
The interaction of motile micro-organisms with a nearby solid substrate is a
well-studied phenomenon. However, the effects of hydrodynamic slippage on the
substrate have received little attention. In the present study, within the framework of
the squirmer model, we impose a tangential velocity at the swimmer surface as a
representation of the ciliary propulsion, and subsequently obtain an exact solution of
the Stokes equation based on a combined analytical–numerical approach. We illustrate
how the near-wall swimming velocities are non-trivially altered by the interaction of
wall slip and hydrodynamic forces. We report a characteristic transition of swimming
trajectories for both puller- and pusher-type microswimmers by hydrodynamic slippage
if the wall slip length crosses a critical value. In the case of puller microswimmers
that are propelled by a breaststroke-like action of their swimming apparatus ahead
of their cell body, the wall slip can cause wall-bound trapping swimming states, as
either periodic or damped periodic oscillations, which would otherwise escape from a
no-slip wall. The associated critical slip length has a non-monotonic dependence on
the initial orientation of the swimmer, which is represented by novel phase diagrams.
Pushers, which get their propulsive thrust from posterior flagellar action, also show
similar swimming state transitions, but in this case the wall-slip-mediated reorientation
dynamics and the swimming modes compete in a different fashion from that of the
pullers. Although neutral swimmers lack a sufficient reorientation torque to exhibit
any wall-bound trajectory, their detention time near the substrate can be significantly
increased by tailoring the extent of hydrodynamic slippage at the nearby wall. The
present results pave the way for understanding the motion characteristic of biological
microswimmers near confinements with hydrophobic walls or strategize the design of
microfluidic devices used for sorting and motion rectification of artificial swimmers
by tailoring their surface wettability.
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1. Introduction
Microswimmers encountering a confining geometry are common occurrences in

a plethora of biological scenarios, such as the marine ecosystem, animal bodies as
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well as in controlled microfluidic lab-on-a-chip devices (Denissenko et al. 2012;
Bechinger et al. 2016). One of the most important practical applications of the
surface–micro-organism interaction is bacterial entrapment near surfaces, which is
regarded as an essential step during biofilm formation (Costerton et al. 1987). In
addition, a confining surface has been found to cause a host of intriguing phenomena,
ranging from directional circular motion of motile cells near a solid surface or
an air–liquid interface (Lauga et al. 2006; Lemelle et al. 2010; Di Leonardo et al.
2011), scattering of Chlamydomonas algae cells (Molaei et al. 2014), suppression of
the tumbling motion of bacteria Escherichia coli (Kantsler et al. 2013) to pairwise
dancing of Volvox (Drescher et al. 2011), etc. Such elemental near-surface behaviour
of motile cells is found to affect various biophysical activities, such as guidance of
sperm cells through the female oviduct (Guidobaldi et al. 2015; Ishimoto & Gaffney
2015), and also crucially affects the process of bacterial infection (Harkes, Dankert &
Feijen 1992). With recent advancement of microfluidics techniques, different artificial
microswimmers have been successfully fabricated with promising applications, ranging
from biochemical sensing, targeted drug delivery to environmental remediation
(Duan et al. 2015; Campuzano et al. 2017; Richard, Simmchen & Eychmüller
2018; Poddar, Bandopadhyay & Chakraborty 2019). The interfacial properties of
the microfluidic chips can be exploited to gain control over the design of such
synthetic microswimmers (Das et al. 2015; Simmchen et al. 2016). In a recent
experimental study, Ketzetzi et al. (2020) observed an enhanced swimming speed of
spherical self-diffusiophoretic swimmers near hydrophobic substrates.

Inspired by their fascinating trends of near-surface swimming, different theoretical
models of microswimmers have been proposed to physically describe their kinematics
of motion (Berke et al. 2008; Or & Murray 2009; Zargar, Najafi & Miri 2009;
Shum, Gaffney & Smith 2010; Crowdy 2011; Spagnolie & Lauga 2012; Ishimoto &
Gaffney 2013; Li & Ardekani 2014; Spagnolie et al. 2015; Mathijssen et al. 2016;
Pimponi et al. 2016; Daddi-Moussa-Ider et al. 2018; Desai, Shaik & Ardekani 2018;
Kuron et al. 2019; Walker et al. 2019). Employing a force-dipole swimmer model,
Berke et al. (2008) was able to explain the high concentration of bacteria E. coli
near glass surfaces as a consequence of hydrodynamic attraction and wall-parallel
reorientation of the swimmer by its image. Although hydrodynamic attraction
enhances accumulation of pushers near walls, simulations and experiments reported
in the literature revealed that different microswimmers adhere to the surface even in
the absence of hydrodynamics (Li & Tang 2009; Tailleur & Cates 2009; Li et al.
2011; Elgeti & Gompper 2013; Kantsler et al. 2013). Motile micro-organisms such
as Opalina, Volvox and Paramecium have been widely modelled by considering a
deformable spherical cell body with external appendages such as cilia or flagella
on them performing small-amplitude periodic beating and causing a bulk streaming
of their cell surface. In the absence of inertial effects, these organisms show a
force-free swimming (Lauga & Powers 2009). These model microswimmers, popularly
known as ‘squirmers’ (Lighthill 1952; Blake 1971), have been used to understand a
variety of physical phenomena, which include but are not limited to hydrodynamic
interaction of two microswimmers (Ishikawa, Simmonds & Pedley 2006), diffusion
and suspension rheology (Ishikawa & Pedley 2007), nutrient uptake (Magar & Pedley
2005), rheotaxis (Uspal et al. 2015a) and density stratification of the suspending
medium on the vertical motion of the microswimmer (Doostmohammadi, Stocker &
Ardekani 2012). Spherical squirmers and their variants have also been used to analyse
the microswimmer behaviour near confinements (Spagnolie & Lauga 2012; Ishimoto
& Gaffney 2013; Li & Ardekani 2014; Yazdi & Borhan 2017).
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The wettability of the confining substrate can severely influence the near-wall
flow and the interfacial friction of the fluid, leading to interesting consequences at
the micro- and nanoscale (Chakraborty 2008; Pati, Som & Chakraborty 2013; Bakli
& Chakraborty 2015, 2019; Das et al. 2015; Maduar et al. 2015; Bandyopadhyay
et al. 2019; Dey, Saha & Chakraborty 2020). This is characterized by slip length,
defined as the extrapolation distance below the surface where the tangential fluid
velocity would vanish. Hydrophilic surfaces, in contact with aqueous solutions,
give rise to a negligible hydrodynamic slippage, while the slip length lies in
the range of a few tens of nanometres for smooth hydrophobic surfaces (Huang
et al. 2008; Bocquet & Charlaix 2010). On the other hand, the presence of
depleted, low-viscosity, wall-adjacent regions in bacterial polymeric solutions or
surface chemistry modification, usually by coating of self-assembled monolayers of
hydrophobic molecules, often lead to an augmented partial slip, with the slip length
in the range of micrometres (Tretheway & Meinhart 2002, 2004; Lauga, Brenner
& Stone 2007). Moreover, in the case of specially treated nano- or microstructured
surfaces, air bubbles get trapped in their asperities. Hence the fluid experiences
patches of solid wall that can be modelled as no-slip or partial-slip boundaries. The
air–liquid interfaces can be modelled as free-slip or partial-slip boundaries with
high slip length. The effective hydrodynamic boundary condition at the fluid–solid
interface can then be modelled as a uniform partial slippage with high slip length
in micrometres (Choi & Kim 2006; Joseph et al. 2006; Lee & Choi 2008; Asmolov
et al. 2013; Nizkaya et al. 2015). The value of this apparent slip length can be
fine-tuned according to the relevant surface properties, as reported in the relevant
literature (Ybert et al. 2007; Asmolov et al. 2013).

Most of the previous studies related to the locomotion of microswimmers near
confinements were based on the no-slip walls or air–liquid interface characterized
by an infinite fluid slip. However, the consequences of a partial-slip boundary have
received less attention in the past (Lemelle et al. 2013; Lopez & Lauga 2014; Hu
et al. 2015). In their experimental investigation, Lemelle et al. (2013) observed a
reversal of circular wall-parallel trajectories of E. coli with addition of polymeric
inclusions in the swimming medium and attributed the phenomenon as an effect of
enhanced slip. Subsequently, the results of the mesoscopic simulations of Hu et al.
(2015) showed a similar shift of clockwise to anticlockwise rotation of E. coli in a
plane parallel to the surface. In addition, they showed that a patterned surface with
different slip lengths can be used to direct bacterial motion. The far-field analysis of
Lopez & Lauga (2014) employed an image singularity solution applied to a force
dipole swimmer, which predicted that a partial-slip condition at the nearby surface
will impart a wall-faced rotation and will always attract a pusher-type swimmer.
Even within the far-field analysis, they did not consider the contributions from
the higher-order singularities arising from a finite-size cell body or the fore–aft
asymmetry of the swimmer, which were found to have a profound effect on the
motion characteristics near a no-slip wall (Spagnolie & Lauga 2012). Also, an
overestimation of the near-field hydrodynamic interactions by the far-field analysis
(Lopez & Lauga 2014) was revealed in the numerical simulations of Hu et al. (2015).

The orientation dynamics of a microswimmer taking place in close proximity
to a wall has been reported to exhibit diverse trajectory characteristics, ranging
from wall escape to wall-induced stable trapping (Ishimoto & Gaffney 2013; Li &
Ardekani 2014; Lintuvuori et al. 2016; Ishimoto 2017). Beyond a far-field prediction
based on fundamental singularities of Stokes flow, a more detailed account of the
near-wall hydrodynamic effects is necessary to explore the resulting trajectory as
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the microswimmer approaches a wall (Ishimoto & Gaffney 2013; Li & Ardekani
2014; Bechinger et al. 2016). In the present work we employ the squirmer model
for spherical cell-bodied swimmers, and within the realm of Stokes flow we obtain
an exact solution of the governing equations under interfacial slip, by exploiting
a combined analytical–numerical method based on eigenfunction expansion in
bispherical coordinates. The results indicate that wall slip beyond a stipulated
strength can cause intense characteristic modifications in the swimmer trajectories
of different types of microswimmer. In this, it is noteworthy that periodic and
damped oscillatory trajectories have been reported by previous numerical simulations
(Lintuvuori et al. 2016; Ishimoto 2017), where the wall is repulsive in nature, albeit
with no hydrodynamic slippage. In sharp contrast, the exclusiveness of the present
study lies in identifying and characterizing different swimming states in the presence
of wall slip and how the enhancement in slip modulates different swimming aspects
observed near a no-slip wall.

2. Mathematical description
2.1. Problem formulation

We consider the quasi-steady motion of a microswimmer in a Newtonian fluid
near a solid surface, along which the no-slip condition of fluid velocity is violated
and hydrodynamic slippage takes place. The schematic description of the problem
geometry is presented in figure 1(a). The spherical cell body of the model
microswimmer has a radius a and its centre is at a distance h̃ from the adjacent
slippery wall. The size of the microswimmer is small enough to neglect the inertial
effects and at the same time not small enough that Brownian effects become dominant.
The swimmer thrust is along e, which is at a pitching angle θ relative to the wall.
The azimuthal angle φ is the angle made by the horizontal projection of e with
the x axis. Thus the director vector can be expressed in the fixed frame as follows:
e = cos(θ) cos(φ) ix + cos(θ) sin(φ) iy − sin(θ) iz. However, in the presence of only
axisymmetric squirming velocity at the microswimmer surface, we have φ = 0
throughout the problem. The clockwise rotation along the y axis is taken as positive.
Here l̃S is the slip length denoting the extrapolation distance below the surface where
the tangential fluid velocity would vanish. Here we assume that the fluid slippage
is uniform over the plane wall and the effect of surface texture does not affect the
microswimming characteristics.

Neglecting the inertial effects, the flow field around the swimmer can be described
by the incompressibility condition and Stokes equation as

∇ · ṽ = 0 and −∇p̃+µ∇2ṽ = 0. (2.1a,b)

The hydrodynamic slippage at the confining wall is characterized by the Navier
slip boundary condition (Navier 1823), where the surface slip velocity has a linear
variation with the shear rate at the plane surface, given as

ũ‖ = l̃Snw · (∇u+ (∇u)T)(I − nwnw), (2.2)

where nw is the unit normal at the plane wall pointing into the fluid and u‖ is the
velocity component tangential to the plane wall. The microswimmer gains motility
from the surface distortions generated by their swimming appendages. Following
the ‘squirmer’ model by Lighthill (1952) and Blake (1971), we impose a tangential
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Navier
slip:
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FIGURE 1. Schematic representation of a model microswimmer near a slippery flat surface
obeying the Navier slip condition. (a) The microswimmer has a spherical cell body
with radius a. The direction of swimmer thrust or the director vector is indicated by
e. The angle θ is the pitching angle of the director relative to the wall. The adjacent
flat surface has a slip length of l̃S. The inset describes the corresponding situation
when the microswimmer is far from the wall. The dimensionless swimming velocity
components are also highlighted. (b) Puller and pusher swimmers having two different
propulsion mechanisms are schematically shown in an unbounded domain. Red dashed
arrows show surrounding fluid flow, while blue arrows indicate local forcing directions of
the microswimmer to the fluid when viewed from the laboratory frame.

velocity on a particle surface, which mimics the locomotion of microbes due to
ciliary beating on their surface. The tangential surface velocity of a squirmer has the
form

ũs
=

(
e · r
|r|

r
|r|
− e
) ∞∑

n=1

2
n(n+ 1)

BnP′n

(
e · r
|r|

)
, (2.3)
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where e is the orientation vector of the director of the swimmer, r is the position
vector of an arbitrary point on the swimmer surface with respect to the particle
centre, Bn denotes the nth squirming mode amplitude and P′n is the derivative of the
Legendre polynomial, Pn. The tangential velocity is assumed to be time-independent
and represents an average over numerous beating cycles.

Following earlier studies (Ishikawa et al. 2006; Li & Ardekani 2014; Shaik &
Ardekani 2017; Yazdi & Borhan 2017; Shen, Würger & Lintuvuori 2018), we
consider only the first two squirming modes. Depending on the ratio of the first
two squirming mode amplitudes, we define a squirmer parameter, β = B2/B1, which
characterizes the intensity of the stresslet exerted by the swimmer. Pusher-type
swimmers, e.g. bacteria or sperm cells, which have the flagella behind the main
cell body, correspond to β > 0; while, in contrast, pullers have their flagella in the
front, e.g. Chlamydomonas. The distinct propulsion mechanisms of these swimmers
are shown schematically in figure 1(b). Also, β = 0 denotes the class of
swimmers generating a symmetric flow field and which are designated as
neutral swimmers, e.g. Volvox. We non-dimensionalize the lengths by the swimmer
radius a, velocity by Uref = 2B1/3 (so that the unbounded-medium squirming velocity
becomes unity as shown in the inset of figure 1a), time by a/Uref and pressure by
µUref /a. Hereafter, the normalized variables will be denoted without the ˜ symbol.

If the microswimmer has a translational velocity of V and a rotational velocity of
Ω , then, in the laboratory frame, the boundary condition for the fluid velocity at the
surface of the swimmer can be written as

us =V +Ω × r+ us. (2.4)

In addition, since the swimmer is assumed to be neutrally buoyant in the suspending
fluid, it experiences zero net force and zero net torque about its centre, i.e.

F=
∫∫

Sp

σ · np dS= 0 and L=
∫∫

Sp

r× (σ · np) dS= 0, (2.5a,b)

where σ is the stress tensor and np is the unit outward normal to the swimmer surface
Sp. Now, solving (2.1) along with the boundary conditions (2.2) and (2.4), one can
obtain V and Ω by satisfying (2.5).

Owing to the axisymmetric squirmer surface velocity in the present model (2.3),
the director e of the swimmer is confined in the x–z plane. Also, it will rotate around
an axis directed along nw × e. For the chosen coordinate system, this lies along the
y axis. Hence, the locomotion of the microswimmer can be described by {V, Ω} =
{Vxix + Vziz, Ωyiy}.

2.2. Exact solution using bispherical coordinates
The Stokes equation, coupled with the pertinent boundary conditions, including
interfacial slip, is solved in terms of the eigensolutions for bispherical coordinates
(ξ , η, φ). The velocity components are evaluated in a cylindrical coordinate system
(ρ, z, φ) having its origin at the plane wall, the z axis being normal to the wall
and passing through the centre of the spherical swimmer body. The bispherical and
cylindrical coordinates are related as (Happel & Brenner 1981)

ρ = c
sin(η)

cosh(ξ)− cos(η)
and z= c

sinh(ξ)
cosh(ξ)− cos(η)

, (2.6a,b)
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where c is a positive scale factor. Here ξ = 0 represents the plane wall and ξ = ξ0
(where ξ0> 0) denotes the surface of the sphere, which has its centre at z= c coth(ξ0)

and has a radius of c/sinh(ξ0). A schematic diagram describing the relation between
the bispherical and a related cylindrical system has been provided in appendix A.

The general solution of the flow field was given by Lee & Leal (1980) with the help
of seven unknown constants (Am

n , Bm
n , Cm

n , Em
n , Fm

n , Gm
n , Hn

m) and associated Legendre
polynomial, Pm

n =Pm
n (cos(η)). Using the same general solution, researchers have solved

the flow fields due to squirming microswimmer problems near a two-fluid interface
(Shaik & Ardekani 2017; Yazdi & Borhan 2017) or the problem of a diffusiophoretic
swimmer near a no-slip plane wall (Mozaffari et al. 2016). In sharp contrast, here, the
situation is more complex, since both the squirmer boundary condition at the swimmer
surface, equation (2.4), as well as the Navier slip condition at the plane wall, equation
(2.2), are to be satisfied while obtaining the arbitrary constants. In the cylindrical
coordinates, the slip boundary condition at the plane wall reads

uρ = lSσρz and uφ = lSσφz at z= 0. (2.7a,b)

Using the no-penetration condition of fluid at this surface, the above equations get
simplified to

uρ = lS
∂uρ
∂z

and uφ = lS
∂uφ
∂z

at z= 0. (2.8)

It is noteworthy to observe that, although acting in a regime of low-Reynolds-
number flow, the wall slip effects are not obtained as a trivial extension to previously
researched studies on a microswimmer near a no-slip wall. Also, the present approach
differs from the asymptotic perturbation approach in terms of a small slip length as a
perturbation parameter, which has been employed previously for unbounded particles
with inhomogeneous surface slip (Swan & Khair 2008; Willmott 2008; Ramachandran
& Khair 2009). In effect, our results demonstrate that the effects of the fluid slip at
the wall, manifested through the dimensionless slip length lS, modify the velocity field
in a rather intriguing and non-trivial manner. Further details regarding the solution
procedure have been provided in appendix B. The exact solution approach deployed
by us, using bispherical coordinates, can incorporate any separation distance from the
wall and any degree of wall slip (Lee & Leal 1980; Kezirian 1992; Loussaief, Pasol &
Feuillebois 2015). Thus it stands as a unified approach that circumvents the necessity
of two different analysis tools in different regimes, i.e. an image-singularity-based
far-field analysis (Spagnolie & Lauga 2012; Lopez & Lauga 2014) and a singular
perturbation analysis in the lubrication regime (Ishikawa et al. 2006).

The complete swimming problem is decomposed into a thrust problem (considering
the case when the swimmer is held fixed and experiencing only a tangential surface
velocity) and a drag problem (when it undergoes a rigid-body motion with {V, Ω}
and experiences hydrodynamic drag). In the z direction, the force-free condition (2.5)
reduces to

F(Drag)
z,T + F(Thrust)

z = 0, (2.9a)

F(Drag)
x,T + F(Drag)

x,R + F(Thrust)
x = 0, (2.9b)

L(Drag)
y,T + L(Drag)

y,R + L(Thrust)
y = 0. (2.9c)

Here, various hydrodynamic forces (torques) and velocity (angular velocity) components
are linearly related through various resistance coefficients (denoted with ‘f ’) as
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F(Drag)
z,T = fz,TVz, F(Drag)

x,T = fx,TVx, F(Drag)
x,R = fx,RΩy, L(Drag)

y,T = fy,TVx and L(Drag)
y,R = fy,RΩy.

In these expressions, the first subscript represents the direction of the force or
torque while the second subscript tells whether a particular drag force or torque
is developed due to translation without rotation (T) or rotation without translation
(R). The hydrodynamic resistance coefficients are functions of only the distance of
the microswimmer from the wall (h) and the slip length (lS), while the thrust force
and torque are also dependent on the squirmer variables β and θ . Once the solution
of a particular ‘fundamental problem’ (see appendix C for details) is found, the
resistance coefficients, the thrust force and the torque can be determined by series
summations in terms of the constants in the eigenfunction expansions (see (C 1)–(C 8)
for details). Hence, the velocity components Vx, Vz and Ωy are easily obtained by
solving (2.9a)–(2.9c).

It is noteworthy that the propulsive force and torque on the microswimmer can be
alternatively determined without solving the Stokes equation by utilizing the Reynolds
reciprocal theorem. The details of this approach applicable for the present problem is
provided in appendix D.

3. Results and discussions
Towards investigating the microswimmer trajectories, we solve the following

dynamic system:

dx(t)
dt
= Vx,

dh(t)
dt
= Vz,

dθ(t)
dt
=Ωy. (3.1a−c)

Here we do not consider any stochastic motion due to translational or rotational
diffusion, and the trajectories are computed based on deterministic forces only. The
close approach of a microswimmer towards the wall often leads to the swimmer
crashing against the wall and the subsequent motion becomes untraceable. To
overcome this problem, we employ an additional short-range repulsive force of the
form (Spagnolie & Lauga 2012) Frep=[(α1 exp(−α2δ))/(1− exp(−α2δ))]iz. Following
Spagnolie & Lauga (2012) the parameter values α1 = 100 and α2 = 100 are chosen
to prevent the swimmer coming closer than a distance of ∼ 0.01 times the swimmer
radius from the wall. Such forces originate from the nanoscale interaction between
the swimmer body and the wall surface, especially in physiological conditions (Klein,
Clapp & Dickinson 2003). Diverse forms of repulsive forces have been employed
in the literature (Li & Ardekani 2014; Hu et al. 2015; Katuri et al. 2018; Walker
et al. 2019). It is to be noted that the use of a short-range repulsive force at the wall
destroys the puller–pusher duality during time reversal (Ishimoto 2017; Walker et al.
2019).

First we illustrate the wall-slip-mediated alterations in the translational and
rotational velocity components of different types of squirmers having a spherical
cell body. Subsequently, the resulting trajectories are elucidated and different phase
transitions of swimming states are discussed. Considering a typical microswimmer
radius in the range of 1–100 µm and in view of the experimentally observed
dimensional slip lengths (Zhu & Granick 2001; Tretheway & Meinhart 2002; Huang
et al. 2008), we take the dimensionless slip length (lS) in the range of 0 to 10.

3.1. Swimming velocity alterations
Figure 2 portrays the effects of slip length (lS) on the velocity components (Vz,Vx,Ωy)
at different separation distances of the microswimmer from the wall (δ). In many
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FIGURE 2. Velocity components of a microswimmer versus smallest separation distance
from the wall (δ = h − 1) for different slip lengths (lS). Panels (a–c) are for a puller
and (d–f ) are for a pusher, all having a squirmer parameter value |β| = 4 and angular
orientation θ =π/8. In the inset of (a), a magnified view of the no-slip case is shown.

situations the said effects turn out to be different in nature, if not opposite, for the
puller- and pusher-type microswimmers. To understand the physical origin of the
same, we first look into the fundamental differences in the propulsion mechanisms
and surrounding flow patterns associated with these two types of swimmers in an
unbounded domain.

Pullers have their flagella ahead of their cell body and the thrust generated by the
flagella is cancelled by the cell body at the back. Thus, at large length scales, a
moving puller squirmer gives rise to a contractile dipolar flow in the surroundings
(figure 1bi). In contrast, pushers have their flagella at the back and the thrust is
generated from behind, thereby mimicking a extensile dipolar flow at large length
scales (figure 1bii). Also, beyond a sufficient stirring action created due to the second
squirming mode (|β| > 1), a pair of circulation rolls, symmetric about the direction
of motion, is observed from a comoving frame, but at different locations, behind the
cell body for a puller but ahead of the cell body for a pusher (Magar, Goto & Pedley
2003; De Corato, Greco & Maffettone 2015).

The flow field around the squirmer and the wall can be visualized from figure 3.
Considering the illustrated situation, when swimmers of both types are pointing
towards the wall, the effect of wall-reflected flow is first sensed by their flagella in
the case of a puller and the thrust created by their breaststroke action gets affected
due to a confinement. In contrast, the frontal cell body of the pusher will be the first
to experience the distorted flow, which must be adjusted by a modified pushing action
by their posterior flagella. Evidently, the stress distribution around the swimmer will
also face modifications based on the relative position of the cell body and the flagella
and the corresponding flow adjustments created by them. The presence of wall slip
further complicates the scenario by allowing a non-zero tangential fluid velocity at
the plane wall. Consequently, the pattern and intensity of the micro-vortices around
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FIGURE 3. Velocity field around both puller-type (a,c,e) and pusher-type (b,d, f )
microswimmers in the x–z plane for pitching angle θ = π/8 and |β| = 4. The rows
(from top to bottom) correspond to the situations of an unbounded microswimmer, a
microswimmer near a no-slip surface and near a slippery surface (lS = 5), respectively.
Distance from the wall is taken as δ = 0.2. The colour scale depicts the fluid velocity
magnitude and the streamlines are shown in the laboratory frame.

the squirmer get adjusted differently as demonstrated in figure 3(e, f ). This not only
creates alterations in the propulsive action of the swimmer and but also modifies the
hydrodynamic resistance to a finite-size cell body moving near the wall.

In figure 2(a) the effect of wall slip on the wall-normal velocity component Vz is
shown for a puller microswimmer with locations ranging from very close to far away
separations from the plane wall. The spherical cell body faces different extents of
surface stresses due to a near-wall movement. The narrow gap between the swimmer
body and the wall generates large velocity gradients, which result in enhanced surface
stress in the lower half of the sphere in comparison to the upper half, which does
not encounter the wall directly. Hocking (1973) showed that the presence of wall slip
results in a logarithmic increase in fz,T with δ and it becomes inversely proportional
to the slip length (lS). While considering the behaviour of microswimmer velocity Vz,
we also have to examine the thrust force variations shown in figure 4. Figure 4(a)
demonstrates that a puller-type microswimmer experiences a decreasing thrust force
when the wall is slip-free and it becomes negative after the separation exceeds a
certain value. This is responsible for velocity reversal in figure 2(a). With increasing
slip length, this reversal in Vz ceases to occur and it indicates a wall-approaching
trend of the microswimmer for all separation distances, consistent with the thrust force
variations.
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FIGURE 4. Variation of thrust force and torque components (F(Thrust)
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x ,L(Thrust)
y ) with

wall separation distance (δ) for different slip lengths (lS). The parameters correspond to
those of figure 2.

Figure 2(d) depicts that, for a pusher-type swimmer, the variations in Vz are
non-monotonic in both δ and lS, although the thrust force is monotonic (figure 4d).
Observing figure 5 we find that at very low wall separations (0.01 . δ . 0.1)
there exists an intermediate slip length lS ∼ 0.1 for which the wall-bound velocity
becomes maximum in magnitude. This again indicates a considerable importance of
hydrodynamic drag force variations on the swimmer velocity. Notably, the above
observations for a pusher are in sharp contrast to the characteristics of a force dipole
pusher, which, in the far-field analysis, always tends to get attracted to the wall with
increasing slip length (Lopez & Lauga 2014). Such disagreement arises from the fact
that, in a force dipole model, the contributions from the higher-order singularities
arising from a finite-size cell body or the fore–aft asymmetry of the swimmer are not
taken into account (Spagnolie & Lauga 2012). In addition to these far-field effects,
in the present case, the near-field hydrodynamic interaction also plays its role in
modifying the swimmer velocity.

Figure 2(b) shows that the wall-parallel velocity (Vx) remains higher than the
unbounded-medium velocity, i.e. (Vx → cos(θ)) for all wall separations, until the
slip length becomes high enough (e.g. lS = 10) to cause Vx to fall below the
unbounded-medium velocity. A fall in swimming velocity with increasing lS is
in contrast to intuition, since a spherical particle translating parallel to the wall
experiences lower hydrodynamic resistance in the presence of slip (Davis, Kezirian &
Brenner 1994; Loussaief et al. 2015). To address this apparent anomaly, we consider
the fact that the microswimmer velocity is dependent on a coupled effect of the
hydrodynamic resistances to the simultaneous translational and rotational movement
parallel to the wall as well as on the thrust generated due to the propulsive action.
Both the propulsive thrust force (F(Thrust)

x ) and torque (L(Thrust)
y ) are affected by wall

slip as shown in figures 4(b) and 4(c), respectively. It is observed that the increase in
F(Thrust)

x with reducing swimmer–wall distances in the no-slip case is now slowed down
by the wall slip effect. In addition, the wall slip acts to reduce the propulsive torque
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FIGURE 5. Variation of wall-normal velocity Vz of a pusher swimmer (β =−4) with slip
length for various wall separation distances (δ). Here microswimmer orientation, θ =π/8.

away from the wall and even makes it act in the reverse direction for extremely high
slip lengths, but only for an intermediate range of wall separations (see figure 4c).
A propulsive torque towards the wall also contributes in reducing Vx, which can be
confirmed from the final expression of Vx in (3.2a).

The sign of the angular velocity of a microswimmer near a wall (Ωy) is determined
by two main opposing physical mechanisms arising from the propulsive action: the
torque whose direction depends on the direction of the slip flow at the surface of the
swimmer, and the torque that always acts towards the wall due to the wall-parallel
forward movement. The force-free conditions in (2.9) provide the following final
expressions of Vx and Ωy:

Vx =
F(Thrust)

x fy,R − L(Thrust)
y fx,R

fx,R fy,T − fx,T fy,R
and Ωy =

T1︷ ︸︸ ︷
L(Thrust)

y fx,T −

T2︷ ︸︸ ︷
F(Thrust)

x fy,T

fx,R fy,T − fx,T fy,R︸ ︷︷ ︸
T3

. (3.2a,b)

They suggest that the hydrodynamic resistance factors are intrinsically coupled with
the thrust force and torque and take part in deciding the resultant rotation direction.
The effect of wall slip on the various terms contributing to the rotation rate are shown
in figure 6. This shows that increasing wall slip drastically alters T1 and T3, while
changes in T2 are not significant. In effect, for a puller swimmer the wall slip exerts
a strong opposing torque to the swimmer rotation away from the wall (Ωy< 0), which
for high slip lengths causes it to rotate towards the wall (Ωy> 0), before reaching the
bulk zero-rotation state (refer to the inset of figure 1a) at a distance of nearly one
radius away from the wall, as demonstrated in figure 2(c).

Variation of the thrust force (F(Thrust)
x ) for a pusher (see figure 4e) is highly

complex and non-monotonic in nature. However, the corresponding wall-parallel
velocity component (Vx) shows a trend of getting escalated with slip length (see
figure 2e), a phenomenon that is exactly opposite to that of a puller. The negative
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FIGURE 6. Three different terms (T1, T2, T3) controlling the effective rotation rate of a
(a) puller and (b) pusher, as shown in (3.2b). The parameters are the same as in figure 2.

thrust torque on the microswimmer gets reduced by the wall slip for all separations
(see figure 4f ). Again, this fixed trend is not followed by the rotation rate Ωy.
Figure 2( f ) demonstrates that, for a pusher swimmer located very close to the wall
(δ. 0.04), the wall slip forces it to rotate away from the wall. However, beyond this
distance, the slip-induced rotation gets either escalated or suppressed, depending on
a subtle interplay between slip and wall separation. This is again in contradiction to
the previously studied far-field behaviour of a force dipole swimmer (Lopez & Lauga
2014), due to the similar reasons discussed for Vz.

3.2. Modulations in near-wall swimming trajectories
3.2.1. Neutral squirmer

A neutral squirmer, which is characterized by β = 0, gives rise to a quadrupolar
flow field around the swimmer in an unbounded domain and thus vorticity is absent
in the velocity field (Zhu et al. 2011; Zhu, Lauga & Brandt 2012). In the absence of
the wall slip, for an initial orientation away from the wall or even with a small tilt
towards the wall, a neutral swimmer does not show any tendency to move towards the
wall and escapes from the wall along a straight line with the final orientation angle
reaching an asymptotic constant value (θf ). The scenario changes for moderate values
of the initial orientation angles towards the wall. As it moves towards the wall, its
director gradually points away from the wall due to a net anticlockwise torque arising
from the near-field hydrodynamic effect, which subsequently forces the swimmer to
attain a negative orientation angle θ0 < 0. In effect, the normal velocity component
becomes positive (Vz > 0), leading to the escape of the swimmer away from wall.
Beyond a critical initial orientation, θ0,cr, the swimmer eventually collides with the
wall, remains in the wall-adjacent region for some time, and finally escapes with a
final orientation equal to its initial one, θf ≈ θ0. When the swimmer has an initial
height of h0 = 2, this critical angle for descending to a height below h = 1.05 has
been reported to be ∼0.4 by Spagnolie & Lauga (2012). We show in figure 7(a) that
the critical angle for the transition of a scattering trajectory to a colliding one (with
a cutoff distance for collision as h= 1.01) shows a drastic decrease from the no-slip
case (lS= 0, θ0,cr = 0.59) to θ0,cr = 0.38 for lS= 1 and finally reaches an asymptote of
θ0,cr→ 0.36 for higher values of the wall slip length.
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FIGURE 7. (a) Critical initial orientation (θ0,cr) versus slip length (lS). (b) Trajectory with
initial orientation, θ0=0.1π. In the inset the variation of dimensionless detention time with
slip length is shown. In both panels the initial height, h0 = 2 is taken.

Here we define the wall-bound detention time of a microswimmer (Tdet) by the
time interval during which the microswimmer remains below a distance of one-tenth
of its diameter. For a typical microswimmer diameter of 10 to 30 µm, this cutoff
distance remains consistent with the experimental evidence of E. coli cells remaining
at a distance of <1–3 µm near a wall (Drescher et al. 2011) for an extended time.
Figure 7(b) shows that, although the escaping nature of the microswimmer motion is
preserved even with a very high slip length, the detention time for a neutral swimmer
gets increased significantly with the slip length (lS) (see the inset of figure 7b).
Interestingly, for small tilt angles towards the wall (e.g. θ0 = 0.05π), where the
detention time is negligible near a no-slip wall, the increasing slip length beyond a
critical value is found to impart a high detention time.

3.2.2. Puller squirmer
While swimming near a no-slip wall, the director (e) does not face a hydrodynamic

rotation relative to the wall if the strength of the vorticity generation term (∝ β) in
the squirmer surface velocity is not sufficiently high (Ishimoto & Gaffney 2013). As
β crosses a critical value, the hydrodynamic torque imparts an extra rotation of the
puller towards the wall and a stable swimming state parallel to the boundary takes
place favoured by an initial tilt towards the wall, i.e. θ0 > 0, while the wall effects
are negligible for θ0 < 0 (Li & Ardekani 2014). We found that, even in the presence
of wall slip, the wall-bound attraction of the swimmer is non-existent for small values
of the squirmer parameter β . 2.75 with any initial director orientation. Similar to the
neutral squirmers, we observe that the escaping nature is affected in the sense that the
minimum height reached by the swimmer gets reduced and the detention time near the
wall is increased with rising slip lengths.

The scenario changes as β crosses this limiting value and the wall slip triggers a
transition of swimming states from wall escape to wall entrapment, as summarized
in the phase diagrams of figure 8(a–c). Phase diagrams depicting diverse trajectory
characteristics of squirmers (Uspal et al. 2015a) as well as three-sphere micro-
swimmers (Daddi-Moussa-Ider et al. 2018) near a no-slip surface have been
constructed previously on the basis of the release height and orientation. In stark
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FIGURE 8. Phase maps of the final swimming states of puller microswimmers in
the (lS, θ0) plane. Panels (a–c) correspond to squirmer parameters β = 3, 4.5 and 5,
respectively. The ‘blue’ circles and ‘red’ crosses correspond to the escaping and trapping
states, respectively. In all the presented cases, the lS = 0.01 case gives a swimming state
similar to a no-slip wall. The illustrations are with an initial launching height of h0 = 2.

contrast, in the present study we represent unique phase diagrams elucidating the
immense contribution of hydrodynamic slip length in deciding the resulting trajectory.
All the escaping trajectories have been confirmed from long-time simulations with a
cutoff distance of hescape = 15 (Ishimoto & Gaffney 2013). The trajectories starting
from a launch angle θ0 ∼ π/2, which cause direct impact (Spagnolie & Lauga 2012)
and become computationally demanding, have been excluded from computation by
limiting the initial orientation angle in the range θ0 6 0.95 × π/2. The presence
of wall slip severely modifies the near-field hydrodynamic interaction, as observed
during the discussions of velocity components in § 3.1. As a consequence, low values
of the initial tilt angle, which do not lead to any trapping state near a no-slip wall,
are found to be sufficient for the swimmer to attain that extra rotation towards the
wall which favours a state transition from escaping to wall-bound trapping, in the
form of either periodic oscillations or steady-state sliding.

We would like to draw the attention of the reader to the fact that, in the no-slip
case itself, previous studies have reported wall entrapment where the wall is equipped
with a repulsive force of different forms (Lintuvuori et al. 2016; Ishimoto 2017). As
a verification of the fact that the swimming state transitions are exclusively caused by
hydrodynamic slippage and not due to the sole effect of short-range repulsive forces
Frep, we have carefully examined the trajectories of the microswimmer where the
microswimmer escapes from the wall without coming too close to the wall (δ < 0.01)
and thus not getting affected by Frep. A typical case is presented later in figure 18.
It is observed that here only an interfacial slip length beyond a certain limit (lS,cr) is
necessary to impart the required reorientation for swimming state transition.

For moderate values of β (i.e. 2.75 . β . 3.75), as the initial swimmer orientation
departs slightly from the wall-parallel direction (θ0 = 0), the transition phenomenon
occurs sharply at a fixed value of the slip length (lS,cr), without showing any
non-monotonic dependence on θ0. In this case, as the swimmer collides with the
wall, the short-range repulsive force imparts an upward velocity component (Vz > 0)
and at the same time the swimmer continues to rotate away (Ωy < 0) from the wall.
Gradually the effect of Frep is overcome. At a certain height and configuration, again
the clockwise torque and the downward force dominate, causing the sign reversal
of both Ωy and Vz (refer to figure 2(a,c) and their corresponding discussions in
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FIGURE 9. Different characteristics of the slip-induced swimming state transitions for
different squirming parameters for puller swimmers (β > 0). The corresponding parameters
are shown above each panel. The insets of panels (a) and (b) correspond to the trajectory
in the phase space, while the inset of panel (c) depicts the variation’s maximum attained
height (hmax) and final steady-state sliding height (hf ) with slip length (lS).

§ 3.1 for a depiction on the physical origin of similar critical conditions). Thus, the
microswimmer again moves towards the wall. Upon subsequent repetition of this
motion behaviour, finally a periodic oscillatory trajectory results (see figure 9(a) for
representative scenarios) and limit cycles emerge in the phase plane of the dynamic
system. We also observe that the amplitudes of the present periodic oscillations get
decreased with enhancing slip lengths.

With further increase in β, i.e. β & 3.75, the trapping states become damped
oscillatory in nature beyond a critical slip length, as portrayed in figure 9(b,c) and
eventually steady-state stable swimming takes place with a fixed height and orientation
(hf , θf ). These final swimming states give rise to fixed points in the phase map of the
dynamic system of (ḣ, θ̇ ). The transition of periodic to damped-amplitude trapping
with increase in β suggests that, during the combined influence of the torques due
to hydrodynamic slip and that due to the circulating flow pattern emerging from the
propulsive action, if the former one is more dominant than the other, damping of
swimmer oscillations is less prominent. This condition further arises in specific cases
of pusher swimmer characteristics to be discussed subsequently.

As observed in figure 9(c), for a high value of β (e.g. β = 5.5), the swimmer
initially moves away from the wall much above the initial height but gets attracted
towards the wall due to the high reorientation torque imparted by the pronounced
contribution of the stresslet term in the swimmer surface velocity and shows some
small-amplitude oscillations in height before getting trapped. Additionally, the
maximum height reached during the first bouncing motion (hmax) and the final
sliding height hf both get reduced due to wall slip. Also the longitudinal distance
travelled before coming too close to the wall gets decreased. This effectively portrays
the wall slip effect as a strong influencing parameter to cause trajectory transition
even if the swimmer reaches a height much above the wall.

Interestingly, with increase in β (see figure 8b,c) for a band of low θ0 values,
the swimming state transition occurs even with zero wall slip. However, beyond a
critical high value of the slip length, only stable trapping states exist for all the initial
tilt angles considered and the non-monotonicity with θ0 vanishes. This renders the
critical slip length dependent on the initial launching angle, i.e. lS,cr = lS,cr(θ0). Some
illustrative trajectories are shown in figure 10(a). It depicts that, for some initial
orientations in the intermediate range 0.05π . θ0 . 0.16π, the swimmer travels a
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FIGURE 10. Trajectory of a puller squirmer with β = 5 and a wall slip length lS = 0.03
for various initial orientations (θ0). (a) Trajectory in the (x, h) plane and (b) phase plane
dynamics, h versus θ . In (b), the green circles represent the initial states while the final
fixed point for the trapping instances is shown with a black circle.
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FIGURE 11. Increase in detention time for a puller swimmer with β = 3, θ0 = 0.1π.

maximum vertical distance almost as high as the initial height, h0 = 2, but thereafter,
sensing the slip in the wall, it follows a damped-amplitude oscillatory motion and
finally slides parallel to the wall at a fixed height, hf = 1.464, and positive angle (see
figure 10b), θf = 0.266. Beyond this θ0, the swimmer bounces on the wall, thereafter
travels to height h> h0, which is beyond the reach of the reorientation torque of the
slippery wall, and finally escapes away from the wall.

Before a full transition of escape to trapping occurs, rising wall slip affects the
trajectories by increasing the wall-bound detention time (Tdet) for both pullers and
pushers, similar to the previously discussed case of a neutral one. A representative
behaviour with β = 3 is described in figure 11. In these cases, even after the collision
with the wall, the torque on the swimmer is not sufficient to impart a sliding-type
motion near the wall. Rather, the swimmer escapes the wall-adjacent region after
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FIGURE 12. Transition of swimming states for a pusher (β = −5) near a no-slip and
slippery wall with θ0 = −0.165. In the inset, the escaping states corresponding a more
negative angle, θ0 =−0.248, are also shown.

gliding along the wall for a finite detention time. Thus, the wall-bound detention
time of the neutral and puller microswimmers can be controlled by suitably tuning
the wall slip length, thus facilitating the formation of bio-aggregates such as biofilms
near a wall (Watnick & Kolter 2000).

3.2.3. Pusher squirmer
The swimming states of a pusher swimmer also show wall-bound trapping nature

beyond a critical slip length (ls,cr). However, in contrast to pullers, here we find that
these stable trapped states exist even for small initial tilt away from the wall, but a
further increase of tilt away from the wall results in escaping states only (see figure 12
for an example). In this context, the colliding-escape maps in Shum et al. (2010)
and Pimponi et al. (2016) give us information about the trajectories of an E. coli
bacterium having properties of a pusher microswimmer (Berke et al. 2008) near a
no-slip and perfect-slip surface. The present results bear resemblance with the reported
ones in terms of predicting escaping states for θ0 . 0. However, their prediction of
colliding trajectories for both surface types with θ0 & 0 and the absence of stable
swimming states for a perfect-slip surface cannot be readily compared with the present
results since we have used an additional repulsive force (Frep) near the wall to prevent
crashing, a strategy that is also common among others (Spagnolie & Lauga 2012; Li &
Ardekani 2014; Lintuvuori et al. 2016) for predicting the motion of the microswimmer
after collision.

The non-monotonicity of this critical slip length with initial angular orientations
(as shown in figure 8) has not been observed in the case of pushers. Beyond this
critical slip length, the swimmer slides along the wall for any initial orientations in
the range of θ0, as discussed above. Figure 13 depicts the consolidated effect of the
wall slip on the pusher swimmers for a range of squirmer parameter −10 6 β 6−2.
The onset of transition from an escaping to a damped-amplitude oscillation takes place
for |β| ∼ 1.6 with a high value of slip length (lS). The oscillations become periodic
in nature for |β| & 5. This is again opposite to the trend of puller microswimmers,
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FIGURE 13. Critical slip length (ls,cr) versus squirmer parameter (β) for pusher-type
swimmers with initial conditions (h0, θ0) = (2, 0). In the insets (a,b) the transition
behaviours are highlighted for β =−5 and −2, respectively, while the inset (c) describes
the characteristic changes in the periodic oscillations with increasing slip length for
β = −10. The onset of transition takes place for β ∼ −1.6 and is denoted by a ‘blue’
marker.

which exhibit periodic and damped-amplitude oscillations for low and high values of
the same parameter, respectively. This difference can be related to the contrast in the
near-field hydrodynamic effects brought in by the fluid slip at the wall, as discussed
in § 3.1. Realization of slip-mediated trapping for pushers with low |β| is of utmost
importance in view of their non-existence near a no-slip wall.

For a significantly high strength of |β|, the periodic oscillations are present even in
the absence of wall slip, as illustrated for β =−10 in the inset (c) of figure 13. Here
also, the slip has an important role to play in the form of increasing the frequency of
oscillatory height and reducing their amplitudes. This, in turn, allows the swimmer to
slide along the wall, maintaining a minimal wall separation as dictated by the balance
of the wall repulsive force and the hydrodynamic force for a high slip length.

Starting from the same initial orientation, during the final states of a damped cyclic
swimming, the puller swimmers point towards the wall (quantified by a positive angle)
while pushers show the opposite trend (please refer to figure 14a). This difference in
sign (but not exactly opposite in magnitude) can be attributed to the differences in
the physical mechanisms providing the reorientation torque during the trapping states
and deciding the actual orientation angle at a particular height, which was also shown
to give rise to different rotation rates for the two types of swimmers, as described in
figure 2(c, f ). It may be counter-intuitive to observe that a pusher swimmer is attracted
towards the wall during the oscillations even though it points its director away from
the wall (θ < 0) (in figure 14a). An analogous scenario was reported by Lintuvuori
et al. (2016) for a pusher near a no-slip wall. Figure 14(b) depicts the flow field at
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FIGURE 14. (a) Phase-space trajectory comparison for puller and pusher microswimmers.
The parameters are δ0 = 1, θ0 = 0.05π, lS = 0.55 and |β| = 4. In the inset, the trajectories
are compared in the (x, h) plane. Swimmer orientations during the final steady-state
swimming are also described schematically. (b) The laboratory-frame flow field around
the pusher at this end state point in the trajectory. (c) Vertical thrust force variation with
distance from the wall at different negative pitch angles attained by the pusher in the
trajectory of panel (a). The black filled circle indicates the end state point in the trajectory.

the end state location of the pusher trajectory. The distortion in the flow field around
the microswimmer is observed to be severely altered in the presence of a slippery
wall. As a consequence, figure 14(c) shows that, even for negative pitch angles,
there exist situations where the thrust force remains negative, i.e. the swimmer gets
attracted towards the wall. With subsequent decaying of the amplitudes of oscillation,
the microswimmer finally reaches a critical location (h, θ) ≈ (1.110, −0.267) where
the thrust force (F(Thrust)

z ) becomes zero and it does not move further in the vertical
direction.

The slip-modulated wall-bound motion of squirmers shares a characteristic feature
with the recent experimental investigation of Ketzetzi et al. (2020), who found a
prominent tendency of diffusiophoretic Janus colloids to self-propel adjacent to
hydrophobic surfaces having high slip lengths and to occasionally leave the surface
followed by a steady swimming in wall proximity. In view of the similarity of the
surrounding flow patterns in an unbounded domain, the behaviour of such chemically
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active synthetic particles has been previously mapped onto the squirmer model
(Michelin & Lauga 2014). However, near a confinement, the distribution of the
chemical species around a self-diffusiophoretic particle gets modified, which in turn
affects the slip velocity at the particle surface (Uspal et al. 2015b; Mozaffari et al.
2016), in contrast to the squirmers, which have a prescribed surface velocity. Thus a
qualitative matching of the respective swimming states calls for an explicit account
of the dependence of hydrodynamics interaction and chemical species distribution
(Popescu et al. 2018).

4. Conclusions and remarks

To summarize, we have adopted a ‘squirmer’ model to mathematically describe the
swimming characteristics of micro-organisms near a plane wall with hydrodynamic
slippage. In the low-Reynolds-number regime, the governing fluid flow equations are
solved by employing an exact solution technique in the bispherical coordinate system
and the hydrodynamic slippage at the wall has been modelled using the Navier slip
boundary condition. This provided a unified platform to investigate the translational–
rotational velocities of a microswimmer in the far-field domain as well as in the
near-surface lubrication region.

The results reveal that hydrodynamic slippage mediates the competitive effects of
the near-field hydrodynamic drag and propulsive forces. Consequently, the translational
and rotational velocities are both altered, sometimes even showing changes in sign, in
contrast to the previous theoretical model of the far-field characteristics of a force-
dipole swimmer (Lopez & Lauga 2014). The pattern and intensity of the slip-induced
changes in the swimming kinematics are critically dependent on the squirming modes
and the distance of the microswimmer from the wall.

In comparison to the case of a no-slip wall, near-wall slip reduces the critical
value of the dimensionless strength of the second squirming mode required to
exert a sufficient hydrodynamic torque enabling a transformation of an escaping
microswimmer trajectory to a wall trapping one. Thus wall slip triggers a robust
trapping nature of near-surface swimming states. Interestingly, depending upon the
launching orientation angle and the strength of the swimming gait, the slip-induced
trapping can become either a periodic oscillation or a damped-amplitude oscillations
with a final fixed height and orientation. However, in contrast to pullers, for which
the critical slip length non-monotonically depends on the initial orientation angle,
the critical slip length for pushers is independent of the initial orientation angle. In
addition, the maximum attained height, the average height of the periodic oscillations
and the final stable height, all get decreased with enhanced slip length.

We have identified that neutral swimmers do not show any tendency to get
entrapped near a slippery wall; however, their detention time faces a significant
enhancement with increasing wall slip, and their minimum wall separation distance
gets reduced before the wall escape takes place. Additionally, as the slip length
increases, the critical release orientation of the swimmer director for the transition
from scattering to wall collision becomes more pointed away from the wall and
finally reaches an asymptotic value.

The present results may turn out to be elemental in providing a theoretical
understanding of the complex behaviour either of natural microswimmers near a
confinement boundary in a biophysical environment or of artificial swimmers in
a controlled lab-on-a-chip device. The above analysis based on uniform surface
slip is immediately applicable for conditions where the substrate has a coating of
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self-assembled monolayers of hydrophobic molecules on atomically smooth surfaces
and the sliding of the first layers of molecules takes place giving rise to a phenomenon
called ‘intrinsic slippage’ (Huang et al. 2008; Sega et al. 2013; Gentili et al. 2014).

However, it is worth mentioning that the present results with high slip length in
the micrometre scale are to be used with caution when the characteristic length of
the surface asperities of a nano-engineered surface (l̃a) also span over the identical
regime, i.e. l̃a ∼ l̃S (Choi & Kim 2006; Joseph et al. 2006). In that case an elaborate
consideration of the slip length variation along the wall may become inevitable
(Ybert et al. 2007; Asmolov et al. 2013), especially when the microswimmer goes
very close to the wall, i.e. δ < lS. Researchers have found the significant role of the
actual features of a superhydrophobic wall in influencing the motion of particles, both
passive or self-propelled, when the particle is very close to the wall (Pimponi et al.
2014; Hu et al. 2015; Nizkaya et al. 2015, 2020). On the other hand, molecular
simulations have predicted that specially structured surfaces with nanometre scale
roughness can also lead to superhydrophobicity (Lundgren, Allan & Cosgrove 2007;
Yang, Tartaglino & Persson 2008; Koishi et al. 2009; Daub et al. 2010), a situation
that broadens the applicability of the present research. Experimental verification of
the present results can be truly intriguing. A major challenge, however, is to realize a
pre-designed pattern of wall slip and probe the near-wall dynamics of micro-organisms
under the influence of the same by high-resolution microscopy. This may be taken
up as a novel research agenda in this field.

Moreover, beyond the presently adopted spherical squirmer model of micro-
organisms, the inclusion of higher-order squirming modes (Pak & Lauga 2014)
will be of interest to the community. It may also be stimulating research directions to
additionally inspect the various aspects of microswimming, such as elongated shape
of micro-organisms (Shum et al. 2010; Ishimoto & Gaffney 2013), direct flagellar
contact dynamics (Kantsler et al. 2013) or the existence of thermal noise (Li & Tang
2009; Drescher et al. 2011; Schaar, Zöttl & Stark 2015).
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Appendix A. Relation between bispherical and cylindrical coordinates
This relation is shown diagrammatically in figure 15.

Appendix B. Details of the solution procedure
Following Lee & Leal (1980) the expressions of the pressure and velocity field

of the fluid in the cylindrical coordinates (u, v, w) in terms of eigenfunctions in the
bispherical coordinates are given by

p=
∞∑

m=0

pm(ξ , η) cos(mφ + αm), (B 1)
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FIGURE 15. The bispherical (ξ , η, φ) coordinate system in relation to the cylindrical
coordinates (ρ, z, φ) used in the problem. Since we have φ=0 for this problem, the x axis
of the Cartesian reference frame coincides with the ρ axis of the cylindrical coordinate
system.

pm =
1
c

√
(cosh(ξ)− ζ )

∞∑
n=m

[Am
n sinh(βnξ)+ Bm

n cosh(βnξ)]Pm
n (ζ ), (B 2)

u=
ρp
2
+ u0 cos(α0)+

1
2

∞∑
m=1

(γm + ξm) cos(mφ + αm), (B 3)

v = v0 sin(α0)+

∞∑
m=1

(γm − ξm) sin(mφ + αm), (B 4)

w=
zp
2
+

∞∑
m=0

wm cos(mφ + αm). (B 5)

Here Pm
n is the associated Legendre polynomial of the first kind, ζ = cos(η) and βn=

n+ 1/2. Also

u0 =
√

cosh(ξ)− ζ
∞∑

n=1

[E0
n sin(βnξ)+ F0

n cosh(βnξ)]P1
n(ζ ), (B 6)

v0 =
√

cosh(ξ)− ζ
∞∑

n=1

[G0
n sin(βnξ)+H0

n cosh(βnξ)]P1
n(ζ ), (B 7)

γm =
√

cosh(ξ)− ζ
∞∑

n=m+1

[Em
n sin(βnξ)+ Fm

n cosh(βnξ)]Pm+1
n (ζ ), (B 8)
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χm =
√

cosh(ξ)− ζ
∞∑

n=m−1

[Gm
n sin(βnξ)+Hm

n cosh(βnξ)]Pm−1
n (ζ ), (B 9)

wm =
√

cosh(ξ)− ζ
∞∑

n=m

[Cm
n sin(βnξ)]Pm

n (ζ ). (B 10)

The seven unknown constants (Am
n , Bm

n , Cm
n , Em

n , Fm
n , Gm

n , Hn
m) appearing in the above

expressions are obtained by satisfying the boundary conditions at the swimmer surface
(2.4), the Navier slip condition at the plane wall (2.8) and the continuity equation.

In order to apply the swimmer surface boundary condition (2.4), the surface velocity
components are expanded in terms of bispherical eigenfunctions as given below:

us =
∑

m

um
s (ξ , η) cos(mφ + αm), (B 11)

vs =
∑

m

vm
s (ξ , η) sin(mφ + αm), (B 12)

ws =
∑

m

wm
s (ξ , η) cos(mφ + αm), (B 13)

where for m= 0,

u0
s =
√

cosh(ξ0)− ζ
∑

X0
n(ξ)P

1
n(ζ ), (B 14a)

v0
s =
√

cosh(ξ0)− ζ
∑

Y0
n (ξ)P

1
n(ζ ), (B 14b)

for m > 1,

um
s + v

m
s =

√
cosh(ξ0)− ζ

∑
Xm

n (ξ)P
m+1
n (ζ ), (B 15a)

um
s − v

m
s =

√
cosh(ξ0)− ζ

∑
Ym

n (ξ)P
m−1
n (ζ ), (B 15b)

and for all m,
wm

s =
√

cosh(ξ0)− ζ
∑

Zm
n (ξ)P

m
n (ζ ). (B 16)

The constants Xm
n , Ym

n and Zm
n are to be determined by using the boundary condition

on the swimmer surface. Now making use of the orthogonality of the associated
Legendre polynomials, we obtain an infinite set of linear algebraic equations involving
the unknown constants. Since the values of these constants decay with increasing
values of n, we truncate the algebraic system of equations for a large number of
terms N so that the error in evaluating these constants (Am

n , Bm
n , Cm

n , Em
n , Fm

n , Gm
n , Hn

m)
as well as the swimmer velocity components (Vx,Vz, Ωy) between steps N and N + 1
becomes 6 10−6. The system of equations has a banded matrix structure (7N × 7N)
and was solved using the default matrix solver in MATLAB. It automatically switches
to an appropriate solver based on the symmetries in the matrix structure and therefore
minimizes the computational time.

Similar to the previous works related to a passive or active sphere moving near
a no-slip wall, we also find that the decay of these constants becomes very slow
as the swimmer comes close to the plane wall, which calls for a large number
of terms to be retained to reach the desired accuracy (Lee & Leal 1980; Yazdi &
Borhan 2017). Adding to this, the increased value of the slip length at the plane
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FIGURE 16. Convergence of translational and rotational velocity of the microswimmer
with number of terms used for series truncation (N). Here we have chosen the most
computationally demanding situation with lS = 10 and δ = 0.01. Other parameters are the
same as in figures 2(a), 2(b) and 2(c), respectively.

wall turns out to be another hurdle to obtain a uniform accuracy throughout the
calculations (Kezirian 1992; Loussaief et al. 2015). Thus, for extreme cases when
the swimmer is very close to wall (e.g. h< 1.05) and at the same time the wall slip
length is very high (e.g. lS > 5), we work with an accuracy of 10−4 to save on the
computational cost. To gain confidence on the results with 10−4 accuracy, we have
checked the constant coefficients as well as velocity magnitudes for three different
swimmer types with the most extreme cases considered, i.e. h = 1.01 and lS = 10.
Some typical examples have been provided in figure 16. These depict that upon a
gradual increase of the number of terms (N), the translational and rotational velocities
of the microswimmer show only a minimal variation after a critical N is reached.
Following this, we have kept a sufficiently high number of terms in the series beyond
which the velocity magnitudes differ only after four significant digits, i.e. an accuracy
of 10−4. In addition we have confirmed that the relative percentage error for the
velocity calculations (e.g. |(V (N+1)

x − V (N)
x )/V (N)

x | × 100 %) remains <0.01 %. A similar
strategy to work with different accuracies for different distances from the wall is quite
common in problems where a similar semi-analytical technique has been employed
(Tabatabaei & Van De Ven 2010).
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In addition, we have chosen a very high relative tolerance of 10−8 in the MATLAB
ODE45 solver employed for obtaining the quasi-steady-state trajectories presented in
the paper. This solver is advantageous since it can adaptively vary the time steps to
meet the required tolerance by employing a six-stage fifth-order Runge–Kutta scheme.
As a final confirmation of the working accuracy of the translational and rotational
velocities, we have compared the microswimmer trajectories for representative cases
and found no distinguishable change.

Appendix C. Decomposition into fundamental Stokesian subproblems
Owing to the linearity of the Stokes equation, the flow field generated by the motion

a passively moving particle can be obtained by superposing the individual flow fields
due to fundamental modes of the associated kinematics. Along similar lines, in the
present problem of self-propulsion, the flow fields due to the motion of a spherical
particle with Vx, Vz, Ωy in an otherwise quiescent fluid and that due to tangential
slip velocity specified by the squirming modes (B1, B2) for the case of a stationary
sphere, each with a Navier slip condition at the plane wall, are sufficient to fully
characterize the problem. In subsequent discussions, we denote each of these flow
fields as ‘fundamental problems’. Expressions of different terms in (2.9) are obtained
from these fundamental problems as detailed below.

Subproblem A – A stationary spherical particle under the action of tangential slip
velocity due to squirming:

Here the sphere is fixed in space but the surface slip flow due to the squirming action
leads to the following components of thrust force and torque components.

(i) Thrust force along the z direction:

F(Thrust)
z =−2

√
2π sinh(ξ0)

∞∑
n=0

[
C0

n −

(
n+

1
2

)
(A0

n − B0
n)

]
. (C 1)

(ii) Thrust force along the x direction:

F(Thrust)
x =−

√
2π sinh(ξ0)

∞∑
n=0

[G1
n −H1

n + n(n+ 1)(A1
n − B1

n)]. (C 2)

(iii) Thrust torque along the y direction:

T (Thrust)
y =

√
2π sinh2(ξ0)

∞∑
n=0

[coth(ξ0){n(n+ 1)(A1
n − B1

n)+ (G
1
n −H1

n)}

− 2n(n+ 1)C1
n − (2n+ 1)(G1

n −H1
n)] . (C 3)

Subproblem B – Translation of a non-rotating spherical particle perpendicular to the
wall:

Here the problem has an axisymmetric nature about the z axis. Hence we only have
m = 0 and α0 = 0. The particle faces only a vertical drag force but no torque. The
resistance factor associated with force along the z direction is given by (Lee & Leal
1980)

fz,T =−2
√

2π sinh(ξ0)

∞∑
n=0

[
C0

n −

(
n+

1
2

)
(A0

n − B0
n)

]
. (C 4)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

24
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.243


Slip triggers swimming transition of micro-organisms 894 A11-27

Subproblem C – Translation of a non-rotating spherical particle parallel to the wall:

In this case the hydrodynamics can be fully described with m = 1 and α1 = 0. The
sphere experiences both hydrodynamic drag force and torque (O’Neill 1964; Lee &
Leal 1980).

(i) Resistance factor associated with force along the x direction:

fx,T =−
√

2π sinh(ξ0)

∞∑
n=0

[G1
n −H1

n + n(n+ 1)(A1
n − B1

n)]. (C 5)

(ii) Resistance factor associated with torque along the y direction (O’Neill 1967):

fy,T =
√

2π sinh2(ξ0)

∞∑
n=0

[coth(ξ0){n(n+ 1)(A1
n − B1

n)+ (G
1
n −H1

n)} − 2n(n+ 1)C1
n

− (2n+ 1)(G1
n −H1

n)] . (C 6)

Subproblem D – Rotation of a non-translating spherical particle parallel to the wall:

Similar to the above subproblem, here also only m=1 and α1=0 terms survive. Apart
from a resistance torque to rotation, a wall-parallel force is also exerted by the fluid
onto the particle (Dean & O’Neill 1963; Lee & Leal 1980).

(i) Resistance factor associated with force along the x direction:

fx,R =−
√

2π sinh2(ξ0)

∞∑
n=0

[G1
n −H1

n + n(n+ 1)(A1
n − B1

n)]. (C 7)

(ii) Resistance factor associated with torque along the y direction (O’Neill 1967):

fy,R =
√

2π sinh3(ξ0)

∞∑
n=0

[coth(ξ0){n(n+ 1)(A1
n − B1

n)+ (G
1
n −H1

n)} − 2n(n+ 1)C1
n

− (2n+ 1)(G1
n −H1

n)] . (C 8)

The constants Xm
n , Ym

n and Zm
n in (B 14) and (B 16) come from the boundary

condition at the microswimmer surface and thus remain unaffected by the slip at
the plane wall. To avoid repetition, we refer the reader to the earlier works (Lee
& Leal 1980; Shaik & Ardekani 2017) where these constants are provided for all
the fundamental problems involved in the present study. The only difference arises
from the fact that they have considered the body to be below the ξ = 0 surface
while we have taken the opposite configuration. The flow fields due to a passive
sphere moving near a slippery surface, having translational and rotational velocity
components parallel to the surface (e.g. Vx and Ωy), have been obtained previously
(Kezirian 1992; Loussaief et al. 2015) using a similar method as described above.
However, the problem of a sphere moving normal to a slippery wall has only been
solved using the streamfunction approach (Goren 1973). The present authors have
solved this problem using the direct solution of the Stokes equation as discussed
before. In addition, the flow problem due to the tangential squirming modes on the
surface of a stationary sphere adjacent to a plane wall with fluid slip has been solved
for the first time.
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Appendix D. Reciprocal theorem for a microswimmer near a slippery surface

The propulsive force and torque on the microswimmer can be determined without
solving the Stokes equation by utilizing the Reynolds reciprocal theorem between two
Stokes flows with the same geometry, which has the general form (Happel & Brenner
1981) ∫∫

∂S
n · σ ′ · u′′ =

∫∫
∂S

n · σ ′′ · u′, (D 1)

where u′ and σ ′ correspond to the swimming problem with a tangential squirming
velocity and u′′ and σ ′′ describe a complementary Stokes problem. Here ∂S is the
boundary of the fluid domain.

Previous works related to the motion of a microswimmer near a no-slip surface
(Crowdy 2011, 2013; Mozaffari et al. 2016) have taken advantage of vanishing fluid
velocity at the plane wall to reduce the flow boundary in (D 1) to the swimmer surface
only, i.e. ∂S=Sp. However, it is not the case for a plane wall with a slipping boundary
condition and we are left with∫∫

Sp

n · σ ′ · u′′ +
∫∫

Sw

n · σ ′ · u′′︸ ︷︷ ︸
Wall slip contribution

=

∫∫
Sp

n · σ ′′ · u′ +
∫∫

Sw

n · σ ′′ · u′︸ ︷︷ ︸
Wall slip contribution

, (D 2)

where Sw is the surface of the slippery plane wall. It was shown (Loussaief et al.
2015) that the contributions of the extra terms due to non-vanishing fluid velocity at
the plane wall, appearing in both sides of (D 2), become equal, i.e.∫∫

Sw

n · σ ′ · u′′ =
∫∫

Sw

n · σ ′′ · u′, (D 3)

and we subsequently obtain∫∫
Sp

n · σ ′ · u′′ =
∫∫

Sp

n · σ ′′ · u′. (D 4)

Next we choose the complementary problem as the motion of a spherical particle
near a slippery plane wall where the particle has a translational velocity U′′
and rotational velocity Ω ′′. Utilizing the force- and torque-free conditions of the
microswimmer and employing the boundary condition (2.4) on the swimmer surface,
finally (D 1) is simplified to

F′′ ·U+ T′′ ·Ω =−
∫∫

Sp

n · σ ′′ · us dS, (D 5)

where F′′ and T′′ represent the force and torque on the spherical particle in the
complementary Stokes problem. The above equation suggests that the translational
and rotational velocities of the microswimmer can be found by knowing the surface
tangential velocity and the solution of the complementary Stokes problem, thereby
bypassing the detailed solution of the swimmer problem.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

24
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.243


Slip triggers swimming transition of micro-organisms 894 A11-29

3.02.52.0

10110010-2

1.5
∂

∂

10110010-2

∂

1.00.5 3.02.52.01.5
∂

1.00.1 0.5

-0.08

-0.10

-0.12

-0.14

-0.16

-0.18

-0.20

-0.22

-0.24

Vz

Vz

0.04(b)(a)

0.02

0

-0.02

-0.04

-0.06

-0.08

-0.10

Øy Øy

Exact solution
Shaik & Ardekani (2017)
Reciprocal theorem

0

-0.1

-0.2

-0.3
0

-0.2

-0.4

FIGURE 17. Variation of the squirmer vertical velocity component and rotational velocity
with the distance from the wall (δ). In the inset of each panel the log-scale variations are
also highlighted. The parameters are B1 = 1, β = 4 and θ =π/8.
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FIGURE 18. The transition from escape to oscillatory sliding trajectory with increasing
slip length. Here short-range repulsive force is not used. The parameters are θ0 = 0.05π,
β = 4 and h0 = 2.

Appendix E. Validation of the numerical calculations

The solutions obtained from the numerical codes employed in the present study
to obtain the full solution of the Stokes equation were first validated with various
earlier works regarding a spherical particle motion near a no-slip surface (Brenner
1961; O’Neill 1964) as well as near a slippery surface (Goren 1973; Kezirian 1992;
Loussaief et al. 2015). Subsequently the force and torque values obtained from the full
Stokes equation solution are rechecked with the aforementioned reciprocal theorem
approach (appendix D).

In figure 17(a,b) we compare the no-slip results of the vertical component of
velocity and rotational velocity with the calculations of the reciprocal theorem as well
as with the previously reported results of Shaik & Ardekani (2017). The reciprocal
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theorem turns out to match almost exactly with the present exact solutions. The slight
disagreement of the current results with those of Shaik & Ardekani (2017) is due
to the fact that their results were obtained for a squirmer approaching a two-fluid
interface. We have taken their results corresponding to a high value of the viscosity
ratio (λ = 10), which only approximately resembles the characteristics of a no-slip
wall (Lee & Leal 1980), while in an ideal case λ→∞ is required to recover the
results near a no-slip solid wall.

Appendix F. Verification of slip-induced trapping
This verification is shown diagrammatically in figure 18.
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