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Abstract. We study the topological properties of cohomogeneity one flat
manifolds and their orbits. Among other results we prove that principal orbits of Rn

are isometric to Rn�1 or SkðcÞ � Rn�k�1. We show that ifM has one singular orbit, it
is a totally geodesic submanifold of M and if M is orientable then there is at most
one singular orbit.
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1. Introduction. Cohomogeneity one Riemannian manifolds have been studied
from different points of view (see [1], [2], [3], [4], [6] and [9]). C. Searle [9] provided a
complete classification of such manifolds when they are simply connected compact
and of positive curvature of dimension less than or equal to six. F. Podesta and
A. Spiro [4] studied the topological properties of cohomogeneity one negatively
curved Riemannian manifolds. The aim of this paper is to study the topological
properties of a flat cohomogeneity one manifold Mn. In Theorem 3.1 we takeMn to
be Rn and prove that the orbits of Rn are isometric to Rn�1 or SkðcÞ � Rn�k�1. Then
we distinguish two cases. In Theorem 3.3 we prove that if M is orientable then M
can admit at most one singular orbit. We show in Theorem 3.5 that if there is a
unique singular orbit B then B is a totally geodesic submanifold of M and is iso-
metric to Rk � Tm and �1ðMÞ ¼ Zm. Also we prove that if there is not any singular
orbit then each principal orbit is isometric to Rk � Tm.

2. Preliminaries. Let M be a complete Riemannian manifold of dimension n
and G be a Lie group of isometries of M, which is closed in the full isometry group
ofM. We say thatM is of cohomogeneity one under the action of G, if G has an orbit
of codimension one.

For a general theory of cohomogeneity one manifolds we refer to [1], [2], [3], [4]
and [6]. Here we briefly mention some facts about cohomogeneity one manifolds
which will be needed in the sequel.

It is known that the orbit space � ¼ M=G is a topological Hausdorff space
homeomorphic to one of the following spaces: R;S1;Rþ ¼ ½0;1Þ and ½0; 1	. We
indicate by k : M ! � the projection to the orbit space.

Given a point x 2 M, we say that the orbit Gx is principal (resp. singular)
if the corresponding image in the orbit space � is an internal (resp. boundary)
point. A point x whose orbit is principal (resp. singular) will be called regular
(resp. singular) point. The subset of all regular points turns out to be an open

Glasgow Math. J. 44 (2002) 185–190. # 2002 Glasgow Mathematical Journal Trust.
DOI: 10.1017/S0017089502020189. Printed in the United Kingdom

https://doi.org/10.1017/S0017089502020189 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089502020189


and dense subset of M denoted byMreg and the subset of singular points is denoted
by Ms.

If �oð� �Þ is homeomorphic to an open interval of R and D is a principal orbit
then �o � D is diffeomorphic to k�1ð�oÞ.

All principal orbits are diffeomorphic to each other and if M=G ¼ R then M is
diffeomorphic to R�D, where D is a principal orbit.

Each singular orbit is of dimension less than or equal to n� 1. A singular orbit
of dimension n� 1 is called an exceptional orbit. Note that no exceptional orbit is
simply connected, and ifM is simply connected no exceptional orbit may exist. IfM
is orientable and all principal orbits, are connected, then any exceptional orbit is
non-orientable.

If B is the unique singular orbit of M ðM=G ¼ RþÞ then �1ðMÞ ¼ �1ðBÞ.

Definition 2.1. A (complete) geodesic � : R�!M on a Riemannian mani-
fold of cohomogeneity one is called a normal geodesic if it crosses each orbit
orthogonally.

It is known (see [1], [2] and [4]) that a geodesic � is normal if and only if it is
orthogonal to the orbit Gx at one point x ¼ �ðtÞ. IfM=G ¼ S1 or [0,1] then a normal
geodesic � : R�!M intersects each principal orbit D infinitely many times (for infi-
nitely many t 2 R we have �ðtÞ 2 DÞ, while ifM=G ¼ Rþ, � intersects each principal
orbit in two distinct points and if M=G ¼ R then � intersects a principal orbit
exactly once.

For the sake of completeness, we quote the following theorems which we use in
the proofs.

Theorem 2.2 [7, p. 374]. Let ~MM be a space form of constant curvature c 
 0 and
let M be a hypersurface in ~MM whose principal curvatures are constant. Then at most
two of them are distinct.

Theorem 2.3 [8, Theorem 1]. Suppose ~MM is a real space form and M a hyper-
surface in ~MM. Suppose the principal curvatures of M are constant and at most two are
distinct. Then M is congruent to an open subset of one of the standard examples.

Remark 2.4. When ~MM ¼ Rnþ1, the standard examples are hyperplanes, spheres
and cylinders over spheres. (See [8, Section 1]).

Theorem 2.5 [6, Theorem 6.1]. Suppose M is a complete Riemannian G-manifold
that admits sections, and N is a principal orbit of M. Then

(a) expð�ðNxÞÞ is a properly embedded totally geodesic submanifold of M for all
x 2 N; ð�ðNÞ is the normal bundle of N in M).

(b) �ðNÞ is flat and has trivial holonomy; in fact if v1; . . . ; vk is a basis for �ðNÞx
then the G-invariant normal fields ~vviðgxÞ ¼ dgxðviÞ form a global parallel frame for
�ðNÞ.

(c) The principal curvatures of N with respect to any parallel normal field are
constant.

Theorem 2.6. Let M be a complete hypersurface of the Euclidean space Rn, whose
principal curvatures are constant. Then M is isometric to one of the following spaces:
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ð1Þ Rn�1; ð2Þ SkðcÞ � Rn�1�k; 1 
 k 
 n� 1; c > 0:

Proof. Since M is complete, the theorem is a simple consequence of Theorems
2.2 and 2.3.

Theorem 2.7 [10, pp. 88, 89]. Let Mn be a connected homogeneous Riemannian
flat manifold. Then Mn is isometric to the product Rm � Tn�m of a Euclidean space
with a flat Riemannian torus.

Theorem 2.8. If M is a simply connected cohomogeneity one Riemannian mani-
fold of non-positive curvature, then there is at most one singular orbit.

Proof. The proof is similar to the proof of Proposition 3.3 of [4]. To facilitate
the reader we mention it briefly. Suppose that there exist two singular orbits
Bi ¼ G=Hi, i ¼ 1; 2;B1 6¼ B2, where H1;H2 are maximal compact in G. The two
subgroups H1 and H2 are conjugate to each other, so there exist points z1 2 B1,
z2 2 B2 with the same isotropy subgroup, say H1. The unique geodesic joining z1 to
z2 would be left pointwise fixed by H1, so that H1 should be a subgroup of a regular
isotropy subgroup, which is a contradiction.

3. Main results. Throughout the following M will denote a complete Rie-
mannian manifold of dimension n which is flat and of cohomogeneity one under the
action of a connected Lie group G. If M is not simply connected then ~MM the uni-
versal covering manifold of M is of cohomogeneity one under the action of a Lie
group ~GG, a connected covering manifold of G (see [3, p. 63]).

If ~�� : ~GG�!G; � : ~MM�!M are the covering maps then for each orbit ~DD in
~MM; �ð ~DDÞ is an orbit of M, and for each orbit D in M, we have D ¼ �ð ~DDÞ, for some
orbit ~DD of ~MM.

Each deck transformation ’ maps orbits to orbits. Thus if ~MM= ~GG ¼ Rþ or R,
then ’ induces an isometry ’� on ~MM= ~GG such that k’ð ~DDÞ ¼ ’�kð ~DDÞ, where
k : ~MM�! ~MM= ~GG is the projection onto the orbit space and ~DD is an orbit of ~MM.

Theorem 3.1. Let M ¼ Rn be of cohomogeneity one under the action of a con-
nected Lie group G � IsoðRnÞ. Then either each principal orbit is isometric to Rn�1 and
there is not any singular orbit or each principal orbit is isometric to SkðcÞ � Rn�k�1,
1 
 k 
 n� 1, k is fixed for all orbits, and the unique singular orbit is isometric to
Rn�k�1.

Proof. Let D be a principal orbit. By using Theorems 2.5 (c) and 2.6 we
get that D is isometric to Rn�1 or SkðcÞ � Rn�k�1, for some k, 1 
 k 
 n� 1
(c depends on the orbit D). Since principal orbits are diffeomorphic to each
other we get that each principal orbit of M is isometric to Rn�1 or each
principal orbit is isometric to SkðcÞ � Rn�k�1, 1 
 k 
 n� 1. Now we consider
two cases.

Case 1. Each principal orbit is isometric to Rn�1. By the fact that a line in Rn

which is normal to a hyperplane Rn�1, intersects it exactly once, we get that a normal
geodesic � intersects each principal orbit exactly in one point, therefore we have
M=G ¼ R and there is not any singular orbit.
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Case 2. Each principal orbit is isometric to SkðcÞ � Rn�k�1, for some
k; 1 
 k 
 n� 1. By the fact thatM ¼ Mreg [Ms, andMreg is open and dense inM,
we get that for each c 2 ð0;1Þ there exists a principal orbit SkðcÞ � Rn�k�1, so we
conclude that Mreg ¼

[

c2ð0;1Þ

SkðcÞ � Rn�k�1 ¼ ðRkþ1 � f0gÞ � Rn�k�1; hence f0g�

Rn�k�1 is the singular orbit.
From the proof of this theorem we have the following corollary.

Corollary 3.2. If Rn is of cohomogeneity one under the action of a connected Lie
group G � IsoðRnÞ, then the singular orbit (if there is any) is non-exceptional.

The corollary is in accordance with the fact that if M is simply connected, then
no exceptional orbit may exist (see [3]).

Theorem 3.3. If M is an orientable cohomogeneity one flat Riemannian manifold,
then there is at most one singular orbit.

Proof. By Theorem 2.8 we need only consider the case of M not simply con-
nected. Let the Lie group G act by cohomogeneity one on M and ~GG be the corre-
sponding covering Lie group of G which acts by cohomogeneity one on ~MM ¼ Rn (the
universal covering manifold of M). By Theorem 3.1 we have two cases.

Case 1. Each orbit of ~MM is isometric to Rn�1.
In this case each orbit D of M would be a totally geodesic hypersurface of M

(because D ¼ �ð ~DDÞ for some orbit ~DD of ~MM); therefore each orbit D of M is a homo-
geneous flat hypersurface of M. By Theorem 2.7 we get that D is isometric to
Rk � Tm; kþm ¼ n� 1, D cannot be singular since no exceptional singular orbit is
orientable; therefore in this case there is not any singular orbit.

Case 2. ~MM has a unique non-exceptional singular orbit (i.e ~MM= ~GG ¼ Rþ).
We show that M cannot admit two singular orbits. Let M admits two singular

orbits.
Since ~MM= ~GG ¼ Rþ, a normal geodesic ~�� in ~MM intersects each principal orbit in

two points, while since M=G ¼ ½0; 1	 the normal geodesic � ¼ � � ~�� intersects each
principal orbit D infinitely many times. So we conclude that ��1ðDÞ has more than
one connected component. Hence for a principal orbit ~DD � ��1ðDÞ there exists a
deck transformation ’ such that ’ð ~DDÞ 6¼ ~DD. Now let ~BB be the singular orbit of ~MM.
For dimension reasons we get that ’ð ~BBÞ ¼ ~BB. Let ’� be the induced isometry on the
orbit space ~MM= ~GG ¼ Rþ. We have ’�ð0Þ ¼ ’�ðkð ~BBÞÞ ¼ k’ð ~BBÞ ¼ kð ~BBÞ ¼ 0, therefore for
each t 2 Rþ; ’�ðtÞ ¼ t; so for each orbit ~DD in ~MM we would have ’ð ~DDÞ ¼ ~DD, which is a
contradiction. Therefore M cannot admit two singular orbits.

Remark 3.4. In fact we proved that the singular orbit of M (if there is any) is
non-exceptional.

Theorem 3.5. Let M be a flat non-simply connected cohomogeneity one
Riemannian manifold under the action of a Lie group G � IsoðMÞ,

(a) If there is a unique singular orbit B, then B is a totally geodesic submanifold of
M and is isometric to Rk � Tm for some non-negative integers m; k and �1ðMÞ ¼ Zm.

(b) If there is no singular orbit, then each principal orbit is isometric to Rk � Tm

for some non-negative integers m,k.
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(c) In the case (b), if M=G ¼ R then M is diffeomorphic to Rr � Tt for some non-
negative integers r,t, rþ t ¼ n.

Proof. (a) Let ~MM ¼ Rn be the universal covering manifold ofM and let ~GG be the
corresponding covering Lie group of G, which acts by cohomogeneity one on ~MM. By
Theorem 3.1 we have two cases.

Case 1. ~MM has a unique singular orbit ~BB isometric to R‘; ‘ < n� 1.
In this case the orbit �ð ~BBÞ in M has dimension less than n� 1. Therefore it is a

singular orbit. Since by assumption M has only one singular orbit B, we have
B ¼ �ð ~BBÞ. As ~BB is totally geodesic in ~MM, B is totally geodesic in M and hence is flat.
Therefore by Theorem 2.7 we get that B is isometric to Rk � Tm for some non-
negative integers m; k;mþ k ¼ l. Also �1ðMÞ ffi �1ðBÞ ffi Zm by the preliminaries.

Case 2. Each orbit of ~MM is isometric to Rn�1. From the fact that B ¼ �ð ~BBÞ (for
some orbit ~BB of ~MMÞ we get that B is a totally geodesic submanifold ofM. So B is flat
and homogeneous. Hence, by Theorem 2.7, B is isometric to Rk � Tm for some non-
negative integers m; k, mþ k ¼ n� 1. So �1ðMÞ ffi �1ðBÞ ffi Zm.

(b),(c). In this case ~MM does not have any singular orbit (because if ~MM admitted a
singular orbit, by case 1 we get that M admits a singular orbit). Therefore by
Theorem 3.1 we get that each orbit ~DD of ~MM is isometric to Rn�1. Thus each orbit
Dð¼ �ð ~DDÞÞ of M is a totally geodesic submanifold of M. So D is flat and homo-
geneous; thus, by Theorem 2.7, D is isometric to Rm � Tt, mþ t ¼ n� 1. If
M=G ¼ R, from the fact that M is diffeomorphic to R�D we get that M is diffeo-
morphic to Rr � Tt, rþ t ¼ n.

Example 3.6. Suppose that M ¼ Tl � R, where Tl is a flat l-torus, and G ¼ Tl

acts on Tl by translation and on R trivially. Then M is a cohomogeneity one flat
manifold, M=G ¼ R, each orbit is isometric to Tl and �1ðMÞ ¼ Zl.

Example 3.7. Suppose that M ¼ S1 � Rn�1, n � 2, and G ¼ Rn�1 acts on M by
translation on Rn�1 and trivially on S1. Then M=G ¼ S1, each orbit is isometric to
Rn�1; �1ðMÞ ¼ Z.

Example 3.8. Suppose that M ¼ S1 � Rn�1, n � 3, and G ¼ S1 �Oðn� 1Þ acts
onM componentwise. ThenM is a cohomogeneity one flat manifold, each principal
orbit is diffeomorphic to S1 � Sn�2, the unique singular orbit is S1, andM=G ¼ Rþ.
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