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A DECOMPOSITION OF RINGS GENERATED
BY FAITHFUL CYCLIC MODULES

BY
GARY F. BIRKENMEIER

ABSTRACT. A ring R is said to be generated by faithful right cyclics
(right finitely pseudo-Frobenius), denoted by GFC (FPF), if every faithful
cyclic (finitely generated) right R-module generates the category of right
R-modules. The class of right GFC rings includes right FPF rings, com-
mutative rings (thus every ring has a GFC subring — its center), strongly
regular rings, and continuous regular rings of bounded index. Our main re-
sults are: (1) a decomposition of a semi-prime quasi-Baer right GFC ring
(e.g., a semiprime right FPF ring) is achieved by considering the set of
nilpotent elements and the centrality of idempotnents; (2) a generalization
of S. Page’s decomposition theorem for a right FPF ring.

Introduction. All rings are associative with unity, unless specifically stated other-
wise. R, Z,(R), P(R), and N(R) denote a ring, the right singular ideal of R, the prime
radical of R, and the set of nilpotent elements of R, respectively. Let X and Y be
right ideals such that X C Y C R; we say X is ideal essential in Y if every nonzero
ideal of R which is contained in Y has nonzero intersection with X. If V is a set,
then rg(V') and lx(V)(r(V) and I(V') when unambiguous) will denote the right and left
annihilator of V in R, respectively. A right ideal X of R is densely nil, DN, if either
X = 0 or for every nonzero x € X, there exists s € R such that xs # 0 but (xs)* = 0.
From [1] the minimal direct summand containing the nilpotent elements, MDSN, is
a completely semiprime ideal (i.e., x € MDSN = x € MDSN) which equals the
intersection of all direct summands which contain the set of nilpotent elements of the
ring. The subring (without unity) of R generated by | J, ., eR(1 —e) where E is the set
of idempotent elements of R will be denoted by (Ng(R)). A right ideal X is reduced if
it contains no nonzero nilpotent elements. From [9] and [16] a ring R is (quasi-) Baer
if the right annihilator of every (ideal) non-empty subset of R is a direct summand.
Semi-prime right FPF rings are quasi-Baer [10, p. 168]. A Baer ring is abelian (i.e.,
every idempotent is central) if and only if it is reduced. From [7] R is right CS if every
right ideal is essential in a direct summand. From [11], R is strongly right bounded
if every nonzero right ideal contains a nonzero ideal. R satisfies the ideal intersection
left (right) annihilator sum property, IILAS (IIRAS), if whenever X and Y are ideals
of R such that XNY =0, then R = IX)+I(Y) (R = r(X) +r(Y)). Right FPF rings
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[10, p. 168], right selfinjective rings [18, p. 275], dual rings [15], and uniform rings
have the IILAS property. Other terminology can be found in [13].

1. Semiprime Quasi-Baer Right GFC Rings.

Lemma 1.1. (i) (Ng(R)) is an ideal of R. (ii) (Ng(R)) = O if and only if every
idempotent is central. (iii) (Ng(R)) C (E(R)) and (Ng(R)) C (U(R)) where (E(R))
and (U(R)) are the subrings generated by the sets of idempotents and units of R,
respectively. (iv) If ReR = R where e = e?, then R(1 — e)R C (Np(R)). (v) If R is
a right p.p. ring (i.e., principal right ideals are projective), then (Ng(R)) equals the
ideal generated by N(R).

Proor. (i) Lets,t € Rand e = e%. Then et(1 —e)s = [et(1 —e)|[(1—e)se]+et(1—
e)s(1 — e) € (Ng(R)). It follows that (Ng(R)) is a right ideal and similarly it can be
shown that (Ng(R)) is a left ideal.

(i) Let e = ¢ and ¢ € R. Then et = ete +et(1 — e). Hence et = ete for all t € R if
and only if eR(1 —e) = 0. It follows that (Ng(R)) = 0 if and only if every idempotent
is central.

(ili) Let x € eR(1 — ¢) where ¢ = e%. Then e + x € E(R). Hence x = e +
x —e € (ER)). Thus (Ng(R)) C (E(R)). Also x = (x — 1)+ 1 € (U(R)). Hence
(Ne(R)) C (U(R)).

(iv) There exist #;,v; € R such that 1 — e = Zt;ev; = Zt;evi(1 —e) € (Ne(R)). Thus
R(1 — )R C (NE(R)).

(v) Let N; denote the set of nilpotent elements of index i. Let y € N,; then there
exists e = e? such that y € eR = r(y). Thus y = eye + ey(1 —e) = ey(1 —e) € Ng.
Hence, N, C (Ng(R)). Now assume N; C (Ng(R)) for all 2 < j < k. Let s € Niy.
Then there exists ¢ = ¢2 such that s € cR = r(s*). Now s = sc + ¢s(1 — ¢). But
(sc)¥ = sk¢ = 0. Thus s € (Ng(R)). By induction N(R) C (Ng(R)). Consequently,
(Ng(R)) equals the ideal generated by N (R). O

We note that Baer rings and regular rings are p.p., hence Lemma 1.2(v) generalizes a
result of Stephenson in [14, Proposition 3.3]. Also Baer right GFC rings are semiprime

[3].

ProposiTiON 1.2. (i) R is an abelian Baer right GFC ring if and only if R is a
quasi-Baer strongly right bounded ring.

(ii) Let R be a right GFC ring. Then R is a Baer ring if and only if R is a right
nonsingular right CS ring.

(iii) Let R be a Baer right GFC ring and X a right ideal which contains no nonzero
ideals. Then X C (Ng(R)).

Proor. (i) If R is an abelian Baer (hence reduced) right GFC ring, the implication
follows from [3, Corollary 1.3]. Conversely, let 0 # y € Z,(R). Then there exists
an essential right ideal L such that yL = 0. By [11, Note 1.3D], there is an ideal
K C L which is an essential right ideal. Hence there exists ¢ = e # 0 such that
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I(K) = Re C Z,(R). Contradiction! Thus Z,(R) = 0. By [3, Proposition 1.4], R is
semiprime so it is reduced. Since a reduced quasi-Baer ring is an abelian Baer ring,
the implication follows from [3, Corollary 1.3].

(i) This part follows from [3, Proposition 2.5 and Corollary 2.7] and [8, Theorem
2.1].

(iii) By part (ii) there exists ¢ = e such that X is essential in eR. From [3, Lemma
1.1 and Corollary 2.7], R(1 — e)R = R. By Lemma 1.1, ReR C (Ne(R)). O

From [3] we see that commutative domains and continuous regular rings of bounded
index are Baer GFC rings.

ProposITION 1.3. Let R be a semiprime quasi-Baer right GFC ring and 0 # ¢ =
e% € R. Then there exist idempotents b,c,d € R such that:

(i) eR = bR @ cR where b is central and cR contains no nonzero ideals of R.

(ii) RcR = dR where d is central and dR = d(Ng(R)).

Proor. Let J be the sum of the ideals of R which are contained in eR. By [3,
Proposition 2.6 (i)], there is a central idempotent b such that J is essential in bR.
Hence be = b. Therefore eR = bR @ ¢R where ¢R contains no nonzero ideals of
R. From [3, Corollary 2.7 (v)], there is a central idempotent d such that RcR = dR.
By [3, Lemma 1.1], R(1 — ¢)R = R. Lemma 1.1 shows that RcR = (Ng(dR)) =
dR N (Ng(R)) = d{Ng(R)). O

THEOREM 1.4. Let R be a semiprime quasi-Baer right GFC ring. Then R = AGB&C

where:
(i) A is an abelian Baer ring.

(ii) B is a ring in which every idempotent is central.

(iii) C is a ring which is an essential extension of (Ng(R)).

(iv) B & C is the densely nil MDSN of R.

(v) If R contains no infinite set of orthogonal central idempotents, then R is a
finite direct product of prime right Goldie rings and C = (Ng(R)).

Proor. Parts (i), (i1) and (iii) follow from Lemma 1.1, [3, Lemma 2.2], and [2,
Corollary 5]. Let X be a nonzero reduced right ideal of B @ C. By [3, Proposition
1.4], X is an essential extension of an ideal. A contradiction follows from [2, Lemma
2]. Hence B @ C is DN. Part (v) follows from [3, Theorem 3.11] and Proposition 1.3.

O

Note that if R is a Baer right GFC ring, then B = 0 in Theorem 1.4.

2. Decompositions.

LEMMA 2.1. Let R be a ring with right ideals X and T such that T is an essential
extension of X and Z, = {x € Rjx + Z.(R) € Z,(R/Z.(R))}. Then:

(i) Zy = {x € R|xL C Z,(R) where L is some essential right ideal of R} is a
densely nil ideal.
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(ii) Z,(R) is essential in Z,.

(iii) Z, is a closed right ideal of R and Z,(R/Zz) = 0 as a ring and as an R-module.
(iv) If X CZy, then T C Z;.

(v) If R is right GFC, then P(R) C Z,(R).

Proor. From [1, Lemma 3.3], Z, is DN. The remainder of parts (i), (ii), and (iii)
can be found in [13, pp. 3648].

(iv) Let 0£ y+t €Z,+T wherey € Zy and t € T and 'X = {r € R|tr € X}.
Now 71X is an essential right ideal of R. If (y + )X = 0, then y+t€Z.R) CZ.
Otherwise, there exists s € t~'X such that 0 # (y +t)s = ys +ts € Z,. Consequently,
Z> + T is an essential extension of Z,. From part (iii), T C Z,.

(v) The proof is similar to [12, Lemma 1.2]. O

ProposITION 2.2. Let R be a right GFC ring such that P(R) is ideal essential in Z;.
If X is a right ideal of R such that X "P(R) = 0 and X C Z,, then R/X generates
mod-R and X C Z,(R). Hence, if t € Z, such that t € Z,(R), then tR N\ P(R) # 0.

Proor. By [3, Lemma 1.1], R/X is a generator. Let Y be a relative complement
of P(R) in Z, such that X C Y. Hence R/Y generates Y. Thus ¥ = Xy;R where
yi € YNI(Y). Let K be a relative complement of Z, in R. Then Z,K C P. Consequently,
ik ®Y ® P(R)) = y;K C P(R)NY = 0. Hence y; € Z,(R). Therefore, X C Y C
Z,(R). O

LemMA 2.3. If R is a right GFC ring and B is a relative complement of Z,(R), then
B is an essential extension of an ideal of R.

Proor. Assume B # 0. Let x € I(B) N B. Then x(Z,(R) ® B) = 0. Hence x €
Z,(R)yNB = 0. By [3, Proposition 1.4], B contains a nonzero ideal of R. Let J be
the sum of all ideals of R contained in B. Assume there is a right ideal K # 0 such
that J @ K is essential in B. Let k € [(K) M K. Then k(Z,(R) ®J & K) = 0. Hence
k € Z,(R)NB = 0. Again by [3, Proposition 1.4], K contains a nonzero ideal of R.
Contradiction! Thus J is essential in B. a

The following result generalizes S. Page’s [17] decomposition for right FPF rings.

THEOREM 2.4. Let R be a right GFC ring which satisfies at least one of the following

conditions:
(i) IILAS (e.g., if R is right FPF);

(ii) If X is a closed right ideal of R, then r(X) is essential in a direct summand
of R;

(iii) every ideal which is closed as a right ideal is a direct summand of R.
Then R = S ®Z, (right ideal decomposition) where S is a semiprime quasi-Baer right
GFC ring. Also the prime radical P(R) is ideal essential (for condition (ii) P(R) is
essential) in Z;.
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Proor. For each condition (i), (ii), and (iii) we will show that R = S € Z, and that
P(R) is ideal essential in xR where x> = x. We will conclude by proving Z, C xR.

(i) Suppose R is IILAS. Let B be a relative complement of Zg(R). If Z,(R) has no
nonzero relative complement, then Z, = R. So assume B # 0. From Lemma 2.3, B
is an essential extension of an ideal J. Thus R = I(Z,(R)) + I(J) = I(Z;) + I(J). But
I(J) = Z,. Hence, R = I(Z,) + Z,. Therefore, there exists ¢ = e2 such that Z, = eR.
Let S = (1 — e)R. Since eR is an ideal, S is a ring with unity. From [3, Proposition
1.4], § is a semiprime ring. We claim that S is an /ILAS ring. Let X, Y be ideals of
S such that X MY = 0. By Lemma 2.3, S is an essential extension of an ideal H
of R. Then X; = XN H and Y, = Y NH are ideals of R. Hence R = I(X;) + [(Y}).
Thus § = Is(X;) + Is(Y)). But X; and Y, are essential in X and Y, respectively; and
Z,(S) = 0. Hence I5(X) = [s(X;) and I5(Y) = I5(Y}). Consequently, S is /ILAS. By [3,
Lemma 2.2], S is quasi-Baer. Now let K be an ideal of R which is maximal among
ideals having zero intersection with P(R). Hence /(K)NK = 0. Then R = I(I(K))+I(K).
Hence there exists x = x? such that P(R) C I(K) = xR.

(ii) Assume R satisfies condition (ii). Let B be a relative complement of Z,. Hence
there exists ¢ = e2 such that r(B) is essential in eR. But (B Nr(B))®Z, is essential in
eR. By Lemma 2.1, Z, = eR. Let S = (1 —e)R. Since S is a ring with unity such that
any right ideal of S is a right ideal of R, then § inherits condition (ii) from R. Since S
is semiprime, the above argument could be used to show that any closed ideal of S is
a direct summand. By [3, Lemma 2.2], S is a quasi-Baer ring. Now let K be an ideal
of R which is maximal among ideals having zero intersection with- P(R). It follows
that r(K) = I(K) and that /(K) is a closed right ideal. Hence there exists x = x2 such
that P(R) C I(K) = xR.

(iii)) Assume R satisfies condition (iii). From Lemma 2.1 and [3, Lemma 2.2],
R = S @& Z, where S is a quasi-Baer ring. For K defined as in part (ii), the same
argument shows that there exists x = x2 such that P(R) C I(K) = xR.

Now R = (1 —x)R®xR where xR is an ideal and P(R) is ideal essential in xR. Thus,
by the above argument, (1 — x)R = (1 — x)R(1 — x) is also a semiprime quasi-Baer
right GFC ring. From [3, Proposition 2.5], (1 —x)R(1 —x) is right nonsingular. Hence
(1 —x)RNZ; = 0. Therefore, P(R) C Z, = xZ,. Consequently, P(R) is ideal essential
in Z,. Furthermore if R satisfies condition (ii), by an argument used in part (ii) of this
proof, P(R) is essential in a direct summand W of R. By Lemma 2.1, Z, =tR@ W
where ¢ = ¢>. From Proposition 2.2, t € Z,(R). Hence P(R) is essential in Z,. ]

COROLLARY 2.5. Let R be a right GFC ring which satisfies at least one of the
conditions (i), (ii), (iii), and its left-sided version (indicated in brackets):
(i) 1ILAS[IIRAS] (e.g., if R is FPF);
(ii) If X is a closed right [left] ideal of R, then r(X)[I(X)] is essential in an
idempotent generated right [left] ideal (e.g., if R is quasi-Baer),;
(iii) Every ideal which is a closed right [left] ideal is an idempotent generated
right [left] ideal.
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Then R =S ® Z, is a ring decomposition.

Proor. From Theorem 2.4, Z, = eR where e = ¢2, and r(Z;) C (1 — e)R =
(1 —e)R(1 —e). Hence Z, C r((1 — e)R) C r(r(Zy)). Let B = r(Z;) N r(r(Z,)). Then
B> = 0. But BNZ, = 0. By Lemma 2.1, r(Zy) N r(r(Z;)) = 0. Next we will show
that for each condition (i), (ii), or (iii) there exists a central idempotent ¢ such that
r(r(Zy)) = cR. Finally, we will prove that Z, = cR.

(i) Assume R satisfies condition (i). Since r(Z;)NZ, = 0, then R = r(Z;)+r(r(Zy)).
Thus r(r(Z,)) = ¢R where c is a central idempotent.

(i1) Assume R satisfies condition (ii). Since rg(rg(Z;)) is closed as a left ideal
which contains Z,, the left sided version of the argument used in part (ii) of the proof
of Theorem 2.4 yields rg(rgr(Z;)) = Rc where ¢? = ¢. Assume Rc # Z,. Then there
exists a right ideal X # 0 such that Rc = Z, ® X. Let y € (X)X and W be a
relative complement (on the right) for Rc. Then y(W @Rc) = yW C P(R). By Lemma
2.1,y € XNZ, = 0. From [3, Proposition 1.4], X contains an ideal J # 0. But
J CrZ)Nr(r(Zy)) = 0. Hence Rc = Z, = eR. Thus Z, = eR where e is a central
idempotent.

(i) Assume R satisfies condition (iii). Now r(Z,) is a relative complement of Z,
as a left ideal. Thus there exists an idempotent b such that r(Z;) = Rb. Since Rb is
an ideal, Rb = (1 — b)Rb & bR (right ideal decomposition). But r(Z;) NZ, = 0. By
Lemma 2.1 (1 — b)Rb = 0. Hence b is a central idempotent. Thus 1 — b is a central
idempotent. Let ¢ = 1 — b. Then r(r(Z;)) = cR where c is a central idempotent.

Now in all cases, Z;, is faithful in cR. Hence Z, = eR is a generator for cR.
Thus trace (Z;) = trace(eR) = eR = cR = Z,. Consequently, R = S @ Z; is a ring
decomposition. ]

ExAMPLE 2.6. Let T be the semigroup ring over /, (integers modulo 2) where A
is the semigroup on the set {a, b} satisfying the relation xy = y for x,y € A. Thus
T = {0,a,b,a+b}. Let T, denote the ring with unity formed by extending (i.e., Dorroh
extension) 7 to T x I (I denotes the integers). T is neither right CS nor is the right
annihilator of a closed right ideal necessarily a direct summand (e.g., #(T, 0) = (0, 2/)),
hence T is not quasi-Baer. However, T satisfies the following conditions: (i) strongly
right bounded (hence right GFC [3, Proposition 1.2]; (ii) /ILAS; (iii) every ideal is
essential in a direct summand, thus the right annihilator of a closed right ideal is
essential in a direct summand; (iv) every ideal which is closed as a right ideal is a
direct summand. Further details can be found in [4, Example 2.3] and [6]. Therefore
T, provides a nontrivial example for Theorem 2.4 where S = (a, 1)T| and Z; = (T, 0).

ExampLe 2.7. Let S = I[x]/{x?), where I denotes the ring of integers modulo 2,
x is an indeterminate, (x*) is the ideal generated by x*, and ¥ = x +(x?). Let R be the
subring of (3 5) generatedby e = (), b = (0 9),and t = (7). R has the following
characteristics: (i) by observing that if y € R, then y = kye + kob + k3t + kqb? + kstb,
where k; € I, it follows that R is a local ring with nilpotent Jacobson radical of index
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3, and R is an algebra of dimension five (hence |R| = 32) over I,. (ii) A principal
right ideal yR is a proper ideal if and only if k; = k, = 0. However, the minimal right
ideals (i.e., b’R, thR, and (b +tb)R) are ideals. Therefore, R is strongly right bounded
(hence right GFC). Note b* and b are in the center of R. Let soc(R) denote the right
socle of R. If X is a nonzero right ideal, then soc(R) C r(X). Hence r(X) is essential in
R. Thus condition (ii) of Theorem 2.4 is satisfied. However, R is not quasi-Baer; and
R is not IILAS (hence not right FPF), since b*R NtbR = 0, but R # I(b’R) + [(tbR).
Note R = Z,. Further details on this example can be found in [5].
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