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ABSTRACT 

Movement of the sea-ice edge on short time-scales 
«I d) is due to a balance of forces between several 
mechanisms (wind stress, sea-surface tilt, internal ice stress, 
and Coriolis force) which are often comparable in 
magnitude. Other factors such as the force induced by 
partial reflection of short seas, internal gravity waves in the 
pycnocline, etc., may also contribute. Through the 
momentum equation, these mechanisms affect the dynamics 
of the ice edge. In this paper we suggest another 
mechanism which may have importance, namely, a 
radiation-stress contribution which derives from obliquely 
incident waves which are totally reflected from the ice edge 
by a process analogous to total internal reflection in optics. 
Such reflection generates both normal and shear forces at 
the ice edge, the former tending to compact the pack ice 
and the latter to shear the absolute edge. The effect is 
studied using some recent data collected during the Winter 
Weddell Sea Project 1986 in Antarctica, where it is found 
that the contribution to the force balance is significant. For 
thicker sea ice and icebergs acted upon by oblique seas, the 
radiation stress-induced force may outweigh more 
conventional terms in the momentum equation. 

INTRODUCTION 

The precise nature of the momentum balance at the ice 
edge is rather poorly understood; for as well as the usual 
balance of forces due to wind stress, water stress, 
sea-surface tilt, internal ice stress, and Coriolis force, other 
factors which owe their existence to the proximity of the 
open ocean are known to be important. These incl ude a 
radiation-stress mechanism known to create and to keep ice 
bands intact (Martin and others, 1983; Wadhams, 1983); an 
internal gravity-wave mechanism (Muench and others, 1983) 
which leads to zones of convergence and divergence, and 
hence also to banding of the ice cover; spatial changes in 
both the air-ice and water-ice drag coefficients; and 
numerous mechanisms which rely on modification of ocean
ographic structure induced by the (often abrupt) change 
from an open to an ice-covered ocean. 

In this paper we investigate another aspect of ocean 
waves which may have importance to the driving of the ice 
edge. This is the mechanism of total external reflection of 
surface waves, first postulated by Squire (unpublished) and 
shown theoretically possible for a shore-fast ice edge and 
large ice floes by Squire (1984). When such reflection does 
occur, the radiation stress tensor at the ice edge has a non
zero normal element and a non-zero shear element. Both 
may be significant in typical ice-edge seas. This paper 
develops the appropriate theory and investigates the 
magnitude of the forces induced by the phenomenon in a 
case study. 

THE CRITICAL ANGLE FOR TOTAL REFLECTION 

Consider a train of deep-ocean surface waves incident 

on an ice edge obliquely. On the open ocean side of the 
ice edge the dispersion equation for the waves is 

k = (I) 
g 

where k and ware respectively the wave number and radian 
frequency of the incident wave, and g is the acceleration 
due to gravity. As usual, k = 271/ wavelength and w = 271/ 
period. 

We assume that the ice cover may be modelled as a 
thin elastic plate. This is an approximation which may hold 
under certain circumstances; namely, where ice floes are 
large compared to wavelength or where discrete floes have 
become sufficiently abraded and pummelled together by 
wave action to create a zone of 100% concentration at the 
ice edge. A dispersion relation may then be written down 
for the ice cover as follows: 

Dk' 5 + (pg - p' hw2 )k' - pw2 = 0 (2) 

where k' is the wave number in ice, D is the flexural 
rigidity of the sea ice, p is sea-water density, p ' is the ice 
density, and h is the ice thickness. The flexural rigidity is 
defined as Eh3 / 12(1 - \)2) where E is Young's mod ulus and 
\) is Poisson's ratio. Relation (2) is found from the elastic 
thin-plate equation, the kinematic boundary condition 
beneath the ice, and Bernoulli's pressure equation. For a 
full derivation see Squire (1984). Following that paper 
further, we assume oblique incidence by considering a 
surface-wave displacement n in the open sea of the form 

n = ['eik(X cos 9+y sin 9) + Re -ik(x cos 9-y sin 9)J e -iWI. (3) 

In this expression (x,y) is a coordinate system with x 
normal and into the ice edge and y along the ice edge, S 
is the angle of incidence, and I and R are the incident and 
reflected wave amplitudes. A wave displacement of similar 
form to Equation (3) exists within the ice cover. By 
appropriate matching across the ice edge, we find an 
expression analogous to Snell's Law of optics, viz. 

k sin S = k' sin S' (4) 

where S' is the angle of refraction. We now ask the 
question: do any angles of incidence exist for wh ich 
Equation (4) cannot be satisfied? Clearly, this depends on 
the relative magnitudes of k and k', since if k sin S > k' 
no real angle S' can be found. This suggests that a critical 
angle of incidence Sc can be ident ified when sin Sc = k' /k. 
For angles of incidence less than Sc the waves penetrate the 
ice; for angles greater than Sc no propagating wave is 
permitted to enter. It is known for representative values of 
the elastic parameters E and \) that k' < k for short waves 
and k' > k for long waves, and that the greater the ice 
thickness the lower the period of tranSItIOn (Squire, 
unpublished). Using typical elastic constants for sea ice 
(E = 6.0 x 109 N m- 2 and \J = 0.3), the critical angle is 
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Fig. I . Critical angle curves for various ice thicknesses 
plotted as a function of wave period: A, 0.25 m; B, 0.5 m; 
C, 1.0 m; D, 2.0 m; E, 5.0 m. Reproduced with 
modification from Squire (1984). 

plotted at various thicknesses as a function of period in 
Figure I . Total external reflection occurs at incidence angles 
above those defined by the intersection of the appropriate 
thickness curve and the period ordinate. With such 
reflection, the amplitude of the reflected wave will be the 
same as the incident wave. Thus, the sea off the ice edge 
will take on the form of a wave travelling along the edge 
whose amplitude is modulated by a standing pattern of 
corrugations with nodal and anti-nodal lines parallel to the 
edge. Most important to this discussion: reflection is 
complete , i.e. I RI / Ill = I . 

RADIA nON STRESS 

The theory of radiation stress in water waves is well 
understood and the reader is referred to Longuet-Higgins 
and Stewart (1964) for a complete treatment, and to 
Longuet- Higgins (1977) for an example of its application. 
The radiation stress in . water waves is similar to that 
produced by electromagnetic or acoustic waves impinging on 
a surface; its normal component, S X );; say, is defined as the 
mean (with respect to time) of the total flux of 
x -momentum across the plane x = constant minus the mean 
flux in the absence of waves. For deep-water waves, 
Longuet-Higgins and Stewart (1964) showed that 

I I 
S = _pgl2 -E (5) 

xx 4 2 

where E is the total energy density. 
The shear-radiation stress, Syx say, is the excess flux 

of y-momentum across x = constant. For deep-water waves 
travelling in the x -direction, S yx = O. Similarly, S xy = S yy 
= O. Thus, the radiation-stress tensor for deep-water waves 
may be written: 

S=~E[IO] . 
200 

(6) 

We now generalize this expression to the obliquely 
incident ocean wave train considered in the previous section. 
This is done following the usual rules for tensor rotation, 
i.e. for a coordinate system inclined at an angle a to the 
direction of propagation 

S = ~E [cos a sina][1 0] [cos a -sin a], (9) 
2 -sin a cos a 0 0 sin a cos a 

158 

which reduces to 

I [COS2 
a sin a cos a] 

S = -E 
2 sin a cos a sin 2 a 

(8) 

Thus, under conditions of total external reflection, i.e. when 
the angle of incidence is a ~ ac' we have 

because for 
and 

Syx 

I 
S xx = - pgl2 cos2 a 

2 
E cos2 a, 

total reflection all the momentum is 

I I 
-pgPsina cos a - E sin a cos a. 
4 2 

(9) 

reversed , 

(10) 

S (eX and S yx represent the normal and shear force per unit 
dIstance along the ice edge due to totally reflected oblique 
ocean waves . In SI units, their dimensions are N m-I. 

DATA 

The data used in this paper to compute the magnitude 
of the forces due to Equations (9) and (10) on the ice were 
collected from FS Polar stern during the Winter Weddell Sea 
Project of the austral winter of 1986. A full analysis of the 
data is under way and will be reported elsewhere. The 
interpretation of the data as showing total external reflection 
is novel and is inconclusive, principally because too few 
stations are available. However, as the data are used only as 
illustration that the mechanism might be important, we 
continue our story . 

The experiment took place on either side of a 
consolidated band of ice about 4 km across. The seaward 
edge of the band ran along a bearing of about 060

0

• For 
the 24 h previous to the experiment, the wind originated in 
the 217-239

0 
sector. During the experiment the wind of 

about 11 m S-1 veered slightly from 210
0 

at the beginning to 
245

0 
towards the end. Clear wave trains propagating in an 

approximately easterly direction could be d iscerned clearly 
on the ship's radar; fronts were timed and their average 
speed was found to be 20.4 m S- 1 which corresponds to a 
period of 12.6 s. Their easterly heading indicated that the 
wave energy was entering the band obliquely. This was also 
confirmed by observations from the ship's helicopter. 

Ice concentration in the band was 100%, composed of 
a slurry of pancake ice of average thickness approximately 
0.25 m. The mechanical behaviour of such a slurry is 
presumably highly complex and our assumption that it may 
be modelled as a thin elastic plate is questionable. Nonethe
less , as we only require a change in the relative size of the 
wave number with period for the mechanism to be 
effective , the precise nature of the material characterist ics 
of the ice band is unimportant. 

Two directional wave-buoy recordings were made: the 
first seaward of the band (northerly station) and the second 
within the ice edge to the lee of the band (southerly 
station). In both, the LO.S. pitch-roll buoy was used 
(Wadhams and others, 1986), and records were 4096 s long 
with a 2 Hz sample rate. After geo- orienting the data to 
north-south, east-west, the co- and quadrature spectra were 
derived and the energy density, the mean wave direction , 
and the angular spread were found as functions of wave 
frequency assuming a unimodal directional distribution. This 
is the conventional analysis for directional wave buoys first 
suggested by Longuet-Higgins and others (1963). All spectra 
were smoothed to 56 degrees of freedom . Figure 2 shows 
the energy spectrum and Figure 3 the wave direction and 
spread spectra, presented for completeness, both for the 
incident wave field (north) and for the wave field after it 
has passed through the band (south). Note the remarkable 
decrease in energy density across the band, particularly at 
short periods . It is this decrease which we hypothesize may, 
in part, be due to total external reflection at the ice edge . 
To investigate the energy decrease further , we have plotted 
in Figure 4 the gain function between the incoming waves 
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Fig. 2. The energy spectrum (power spectral density, psd) 
on either side of the ice band. The solid line (marked 
north) is for incoming waves, and the dashed line (marked 
south) is for waves after they have travelled through the 
band. The frequency axis has been plotted logarithmically 
so that the swell and wind sea peaks can easily be 
distinguished . 

N 
, 
I 

I , 
, 
I 

11 

W 
, 

c 
.Q 

~S 
-0 

E 

, 
\...- - ... 

, I 
\ ,-, 
v' 
'south 
(spread) 

north 

(direction) 

--~~~;h''-''\--/---
(direction ) 

600 

o 
NO~----~O.~1------O~.-2------0~. 3------~0.4° 

frequency , Hz 

Fig. 3. The mean wave direction and spread spectra 
corresponding to Figure 2. The direction axis is the wave 
heading . 

(northerly station) and the waves seen at the southerly 
station. The curve represents the fractional difference in 
amplitude as a function of wave frequency. Note the 
marked decrease in the gain function up to a frequency of 
0.2 Hz, followed by an increase for higher-frequency 
(lower-period) waves. The reason for this increase is unclear; 
certainly some short-period energy will be generated locally 
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by winds. However, the regrowth begins to occur at a 
fairly long period for this mechanism alone to be 
responsible. Another possibility is multiple reflections from 
the next band encountered in the ice cover. We also note 
that the wave buoy was operating near to minimum 
resolution at the southerly station over the band width of 
frequencies surrounding the minimum of Figure 4. 

In order to proceed, we must establish that the sea off 
the ice edge has a reflected component at some frequencies, 
i.e. that it is bimodal in its directionality. The method of 
analysis used above presumes the sea to be unimodal, and 
hence cannot reveal a reflected contribution. Any indication 
of wave reflection in the quadrature spectra between heave 
and pitch, and heave and roll, will be smeared out in the 
integration process used to derive mean wave direction by 
the conventional method: 

Mean Wave Direction 

2" 
Jsin a G(w,a)da 

tan-l _0 _____ _ 

2n 
J cos a G(w,a)da 
o 

(11) 

where the function G(w,a) is the directional distribution 
which satifies 

2n 

J G(w,a)da 

o 

I. ( 12) 

We therefore seek an alternative method for the evaluation 
of G(w,a) which does not presume a unimodal sea. One 
such method is the variational technique of Long and 
Hasselmann (1979) used successfully by Wadhams and others 
(1986). In the current work we shall use an alternative 
approach based on the maximum entropy algorithm 
suggested by Lygre and Krogstad (1986) . This algorithm is 
easier to apply and is said to produce similar results to the 
variational technique (personal communication from l .A . 
Ewing, 1987). Sadly, Lygre and Krogstad's paper contains 
several typographical errors and care must be exercised in 
its application. 

The maximum entropy method reproduces exactly all 
the Fourier coefficients that are input to the estimate. The 
elements of the usual cross-spectral matrix are used to 
derive the normalized angular harmonics Al' Bl' A 2, and B2 
(see Wadhams and others, 1986, appendix A). Defining Cl2 
= Al 2 + iB12 , Lygre and Krogstad used the Yule-Walker 
maximum entropy equations to write down the following 
expression for G(w,a) , valid at each radian frequency w: 

period, s 
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Fig. 4. The gain function between northerly and southerly 
wave stations. The frequency domain for which total 
reflection is possible is marked . 
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Fig. 5. Polar diagram of function G(ex) at a period of 
13 .9 s. The plot represents the angular distribution of 
energy at that period. No total external reflection occurs 
at the ice edge. 
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Fig. 6. Polar diagram of function G( ex) at a period of 3.8 s. 
The critical angle limits (determined from 0 Figure 1~ 
define a sector of total reflection between 060 and 115 
at this period. 

21lG(ex) (13) 

• where 411 = (Cl - c 2Cl )/ (1 - 1 cl 1
2
), 412 = (c2 - c14ll), and • 

indicates conjugate. Two examples of the directional 
distribution are given in Figures 5 and 6; the first figure 
shows that the waves are essentially unimodal at long 
period, and the second illustrates their bimodal nature at 
short periods. Processing was carried out on 4096 s records , 
smoothed to 56 degrees of freedom; resolution band width 
was therefore approximately 6.9 x 10-3 Hz. All periods in 
the spectral range plotted in Figure 2 were analysed . The 
change from bimodality to unimodality occurs between 7 
and 8 s. 

Also in Figures 5 and 6 we have plotted the 
approximate line of the ice edge. This was obtained by 
taking ranges and bearings to the ice as seen by the radar 
aboard FS Polar si ern and is hence subject to some error. 
Then the appropriate critical angle curve of Figure I has 
been used to delineate a sector wherein total external 
reflection is possible. The sector is bounded by a line 
parallel to the ice edge and a line determined by the 
relative magnitudes of k and k' . Since k' > k for long 
waves, no sector is defined in Figure 5 (13 .9 s). 

We are now in a position to compute the two force
density spectra suggested by Equations (9) and (10) for the 
normal and shear-radiation stresses, respectively. This is 
done as follows. For every period band present in the 
incoming wave spectrum (determined by our sampling and 
averaging constraints), the values of S xx and S yx are 
calculated for all incident angles in the sector defmed in 
Figure 6 and its equivalent at different periods. Outside of 
the sector, of course, the radiation-stress contribution will 
vanish. The normal and shear force density per unit 
distance al each period along the ice edge is then the 
integral with respect to a of these radiation-stress 
components around the sector. Their units will be N m-I s. 
These values are plotted in Figure 7 as a spectrum for the 
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Fig. 7. Force-density spectra in the normal (solid line) and 
shear (dashed line) cases for an ice edge oriented at 
060 0 . The percentage of the directional distribution of 
energy subject to possible reflection is also shown (dotted 
line). The graphs are only non-zero when total external 
reflection becomes possible. 
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Fig. 8. Variation with ice-edge bearing of the total force 
per unit distance in the normal (solid line) and shear 
(dashed line) directions. The intersection of the 
radar-bearing ordinate (060°) and the curves gives a 
normal force of 17 N and a shear force of 21 N for each 
metre of ice edge. 

normal and the shear cases. Also plotted is the percentage 
of the directional distribution which may be affected by 
total external reflection. Note the onset of reflection at 
about 0.12 Hz. 

The areas under the respective spectra of Figure 7 give 
the normal and shear force per unit distance exerted on the 
ice edge. In view of our uncertainty about the bearing of 
the ice edge , this has been calculated for various 
orientations of the ice edge. The results are presented in 
Figure 8. Note that, even with a change in orientation 
which is far beyond the likely error in the radar map, the 
two stresses change little. At the selected ice-edge bearing 
(060°) the normal force is about I7 N m-I and the shear 
force is 21 N m-I. 
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SUMMARY AND CONCLUSIONS 

We have suggested that the dynamics of the ice edge 
may be influenced by an additional pair of forces which 
have hitherto not been considered or included in the 
momentum-balance equation. The forces derive from the 
excess flux of momentum in the incident wave's direction 
resolved into components into and along the ice edge for 
the case of total external reflection at the edge. We have 
tentatively assigned some recent Antarctic observations to 
this phenomenon. 

Although the magnitude of the normal force on a I m 
strip of the ice edge (17 N) is less in this case than that 
imparted by the component of wind blowing across the 
entire width of the band (22 N, where we have assumed a 
drag coefficient of 3 x 10-3), the figures are sufficiently 
close in view of our various approximations that the effect 
may be important. Moreover, for thicker sea ice and 
particularly for icebergs, total external reflection is more 
likely. Hence, in similar seas the two radiation 
stress-induced forces computed above would be larger and 
more significant, and could outweigh other terms in the 
momentum equation. 

We conclude that the rather esoteric mechanism 
suggested in this paper may well prove an important factor 
in the control of the dynamics of the sea-ice edge and 
icebergs in the open ocean. 
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