
5 Files, Modules, and Programs

We've so far experienced OCaml largely through the toplevel. As you move from

exercises to real-world programs, you'll need to leave the toplevel behind and start

building programs from �les. Files are more than just a convenient way to store and

manage your code; inOCaml, they also correspond tomodules, which act as boundaries

that divide your program into conceptual units.

In this chapter, we'll show you how to build an OCaml program from a collection

of �les, as well as the basics of working with modules and module signatures.

5.1 Single-File Programs

We'll start with an example: a utility that reads lines from stdin, computes a frequency

count of the lines, and prints out the ten most frequent lines. We'll start with a simple

implementation, which we'll save as the �le freq.ml.

This implementation will use two functions from the List.Assoc module, which

provides utility functions for interacting with association lists, i.e., lists of key/value

pairs. In particular, we use the function List.Assoc.find, which looks up a key in an

association list; and List.Assoc.add, which adds a new binding to an association list,

as shown here:

open Base;;
let assoc = [("one", 1); ("two",2); ("three",3)];;
val assoc : (string * int) list = [("one", 1); ("two", 2); ("three",

3)]

List.Assoc.find ~equal:String.equal assoc "two";;
- : int option = Some 2

List.Assoc.add ~equal:String.equal assoc "four" 4;;
- : (string, int) Base.List.Assoc.t =

[("four", 4); ("one", 1); ("two", 2); ("three", 3)]

List.Assoc.add ~equal:String.equal assoc "two" 4;;
- : (string, int) Base.List.Assoc.t = [("two", 4); ("one", 1);

("three", 3)]

Note that List.Assoc.add doesn't modify the original list, but instead allocates a new

list with the requisite key/value pair added.

Now we can write freq.ml.

open Base
open Stdio

https://doi.org/10.1017/9781009129220.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.007

5.1 Single-File Programs 67

let build_counts () =
In_channel.fold_lines In_channel.stdin ~init:[] ~f:(fun counts line
->
let count =
match List.Assoc.find ~equal:String.equal counts line with
| None -> 0
| Some x -> x

in
List.Assoc.add ~equal:String.equal counts line (count + 1))

let () =
build_counts ()
|> List.sort ~compare:(fun (_, x) (_, y) -> Int.descending x y)
|> (fun l -> List.take l 10)
|> List.iter ~f:(fun (line, count) -> printf "%3d: %s\n" count line)

The function build_counts reads in lines from stdin, constructing from those

lines an association list with the frequencies of each line. It does this by invoking

In_channel.fold_lines (similar to the function List.fold described in Chapter 4

(Lists and Patterns)), which reads through the lines one by one, calling the provided

fold function for each line to update the accumulator. That accumulator is initialized

to the empty list.

With build_counts de�ned, we then call the function to build the association list,

sort that list by frequency in descending order, grab the �rst 10 elements o� the list,

and then iterate over those 10 elements and print them to the screen. These operations

are tied together using the |> operator described in Chapter 3.2.4 (Pre�x and In�x

Operators).

Where Is main?
Unlike programs inC, Java orC#, programs inOCaml don't have a uniquemain function.

When an OCaml program is evaluated, all the statements in the implementation �les

are evaluated in the order in which they were linked together. These implementation

�les can contain arbitrary expressions, not just function de�nitions. In this example,

the declaration starting with let () = plays the role of the main function, kicking o�

the processing. But really the entire �le is evaluated at startup, and so in some sense

the full codebase is one big main function.

The idiom of writing let () = may seem a bit odd, but it has a purpose. The let

binding here is a pattern-match to a value of type unit, which is there to ensure that

the expression on the right-hand side returns unit, as is common for functions that

operate primarily by side e�ect.

If weweren't using Base or any other external libraries, we could build the executable

like this:

$ ocamlopt freq.ml -o freq
File "freq.ml", line 1, characters 5-9:
1 | open Base

^^^^
Error: Unbound module Base

https://doi.org/10.1017/9781009129220.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.007

68 Files, Modules, and Programs

[2]

But as you can see, it fails because it can't �nd Base and Stdio. We need a somewhat

more complex invocation to get them linked in:

$ ocamlfind ocamlopt -linkpkg -package base -package stdio freq.ml -o
freq

This uses ocamlfind, a tool which itself invokes other parts of the OCaml toolchain

(in this case, ocamlopt) with the appropriate �ags to link in particular libraries and pack-

ages. Here, -package base is asking ocamlfind to link in the Base library; -linkpkg

asks ocaml�nd to link in the packages as is necessary for building an executable.

While this works well enough for a one-�le project, more complicated projects

require a tool to orchestrate the build. One good tool for this task is dune. To invoke

dune, you need to have two �les: a dune-project �le for the overall project, and a dune

�le that con�gures the particular directory. This is a single-directory project, so we'll

just have one of each, but more realistic projects will have one dune-project and many

dune �les.

At its simplest, the dune-project just speci�es the version of the dune con�guration-

language in use.

(lang dune 3.0)

We also need a dune �le to declare the executable we want to build, along with the

libraries it depends on.

(executable
(name freq)
(libraries base stdio))

With that in place, we can invoke dune as follows.

$ dune build freq.exe

We can run the resulting executable, freq.exe, from the command line. Executables

built with dune will be left in the _build/default directory, from which they can be

invoked. The speci�c invocation below will count the words that come up in the �le

freq.ml itself.

$ grep -Eo '[[:alpha:]]+' freq.ml | ./_build/default/freq.exe
5: line
5: List
5: counts
4: count
4: fun
4: x
4: equal
3: let
2: f
2: l

Conveniently, dune allows us to combine the building and running an executable

into a single operation, which we can do using dune exec.

https://doi.org/10.1017/9781009129220.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.007

5.2 Multi�le Programs and Modules 69

$ grep -Eo '[[:alpha:]]+' freq.ml | dune exec ./freq.exe
5: line
5: List
5: counts
4: count
4: fun
4: x
4: equal
3: let
2: f
2: l

We've really just scratched the surface of what can be done with dune. We'll discuss

dune in more detail in Chapter 1.1.3 (The OCaml Platform).

Bytecode Versus Native Code

OCaml ships with two compilers: the ocamlopt native code compiler and the ocamlc

bytecode compiler. Programs compiled with ocamlc are interpreted by a virtual ma-

chine, while programs compiled with ocamlopt are compiled to machine code to be run

on a speci�c operating system and processor architecture. With dune, targets ending

with .bc are built as bytecode executables, and those ending with .exe are built as

native code.

Aside from performance, executables generated by the two compilers have nearly

identical behavior. There are a few things to be aware of. First, the bytecode compiler

can be used on more architectures, and has some tools that are not available for native

code. For example, the OCaml debugger only works with bytecode (although gdb, the

GNU Debugger, works with some limitations on OCaml native-code applications).

The bytecode compiler is also quicker than the native-code compiler. In addition, in

order to run a bytecode executable, you typically need to have OCaml installed on the

system in question. That's not strictly required, though, since you can build a bytecode

executable with an embedded runtime, using the -custom compiler �ag.

As a general matter, production executables should usually be built using the native-

code compiler, but it sometimes makes sense to use bytecode for development builds.

And, of course, bytecode makes sense when targeting a platform not supported by the

native-code compiler. We'll cover both compilers in more detail in Chapter 27 (The

Compiler Backend: Bytecode and Native code).

5.2 Multi�le Programs and Modules

Source �les in OCaml are tied into the module system, with each �le compiling down

into a module whose name is derived from the name of the �le. We've encountered

modules before, such as whenwe used functions like find and add from the List.Assoc

module. At its simplest, you can think of a module as a collection of de�nitions that

are stored within a namespace.

Let's consider how we can use modules to refactor the implementation of freq.ml.

https://doi.org/10.1017/9781009129220.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.007

70 Files, Modules, and Programs

Remember that the variable counts contains an association list representing the counts

of the lines seen so far. But updating an association list takes time linear in the length

of the list, meaning that the time complexity of processing a �le is quadratic in the

number of distinct lines in the �le.

We can �x this problem by replacing association lists with amore e�cient data struc-

ture. To do that, we'll �rst factor out the key functionality into a separate module with

an explicit interface. We can consider alternative (and more e�cient) implementations

once we have a clear interface to program against.

We'll start by creating a �le, counter.ml, that contains the logic for maintaining the

association list used to represent the frequency counts. The key function, called touch,

bumps the frequency count of a given line by one.

open Base

let touch counts line =
let count =
match List.Assoc.find ~equal:String.equal counts line with
| None -> 0
| Some x -> x

in
List.Assoc.add ~equal:String.equal counts line (count + 1)

The �le counter.ml will be compiled into a module named Counter, where the

name of the module is derived automatically from the �lename. The module name is

capitalized even if the �le is not. Indeed, module names are always capitalized.

We can now rewrite freq.ml to use Counter.

open Base
open Stdio

let build_counts () =
In_channel.fold_lines In_channel.stdin ~init:[] ~f:Counter.touch

let () =
build_counts ()
|> List.sort ~compare:(fun (_, x) (_, y) -> Int.descending x y)
|> (fun l -> List.take l 10)
|> List.iter ~f:(fun (line, count) -> printf "%3d: %s\n" count line)

The resulting code can still be built with dune, which will discover dependencies

and realize that counter.ml needs to be compiled.

$ dune build freq.exe

5.3 Signatures and Abstract Types

While we've pushed some of the logic to the Counter module, the code in freq.ml

can still depend on the details of the implementation of Counter. Indeed, if you look

at the de�nition of build_counts, you'll see that it depends on the fact that the empty

set of frequency counts is represented as an empty list. We'd like to prevent this kind

https://doi.org/10.1017/9781009129220.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.007

5.3 Signatures and Abstract Types 71

of dependency, so we can change the implementation of Counter without needing to

change client code like that in freq.ml.

The implementation details of a module can be hidden by attaching an interface.

(Note that in the context of OCaml, the terms interface, signature, andmodule type are

all used interchangeably.) A module de�ned by a �le filename.ml can be constrained

by a signature placed in a �le called filename.mli.

For counter.mli, we'll start by writing down an interface that describes what's

currently available in counter.ml, without hiding anything. val declarations are used

to specify values in a signature. The syntax of a val declaration is as follows:

val <identifier> : <type>

Using this syntax, we can write the signature of counter.ml as follows.

open Base

(** Bump the frequency count for the given string. *)
val touch : (string * int) list -> string -> (string * int) list

Note that dune will detect the presence of the mli �le automatically and include it

in the build.

To hide the fact that frequency counts are represented as association lists, we'll need

to make the type of frequency counts abstract. A type is abstract if its name is exposed

in the interface, but its de�nition is not. Here's an abstract interface for Counter:

open Base

(** A collection of string frequency counts *)
type t

(** The empty set of frequency counts *)
val empty : t

(** Bump the frequency count for the given string. *)
val touch : t -> string -> t

(** Converts the set of frequency counts to an association list. A
string shows up at most once, and the counts are >= 1. *)

val to_list : t -> (string * int) list

We added empty and to_list to Counter, since without them there would be no way

to create a Counter.t or get data out of one.

We also used this opportunity to document the module. The mli �le is the place

where you specify your module's interface, and as such is a natural place to put

documentation. We started our comments with a double asterisk to cause them to be

picked up by the odoc tool when generating API documentation. We'll discuss odoc

more in Chapter 22.2.2 (Browsing Interface Documentation).

Here's a rewrite of counter.ml to match the new counter.mli:

open Base

type t = (string * int) list

https://doi.org/10.1017/9781009129220.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.007

72 Files, Modules, and Programs

let empty = []
let to_list x = x

let touch counts line =
let count =
match List.Assoc.find ~equal:String.equal counts line with
| None -> 0
| Some x -> x

in
List.Assoc.add ~equal:String.equal counts line (count + 1)

If we now try to compile freq.ml, we'll get the following error:

$ dune build freq.exe
File "freq.ml", line 5, characters 53-66:
5 | In_channel.fold_lines In_channel.stdin ~init:[] ~f:Counter.touch

^^^^^^^^^^^^^
Error: This expression has type Counter.t -> Export.string ->

Counter.t
but an expression was expected of type
'a list -> Export.string -> 'a list

Type Counter.t is not compatible with type 'a list
[1]

This is because freq.ml depends on the fact that frequency counts are represented

as association lists, a fact that we've just hidden. We just need to �x build_counts to

use Counter.empty instead of [] and to use Counter.to_list to convert the completed

counts to an association list. The resulting implementation is shown below.

open Base
open Stdio

let build_counts () =
In_channel.fold_lines
In_channel.stdin
~init:Counter.empty
~f:Counter.touch

let () =
build_counts ()
|> Counter.to_list
|> List.sort ~compare:(fun (_, x) (_, y) -> Int.descending x y)
|> (fun counts -> List.take counts 10)
|> List.iter ~f:(fun (line, count) -> printf "%3d: %s\n" count line)

With this implementation, the build now succeeds!

$ dune build freq.exe

Now we can turn to optimizing the implementation of Counter. Here's an alternate

and far more e�cient implementation, based on Base's Map data structure.

open Base

type t = int Map.M(String).t

let empty = Map.empty (module String)
let to_list t = Map.to_alist t

https://doi.org/10.1017/9781009129220.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.007

5.4 Concrete Types in Signatures 73

let touch t s =
let count =
match Map.find t s with
| None -> 0
| Some x -> x

in
Map.set t ~key:s ~data:(count + 1)

There's some unfamiliar syntax in the above example, in particular the use of int

Map.M(String).t to indicate the type of a map, and Map.empty (module String) to

generate an empty map. Here, we're making use of a more advanced feature of the

language (speci�cally, functors and �rst-class modules, which we'll get to in later

chapters). The use of these features for the Map data-structure in particular is covered

in Chapter 15 (Maps and Hash Tables).

5.4 Concrete Types in Signatures

In our frequency-count example, the module Counter had an abstract type Counter.t

for representing a collection of frequency counts. Sometimes, you'll want to make a

type in your interface concrete, by including the type de�nition in the interface.

For example, imagine we wanted to add a function to Counter for returning the line

with the median frequency count. If the number of lines is even, then there is no single

median, and the function would return the lines before and after the median instead.

We'll use a custom type to represent the fact that there are two possible return values.

Here's a possible implementation:

type median =
| Median of string
| Before_and_after of string * string

let median t =
let sorted_strings =
List.sort (Map.to_alist t) ~compare:(fun (_, x) (_, y) ->

Int.descending x y)
in
let len = List.length sorted_strings in
if len = 0 then failwith "median: empty frequency count";
let nth n = fst (List.nth_exn sorted_strings n) in
if len % 2 = 1
then Median (nth (len / 2))
else Before_and_after (nth ((len / 2) - 1), nth (len / 2))

In the above, we use failwith to throw an exception for the case of the empty

list. We'll discuss exceptions more in Chapter 8 (Error Handling). Note also that the

function fst simply returns the �rst element of any two-tuple.

Now, to expose this usefully in the interface, we need to expose both the function

and the type median with its de�nition. Note that values (of which functions are an

example) and types have distinct namespaces, so there's no name clash here. Adding

the following two lines to counter.mli does the trick.

https://doi.org/10.1017/9781009129220.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.007

74 Files, Modules, and Programs

(** Represents the median computed from a set of strings. In the case
where there is an even number of choices, the one before and after
the median is returned. *)

type median =
| Median of string
| Before_and_after of string * string

val median : t -> median

The decision of whether a given type should be abstract or concrete is an important

one. Abstract types give you more control over how values are created and accessed,

and make it easier to enforce invariants beyond what is enforced by the type itself;

concrete types let you expose more detail and structure to client code in a lightweight

way. The right choice depends very much on the context.

5.5 Nested Modules

Up until now, we've only considered modules that correspond to �les, like counter.ml.

But modules (and module signatures) can be nested inside other modules. As a simple

example, consider a program that needs to deal with multiple identi�ers like usernames

and hostnames. If you just represent these as strings, then it becomes easy to confuse

one with the other.

A better approach is to mint new abstract types for each identi�er, where those types

are under the covers just implemented as strings. That way, the type systemwill prevent

you from confusing a username with a hostname, and if you do need to convert, you

can do so using explicit conversions to and from the string type.

Here's how you might create such an abstract type, within a submodule:

open Base

module Username : sig
type t

val of_string : string -> t
val to_string : t -> string
val (=) : t -> t -> bool

end = struct
type t = string

let of_string x = x
let to_string x = x
let (=) = String.(=)

end

Note that the to_string and of_string functions above are implemented simply as

the identity function, which means they have no runtime e�ect. They are there purely

as part of the discipline that they enforce on the code through the type system. We also

chose to put in an equality function, so you can check if two usernames match. In a real

application, we might want more functionality, like the ability to hash and compare

usernames, but we've kept this example purposefully simple.

https://doi.org/10.1017/9781009129220.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.007

5.6 Opening Modules 75

The basic structure of a module declaration like this is:

module <name> : <signature> = <implementation>

We could have written this slightly di�erently, by giving the signature its own top-

level module type declaration, making it possible to create multiple distinct types with

the same underlying implementation in a lightweight way:

open Base
module Time = Core.Time

module type ID = sig
type t

val of_string : string -> t
val to_string : t -> string
val (=) : t -> t -> bool

end

module String_id = struct
type t = string

let of_string x = x
let to_string x = x
let (=) = String.(=)

end

module Username : ID = String_id
module Hostname : ID = String_id

type session_info =
{ user : Username.t
; host : Hostname.t
; when_started : Time.t
}

let sessions_have_same_user s1 s2 = Username.(=) s1.user s2.host

The preceding code has a bug: it compares the username in one session to the host in

the other session, when it should be comparing the usernames in both cases. Because

of how we de�ned our types, however, the compiler will �ag this bug for us.

$ dune build session_info.exe
File "session_info.ml", line 29, characters 59-66:
29 | let sessions_have_same_user s1 s2 = Username.(=) s1.user

s2.host

^^^^^^^
Error: This expression has type Hostname.t

but an expression was expected of type Username.t
[1]

This is a trivial example, but confusing di�erent kinds of identi�ers is a very real

source of bugs, and the approach of minting abstract types for di�erent classes of

identi�ers is an e�ective way of avoiding such issues.

https://doi.org/10.1017/9781009129220.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.007

76 Files, Modules, and Programs

5.6 Opening Modules

Most of the time, you refer to values and types within a module by using the module

name as an explicit quali�er. For example, you write List.map to refer to the map

function in the List module. Sometimes, though, you want to be able to refer to the

contents of a module without this explicit quali�cation. That's what the open statement

is for.

We've encountered open already, speci�cally where we've written open Base to get

access to the standard de�nitions in the Base library. In general, opening a module

adds the contents of that module to the environment that the compiler looks at to �nd

the de�nition of various identi�ers. Here's an example:

module M = struct let foo = 3 end;;
module M : sig val foo : int end

foo;;
Line 1, characters 1-4:

Error: Unbound value foo

open M;;
foo;;
- : int = 3

Here's some general advice on how to use open e�ectively.

5.6.1 Open Modules Rarely

open is essential when you're using an alternative standard library like Base, but it's

generally good style to keep the opening of modules to a minimum. Opening a module

is basically a trade-o� between terseness and explicitness�the more modules you

open, the fewer module quali�cations you need, and the harder it is to look at an

identi�er and �gure out where it comes from.

When you do use open, it should mostly be with modules that were designed to be

opened, like Base itself, or Option.Monad_infix or Float.O within Base..

5.6.2 Prefer Local Opens

It's generally better to keep down the amount of code a�ected by an open. One great

tool for this is local opens, which let you restrict the scope of an open to an arbitrary

expression. There are two syntaxes for local opens. The following example shows the

let open syntax;

let average x y =
let open Int64 in
(x + y) / of_int 2;;

val average : int64 -> int64 -> int64 = <fun>

Here, of_int and the in�x operators are the ones from the Int64 module.

The following shows o� a more lightweight syntax which is particularly useful for

small expressions.

https://doi.org/10.1017/9781009129220.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.007

5.7 Including Modules 77

let average x y =
Int64.((x + y) / of_int 2);;

val average : int64 -> int64 -> int64 = <fun>

5.6.3 Using Module Shortcuts Instead

An alternative to local opens that makes your code terser without giving up on explic-

itness is to locally rebind the name of a module. So, when using the Counter.median

type, instead of writing:

let print_median m =
match m with
| Counter.Median string -> printf "True median:\n %s\n" string
| Counter.Before_and_after (before, after) ->
printf "Before and after median:\n %s\n %s\n" before after

you could write:

let print_median m =
let module C = Counter in
match m with
| C.Median string -> printf "True median:\n %s\n" string
| C.Before_and_after (before, after) ->
printf "Before and after median:\n %s\n %s\n" before after

Because the module name C only exists for a short scope, it's easy to read and

remember what C stands for. Rebinding modules to very short names at the top level

of your module is usually a mistake.

5.7 Including Modules

While opening amodule a�ects the environment used to search for identi�ers, including

a module is a way of adding new identi�ers to a module proper. Consider the following

simple module for representing a range of integer values:

module Interval = struct
type t = | Interval of int * int

| Empty

let create low high =
if high < low then Empty else Interval (low,high)

end;;
module Interval :

sig type t = Interval of int * int | Empty val create : int -> int

-> t end

We can use the include directive to create a new, extended version of the Interval

module:

module Extended_interval = struct
include Interval

https://doi.org/10.1017/9781009129220.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.007

78 Files, Modules, and Programs

let contains t x =
match t with
| Empty -> false
| Interval (low,high) -> x >= low && x <= high

end;;
module Extended_interval :

sig

type t = Interval.t = Interval of int * int | Empty

val create : int -> int -> t

val contains : t -> int -> bool

end

Extended_interval.contains (Extended_interval.create 3 10) 4;;
- : bool = true

The di�erence between include and open is that we've done more than change how

identi�ers are searched for: we've changed what's in the module. If we'd used open,

we'd have gotten a quite di�erent result:

module Extended_interval = struct
open Interval

let contains t x =
match t with
| Empty -> false
| Interval (low,high) -> x >= low && x <= high

end;;
module Extended_interval :

sig val contains : Extended_interval.t -> int -> bool end

Extended_interval.contains (Extended_interval.create 3 10) 4;;
Line 1, characters 29-53:

Error: Unbound value Extended_interval.create

To consider a more realistic example, imagine you wanted to build an extended

version of the Option module, where you've added some functionality not present in

the module as distributed in Base. That's a job for include.

open Base

(* The new function we're going to add *)
let apply f_opt x =
match f_opt with
| None -> None
| Some f -> Some (f x)

(* The remainder of the option module *)
include Option

Now, how do we write an interface for this new module? It turns out that include

works on signatures as well, so we can pull essentially the same trick to write our mli.

The only issue is that we need to get our hands on the signature for the Optionmodule.

This can be done using module type of, which computes a signature from a module:

open Base

(* Include the interface of the option module from Base *)
include module type of Option

https://doi.org/10.1017/9781009129220.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.007

5.8 Missing De�nitions 79

(* Signature of function we're adding *)
val apply : ('a -> 'b) t -> 'a -> 'b t

Note that the order of declarations in the mli does not need to match the order of

declarations in the ml. The order of declarations in the ml mostly matters insofar as it

a�ects which values are shadowed. If we wanted to replace a function in Option with

a new function of the same name, the declaration of that function in the ml would have

to come after the include Option declaration.

We can now use Ext_option as a replacement for Option. If we want to use

Ext_option in preference to Option in our project, we can create a �le of common

de�nitions, which in this case we'll call import.ml.

module Option = Ext_option

Then, by opening Import, we can shadow Base's Option module with our extension.

open Base
open Import

let lookup_and_apply map key x = Option.apply (Map.find map key) x

5.8 Common Errors with Modules

When OCaml compiles a program with an ml and an mli, it will complain if it detects

a mismatch between the two. Here are some of the common errors you'll run into.

5.8.1 Type Mismatches

The simplest kind of error is where the type speci�ed in the signature does not match

the type in the implementation of the module. As an example, if we replace the val

declaration in counter.mli by swapping the types of the �rst two arguments:

(** Bump the frequency count for the given string. *)
val touch : string -> t -> t

and we try to compile, we'll get the following error.

$ dune build freq.exe
File "counter.ml", line 1:
Error: The implementation counter.ml

does not match the interface
.freq.eobjs/byte/dune__exe__Counter.cmi:
Values do not match:
val touch :
('a, int, 'b) Base.Map.t -> 'a -> ('a, int, 'b) Base.Map.t

is not included in
val touch : string -> t -> t

File "counter.mli", line 16, characters 0-28: Expected
declaration
File "counter.ml", line 8, characters 4-9: Actual declaration

[1]

https://doi.org/10.1017/9781009129220.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.007

80 Files, Modules, and Programs

5.8.2 Missing De�nitions

We might decide that we want a new function in Counter for pulling out the frequency

count of a given string. We could add that to the mli by adding the following line.

(** Returns the frequency count for the given string *)
val count : t -> string -> int

Now if we try to compile without actually adding the implementation, we'll get this

error.

$ dune build freq.exe
File "counter.ml", line 1:
Error: The implementation counter.ml

does not match the interface
.freq.eobjs/byte/dune__exe__Counter.cmi:
The value `count' is required but not provided
File "counter.mli", line 15, characters 0-30: Expected

declaration
[1]

A missing type de�nition will lead to a similar error.

5.8.3 Type De�nition Mismatches

Type de�nitions that show up in an mli need to match up with corresponding de�-

nitions in the ml. Consider again the example of the type median. The order of the

declaration of variants matters to the OCaml compiler, so the de�nition of median in

the implementation listing those options in a di�erent order:

(** Represents the median computed from a set of strings. In the case
where there is an even number of choices, the one before and after
the median is returned. *)

type median =
| Before_and_after of string * string
| Median of string

val median : t -> median

will lead to a compilation error.

$ dune build freq.exe
File "counter.ml", line 1:
Error: The implementation counter.ml

does not match the interface
.freq.eobjs/byte/dune__exe__Counter.cmi:
Type declarations do not match:
type median = Median of string | Before_and_after of string

* string
is not included in
type median = Before_and_after of string * string | Median

of string
Constructors number 1 have different names, Median and

Before_and_after.
File "counter.mli", lines 21-23, characters 0-20: Expected

declaration

https://doi.org/10.1017/9781009129220.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.007

5.9 Designing with Modules 81

File "counter.ml", lines 17-19, characters 0-39: Actual
declaration

[1]

Order is similarly important to other type declarations, including the order in which

record �elds are declared and the order of arguments (including labeled and optional

arguments) to a function.

5.8.4 Cyclic Dependencies

In most cases, OCaml doesn't allow cyclic dependencies, i.e., a collection of de�nitions

that all refer to one another. If you want to create such de�nitions, you typically have

to mark them specially. For example, when de�ning a set of mutually recursive values

(like the de�nition of is_even and is_odd in Chapter 3.2.3 (Recursive Functions)), you

need to de�ne them using let rec rather than ordinary let.

The same is true at the module level. By default, cyclic dependencies between

modules are not allowed, and cyclic dependencies among �les are never allowed.

Recursive modules are possible but are a rare case, and we won't discuss them further

here.

The simplest example of a forbidden circular reference is a module referring to

its own module name. So, if we tried to add a reference to Counter from within

counter.ml.

let singleton l = Counter.touch Counter.empty

we'll see this error when we try to build:

$ dune build freq.exe
File "counter.ml", line 18, characters 18-31:
18 | let singleton l = Counter.touch Counter.empty

^^^^^^^^^^^^^
Error: The module Counter is an alias for module Dune__exe__Counter,

which is the current compilation unit
[1]

The problem manifests in a di�erent way if we create cyclic references between

�les. We could create such a situation by adding a reference to Freq from counter.ml,

e.g., by adding the following line.

let _build_counts = Freq.build_counts

In this case, dune will notice the error and complain explicitly about the cycle:

$ dune build freq.exe
Error: Dependency cycle between the following files:
_build/default/.freq.eobjs/freq.impl.all-deps

-> _build/default/.freq.eobjs/counter.impl.all-deps
-> _build/default/.freq.eobjs/freq.impl.all-deps
[1]

https://doi.org/10.1017/9781009129220.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.007

82 Files, Modules, and Programs

5.9 Designing with Modules

The module system is a key part of how an OCaml program is structured. As such,

we'll close this chapter with some advice on how to think about designing that structure

e�ectively.

5.9.1 Expose Concrete Types Rarely

When designing an mli, one choice that you need to make is whether to expose the

concrete de�nition of your types or leave them abstract. Most of the time, abstraction

is the right choice, for two reasons: it enhances the �exibility of your design, and it

makes it possible to enforce invariants on the use of your module.

Abstraction enhances �exibility by restricting how users can interact with your types,

thus reducing the ways in which users can depend on the details of your implementation.

If you expose types explicitly, then users can depend on any and every detail of the types

you choose. If they're abstract, then only the speci�c operations you want to expose are

available. This means that you can freely change the implementation without a�ecting

clients, as long as you preserve the semantics of those operations.

In a similar way, abstraction allows you to enforce invariants on your types. If your

types are exposed, then users of the module can create new instances of that type (or

if mutable, modify existing instances) in any way allowed by the underlying type. That

may violate a desired invariant i.e., a property about your type that is always supposed

to be true. Abstract types allow you to protect invariants by making sure that you only

expose functions that preserve your invariants.

Despite these bene�ts, there is a trade-o� here. In particular, exposing types con-

cretely makes it possible to use pattern-matching with those types, which as we saw in

Chapter 4 (Lists and Patterns) is a powerful and important tool. You should generally

only expose the concrete implementation of your types when there's signi�cant value

in the ability to pattern match, and when the invariants that you care about are already

enforced by the data type itself.

5.9.2 Design for the Call Site

When writing an interface, you should think not just about how easy it is to understand

the interface for someone who reads your carefully documented mli �le, but more

importantly, you want the call to be as obvious as possible for someone who is reading

it at the call site.

The reason for this is that most of the time, people interacting with your API will

be doing so by reading and modifying code that uses the API, not by reading the

interface de�nition. By making your API as obvious as possible from that perspective,

you simplify the lives of your users.

There are many ways of improving readability of client code. One example is

labeled arguments (discussed in Chapter 3.2.6 (Labeled Arguments)), which act as

documentation that is available at the call site.

https://doi.org/10.1017/9781009129220.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.007

5.9 Interfaces Before Implementations 83

You can also improve readability simply by choosing good names for your functions,

variant tags and record �elds. Good names aren't always long, to be clear. If you wanted

to write an anonymous function for doubling a number: (fun x -> x * 2), a short

variable name like x is best. A good rule of thumb is that names that have a small scope

should be short, whereas names that have a large scope, like the name of a function in

a module interface, should be longer and more descriptive.

There is of course a tradeo� here, in that making your APIs more explicit tends to

make themmore verbose as well. Another useful rule of thumb is that more rarely used

names should be longer and more explicit, since the cost of verbosity goes down and

the bene�t of explicitness goes up the less often a name is used.

5.9.3 Create Uniform Interfaces

Designing the interface of a module is a task that should not be thought of in isolation.

The interfaces that appear in your codebase should play together harmoniously. Part of

achieving that is standardizing aspects of those interfaces.

Base, Core and related libraries have been designed with a uniform set of standards

in mind around the design of module interfaces. Here are some of the guidelines that

they use.

• A module for (almost) every type. You should mint a module for almost every type

in your program, and the primary type of a given module should be called t.

• Put t �rst. If you have a module M whose primary type is M.t, the functions in M that

take a value of type M.t should take it as their �rst argument.

• Functions that routinely throw an exception should end in _exn. Otherwise, errors

should be signaled by returning an option or an Or_error.t (both of which are

discussed in Chapter 8 (Error Handling)).

There are also standards in Base about what the type signature for speci�c functions

should be. For example, the signature for map is always essentially the same, no

matter what the underlying type it is applied to. This kind of function-by-function

API uniformity is achieved through the use of signature includes, which allow for

di�erent modules to share components of their interface. This approach is described

in Chapter 11.2.4 (Using Multiple Interfaces).

Base's standards may or may not �t your projects, but you can improve the usability

of your codebase by �nding some consistent set of standards to apply.

5.9.4 Interfaces Before Implementations

OCaml's concise and �exible type language enables a type-oriented approach to soft-

ware design. Such an approach involves thinking through and writing out the types

you're going to use before embarking on the implementation itself.

This is a good approach both when working in the core language, where you would

write your type de�nitions before writing the logic of your computations, as well as at

https://doi.org/10.1017/9781009129220.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.007

84 Files, Modules, and Programs

the module level, where you would write a �rst draft of your mli before working on

the ml.

Of course, the design process goes in both directions. You'll often �nd yourself

going back and modifying your types in response to things you learn by working on the

implementation. But types and signatures provide a lightweight tool for constructing

a skeleton of your design in a way that helps clarify your goals and intent, before you

spend a lot of time and e�ort �eshing it out.

https://doi.org/10.1017/9781009129220.007 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.007

