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ON CERTAIN GROUP RING PROBLEMS

G. KARPILOVSKY

Recent developments on the isomorphism and other group ring

problems are amply reviewed in Sehgal's book, Topics in group

rings. The aim of this expository paper is to complement the

content of Sehgal's book. Our main emphasis is the presentation

of some results due to Saksonov which are published in Russian

and do not seem well-known to the English reader. We also draw

the reader's attention to some unpublished results of Higman.

Introduction

Let KG be a group ring of a finite group G over a commutative ring

K with unit. There has been a considerable amount of work over the years

dedicated to the following problem: To what extent does KG determine the

group G ? A favourite gambit of group ring theorists has been to impose

some conditions on the ring K in the expectation that KG determines G

up to isomorphism. There is a striking example of Dade [79] of two

nonisomorphic metabelian groups G and H such that for all choices of

the field K , KG and KH are isomorphic.

Therefore, generally speaking, a field is not a suitable candidate for

K . The rings K for which the group ring KG yields the most

information on the structure of G are integral domains of characteristic

0 in which no rational prime divisor of the order of G is invertible.

Typical examples of such rings are as follows:

The ring R of algebraic integers in some finite extension of the
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rationals (in particular, the ring Z of rational integers), the ring

Z, . = {a/b \ a, b £ Z, {b, |c |) = l} and, in the case when G is a

p-group, the ring 0 of p-adic integers.

Before we embark on our exposition proper, a historical note is worth

inserting.

The study of the isomorphism problem was pioneered by Higman in 19^0.

Some of his significant resul ts , regrettably never published (except in an

Oxford D.Phil. Thesis, "Units in group rings") were virtually unknown. One

of these results states that if G i s metabelian and hilpotent then any

group of normalised units of finite order in RG is isomorphic to a

subgroup of G . I t took 25 years to re-discover a special case of this

resul t . Namely, in 1965 Passman [33] proved that a nilpotent group G of

class 2 is determined by RG .

One of the most important results so far achieved is due to Whitcomb

[35]. in 1968 Whitcomb proved that a metabelian group is determined by i t s

integral group ring. I t is interesting to note that Whitcomb's result can

be easily deduced from the proof of Theorem lit of Higman's unpublished

thesis .

We also remark that Conjecture II .1.5 of [52] for the case when G is

a f ini te group was f i rs t established by Saksonov [44] and that Sehgal was

probably unfamiliar with i t . We present this result of Saksonov in the

f i r s t part of the art icle (§2). In the second part (§3) we show how

Whitcomb's result can be easily deduced from Theorem Ik of Higman's

unpublished thesis. In the third part (§§4, 5), we discuss conjugacy of

group bases and normal subgroup correspondence of groups having isomorphic

group rings.

1. The setting

In this section we shall describe the notation, recall the definitions

and record some elementary properties of group rings. Throughout we shall

use the following notation:

RG the group ring of a finite group G over R where

R is an integral domain of characteristic 0 in

which no rational prime divisor of the order of G
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is invertible.

C the complex numbers.

Q the rational numbers

Z ( G ) = ia/b | a, b € Z, (b, \G\) = 1} .

Z(G) the centre of G .

T (G mod G') the subgroup of G generated by a l l elements of

G some pth power of which is in G' .

Let G be a group and l e t K be an associative ring with uni t . We

denote by KG the group ring of G over K ; th i s ring is a free

X-module with basis indexed by the elements of G , and most of the time we

identify th i s basis with G . Each element x of KG can then be

uniquely written in the form

x == £ x a , x € K
gZG r 9

where only finitely many x are distinct from 0 and multiplication in
y

KG extends that in G .

A homomorphism from the group ring KG to the group ring XG is a

ring homomorphism which is also a ^-module homomorphism. The augmentation

ideal I{K, G) is the kernel of the homomorphism from the group ring KG

to K induced by collapsing G to the unit group. Explicitly, I(K, G)

consists of all

x = Z x^ ' x € X , for which e(x) = £ x = 0 .
glG ? 9 gzG 9

We shall write I{G) instead of I(K, G) when there is no danger of

confusion. A unit u in KG is called trivial (respectively normalised)

if u = u a for some unit u (. K and some g € G (respectively if

eU) = 1 ).

A normalised group basis of KG is a group basis consisting of

normalised units. We shall write KG = KH for H being a normalised

group basis of KG . Note that if H is another group basis of KG then
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KG = KH where H = \z{t~1)t | t € ffl

and H S£ ^ .

Therefore the isomorphism problem may be stated as follows:

Does KG = KH imply G ?? H ?

Suppose that H is a normalised group basis of KG and l e t e ' be a

homomorphism from KG to # induced by collapsing E to the unit group.

Then for any

x = £ *fcfc , xh i K ,
hdH

e(x) = y x, = e'(x) ; that is e = e ' .

Consequently I(G) = I(H) and every unit normalised with respect to G is

also normalised with respect to H . For J an ideal of #ff the

multiplicative kernel of the map G -*• KG/J is G n (l+J) and G + J will

stand for the image of G under this map. In other words,

G + J = {g+J \ g £ G}

and G n (l+c^) consists of a l l g In G for which <? - 1 is in J .

Note that

(1.1) for It = G n (l+<7) , G/ff s G + «7 .

Let X : G ->• H be a group epimorphism and le t X : KG -*• KH be the group

ring epimorphism which i s the extension of A by .K-linearity. Then

Ker.X = KG'UN) where N = Ker X and therefore

(1.2) G n (l+KG'I(N)) = It .

If x € KG then the equality x = t(x) + (x-e(x)) implies

KG = K @ I(G) (direct sum of ^-modules).

Hence

(1.3) KG'I(N) = I(N) + I(G)'I(N) .

We now record the following identities:
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(l.U) ab - 1 = (a-X)(b-l) + U-l) + (b-l) , a, b in KG ,

(1.5) [a, b] - 1 = a"V1[(a-l)(fc-l)-(fc-l)(a-l)] , a, b in U(KG) .

Note also that for any natural number m dividing the order of G the

mapping

f >• Z/mZ ,

alb -*• a(b)~ , a = a + mZ , b = b + mZ ,

is a ring epimorphism with kernel m^rG)
 a n d therefore

(1.6) Z(G)/mZ{G) ~ Z/mZ "

We conclude this section by recording the following standard number

theoretic properties:

(i) Let e . , . . . , e be mth roots of unity over Q and let

£.+. . .+£
~ - -- . If a is an algebraic integer then either a = 0 or

e i = E 2 = ••• = £n •

X

(1

(1

.7)

.8)

n

( i i )

0 /pn0 S Z/pnZ .
p p

2. Saksonov's result

The main purpose of this section is to prove Theorem 2.1 due to

Saksonov and to make some observations which will be used in §3.

The reader should note that Theorems 2.1, 2.2 and 2.3 of this section

for the case when R is the ring of algebraic integers were f i rs t

established by Higman [ 2 / ] .

We star t by recording the following simple observation, which is valid

for K = Z, N and, in the case when G is a p-group also, for K = 0

(see (1.6) and (1.8)) .

LEMMA 2.1. Let m be the exponent of G/G' and let K be a ring

with. 1 such that K/mK s Z/mZ . Then for any t € I{K, G) there exists
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g € G such that t = g - 1 (mod I(K, G)2) .

Proof. I t fol lows from ( l .U) and (1 .5) t h a t <j> : G -* l{K, G)/l(K, G)2

where <t>(g) = (g-l) + I(K, G) i s a homomorphism with G' c Ker <J> . Since

gm € G' for any ...g € G , I(K, G)2 = <t>[gm) = m<j>(̂ ) = mlg-l) + 2

2
and therefore mfe(g-l) € I(K, G) for any k (. K . Since a typical
element of K is fe = t ' l + mk where fe € X and t e {0, 1, . . . , m-l} ,

then §[g ) = k(g-l) + I{K, G) . This shows that (j> is an epimorphism,
and completes the proof. E

The following lemma is due to Saksonov [44, p. 190].

LEMMA 2 . 2 . Let a be an algebraic number and let n be a natural

number such that not is an algebraic integer. If {a = a , a , . . . , a , }

1 C. if

is the set of all Q-conjugates of a then either a is an algebraic
integer or in the ring Z[a , a . . . , a,] at least one rational prime

1 c t

divisor of n is invertible.
Proof. Suppose that ot is not an algebraic integer. Then there

exists an elementary symmetric function f of t variables such that
f(pt , o. , ..., ot.) { Z . Since not is an algebraic integer

X e- t

f[alt ot2> ••-, at) = alb for some a, b € Z ,

such that (a, b) = 1 , b > 1 and a l l the prime divisors of b are
divisors of n . If p is one of these divisors then because of
(a, p) = 1 there exist c, d (. Z such that ac + dp = 1 . I t is clear
that

and hence

alp € Zfc^, cx2, . . . , a j .

But then

1/p = (ac+tfp)/p = (a/p)'c + d € ZJc^,

as desired. D
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We are now ready to prove the following:

THEOREM 2.1 (Saksonov 144, p. 191]). If u = £ ua is a unit of
9

finite order in RG with u t 0 then M = w» l . In particular, all

central wilts of finite order in RG are trivial.

Proof. Let z = T za be a central unit of finite order. Then

z t 0 for some t € G and therefore u = zt~ i s a unit of f in i t e order

with M = z # 0 . Hence i t suffices to show that i f u = 1 and u 4 0

then u = u *1 .

To prove th i s asser t ion, l e t t r (x) be the trace of x £ RG in the

regular representation of RG . Then the matrix of u i s conjugate to

diag(e1 , . . . , e,G|) and

tr (u) = u±'\G\ = E± + E2 + . . . + e | G |

where e . ( i = 1, 2, . . . , |G|) i s an with root of unity (belonging to a

sufficiently large field containing R ) . By looking at the tr(w ) where

(r, m) = 1 we conclude that the set {B, = w,, 3O» , B } of a l l

6-conjugates to u. belongs to if and therefore Z [f3 , 3O, • . . , 3 1 c i? .

Since \G\U i s an algebraic integer, Lemma 2.2 may be employed to infer

that w, i s also an algebraic integer. The desired assertion i s now a

consequence of ( l . T ) . ^

Note that in Theorem 2.1 we cannot relax the conditions imposed on the

integral domain R (namely,

(*) char R = 0 and

(**) no ra t ional prime dividing the order of G i s inve r t ib le ] .

This becomes clear i f we look a t the following two examples, the second of

which i s due to Saksonov [44].

EXAMPLE 1. Condition (*) is not sa t i s f ied .
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Let G be a ( f in i te ) abelian p-group and l e t R = Z/pZ . Then each

element in RG which has augmentation 1 is a central unit of f in i t e

order, that i s , a central unit of f in i t e order need not be t r i v i a l .

EXAMPLE 2. Condition (**) is not sa t i s f ied .

Let G = { l , a, a , a J} and l e t R = Z[%, i] . Then

b = [(l-i)a+(l+i)a )/2 i s a nontrivial central unit of order 2 .

The next resu l t pa ra l le l s Lemma 3.1 of [77] (see also 1442).

THEOREM 2.2. Let H be a torsion group of normalised units in RG .

Then H is a linearly independent set and, in particular, H is a finite

group.

n
Proof. We carry out the proof by contradiction. Let £ a.h. = 0

t=l

where h • € H , a. £ R , id {l, 2, . . . , n) and l e t a . t 0 for some

0 € ( l , 2, . . . , n} . Then

a.-l = - V a.f/z.ft:1
a.

and if we express the elements h.h. , i f j , in terms of the elements
^ 3

of G then a t l ea s t one of them, say hhh~. , k # j , has a non-zero

coefficient of 1 . Now the argument used in the proof of Theorem 2.1 may

be employed to infer that h-Ji~. = Cfl for some a € R . Since

e{hA = s(h .) = 1 i t follows that h, = h . . This gives the desired
K- 3 *• $

contradict ion, and completes the proof of the theorem. O

We shall now make some observations which wil l be used in §4. Let

TT : RG -*• R~G , ~G = G/N be a canonical homomorphism and l e t RG = RH .

Then, by Theorem 2.2, H , the image of H in RG , i s a l inear ly

independent se t in RG whence RG = RH . Moreover, since TT can be

regarded as the extension of the epimorphism H •*• H (whose kernel i s

N* = H n (l+RG'I(N)) ) by if- l ineari ty, then Ker ir = RG-I(N) = RH-I(N*) .

Moreover because of

\G/N\ = \G\ = \H\ = \H/N*\
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the groups N and N* are of the same order. Consequently

(2.1) RG = RE implies RG = RE , RG'I{N) = RG-I{N*) and \N\ = \N*\ .

Let <f> : G •*• H be an isomorphism of G onto E and l e t ZG = ZH .

Suppose that V is an irredicuble matrix representation of the complex

group algebra CG and denote by ou and a. the irreducible matrix

representations of G defined by a (g) = T(g) , aj<g) = r(<f>(gr)) for any

g in G . Then

(2.2) if a, is a faithful representation then so is a_ .

To prove (2.2) we f i rs t observe that CG = CH and that if Ker <*„ # 1

then 1 # N* = {h € # | r(fe) = l} . Since CG-I(N*) c Ker T then, by

(2.1), CG'I(N) c Ker V for some ff <G such that \N\ = | ^* | .

Consequently i t may be inferred that N c Ker a , from which (2.2)

follows.

The theorem which follows, is very useful in its application to the

isomorphism problem.

THEOREM 2.3. Let S be a subgroup of G . Then, for

K.G) = I{R, G) and I(S) = I(R, S) ,

G n (i+I(G)«J(5)) = S' .

Proof. We first consider the special case when S = G . By taking

the case n = 2 in Theorem 2.1 of [4S] we see that 5 n (l+l(S) ) = S'

whenever T (S mod S') = S for all primes p for which peR = pS R for

some non-negative integer e . It is clear that

T (S mod S') = 5' whenever p\\s\ .

If p is a prime such that p R = p R for some e then pe(l-px) = 0

for some x € R and since R has no zero divisors, p is a unit in R .

This shows that p\\S\ and completes the proof of the special case. To

prove the general case, let 1 be a transversal of S in G containing

1 and let g = ts be a typical element of G (t £ T, s € S) .

Consider the i?-linear map
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<(> : R G •* R S

which i s the /?-linear extension of g •*• s . Then ($>(x) - x for any

x € l(S) and the equality

) (a^-l) | = (s-D(Sl-l) , s± € 5 ,

shows that 4>(l"(G) •j(S)) = J(S) 2 . Consequently

I(G)-KS) n I(S) = I(S)2 .

Now (1.2) may be employed to infer that

G n (l+j(C)«I(S)J = 5 n (l+J(5)2) ,

thus completing the proof by applying the special case proved above. O

3. The isomorphism problem and Higman's thesis

Whether the integral group ring ZG of a finite group G determines

G up to isomorphism is a question which has been open for nearly kO years.

Since the problem seems so intractible one needs to impose more hypotheses

to make any progress. The list of groups which are determined by their

integral group rings includes S , A (both are determined by their

character table), groups of order 2 , n S 7 (see [26]) and finite

circle groups (see [44]). The best result, due to Whitcomb [55], is the

following.

THEOREM 3.1 (Whitcomb [55]). If G is metabelian and ZG = ZH

then G is isomorphic to H .

In this section we shall show how Whitcomb's result can be easily

deduced from the proof of Theorem ik of Higman's unpublished thesis. We

first note that perusal of the proof of the mentioned theorem easily shows

that the following assertion is valid.

Let ZG = ZH and let u be a normalised unit of finite order in

ZG . Then there exists g € G such that

(3.1) u = g(moi I(G)'I(G')) .

Proof of Theorem 3.1. We first note that ZG'I{G') is the smallest

ideal L such that ZG/L is commutative whence ZG = ZH implies
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ZG-I(G') = ZH-I(H') . Multiplying both sides of this equality by

HO = I(H) we get I(G)'I(G') = I(H)'I(H') = J . It follows from (3.1)

that H + J c G + J and since the elements of G are normalised units

with respect to H , the same argument shows that G + J c H + J , that is,

G + J = H + J . Now (l.l) and Theorem 2.3.may be employed to infer that

GIG" ^H/H" . Hence if G" = 1 then G S H/H" and since |G| = |ff| ,

G ^ R as desired. •

Note that if (3.1) holds with R instead of Z then replacing Z by

R in the above argument we get G/G" = H/H" and, in particular, if

G" = 1 then G = H .

We shall now show that (3.1) holds in a more general context, namely

if we replace Z by a ring R such that R/mR = Z/mZ for m equal to

the exponent of G'/G" . The rings R which satisfy this condition

include Z, .,, and, when G is a p-group, the ring of 0 of p-adic

integers. From what we have said above it follows that G/G" is

determined by the group ring Z/_.ff [49] and that, if G is a p-group,

then G/G" is determined by 0 G [5/].

REMARK. Recently Roggenkamp [40] proved that if G" = 1 then

RG = RH implies G = H .

To prove (3.1) in a more general context, let G = G/G' and let x

be the image of x € RG under the canonical homomorphism RG -* RG . Then

u is a normalised central unit of finite order in RG and therefore

thanks to Theorem 2.1, u = g for some g € G . Hence

u = g[moi RG'I{G')) and by (1.3), u E g + t(mod I(G)'I{G')) for some

t € I(G') . By Lemma 2.1 there exists a € G' such that

t = a - l(mod I(G')2] . Hence

M = g + (a-1) = (l-g)(a-l) + ga = ga mod(l(G)'I(G')) ,

as desired. ^

It would be interesting to know whether Whitcomb's result is valid for

nilpotent groups. In [24] Jackson states that this is the case. However

his proof is incomplete since it is based on the following false argument.

Let G be a nilpotent group and let u be a normalised unit of finite

order in ZG . Then he claims that
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u = l(mod l{G)-l{G')) implies u = 1 .

The following provides a counterexample to th i s claim. Let G be a

nilpotent group which is not metabelian and l e t 1 ? g £ G" • Then

g - 1 € IiG')2 c J(G)'I(G') •

We shall close this section with the observation which will be used in

§4. Let ZG = ZH and let G" = 1 . For g in G let <fr(g) be the

unique element in H which is determined by g E ty(g) [mod j((?)-j(G')) •

It follows from what we have said above that g -*• <\>(g) determines an

isomorphism of G onto H . On the other hand, by Theorem 2.1,

Z( (?) = Z(H) whence (j>(g) = g whenever g £ Z(G) . Consequently the map

+ A./ \ i s a n isomorphism of G onto H which is also an

identity mapping on Z{G) = Z(H) .

4 . Conjugacy of group bases

Let ZG = ZH where G i s a f in i t e group and l e t G = H . I t i s

natural to ask whether there i s a unit u in ZG such that H = u Gu . That

th i s is not always the case was f i r s t proved in 1966 by Berman and Rossa

( [ H ] ) . The following example can be found in [77],

L e t G = { a , b | a* = b2 = I; b~Xab = a " 1 } a n d l e t H = < a', b')

where

o 2 ^
a' = -a + 2a - b - a b + a b + a b ,

b'=-a + a3-ab+ a2b + a3b .

Then ZG = ZH but G and H are not conjugate in U( ZG) . Incidentally,

G and H are conjugate in ll{z, *G) where Z, . i s the ring of

2-integral r a t i o n a l s . Indeed, le t u = 1 - b + a2> . Then i t i s easy to

check that u i s a unit in ^(o)^ an<^ that-

M~ a 'u = a , u~ b'u = b .

Note also that a result of Weller [54] implies that any normalised group

basis of ZG {G is dihedral of order 8 ) is conjugate in u[Z. >G) to
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G .

We next remark that S is determined up to isomorphism by ZS
n n

since S is determined by its character table. Hence the application of

a result due to Peterson [3S] implies that, in QS , S is conjugate to

any normalised group basis of ZS . It is not known, however, whether any

normalised group basis in ZS is conjugate in ZS to S That any

normalised group basis of ZS- is conjugate in ZS to S- is a result

due to Hughes and Pearson [23]. It is interesting to note that there is an

intimate connection between the conjugacy of group bases and the isomorphism

problem. Indeed as it was pointed out by Whitcomb [55] if G is a

p-group of class 2 and if every normalised group basis in ZG is

conjugate in 0 G to G [p is the ring of p-adic integers) , then any

p-group of class less than or equal to 5 is determined by its integral

group ring. The following classical result is very useful in the study of

Aut(i?G) . This is a convenient place to record it for future reference.

THEOREM 4.2 [12]. Let K be a field and let A be a semisimple

finite dimensional K-algebra. If 6 is an automorphism of A which is

the identity mapping on the centre of A then 6 is an inner

automorphism.

There is one piece of reasoning, relevant to the conjugacy of group

bases, which is likely to be encountered in other contexts. We therefore

isolate it in the following lemma, in which C stands for the field' of

complex numbers.

LEMMA 4.2. Let G be a finite group, and let ZG = ZH . If G and

H are conjugate in U(CG) then they are conjugate in U(QG) ,

Proof. By hypothesis, there exists an element u € U(CG) such that

u Gu = H and therefore the mapping $ : G •+ H defined by <f)(g) = u~ gu

is an isomorphism of G onto H . Let ty be an automorphism of QG

which is the extension of the map <)> by 6-linearity. Since ^ is the

identity mapping on the centre of QG then, by Theorem It.2, if) is an

inner automorphism of QG . Consequently, there exists an element

v € U(QG) such that I(J(X) = v~ xv for any x € QG . Because
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\j)(G) = H , V~XGv = B , as desired. •

REMARK. A similar proof shows that Lemma 1).2 is valid if we replace

Z by R and C by the algebraic closure of the quotient field of R .

We close this section with the simple proof of the following result

which is essentially a restatement of Theorem 9 of [55] (see also [52]).

THEOREM 4.3. Let G be a finite nilpotent group of class 2 . Then

any normalised group basis H of ZG is conjugate to G in U(QG) .

Before we embark on our proof it is convenient to recall some basic

facts about group representations.

Let G be a finite group and let

r. : CG •* U (C) , 1 £ i 5 r ,
Is Yl»

^

be the distinct irreducible matrix representations of the group algebra

CG . Denote by X .{x) = "Yr Y .{x) , x d CG . The family (V.) defines an

isomorphism

r
CG •* ~\~\ M (C)

1=1 ni

r
where Y(x) = [Y (x), Y Ax), ..., Y (x)) , x 6 CG , and where J~[ M (C)x -̂ r , n •

1 = 1 t.

stands for the product of matrix algebras M (C) . The set

{p , p , ..., p } where p.(g) = Y.(g) for any £ € G is a full set of

nonequivalent irreducible complex representations of G . Using the bar

convention for the homomorphic images, consider the canonical homomorphism

CG + CG

where G = G/N and N = Ker p. . Then

CG'I(N) c Ker Y.

and therefore the mapping

(U.4) T : CG + M (C)
i
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defined by T(x) = F.(a;) , x £ CG , i s an irreducible matrix
If

representation of the group algebra CG . Suppose that a € Z(G) . Then

by Schur's lemma,

'e
o

where e is a root of 1 in C . Therefore if z = [a, b] for some a

and b in G then cX.(a) = X.(a) . This shows that if G is nilpotent
7f 1r

of class 2 and if p. is faithful then
If

(it. 5) X.(g) = 0 for a l l g $ Z(G) .
If

Finally, l e t ZG = Z# and l e t G" = 1 . We reca l l that by (3.2) the map

<f> : G •* H , where (K^) = 7z if £ = /z(mod I(G)-I(G')) , i s both an

isomorphism and the identi ty map on Z(G) = Z(H) . With these preliminary

remarks, we now prove Theorem 1*.3.

Proof of Theorem 4 . 3 . Preserving the above notation, we argue f i r s t

that i t suffices to prove tha t , for any i € { l , 2, . . . , r} ,

(k.6) X^g) = XJJi) whenever g = h mod(l(G)»J(C')) .

Indeed, if this is the case, then the irreducible matrix representations

a and a of G d e f i n e d b y aAg) = T .(g) and a (g) = V .{§(g)) a r e

equivalent; that i s , there exists a non-singular matrix B. such that

T.(4(^)) for all g in G . This forces G and H to be

conjugate in U{CG) and thanks to Lemma h.2, G and H are conjugate in

U(QG) , as asserted. To prove (k.6), suppose that g = h[mod I(G)'l(G'))

with h in H . By passing to the canonical homomorphism ZG •*• ZG where

G = G/N and N = Ker a we therefore derive g~ = h(mo& J(G)-J(G')) .

Because of (2.1), ZG = ZH and therefore (U.I*) and induction on \G\ may

be employed to conclude that X. (g) = X. (h) whenever Ker a, f 1 .
IT, X

Finally, if a is a faithful representation then so is otp (see (2.2)) .

Since by (3.2), g = h if g £ Z(G) , the application of (U.5) yields the
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desired asser t ion , thus completing the proof. D

REMARK. A similar proof shows that Theorem 1+.3 is val id , i f we

replace Z by R and Q by the quotient f ield of R where R = Z, >

or , in the case when G i s a p-group, R = 0

5. Normal subgroup correspondence

Suppose that G and H are groups with isomorphic group algebras KG

and KH over the ring K of integers in some finite algebraic extension

of the rationals. In [33] Passman established a bijective correspondence

between the set of normal subgroups of G and that of H which preserves

many natural operations and properties defined on these sets. Some of

Passman's results, however, depend on nilpotency conditions.

In this section we state generalisations of Passman's result in two

directions. Namely, we remove the nilpotency condition and replace K by

R . Note also that the result presented in this section is sharper than

that in [52].

Elements of particular interest in RG are the class sums. These are

the sum of all the group elements in any given class of G . That RG = RH

implies existence of a bijective correspondence between the conjugacy

classes of G and those of H such that the corresponding classes have

identical class sums was proved by Saksonov [44]. Note also that Berman

[2] proved this result for the case R = Z , and for the case R = K the

same result was proved by Glauberman (see [33]), Poljak 1392 and Saksonov

[4 2].

Our result is as follows.

THEOREM [27]. Let RG ̂  RH . Then there exists an isomorphism

between the lattice of normal subgroups G and that of H which preserves

the following:

(a) the commutation of any two normal subgroups;

(b) normal abelian sections and the isomorphism class of normal

abelian sections;

(c) the order and period of normal sections.

In fact, the corresponding normal sections have the same number of
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elements of any given order.

COROLLARY. The above isomorphism preserves the following:

(I) Nilpotency, solvability, class of nilpotency and the

derived length of N , N being an arbitrary normal

subgroup of G ; in particular the Fitting subgroup of

N .

(II) A central series of N consisting of normal subgroups of

G and the isomorphism class of corresponding factors; in

particular, the upper central series and the lower central

series of N and any central series of G .

(Ill) The derived series of N , the chief series of G and the

isomorphism class of corresponding factors.

(IV) The group Cn(N) generated by all nth powers of

elements of N and the group C (N) generated by all

elements of N whose order divides n .

The special case of (a) and (b) when ft = Z was proved by Whitcomb

[55] (see also [47]). When R is the ring K of algebraic integers in a

finite extension of the rationals, Passman [33] proved part of (c) and,

when G is nilpotent, he has obtained (a) and part of (b). Obayashi [3/]

proved part of (b) for R = K . For other various special cases of the

above theorem and corollary refer to 1171, [3J], [33], [42], 1441 and [5/].
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