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A round sphere theorem for positive

sectional curvature

Changyu Xia

Abstract

Let M be an n-dimensional complete connected Riemannian manifold with sectional cur-
vature sec(M) � 1 and radius rad(M) > π/2. In this article, we show that if conj(M), the
conjugate radius of M , is not less than rad(M), then M is isometric to a round sphere of
constant curvature.

1. Introduction

The structure of closed manifolds with positive sectional curvature has been an important topic in
global Riemannian geometry. Let M be an n-dimensional complete connected Riemannian manifold
with sectional curvature sec(M) � 1. It follows from the Bonnet–Myers theorem [CE75] and Cheng’s
maximal diameter theorem [Che75] that if diam(M), the diameter of M , is bounded from below
by π, then M is isometric to a unit Euclidean n-sphere. The famous classical sphere theorem
tells us that M is homeomorphic to an n-sphere if in addition sec(M) < 4 and M is simply
connected [CE75]. In 1977, Grove and Shiohama established the critical point theory of distance
functions on complete Riemannian manifolds to prove that M is homeomorphic to an n-sphere
if diam(M) is larger than π/2 (see [GS77]). The case diam(M) = π/2 (where the theorem is
false, as shown by the example of real projective space) was essentially classified by Gromoll and
Grove [GG87]. The above Grove–Shiohama theorem generalized the classical sphere theorem since
the diameter of the manifold in the classical sphere theorem is larger than π/2 (see [CE75]). The
critical point theory of distance functions has many important applications in Riemannian geometry
(cf. [Che91, Gro93]). One can find other kinds of generalization of the classical sphere theorem,
e.g., in [AW94, AW96, AW97, GP93, Mac93, MM88, Xia97]. It has been proven by Shiohama
and Yamaguchi [SY89] that M is diffeomorphic to an n-sphere if the radius of M is close to π.
Recall that for a compact metric space (X, d), the radius of X at a point x ∈ X is defined as
rad(x) = maxy∈X d(x, y) and the radius of X is given by rad(X) = minx∈X rad(x) (see [SY89]).
The above Shiohama–Yamaguchi theorem has been strengthened by Colding to the following form:
An n-dimensional complete connected Riemannian manifold with Ricci curvature larger than or
equal to n− 1 and radius close to π is diffeomorphic to Sn (see [Col96a, Col96b]). A classical result
due to Toponogov states that if n = 2 and if M contains a closed geodesic without self-intersections
of length 2π, then M is isometric to a two-dimensional unit sphere [Top59]. A partial extension
of Toponogov’s theorem to higher-dimensional Riemannian manifolds was given in [Xia02]. When
the radius of M is larger than π/2, Grove and Petersen showed that the volume of M satisfies
C(n) � vol(M) � {rad(M)/π}ωn, where ωn is the volume of a unit Euclidean n-sphere and C(n) is
a positive constant depending only on n (see [GP92]). It has been known that when rad(M) > π/2,
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any complete connected totally geodesic submanifold of M is homeomorphic to a sphere [Xia02].
Recently, a round sphere theorem for M has been proven by Wang [Wan04].

The purpose of the present article is to study the metric rigidity of complete manifolds with
sectional curvature bounded below by 1 and radius larger than π/2. Before stating our main result,
we fix some notation. Let M be a complete Riemannian manifold. For a point x in M , denote by
SxM the unit tangent sphere of M at x. For any v ∈ SxM , let γ be a unit speed geodesic with
γ′(0) = v. The conjugate value cv of v is defined to be the first number r > 0 such that there is a
nonzero Jacobi field J along γ satisfying J(0) = J(r) = 0. Set

conj(x) := inf
v∈SxM

cv.

We call conj(x) the conjugate radius of M at x. The conjugate radius of M is defined as conj(M) =
infp∈M conj(p).

Now we can state the main result in this paper as follows.

Theorem 1.1. Let M be an n-dimensional complete connected Riemannian manifold M with
sec(M) � 1. If conj(M) � rad(M) > π/2, then M is isometric to a round sphere of constant
curvature.

We remark that Theorem 1.1 characterizes not only the unit sphere but also the family of
spheres with sectional curvature bounded below by one and radius larger than π/2. It should be also
mentioned that our condition ‘rad(M) > π/2’ in Theorem 1.1 is essential since the real projective
space RPn of sectional curvature 1 satisfies conj(RPn) = π > rad(RPn) = π/2.

2. A proof of Theorem 1.1
Let us first list some known facts that will be needed in the proof of Theorem 1.1. Let M be a
complete connected Riemannian n-manifold satisfying sec(M) � 1 and rad(M) > π/2. It follows by
using the Toponogov comparison theorem that for any x ∈ M , there exists a unique point A(x) that
is at the maximal distance from x. One can show that the mapping A : M → M is continuous (cf.
[GP92, Xia02]). Observe that M is homeomorphic to Sn. Thus, we know from the Brouwer fixed
point theorem that A is surjective.

Recall that a Wiedersehen manifold is a connected simply connected compact Riemannian n-
manifold M without boundary such that for any m ∈ M the cut locus of m is a single point [Gre63].
It is known that a Wiedersehen manifold is isometric to a round sphere of constant curvature
[Gre63, Bes78, Wei74, Yan80, Yan82].

We shall assume throughout this paper that all geodesics have unit tangent vectors. Now we are
ready to prove our main theorem.

Proof of Theorem 1.1. We shall show that our M is a Wiedersehen manifold. Since M is homeo-
morphic to Sn, it suffices to show that the cut-locus of any point in M is a single point. Let d and
inj(M) be the distance function and the injectivity radius of M , respectively. For any x ∈ M , we
denote by inj(x) and cut(x) the injectivity radius of M at x and the cut-locus of x, respectively. It
is well known that inj(x) = d(x, cut(x)), that the function inj : M → R+ is continuous and that
inj(M) = infx∈M inj(x).

We claim that M contains a closed geodesic of length 2 · inj(M). To see this, take a point p ∈ M
such that inj(M) = inj(p). Since cut(p) is a closed subset of M and so is compact, we can find a
q ∈ cut(p) such that l ≡ d(p, q) = d(p, cut(p)). By Proposition 2.12 in [Doc93, p. 274], we know that
either:

(i) there exists a minimizing geodesic γ from p to q along which q is conjugate to p; or
(ii) there exist exactly two minimizing geodesics γ1 and γ2 from p to q satisfying γ′

1(l) = −γ′
2(l).
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If statement (i) holds, then we have

inj(M) = l � conj(p) � conj(M) � rad(M).

On the other hand, it is easy to see that

rad(M) � inj(M).

Combining the above two inequalities, we get

inj(M) = rad(M).

Let us take a point w ∈ M so that rad(w) = rad(M), then we have

inj(w) � inj(M) = rad(w) � inj(w),

and so

l = inj(w) = inj(M).

It follows that any geodesic σ : [0, l] → M with σ(0) = w is minimizing and satisfies σ(l) = A(w)
since l = rad(w) and A(w) is the unique point which is at the maximal distance from w. We can see
that w is at the maximal distance from Aw. In fact, suppose on the contrary that z ≡ A(A(w)) �= w.
Set r = d(z,A(w)), t = d(w, z); then

r > d(A(w), w) = l > t.

Take a minimizing geodesic c : [0, t] → M from w to z and extend c to be a geodesic (still denoted
by c) defined on [0, l]. From the above discussions, we know that c(l) = A(w), which implies
that d(z,A(w)) = l − t < l. This is a contradiction. Thus, we have A(A(w)) = w. Consequently,
if β : [0, 2l] → M is a geodesic starting from w then it must satisfy β(l) = A(w), β(2l) = w.
Set z1 = β(l/2) and z2 = β(3l/2); then β|[l/2,3l/2] is minimizing since inj(z1) � l. It then follows
from

length(β|[3l/2,2l]) + length(β|[0,l/2]) = l = d(z1, z2)

that β is smooth at w. This shows that if statement (i) holds, then M contains a closed geodesic of
length 2l = 2 · inj(M). On the other hand, if statement (ii) holds, then γ1 ∪ γ2 is smooth at p since
inj(M) = l, which implies that γ1 ∪ γ2 is a closed geodesic of length 2l = 2 · inj(M). Thus, our claim
is true.

Let γ : [0, 2l] → M be a closed geodesic of length 2l = 2 · inj(M). Set x = γ(0), y = γ(l). Let us
prove that l > π/2. Assume on the contrary that l � π/2. We suppose that x = A(z) is the unique
point that is at the maximal distance from some z ∈ M . Then z �= y since d(x, z) > π/2 � d(x, y).
Set l1 = d(x, z) and l2 = d(y, z); then l1 > l2. Take a minimal geodesic β from y to z; then we have
either

∠(γ′(l), β′(0)) � π

2
,

or

∠(−γ′(l), β′(0)) � π

2
.

We assume without loss of generality that ∠(−γ′(l), β′(0)) � π/2. Applying the Toponogov com-
parison theorem to the hinge (γ|[0,l], β), we get

0 > cos l1 � cos l cos l2 + sin l sin l2 cos ∠(−γ′(l), β′(0))
� cos l cos l2, (2.1)

which implies that l �= π/2 and so we obtain from

cos l1 < cos l2
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and (2.1) that
cos l1(1 − cos l) > 0,

which contradicts the fact that l1 > π/2. Thus, l > π/2.
We claim now that y = A(x). We proceed by contradiction again. Thus suppose that A(x) �= y.

Set r = d(x,A(x)), s = d(y,A(x)) and take a minimal geodesic α from y to A(x). Observe that
either

∠(γ′(l), α′(0)) � π

2
,

or
∠(−γ′(l), α′(0)) � π

2
.

One obtains, by using the Toponogov inequality to the hinge (γ|[0,l], α) or to the hinge (γ|[l,2l], α),
that

0 > cos r � cos l cos s. (2.2)

Since A(x) is at the maximal distance from x, it follows from Berger’s lemma [CE75] that there
exists a minimal geodesic δ from A(x) to x satisfying

∠(δ′(0),−α′(s)) � π

2
.

Applying the Toponogov comparison theorem to the hinge (δ, α), we obtain

cos l � cos r cos s + sin r sin s cos ∠(δ′(0),−α′(s))
� cos r cos s. (2.3)

It follows from r > π/2, l > π/2 and (2.2) that cos s > 0, and so we have from (2.2) and (2.3) that

cos r � cos l cos s � cos2 s cos r,

that is
cos r sin2 s � 0,

which is a contradiction. Hence, A(x) = y and similarly, we have A(y) = x. Since inj(M) = l
and there exists only one point of M that is at the maximal distance from x, we conclude that
any geodesic c : [0, 2l] → M starting from x must satisfy c(l) = y, c(2l) = x and be smooth
at x. This clearly implies that cut(x) = {Ax}. Similarly, we know that for any point p ∈ γ,
cut(p) = {Ap}. Now we fix a point u /∈ γ and let us prove that cut(u) = {A(u)}. Set t = d(x, u)
and take a minimal geodesic h from x to u. From the above discussions, we know that h can be
extended to a closed geodesic (still denoted by h) h : [0, 2l] → M satisfying h(0) = h(2l) = x and
h(l) = y. Since inj(M) = l = 1

2 l(h), we can use the same arguments as above to show that for
any q ∈ h, cut(q) = {A(q)} and, in particular, cut(u) = {A(u)}. Consequently, M is a Wiedersehen
manifold and so is isometric to a round sphere of constant curvature. This completes the proof of
Theorem 1.1.
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