V_{\lambda}$). Applying Theorem 1 every weight space of (ρ, V) is finite dimensional. Thus we may apply Schur's Lemma to observe that for each element x of the centre of U_{o} , ρ_{λ} (x) is a scalar multiple of the identity map on the weight space V_{λ} .

If Z denotes the centre of U, then it is clear that Z is a subset of the centre of U. Thus for each weight function λ of (ρ , V) we define a map $\chi_{\lambda} : Z \xrightarrow{\rho} F$ by the condition that

$$\rho_{\lambda}(z) = \chi_{\lambda}(z) \mathbf{1}_{V_{\lambda}}.$$

Since (ρ, V) is an irreducible representation, V is equal to the direct sum of its weight spaces. To complete the proof we need only show that for any two weight functions λ and γ of (ρ, V) we have $\chi_{\lambda}(z) = \chi_{\nu}(z)$ for all $z \in Z$.

Select two non-zero vectors $\mathbf{v} \in \mathbf{V}_{\lambda}$ and $\mathbf{w} \in \mathbf{V}_{\nu}$.

Since (ρ, V) is irreducible, there exists an element $u \in U$ such that $\rho(u)v = w$. Then for any $z \in Z$ we have

$$\chi_{\gamma}(z)w = \rho(z)w = \rho(z) \rho(u) v = \rho(u) \rho(z) v$$
$$= \chi_{\lambda}(z) \rho(u)v = \chi_{\lambda}(z)w.$$

REFERENCES

- Harish Chandra, Some applications of the universal enveloping algebra of a semi-simple Lie algebra. Trans. Amer. Math. Soc. 70 (1951) 28-99.
- F.W. Lemire, Irreducible representations of a simple Lie algebra admitting a one dimensional weight space. Proc. Amer. Math. Soc. (to appear).
- Jean-Pierre Serre, Algèbres de Lie semi-simples complexes. Benjamin, New York, 1966.

University of British Columbia