A DECOMPOSITION OF RINGS GENERATED BY FAITHFUL CYCLIC MODULES

BY GARY F. BIRKENMEIER

ABSTRACT. A ring R is said to be *generated by faithful right cyclics* (right finitely pseudo-Frobenius), denoted by GFC(FPF), if every faithful cyclic (finitely generated) right R-module generates the category of right R-modules. The class of right GFC rings includes right FPF rings, commutative rings (thus every ring has a GFC subring – its center), strongly regular rings, and continuous regular rings of bounded index. Our main results are: (1) a decomposition of a semi-prime quasi-Baer right GFC ring (e.g., a semiprime right FPF ring) is achieved by considering the set of nilpotent elements and the centrality of idempotents; (2) a generalization of S. Page's decomposition theorem for a right FPF ring.

Introduction. All rings are associative with unity, unless specifically stated otherwise, $R, Z_r(R), P(R)$, and N(R) denote a ring, the right singular ideal of R, the prime radical of R, and the set of nilpotent elements of R, respectively. Let X and Y be right ideals such that $X \subseteq Y \subseteq R$; we say X is ideal essential in Y if every nonzero ideal of R which is contained in Y has nonzero intersection with X. If V is a set, then $r_R(V)$ and $l_R(V)(r(V))$ and l(V) when unambiguous) will denote the right and left annihilator of V in R, respectively. A right ideal X of R is densely nil, DN, if either X = 0 or for every nonzero $x \in X$, there exists $s \in R$ such that $xs \neq 0$ but $(xs)^2 = 0$. From [1] the minimal direct summand containing the nilpotent elements, MDSN, is a completely semiprime ideal (i.e., $x^n \in MDSN \Rightarrow x \in MDSN$) which equals the intersection of all direct summands which contain the set of nilpotent elements of the ring. The subring (without unity) of R generated by $\bigcup_{e \in E} eR(1-e)$ where E is the set of idempotent elements of R will be denoted by $\langle N_E(R) \rangle$. A right ideal X is reduced if it contains no nonzero nilpotent elements. From [9] and [16] a ring R is (quasi-) Baer if the right annihilator of every (ideal) non-empty subset of R is a direct summand. Semi-prime right FPF rings are quasi-Baer [10, p. 168]. A Baer ring is abelian (i.e., every idempotent is central) if and only if it is reduced. From [7] R is right CS if every right ideal is essential in a direct summand. From [11], R is strongly right bounded if every nonzero right ideal contains a nonzero ideal. R satisfies the ideal intersection left (right) annihilator sum property, IILAS(IIRAS), if whenever X and Y are ideals of R such that $X \cap Y = 0$, then R = l(X) + l(Y) (R = r(X) + r(Y)). Right FPF rings

Received by the editors November 19, 1987.

¹⁹⁸⁰ Mathematics Subject Classification: Primary: 16A36. Secondary: 16A32, 16A12. © Canadian Mathematical Society 1988.

[10, p. 168], right selfinjective rings [18, p. 275], dual rings [15], and uniform rings have the *IILAS* property. Other terminology can be found in [13].

1. Semiprime Quasi-Baer Right GFC Rings.

- Lemma 1.1. (i) $\langle N_E(R) \rangle$ is an ideal of R. (ii) $\langle N_E(R) \rangle = 0$ if and only if every idempotent is central. (iii) $\langle N_E(R) \rangle \subseteq \langle E(R) \rangle$ and $\langle N_E(R) \rangle \subseteq \langle U(R) \rangle$ where $\langle E(R) \rangle$ and $\langle U(R) \rangle$ are the subrings generated by the sets of idempotents and units of R, respectively. (iv) If ReR = R where $e = e^2$, then $R(1 e)R \subseteq \langle N_E(R) \rangle$. (v) If R is a right p.p. ring (i.e., principal right ideals are projective), then $\langle N_E(R) \rangle$ equals the ideal generated by N(R).
- PROOF. (i) Let $s, t \in R$ and $e = e^2$. Then $et(1-e)s = [et(1-e)][(1-e)se] + et(1-e)s(1-e) \in \langle N_E(R) \rangle$. It follows that $\langle N_E(R) \rangle$ is a right ideal and similarly it can be shown that $\langle N_E(R) \rangle$ is a left ideal.
- (ii) Let $e = e^2$ and $t \in R$. Then et = ete + et(1 e). Hence et = ete for all $t \in R$ if and only if eR(1 e) = 0. It follows that $\langle N_E(R) \rangle = 0$ if and only if every idempotent is central.
- (iii) Let $x \in eR(1-e)$ where $e=e^2$. Then $e+x \in E(R)$. Hence $x=e+x-e \in \langle E(R) \rangle$. Thus $\langle N_E(R) \rangle \subseteq \langle E(R) \rangle$. Also $x=(x-1)+1 \in \langle U(R) \rangle$. Hence $\langle N_E(R) \rangle \subseteq \langle U(R) \rangle$.
- (iv) There exist $t_i, v_i \in R$ such that $1 e = \sum t_i e v_i = \sum t_i e v_i (1 e) \in \langle N_E(R) \rangle$. Thus $R(1 e)R \subseteq \langle N_E(R) \rangle$.
- (v) Let N_i denote the set of nilpotent elements of index i. Let $y \in N_2$; then there exists $e = e^2$ such that $y \in eR = r(y)$. Thus $y = eye + ey(1 e) = ey(1 e) \in N_E$. Hence, $N_2 \subseteq \langle N_E(R) \rangle$. Now assume $N_j \subseteq \langle N_E(R) \rangle$ for all $2 < j \le k$. Let $s \in N_{k+1}$. Then there exists $c = c^2$ such that $s \in cR = r(s^k)$. Now s = sc + cs(1 c). But $(sc)^k = s^kc = 0$. Thus $s \in \langle N_E(R) \rangle$. By induction $N(R) \subseteq \langle N_E(R) \rangle$. Consequently, $\langle N_E(R) \rangle$ equals the ideal generated by N(R).

We note that Baer rings and regular rings are p.p., hence Lemma 1.2(v) generalizes a result of Stephenson in [14, Proposition 3.3]. Also Baer right *GFC* rings are semiprime [3].

PROPOSITION 1.2. (i) R is an abelian Baer right GFC ring if and only if R is a quasi-Baer strongly right bounded ring.

- (ii) Let R be a right GFC ring. Then R is a Baer ring if and only if R is a right nonsingular right CS ring.
- (iii) Let R be a Baer right GFC ring and X a right ideal which contains no nonzero ideals. Then $X \subseteq \langle N_E(R) \rangle$.
- PROOF. (i) If R is an abelian Baer (hence reduced) right GFC ring, the implication follows from [3, Corollary 1.3]. Conversely, let $0 \neq y \in Z_r(R)$. Then there exists an essential right ideal L such that yL = 0. By [11, Note 1.3D], there is an ideal $K \subseteq L$ which is an essential right ideal. Hence there exists $e = e^2 \neq 0$ such that

- $l(K) = Re \subseteq Z_r(R)$. Contradiction! Thus $Z_r(R) = 0$. By [3, Proposition 1.4], R is semiprime so it is reduced. Since a reduced quasi-Baer ring is an abelian Baer ring, the implication follows from [3, Corollary 1.3].
- (ii) This part follows from [3, Proposition 2.5 and Corollary 2.7] and [8, Theorem 2.1].
- (iii) By part (ii) there exists $e = e^2$ such that X is essential in eR. From [3, Lemma 1.1 and Corollary 2.7], R(1 e)R = R. By Lemma 1.1, $ReR \subseteq \langle N_E(R) \rangle$.

From [3] we see that commutative domains and continuous regular rings of bounded index are Baer *GFC* rings.

PROPOSITION 1.3. Let R be a semiprime quasi-Baer right GFC ring and $0 \neq e = e^2 \in R$. Then there exist idempotents $b, c, d \in R$ such that:

- (i) $eR = bR \oplus cR$ where b is central and cR contains no nonzero ideals of R.
- (ii) RcR = dR where d is central and $dR = d\langle N_E(R) \rangle$.

PROOF. Let J be the sum of the ideals of R which are contained in eR. By [3, Proposition 2.6 (i)], there is a central idempotent b such that J is essential in bR. Hence be = b. Therefore $eR = bR \oplus cR$ where cR contains no nonzero ideals of R. From [3, Corollary 2.7 (v)], there is a central idempotent d such that RcR = dR. By [3, Lemma 1.1], R(1-c)R = R. Lemma 1.1 shows that $RcR = \langle N_E(dR) \rangle = dR \cap \langle N_E(R) \rangle = d\langle N_E(R) \rangle$.

Theorem 1.4. Let R be a semiprime quasi-Baer right GFC ring. Then $R = A \oplus B \oplus C$ where:

- (i) A is an abelian Baer ring.
- (ii) B is a ring in which every idempotent is central.
- (iii) C is a ring which is an essential extension of $\langle N_E(R) \rangle$.
- (iv) $B \oplus C$ is the densely nil MDSN of R.
- (v) If R contains no infinite set of orthogonal central idempotents, then R is a finite direct product of prime right Goldie rings and $C = \langle N_E(R) \rangle$.

PROOF. Parts (i), (ii) and (iii) follow from Lemma 1.1, [3, Lemma 2.2], and [2, Corollary 5]. Let X be a nonzero reduced right ideal of $B \oplus C$. By [3, Proposition 1.4], X is an essential extension of an ideal. A contradiction follows from [2, Lemma 2]. Hence $B \oplus C$ is DN. Part (v) follows from [3, Theorem 3.11] and Proposition 1.3.

Note that if R is a Baer right GFC ring, then B = 0 in Theorem 1.4.

2. Decompositions.

LEMMA 2.1. Let R be a ring with right ideals X and T such that T is an essential extension of X and $Z_2 = \{x \in R | x + Z_r(R) \in Z_r(R/Z_r(R))\}$. Then:

(i) $Z_2 = \{x \in R | xL \subseteq Z_r(R) \text{ where } L \text{ is some essential right ideal of } R\}$ is a densely nil ideal.

- (ii) $Z_r(R)$ is essential in Z_2 .
- (iii) Z_2 is a closed right ideal of R and $Z_r(R/Z_2) = 0$ as a ring and as an R-module.
- (iv) If $X \subseteq Z_2$, then $T \subseteq Z_2$.
- (v) If R is right GFC, then $P(R) \subseteq Z_r(R)$.

PROOF. From [1, Lemma 3.3], Z_2 is DN. The remainder of parts (i), (ii), and (iii) can be found in [13, pp. 36–48].

(iv) Let $0 \neq y + t \in Z_2 + T$ where $y \in Z_2$ and $t \in T$ and $t^{-1}X = \{r \in R | tr \in X\}$. Now $t^{-1}X$ is an essential right ideal of R. If $(y + t)t^{-1}X = 0$, then $y + t \in Z_r(R) \subseteq Z_2$. Otherwise, there exists $s \in t^{-1}X$ such that $0 \neq (y + t)s = ys + ts \in Z_2$. Consequently, $Z_2 + T$ is an essential extension of Z_2 . From part (iii), $T \subseteq Z_2$.

(v) The proof is similar to [12, Lemma 1.2].

PROPOSITION 2.2. Let R be a right GFC ring such that P(R) is ideal essential in Z_2 . If X is a right ideal of R such that $X \cap P(R) = 0$ and $X \subseteq Z_2$, then R/X generates mod-R and $X \subseteq Z_r(R)$. Hence, if $t \in Z_2$ such that $t \notin Z_r(R)$, then $tR \cap P(R) \neq 0$.

PROOF. By [3, Lemma 1.1], R/X is a generator. Let Y be a relative complement of P(R) in Z_2 such that $X \subseteq Y$. Hence R/Y generates Y. Thus $Y = \sum y_i R$ where $y_i \in Y \cap l(Y)$. Let K be a relative complement of Z_2 in R. Then $Z_2K \subseteq P$. Consequently, $y_i(k \oplus Y \oplus P(R)) = y_iK \subseteq P(R) \cap Y = 0$. Hence $y_i \in Z_r(R)$. Therefore, $X \subseteq Y \subseteq Z_r(R)$.

Lemma 2.3. If R is a right GFC ring and B is a relative complement of $Z_r(R)$, then B is an essential extension of an ideal of R.

PROOF. Assume $B \neq 0$. Let $x \in l(B) \cap B$. Then $x(Z_r(R) \oplus B) = 0$. Hence $x \in Z_r(R) \cap B = 0$. By [3, Proposition 1.4], B contains a nonzero ideal of R. Let J be the sum of all ideals of R contained in B. Assume there is a right ideal $K \neq 0$ such that $J \oplus K$ is essential in B. Let $k \in l(K) \cap K$. Then $k(Z_r(R) \oplus J \oplus K) = 0$. Hence $k \in Z_r(R) \cap B = 0$. Again by [3, Proposition 1.4], K contains a nonzero ideal of R. Contradiction! Thus J is essential in B.

The following result generalizes S. Page's [17] decomposition for right FPF rings.

THEOREM 2.4. Let R be a right GFC ring which satisfies at least one of the following conditions:

- (i) IILAS (e.g., if R is right FPF);
- (ii) If X is a closed right ideal of R, then r(X) is essential in a direct summand of R;
- (iii) every ideal which is closed as a right ideal is a direct summand of R. Then $R = S \oplus Z_2$ (right ideal decomposition) where S is a semiprime quasi-Baer right GFC ring. Also the prime radical P(R) is ideal essential (for condition (ii) P(R) is essential) in Z_2 .

PROOF. For each condition (i), (ii), and (iii) we will show that $R = S \oplus Z_2$ and that P(R) is ideal essential in xR where $x^2 = x$. We will conclude by proving $Z_2 \subseteq xR$.

- (i) Suppose R is IILAS. Let B be a relative complement of $Z_R(R)$. If $Z_r(R)$ has no nonzero relative complement, then $Z_2 = R$. So assume $B \neq 0$. From Lemma 2.3, B is an essential extension of an ideal J. Thus $R = l(Z_r(R)) + l(J) = l(Z_2) + l(J)$. But $l(J) = Z_2$. Hence, $R = l(Z_2) + Z_2$. Therefore, there exists $e = e^2$ such that $Z_2 = eR$. Let S = (1 e)R. Since eR is an ideal, S is a ring with unity. From [3, Proposition 1.4], S is a semiprime ring. We claim that S is an IILAS ring. Let X, Y be ideals of S such that $X \cap Y = 0$. By Lemma 2.3, S is an essential extension of an ideal S of S such that S is an S in S is an essential extension of an ideal S in S is S in S
- (ii) Assume R satisfies condition (ii). Let B be a relative complement of Z_2 . Hence there exists $e = e^2$ such that r(B) is essential in eR. But $(B \cap r(B)) \oplus Z_2$ is essential in eR. By Lemma 2.1, $Z_2 = eR$. Let S = (1 e)R. Since S is a ring with unity such that any right ideal of S is a right ideal of R, then S inherits condition (ii) from R. Since S is semiprime, the above argument could be used to show that any closed ideal of S is a direct summand. By [3, Lemma 2.2], S is a quasi-Baer ring. Now let K be an ideal of R which is maximal among ideals having zero intersection with P(R). It follows that P(R) = P(R) and that P(R) is a closed right ideal. Hence there exists $R = R^2$ such that $R(R) \subseteq R$.
- (iii) Assume R satisfies condition (iii). From Lemma 2.1 and [3, Lemma 2.2], $R = S \oplus Z_2$ where S is a quasi-Baer ring. For K defined as in part (ii), the same argument shows that there exists $x = x^2$ such that $P(R) \subseteq I(K) = xR$.

Now $R = (1-x)R \oplus xR$ where xR is an ideal and P(R) is ideal essential in xR. Thus, by the above argument, (1-x)R = (1-x)R(1-x) is also a semiprime quasi-Baer right GFC ring. From [3, Proposition 2.5], (1-x)R(1-x) is right nonsingular. Hence $(1-x)R \cap Z_2 = 0$. Therefore, $P(R) \subseteq Z_2 = xZ_2$. Consequently, P(R) is ideal essential in Z_2 . Furthermore if R satisfies condition (ii), by an argument used in part (ii) of this proof, P(R) is essential in a direct summand R of R. By Lemma 2.1, R where R where R is Proposition 2.2, R is essential in R is essential in R.

COROLLARY 2.5. Let R be a right GFC ring which satisfies at least one of the conditions (i), (ii), (iii), and its left-sided version (indicated in brackets):

- (i) IILAS[IIRAS] (e.g., if R is FPF);
- (ii) If X is a closed right [left] ideal of R, then r(X)[l(X)] is essential in an idempotent generated right [left] ideal (e.g., if R is quasi-Baer);
- (iii) Every ideal which is a closed right [left] ideal is an idempotent generated right [left] ideal.

Then $R = S \oplus Z_2$ is a ring decomposition.

PROOF. From Theorem 2.4, $Z_2 = eR$ where $e = e^2$, and $r(Z_2) \subseteq (1 - e)R = (1 - e)R(1 - e)$. Hence $Z_2 \subseteq r((1 - e)R) \subseteq r(r(Z_2))$. Let $B = r(Z_2) \cap r(r(Z_2))$. Then $B^2 = 0$. But $B \cap Z_2 = 0$. By Lemma 2.1, $r(Z_2) \cap r(r(Z_2)) = 0$. Next we will show that for each condition (i), (ii), or (iii) there exists a central idempotent c such that $r(r(Z_2)) = cR$. Finally, we will prove that $Z_2 = cR$.

- (i) Assume *R* satisfies condition (i). Since $r(Z_2) \cap Z_2 = 0$, then $R = r(Z_2) + r(r(Z_2))$. Thus $r(r(Z_2)) = cR$ where *c* is a central idempotent.
- (ii) Assume R satisfies condition (ii). Since $r_R(r_R(Z_2))$ is closed as a left ideal which contains Z_2 , the left sided version of the argument used in part (ii) of the proof of Theorem 2.4 yields $r_R(r_R(Z_2)) = Rc$ where $c^2 = c$. Assume $Rc \neq Z_2$. Then there exists a right ideal $X \neq 0$ such that $Rc = Z_2 \oplus X$. Let $y \in I(X) \cap X$ and W be a relative complement (on the right) for Rc. Then $y(W \oplus Rc) = yW \subseteq P(R)$. By Lemma 2.1, $y \in X \cap Z_2 = 0$. From [3, Proposition 1.4], X contains an ideal $J \neq 0$. But $J \subseteq r(Z_2) \cap r(r(Z_2)) = 0$. Hence $Rc = Z_2 = eR$. Thus $Z_2 = eR$ where e is a central idempotent.
- (iii) Assume R satisfies condition (iii). Now $r(Z_2)$ is a relative complement of Z_2 as a left ideal. Thus there exists an idempotent b such that $r(Z_2) = Rb$. Since Rb is an ideal, $Rb = (1-b)Rb \oplus bR$ (right ideal decomposition). But $r(Z_2) \cap Z_2 = 0$. By Lemma 2.1 (1-b)Rb = 0. Hence b is a central idempotent. Thus 1-b is a central idempotent. Let c = 1-b. Then $r(r(Z_2)) = cR$ where c is a central idempotent.

Now in all cases, Z_2 is faithful in cR. Hence $Z_2 = eR$ is a generator for cR. Thus trace $(Z_2) = \operatorname{trace}(eR) = eR = cR = Z_2$. Consequently, $R = S \oplus Z_2$ is a ring decomposition.

EXAMPLE 2.6. Let T be the semigroup ring over I_2 (integers modulo 2) where A is the semigroup on the set $\{a,b\}$ satisfying the relation xy=y for $x,y\in A$. Thus $T=\{0,a,b,a+b\}$. Let T_1 denote the ring with unity formed by extending (i.e., Dorroh extension) T to $T\times I$ (I denotes the integers). T_1 is neither right CS nor is the right annihilator of a closed right ideal necessarily a direct summand (e.g., r(T,0)=(0,2I)), hence T_1 is not quasi-Baer. However, T_1 satisfies the following conditions: (i) strongly right bounded (hence right GFC [3, Proposition 1.2]; (ii) IILAS; (iii) every ideal is essential in a direct summand, thus the right annihilator of a closed right ideal is essential in a direct summand; (iv) every ideal which is closed as a right ideal is a direct summand. Further details can be found in [4, Example 2.3] and [6]. Therefore T_1 provides a nontrivial example for Theorem 2.4 where $S=(a,1)T_1$ and $Z_2=(T,0)$.

EXAMPLE 2.7. Let $S = I_2[x]/\langle x^3 \rangle$, where I_2 denotes the ring of integers modulo 2, x is an indeterminate, $\langle x^3 \rangle$ is the ideal generated by x^3 , and $\bar{x} = x + \langle x^3 \rangle$. Let R be the subring of $\begin{pmatrix} S & S \\ 0 & S \end{pmatrix}$ generated by $e = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $b = \begin{pmatrix} 0 & 0 \\ 0 & \bar{x} \end{pmatrix}$, and $t = \begin{pmatrix} 0 & \bar{x} \\ 0 & 0 \end{pmatrix}$. R has the following characteristics: (i) by observing that if $y \in R$, then $y = k_1e + k_2b + k_3t + k_4b^2 + k_5tb$, where $k_i \in I_2$, it follows that R is a local ring with nilpotent Jacobson radical of index

3, and R is an algebra of dimension five (hence |R| = 32) over I_2 . (ii) A principal right ideal yR is a proper ideal if and only if $k_1 = k_2 = 0$. However, the minimal right ideals (i.e., b^2R , tbR, and $(b^2+tb)R$) are ideals. Therefore, R is strongly right bounded (hence right GFC). Note b^2 and tb are in the center of R. Let soc(R) denote the right socle of R. If X is a nonzero right ideal, then $soc(R) \subseteq r(X)$. Hence r(X) is essential in R. Thus condition (ii) of Theorem 2.4 is satisfied. However, R is not quasi-Baer; and R is not IILAS (hence not right FPF), since $b^2R \cap tbR = 0$, but $R \neq l(b^2R) + l(tbR)$. Note $R = \mathbb{Z}_2$. Further details on this example can be found in [5].

REFERENCES

- 1. G. F. Birkenmeier, Self-injective rings and the minimal direct summand containing the nilpotents, Comm. Algebra 4 (1976), 705-721.
 - 2. ——, Baer rings and quasi-continuous rings have a MDSN, Pac. J. Math. 97 (1981), 283–292.
 - 3. ———, A generalization of FPF rings, Comm. Alg. 17 (1989), 855–884. 4. ———, Extensions of strongly right bounded rings, .
- 5. G. F. Birkenmeier and R. P. Tucci, Homomorphic images and the singular ideal of a strongly right bounded ring, Comm. Alg. 16 (1988), 1099-1112.
- 6. G. F. Birkenmeier and H. E. Heatherly, Embeddings of strongly right bounded rings and algebras, Comm. Alg. 17 (1989), 573–586.
- 7. A. W. Chatters and C. R. Hajarnavis, Rings in which every complement right ideal is a direct summand, Quart. J. Math. Oxford, 28 (1977), 61-80.
- 8. A. W. Chatters and S. M. Khuri, Endomorphism rings of modules over non-singular CS rings, J. London Math. Soc. 21 (1980), 434-444.
 - 9. W. E. Clark, Twisted matrix units semigroup algebras, Duke Math. J. 34 (1967), 417-423.
- 10. C. Faith, Injective quotient rings of commutative rings, Springer Lecture Notes 700, Springer-Verlag, Berlin, 1979.
- 11. C. Faith and S. Page, "FPF Ring Theory: Faithful Modules and Generators of Mod-R," London Mathematical Society Lecture Note Series 88, Cambridge University Press, Cambridge, 1984.
 - 12. T. G. Faticoni, FPF rings I: The noetherian case, Comm. Algebra 13 (1985), 2119-2136.
 - 13. K. R. Goodearl, "Ring Theory: Nonsingular Rings and Modules," Marcel Dekker, New York, 1976. , "Von Neumann Regular Rings," Pitman, London, 1979.
 - 14. C. R. Hajarnavis and N. C. Norton, On dual rings and their modules, J. Algebra 93 (1985), 253-266.
 - 15. I. Kaplansky, "Rings of Operators," W. A. Benjamin, New York, 1968.
 - 16. S. S. Page, FPF rings and some conjectures of C. Faith, Canad. Math. Bull. 26 (1983), 257–259.
 - 17. B. Stenstrom, "Rings of Quotients," Springer-Verlag, New York, 1975.

Department of Mathematics University of Southwestern Louisiana Lafayette, Louisiana 70504