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A DECOMPOSITION OF RINGS GENERATED 
BY FAITHFUL CYCLIC MODULES 

BY 

GARY F. BIRKENMEIER 

ABSTRACT. A ring R is said to be generated by faithful right cyclics 
(right finitely pseudo-Frobenius), denoted by GFC (FPF), if every faithful 
cyclic (finitely generated) right /^-module generates the category of right 
R-modules. The class of right GFC rings includes right FPF rings, com­
mutative rings (thus every ring has a GFC subring - its center), strongly 
regular rings, and continuous regular rings of bounded index. Our main re­
sults are: (1) a decomposition of a semi-prime quasi-Baer right GFC ring 
(e.g., a semiprime right FPF ring) is achieved by considering the set of 
nilpotent elements and the centrality of idempotnents; (2) a generalization 
of S. Page's decomposition theorem for a right FPF ring. 

Introduction. All rings are associative with unity, unless specifically stated other­
wise. R,Zr{R),P{R), and N(R) denote a ring, the right singular ideal of R, the prime 
radical of R, and the set of nilpotent elements of R, respectively. Let X and Y be 
right ideals such that X Ç Y Ç R; we say X is ideal essential in Y if every nonzero 
ideal of R which is contained in Y has nonzero intersection with X. If V is a set, 
then rR(V) and lii(V)(r(V) and l(V) when unambiguous) will denote the right and left 
annihilator of V in R, respectively. A right ideal X of R is densely nil, DN, if either 
X = 0 or for every nonzero x G X , there exists s € R such that xs ^ 0 but (xs)2 = 0. 
From [1] the minimal direct summand containing the nilpotent elements, MDSN, is 
a completely semiprime ideal (i.e., xn G MDSN => x G MDSN) which equals the 
intersection of all direct summands which contain the set of nilpotent elements of the 
ring. The subring (without unity) of/? generated by \JeeE eR(l—e) where E is the set 
of idempotent elements of R will be denoted by (NE(R)). A right ideal X is reduced if 
it contains no nonzero nilpotent elements. From [9] and [16] a ring R is {quasi-) Baer 
if the right annihilator of every (ideal) non-empty subset of R is a direct summand. 
Semi-prime right FPF rings are quasi-Baer [10, p. 168]. A Baer ring is abelian (i.e., 
every idempotent is central) if and only if it is reduced. From [7] R is right CS if every 
right ideal is essential in a direct summand. From [11], R is strongly right bounded 
if every nonzero right ideal contains a nonzero ideal. R satisfies the ideal intersection 
left (right) annihilator sum property, IILAS(IIRAS), if whenever X and Y are ideals 
of R such that X H Y = 0, then R = l(X) + l(Y) (R = r(X) + r(Y)). Right FPF rings 
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[10, p. 168], right selfinjective rings [18, p. 275], dual rings [15], and uniform rings 
have the IILAS property. Other terminology can be found in [13]. 

1. Semiprime Quasi-Baer Right GFC Rings. 

LEMMA 1.1. (i) (NE(R)} is an ideal of R. (ii) (NE(R)) = 0 if and only if every 
idempotent is central (in) (NE(R)} Ç (E(R)} and (NE(R)) C (U(R)) where (E(R)) 
and (U(R)} are the subrings generated by the sets of idempotents and units of R, 
respectively, (iv) If ReR = R where e = e2, then R{\ - e)R C (NE(R)). (v) If R is 
a right p.p. ring (i.e., principal right ideals are projective), then (NE(R)) equals the 
ideal generated by N(R). 

PROOF, (i) Let s,t G R and e = e2. Then et(\-e)s = [et(l -e)][(l —e)se] + et(l -
e)s(\ — e) G (NE(R)). It follows that (NE(R)) is a right ideal and similarly it can be 
shown that (NE(R)} is a left ideal. 

(ii) Let e — e2 and t G R. Then et = ete + et(\ — e). Hence et = ete for all t G R if 
and only if eR(\ — e) = 0. It follows that (NE(R)) = 0 if and only if every idempotent 
is central. 

(iii) Let x G eR(\ — e) where e — e2. Then e + x G E(R). Hence x = e + 
x - e G (E(R)). Thus (NE(R)} Ç (E(R)). Also x = (x - 1) + 1 G (U(R)). Hence 
(NE(R)) Ç (U(R)). 

(iv) There exist f/, v; G /? such that \—e— ILuevi = Ef;ev;-(1 — e) G (NE(R)). Thus 

tf(l-<0flÇ(tf£(fl)). 
(v) Let Af, denote the set of nilpotent elements of index /. Let y G N2; then there 

exists e — e2 such that y £ eR = r(y). Thus y = eye + ey(l — e) = ey(l — e) G Afe. 
Hence, Af2 Ç (NE(R)}. Now assume iVy Ç (NE(R)) for all 2 < j è k. Let j G A W 
Then there exists c — c2 such that 5 G cR — r(sk). Now 5 = sc + cs(l — c). But 
(sc)* = ^^c = 0. Thus s G (NE(R)). By induction N(tf) Ç (NE(R)). Consequently, 
(NE(R)) equals the ideal generated by N(R). D 

We note that Baer rings and regular rings are p.p., hence Lemma 1.2(v) generalizes a 
result of Stephenson in [14, Proposition 3.3]. Also Baer right GFC rings are semiprime 
[3]. 

PROPOSITION 1.2. (i) R is an abelian Baer right GFC ring if and only if R is a 
quasi-Baer strongly right bounded ring. 

(ii) Let R be a right GFC ring. Then R is a Baer ring if and only if R is a right 
nonsingular right CS ring. 

(iii) Let R be a Baer right GFC ring and X a right ideal which contains no nonzero 
ideals. Then X Ç (NE(R)). 

PROOF, (i) If R is an abelian Baer (hence reduced) right GFC ring, the implication 
follows from [3, Corollary 1.3]. Conversely, let 0 ^ y G Zr(R). Then there exists 
an essential right ideal L such that yL = 0. By [11, Note 1.3D], there is an ideal 
K Ç L which is an essential right ideal. Hence there exists e — e2 ^ 0 such that 
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l(K) = Re Ç Zr(R). Contradiction! Thus Zr(R) = 0. By [3, Proposition 1.4], R is 
semiprime so it is reduced. Since a reduced quasi-Baer ring is an abelian Baer ring, 
the implication follows from [3, Corollary 1.3]. 

(ii) This part follows from [3, Proposition 2.5 and Corollary 2.7] and [8, Theorem 
2.1]. 

(iii) By part (ii) there exists e — e1 such that X is essential in eR. From [3, Lemma 
1.1 and Corollary 2.7], R(l - e)R = R. By Lemma 1.1, ReR C (NE(R)). D 

From [3] we see that commutative domains and continuous regular rings of bounded 
index are Baer GFC rings. 

PROPOSITION 1.3. Let R be a semiprime quasi-Baer right GFC ring and 0 ^ e — 
e2 G R. Then there exist idempotents bjC,d G R such that: 

(i) eR = M © cR where b is central and cR contains no nonzero ideals of R. 
(ii) RcR — dR where d is central and dR — d(NE(R)). 

PROOF. Let / b e the sum of the ideals of R which are contained in eR. By [3, 
Proposition 2.6 (i)], there is a central idempotent b such that / is essential in bR. 
Hence be — b. Therefore eR — bR (B cR where cR contains no nonzero ideals of 
R. From [3, Corollary 2.7 (v)], there is a central idempotent d such that RcR = dR. 
By [3, Lemma 1.1], R(l - c)R = R. Lemma 1.1 shows that RcR = (NE(dR)) = 
dRn(NE(R)) = d(NE(R)). D 

THEOREM 1.4. Let R be a semiprime quasi-Baer right GFC ring. Then R = A©#®C 
where: 

(i) A is an abelian Baer ring. 
(ii) B is a ring in which every idempotent is central, 

(iii) C is a ring which is an essential extension of (NE(R)}. 
(iv) B^C is the densely nil MDSN of R. 
(v) If R contains no infinite set of orthogonal central idempotents, then R is a 

finite direct product of prime right Goldie rings and C = (NE(R)). 

PROOF. Parts (i), (ii) and (iii) follow from Lemma 1.1, [3, Lemma 2.2], and [2, 
Corollary 5]. Let X be a nonzero reduced right ideal of B © C. By [3, Proposition 
1.4], X is an essential extension of an ideal. A contradiction follows from [2, Lemma 
2]. Hence B ©C is DN. Part (v) follows from [3, Theorem 3.11] and Proposition 1.3. 

• 
Note that if R is a Baer right GFC ring, then B = 0 in Theorem 1.4. 

2. Decompositions. 

LEMMA 2.1. Let R be a ring with right ideals X and T such that T is an essential 
extension ofX and Z2 — {x G R\x +Zr(/?) G Zr(R/Zr(R))}. Then: 

(i) Z2 = {x G R\xL Ç Zr(R) where L is some essential right ideal of R} is a 
densely nil ideal. 
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(ii) Zr(R) is essential in Z2. 
(iii) Z2 is a closed right ideal ofR and Zr(R/Z2) — 0 as a ring and as an R-module. 
(iv) IfX Ç Z2, then T Ç Z2. 
(v) IfR is right GFC, then P(R) Ç Zr(R). 

PROOF. From [1, Lemma 3.3], Z2 is DN. The remainder of parts (i), (ii), and (iii) 
can be found in [13, pp. 36-48]. 

(iv) Let 0 ^ y +1 G Z2 + T where y G Z2 and t G T and rlX = {r G R\tr G X}. 
Now t~lX is an essential right ideal of R. If (y + t)rlX = 0, then y +1 G Zr(#) Ç Z2. 
Otherwise, there exists s E t~lX such that 0 ^ (y + t)s — y s + ts G Z2. Consequently, 
Z2 + r is an essential extension of Z2. From part (iii), T Ç Z2. 

(v) The proof is similar to [12, Lemma 1.2]. • 

PROPOSITION 2.2. Let R be a right GFC ring such that P(R) is ideal essential in Z2. 
IfX is a right ideal of R such that X HP(R) = 0 and X Ç Z2, J/^ft /?/X generates 
mod-R and X Ç Zr(#). Hence, if t G Z2 MC/Î ^ r 0 Zr(/?), then tRnP(R) ^ 0. 

PROOF. By [3, Lemma 1.1], R/X is a generator. Let F be a relative complement 
of P(R) in Z2 such that X Ç F. Hence R/Y generates Y. Thus 7 = Z#-/? where 
j / G 7Pl/(7). Let T̂ be a relative complement of Z2 in R. Then Z2A^ Ç P. Consequently, 
yt(k e r e P(R)) = ytK Ç P(R) n Y = O. Hence # G Zr(/?). Therefore, X Ç Y Ç 
Zr(fl). D 

LEMMA 2.3.IfR is a right GFC ring and B is a relative complement ofZr(R), then 
B is an essential extension of an ideal of R. 

PROOF. Assume B ^ 0. Let x G 1(B) HB. Then x(Zr(R) ® B) = 0. Hence x G 
Zr(R)HB — 0. By [3, Proposition 1.4], B contains a nonzero ideal of R. Let / be 
the sum of all ideals of R contained in B. Assume there is a right ideal K ^ 0 such 
that / 0 K is essential in B. Let k G /(AT) Pi K. Then fc(Zr(/?) 0 / 0 K) = 0. Hence 
k G Zr(/?) (15 = 0. Again by [3, Proposition 1.4], K contains a nonzero ideal of R. 
Contradiction! Thus / is essential in B. • 

The following result generalizes S. Page's [17] decomposition for right FPF rings. 

THEOREM 2.4. Let R be a right GFC ring which satisfies at least one of the following 
conditions: 

(i) IILAS (e.g., ifR is right FPF); 
(ii) IfX is a closed right ideal of R, then r(X) is essential in a direct summand 

ofR; 
(iii) every ideal which is closed as a right ideal is a direct summand of R. 

Then R = S 0 Z 2 (right ideal decomposition) where S is a semiprime quasi-Baer right 
GFC ring. Also the prime radical P(R) is ideal essential (for condition (ii) P(R) is 
essential) in Z2. 
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PROOF. For each condition (i), (ii), and (iii) we will show that R = S 0 Z 2 and that 
P(R) is ideal essential in xR where x2 = x. We will conclude by proving Z2 Ç xR. 

(i) Suppose R is IILAS. Let B be a relative complement of ZR(R). If Zr(R) has no 
nonzero relative complement, then Z2 = R. So assume B ^ 0. From Lemma 2.3, /? 
is an essential extension of an ideal / . Thus R = l(Zr(R)) + l(J) = /(Z2) + /(/). But 
/(/) = Z2. Hence, R = /(Z2) + Z2. Therefore, there exists e = e2 such that Z2 = eR. 
Let S — (I — e)R. Since £/? is an ideal, S is a ring with unity. From [3, Proposition 
1.4], S is a semiprime ring. We claim that S is an //LAS ring. Let X, F be ideals of 
S such that X HY — 0. By Lemma 2.3, 5 is an essential extension of an ideal H 
of R. Then Xi = X HH and ^ = Y HH are ideals of R. Hence 7? = /(X0 + l(Y{). 
Thus 5 = ls(X\) + /s(Fi). But Xi and Fi are essential in X and F, respectively; and 
Zr(S) = 0. Hence /5(X) = ls(Xi) and /5(F) = ls(Y{). Consequently, S is //LAS. By [3, 
Lemma 2.2], S is quasi-Baer. Now let K be an ideal of R which is maximal among 
ideals having zero intersection with P(R). Hence l(K)HK = 0. Then R = l(l(K))+l(K). 
Hence there exists x — x2 such that P(R) Ç l(K) = xR. 

(ii) Assume R satisfies condition (ii). Let B be a relative complement of Z2. Hence 
there exists e = e2 such that r(B) is essential in eR. But (/? Plr(#))0Z2 is essential in 
eR. By Lemma 2.1, Z2 = eR. Let S = (1 — e)/?. Since 5 is a ring with unity such that 
any right ideal of S is a right ideal of R, then 5 inherits condition (ii) from R. Since S 
is semiprime, the above argument could be used to show that any closed ideal of S is 
a direct summand. By [3, Lemma 2.2], S is a quasi-Baer ring. Now let K be an ideal 
of/? which is maximal among ideals having zero intersection with P(R). It follows 
that r(K) = l(K) and that l(K) is a closed right ideal. Hence there exists x = x2 such 
that P(R) Ç l(K) = xR. 

(iii) Assume R satisfies condition (iii). From Lemma 2.1 and [3, Lemma 2.2], 
R — S 0 Z2 where S is a quasi-Baer ring. For K defined as in part (ii), the same 
argument shows that there exists x — x2 such that P(R) Ç 1{K) — xR. 

Now R = (1 — x)RÇ&xR where xR is an ideal and P(R) is ideal essential in xR. Thus, 
by the above argument, (1 — x)R = (1 — x)R(l — x) is also a semiprime quasi-Baer 
right GFC ring. From [3, Proposition 2.5], (1 — x)R{\ —x) is right nonsingular. Hence 
(1 — x)RC\Z2 = 0. Therefore, P(R) Ç Z2 = XZ2. Consequently, P(R) is ideal essential 
in Z2. Furthermore if R satisfies condition (ii), by an argument used in part (ii) of this 
proof, P(R) is essential in a direct summand W of R. By Lemma 2.1, Z2 = tR 0 W 
where t — t2. From Proposition 2.2, t G Zr(R). Hence P(R) is essential in Z2. • 

COROLLARY 2.5. Let R be a right GFC ring which satisfies at least one of the 
conditions (i), (ii), (iii), and its left-sided version (indicated in brackets): 

(i) IILASUIRAS] (e.g., if R is FPF); 
(ii) If X is a closed right [left] ideal of R, then r(X)[/(X)] is essential in an 

idempotent generated right [left] ideal (e.g., if R is quasi-Baer); 
(iii) Every ideal which is a closed right [left] ideal is an idempotent generated 

right [left] ideal. 
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Then R — S © Z2 is a ring decomposition. 

PROOF. From Theorem 2.4, Z2 = eR where e = e2, and r(Z2) Ç (1 — <?)/? = 
(1 - e)i?(l - e). Hence Z2 Ç r((l - £?)/?) Ç r(r(Z2)). Let B = r(Z2) H r(r{Z2)). Then 
£ 2 = 0. But B nZ2 = 0. By Lemma 2.1, r(Z2) H r(r(Z2)) = 0. Next we will show 
that for each condition (i), (ii), or (iii) there exists a central idempotent c such that 
r(r(Z2)) = cR. Finally, we will prove that Z2 — cR. 

(i) Assume/? satisfies condition (i). Since r(Z2)DZ2 = 0, then/? = r(Z2)+r(r(Z2)). 
Thus r(r(Z2)) — cR where c is a central idempotent. 

(ii) Assume R satisfies condition (ii). Since rR(rR(Z2)) is closed as a left ideal 
which contains Z2, the left sided version of the argument used in part (ii) of the proof 
of Theorem 2.4 yields rR(rR(Z2)) = Re where c2 = c. Assume Re ^ Z2. Then there 
exists a right ideal X ^ 0 such that Re = Z2 ©X. Let y G l(X)HX and W be a 
relative complement (on the right) for Re. Then ;y(W 0/fc) = jW Ç P(/?). By Lemma 
2.1, j G X PlZ2 = 0. From [3, Proposition 1.4], X contains an ideal 7 ^ 0 . But 
J Q r(Z2)n r(r(Z2)) = 0. Hence Re = Z2 = eR. Thus Z2 = <?/? where e is a central 
idempotent. 

(iii) Assume /? satisfies condition (iii). Now r(Z2) is a relative complement of Z2 

as a left ideal. Thus there exists an idempotent b such that r(Z2) = /?/?. Since Rb is 
an ideal, Rb ^ (1 - fc)/?fc ® ^ (right ideal decomposition). But r(Z2) PlZ2 = 0. By 
Lemma 2.1 (1 — b)Rb = 0. Hence b is a central idempotent. Thus 1 — b is a central 
idempotent. Let c = 1 — b. Then r(r(Z2)) = c/? where c is a central idempotent. 

Now in all cases, Z2 is faithful in cR. Hence Z2 = eR is a generator for cR. 
Thus trace (Z2) = trace(e/?) — eR — cR — Z2. Consequently, R — S © Z2 is a ring 
decomposition. D 

EXAMPLE 2.6. Let 7 be the semigroup ring over I2 (integers modulo 2) where A 
is the semigroup on the set {a,b} satisfying the relation xy — y for x,y G A. Thus 
T = {0, #, b, a+b}. Let Ti denote the ring with unity formed by extending (i.e., Dorroh 
extension) T to T x I (I denotes the integers). T\ is neither right CS nor is the right 
annihilator of a closed right ideal necessarily a direct summand (e.g., r(7,0) = (0,21)), 
hence T\ is not quasi-Baer. However, T\ satisfies the following conditions: (i) strongly 
right bounded (hence right GFC [3, Proposition 1.2]; (ii) IILAS; (iii) every ideal is 
essential in a direct summand, thus the right annihilator of a closed right ideal is 
essential in a direct summand; (iv) every ideal which is closed as a right ideal is a 
direct summand. Further details can be found in [4, Example 2.3] and [6]. Therefore 
T\ provides a nontrivial example for Theorem 2.4 where S — (a, l)T\ and Z2 = {T10). 

EXAMPLE 2.7. Let S — l2[x]/(x3), where I2 denotes the ring of integers modulo 2, 
x is an indeterminate, (x3) is the ideal generated by x3, and x = x + {x3). Let R be the 
subring of (S

0
S
S) generated by e — (l

0°{),b= (£*?), and f = ( °01 ).R has the following 
characteristics: (i) by observing that if y G R, then y = k\e + k2b + k^t + k^b2 + k$tb, 
where kj G /2, it follows that R is a local ring with nilpotent Jacobson radical of index 
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3, and R is an algebra of dimension five (hence \R\ = 32) over /2. (ii) A principal 
right ideal yR is a proper ideal if and only if k\ — ki — 0. However, the minimal right 
ideals (i.e., b2R, tbR, and (b2 + tb)R) are ideals. Therefore, R is strongly right bounded 
(hence right GFC). Note b2 and tb are in the center of R. Let soc(R) denote the right 
socle of R. If X is a nonzero right ideal, then soc(R) Ç r(X). Hence r(X) is essential in 
R. Thus condition (ii) of Theorem 2.4 is satisfied. However, R is not quasi-Baer; and 
R is not IILAS (hence not right FPF), since b2R H tbR = 0, but R ^ l(b2R) + /(fW?). 
Note R — Z2. Further details on this example can be found in [5]. 
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