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The collapse of a gas or vapour bubble near a non-porous boundary is directed at
the boundary due to the asymmetry induced by the nearby boundary. High surface
pressure and shear stress from this collapse can damage, or clean, the surface. A porous
boundary, such as a filter, would act similarly to a non-porous boundary but with reduced
asymmetry and thus reduced effect. Prior research has measured the cleaning effect of
bubbles on filters using ultrasonic cleaning, but it is not known how the bubble dynamics
are fundamentally affected by the porosity of the surface. We address this question
experimentally by investigating how the standoff distance, porosity, pore size and pore
shape affect two collapse properties: bubble displacement and bubble rebound size. We
show that these properties depend primarily on the standoff distance and porosity of
the boundary and extend a previously developed numerical model that approximates this
behaviour. Using the numerical model in combination with experimental data, we show
that bubble displacement and bubble rebound size each collapse onto respective single
curves.
Key words: bubble dynamics, cavitation

1. Introduction

Collapsing bubbles can be found in numerous physical systems. Typically this involves
bubbles collapsing in proximity to various boundaries. The high surface pressures and
shear stresses generated by collapsing bubbles can damage, or clean, the boundary. This
cleaning effect can be harnessed through processes such as ultrasonic cleaning (Reuter &
Mettin 2016) which can involve complex geometries (Verhaagen, Zanderink & Fernandez
Rivas 2016).

Single bubbles collapsing near simple geometries, such as flat rigid boundaries, have
been widely investigated (Benjamin & Ellis 1966). Much of this research has focused on
understanding bubble morphology and jetting (Kröninger et al. 2010; Zhang et al. 2019)
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and the effect of bubble collapse on the boundary. Of particular importance for
consideration of cleaning and damage are measurements of nearby surface shear stress
and pressure, both experimentally (Dijkink & Ohl 2008; Luo et al. 2018; Occhicone et al.
2019) and numerically (Li et al. 2016; Koukouvinis et al. 2018; Zeng et al. 2018). The
resulting cleaning and surface damage have also been widely investigated (Ohl et al. 2006;
Sagar & el Moctar 2020; Reuter, Deiter & Ohl 2022).

There has been a recent effort to characterise single bubble collapse in a range of
complex geometries. For example, characterising jet direction in a selection of geometries
including in concave corners (Tagawa & Peters 2018), inside rectangular and triangular
prisms (Molefe & Peters 2019), above slots (Andrews, Fernández Rivas & Peters 2020) and
in the corner of a wall and a free surface (Kiyama et al. 2021). Bubble morphology, flow
properties and jetting behaviours have also been investigated in combinations of concave
corners and free surfaces (Zhang et al. 2017; Brujan et al. 2018), between two parallel
rigid boundaries (Brujan, Takahira & Ogasawara 2019; Rodriguez et al. 2022), inside a
slot (Brujan et al. 2022), on a convex corner (Zhang et al. 2020), on a crevice (Trummler
et al. 2020) and on ridge-patterned structures (Kim & Kim 2020; Kadivar, el Moctar &
Sagar 2022). Nevertheless, there remain fundamental complex geometries that have yet to
be explored.

Porous materials are a large family of complex geometries with a wide range of
applications. Broadly, they could be categorised as connected or unconnected. One
example of an unconnected porous material is a bed of sand, such as those investigated
by Sieber, Preso & Farhat (2022). The sand creates pores which are permeated by water,
but the grains are able to separate which allows for significant deformation of the bed.
The influence of the bubble on the boundary is shown to depend on the granular size of
the sand, including behaviours such as granular jets and displacement of the boundary
material. However, the boundary is modelled as a liquid–liquid interface and it is shown
that the bubble rebound and displacement are principally driven by the density difference
between the pliable granular suspension and the water.

Connected porous materials have a wide range of applications, of which one very
practical application is filters. Filters are typically porous materials through which a fluid
is passed in order to remove contamination. This contamination builds up on the filter,
reducing performance. Ultrasonic cleaning can be applied to filters in order to remove the
built-up contamination from the filter (Reuter et al. 2017).

The simplest example of a porous material is a flat plate with a pattern of through-holes.
Some research has investigated the problem of a plate with a through-hole bounding a
free surface in relation to breaches of maritime hulls (Cui et al. 2021, 2022; He et al.
2021). Similarly, Sun et al. (2022b) investigated bubble collapse near a rigid surface
with a gas-entrapping hole. This concept was also investigated by Gonzalez-Avila et al.
(2020) and Sun et al. (2022a), who considered surfaces with a pattern of gas-entrapping
holes. In all these cases, bubbles were found to translate away from the boundary, acting
analogously to a typical free surface.

Liu et al. (2017) investigated a bubble collapsing between a free surface and a submerged
rigid boundary with a through-hole. Bubbles collapsing close to a fully submerged rigid
boundary with a single through-hole have also been investigated, both experimentally
(Lew, Klaseboer & Khoo 2007; Karri et al. 2011; Abboud & Oweis 2013) and numerically
(Khoo, Klaseboer & Hung 2005). Similarly, Moloudi et al. (2019) numerically investigated
bubble collapse dynamics close to a convex boundary with a through-hole. These
investigations revealed similar tendencies of the bubbles during collapse, such as the
bubble translating towards and through the holes, the bubble surface expanding into the
holes, and stronger counter-jetting than plates without holes.
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Figure 1. Top-down view schematic diagrams of porous plates with patterns of (a) circular, (b) square or
(c) triangular holes. The scales in each diagram are arbitrary. Orange circles mark horizontal positions above
a hole and green crosses mark horizontal positions between-holes. (d) Side-on cross-section view of a porous
plate with a bubble positioned vertically above it.

In this research, we investigate a less-studied phenomenon: how a series of porous plates
affect bubble collapse dynamics. We include some comments on bubble morphology and
measurements of bubble displacement and bubble rebound radius.

2. Problem definition

We define a porous plate as a thin, rigid plate with a pattern of through-holes. The plate
thickness is defined as H, with through-holes of characteristic length W and spacing S.
Three shapes of hole are investigated: circles, squares and triangles. Circles are the
smoothest possible hole shape and triangles are the least-smooth regular polygon, with the
tightest corner angle. Squares are somewhere between the two and are used to achieve high
void fractions due to their efficient tessellation packing. Schematics of these arrangements
are shown in figure 1(a–c). The void fraction φ is defined as the fraction of the total
plate area that is occupied by holes. In this work, we describe a void fraction φ = 0 as
‘non-porous’ and a void fraction φ > 0 as ‘porous’, both of which are assumed to be rigid.
For circular holes the void fraction is

φ = π
√

3
6

(
W
S

)2

, (2.1)

for square holes the void fraction is

φ =
(

W
S

)2

, (2.2)

and for triangular holes the void fraction is

φ = 1
3

(
W
S

)2

. (2.3)

Bubbles are positioned vertically at a distance Y from the boundary with time-variant
radius R and maximum radius R0. These parameters are shown in figure 1(d). Horizontally,
the bubble can be positioned in two dimensions with varying proximity to the holes. We
identify the two extreme cases as a bubble directly over a hole and a bubble directly over
the plate between holes. These two cases represent the minimum and maximum area
of solid boundary near the bubble. The horizontal positions of bubbles above holes are
shown by the orange circles in figure 1. The horizontal positions of bubbles above the
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Figure 2. Schematic showing the experimental set-up for laser-induced cavitation using an off-axis parabolic
mirror to generate bubbles near a porous plate.

plate between holes are shown by the green crosses in figure 1 and are usually referred to
hereafter as ‘between-holes’.

The vertical distance of the bubble is normalised by the maximum bubble radius to
produce the dimensionless standoff distance γ = Y/R0. The hole size is also normalised
with the maximum bubble radius, W/R0.

In this research we investigate fixed, rigid plates with a constant thickness H = 1 mm
and compare only the effects of bubble position and hole geometry.

3. Methods

3.1. Experimental method
Experiments were performed using laser-induced cavitation. Laser-induced cavitation
operates by focusing a laser pulse at a point in a volume of water (Lauterborn 1972).
The high energy at the focal point forms a plasma which rapidly heats and vaporises the
surrounding water, creating a bubble. The focusing optics are typically either a microscope
objective or a parabolic mirror. In our previous research, using a microscope objective,
we showed that bubbles with greater asymmetry lead to greater spread of experimental
measurements of bubble displacement (Andrews & Peters 2022). Thus, following the
example of Obreschkow et al. (2013), we have implemented an off-axis parabolic mirror
set-up, as shown in figure 2. This method produces more consistent bubbles with improved
symmetry, reducing the spread of data. In addition, the larger focusing angle (with a
higher equivalent numerical aperture), allows for larger bubbles to be generated without
nucleating additional bubbles nearby. A statistical comparison between the two methods
is available in the supplementary material and movies available at https://doi.org/10.1017/
jfm.2023.266.

In this research, a Q-switched Nd:YAG laser (‘Nano PIV’ from Litron Lasers) was
used to generate an 8 ns pulse at a wavelength of 532 nm. The laser output energy was
approximately 97 mJ and was subsequently attenuated with the attenuator set to between
70 % and 75 %. The beam was restricted by an iris to be approximately 3 mm in diameter,
in order to remain well-collimated after expansion, and then expanded with a 10× beam
expander to approximately 30 mm in diameter. The expanded beam was focused by a gold
off-axis parabolic mirror with a focusing angle of approximately 41◦ (equivalent numerical
aperture = 0.35). This methodology produced bubbles with radii ranging from 1.07 to
1.65 mm, depending primarily on laser input power and attenuation. Each combination
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Bubble collapse near porous plates

t = 0 µs t = 30 µs t = 100 µs t = 160 µs t = 190 µs

1 mm

Figure 3. Frames showing the expansion and collapse of two bubbles, one nucleated at the laser focal point
and one simultaneously nucleated where the laser impinges on a nearby steel plate. An approximate scale bar
is given. This high-speed recording is ‘Movie 1’ in the supplementary material and movies.

of geometry and position was repeated at least three times. The radius varied with a
standard deviation of 0.030 mm and the displacement varied with a standard deviation
of 0.033 mm. Both of these values are on a comparable scale to the average measurement
resolution of 0.025 mm. Notably, the gold surface absorbs most of the laser energy, but
is less likely to degrade when immersed in water when compared with mirror materials
designed to operate with a 532 nm laser (Obreschkow et al. 2013). However, a recent study
has reported use of an aluminium off-axis parabolic mirror (Sieber et al. 2022) so the
degradation concern may not be as significant as assumed originally.

Porous plates were created by laser cutting 50 mm × 50 mm plates out of stainless
steel with a thickness of 1 mm. Stainless steel was selected to ensure rigidity in the
plates because other materials, such as 1 mm acrylic, flex significantly under the load of
a bubble collapsing, which is known to reduce or reverse displacement (Gibson & Blake
1982; Brujan et al. 2001). Holes had characteristic lengths between 0.40 and 4.79 mm,
primarily limited at the low end by laser cut quality. Due to the position of the bubble in
close proximity to the plate, the diverging laser impinges upon the plate. If the plate is
sufficiently close to the focal point, or the focal angle is narrow, the plate can absorb a
significant amount of laser energy which can then nucleate a second bubble at the surface
of the material. This nucleation is shown in figure 3. In order to stop significant surface
nucleation, the plates were polished to reduce laser energy absorption by increasing the
reflectivity. All geometries used are listed in table 1 with measurements of the geometric
parameters and range of bubble sizes.

The porous plates were attached to an arm which was moved by a translation stage. The
porous plates were submerged in a 174 mm × 180 mm × 177 mm glass tank of purified
and partially degassed water as shown in figure 2. The bubbles were back-lit by a 100 W
LED panel and recorded at 100 000 frames per second with a high-speed camera (Photron
FASTCAM SA-X2 with a 105 mm Nikon Micro-Nikkor lens). A 550 nm longpass filter
was used to protect the camera from the laser.

The experiment produced shadowgraph movies of the bubbles which were then analysed
with automatic image analysis software written in Python. For each frame, the background
was subtracted, and a binary filter was applied to isolate the bubble. The bubble position
was measured as the centroid of the isolated pixels and the bubble radius was calculated
as the radius of a circle with equal area to the bubble in the image. For deformed bubbles,
where no clear single definition of a radius exists, this is the selected equivalent radius. The
three parameters that were extracted from these measurements were the maximum bubble
radius R0; the bubble maximum radius after the first rebound R1; and the displacement of
the bubble between the two radius maxima Δ. These measurements are shown in figure 4.
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Hole shape φ (%) W (mm) A (mm2) R0 (mm)

Non-porous 0 — — 1.50
Circles 7.3 1.15 1.04 1.48
Circles 11.5 0.40 0.12 1.49
Triangles 13.4 1.10 0.52 1.33
Circles 14.6 1.15 1.04 1.45
Circles 21.6 1.14 1.02 1.50
Circles 22.7 4.79 18.02 1.43
Squares 22.9 1.96 3.84 1.34
Triangles 23.1 2.35 2.40 1.31
Circles 23.3 2.37 4.41 1.41
Triangles 25.9 1.08 0.50 1.33
Circles 29.3 1.15 1.04 1.57
Circles 35.6 1.13 1.01 1.45
Circles 40.7 1.11 0.96 1.51
Triangles 44.1 1.60 1.11 1.33
Squares 44.7 1.94 3.77 1.42
Squares 52.7 1.94 3.78 1.32
Squares 59.4 1.94 3.75 1.39

Table 1. All experimental geometries used in this research. Ordered by void fraction φ and showing hole
shape; hole characteristic width W; hole area A; and mean bubble size R0.

t = 0 µs t = 140 µs t = 270 µs t = 340 µs t = 420 µs

1 mm

0 200 400

t (µs)

0.4

0.6

0.8

1.0

1.2
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R 
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m
)

2R0

2R1

Δ

(b)

(a)

(c)

Figure 4. (a) Frames from a high-speed recording of a bubble expanding and collapsing near a porous
boundary. Frames at radius maxima (t = 140 μs and t = 340 μs) feature a circle overlay with area equivalent
to the bubble area. (b) Bubble radius variation with time. (c) Composite image of the two frames recorded
at the radius maxima indicated in (b) showing measurements of the radius maxima R0 and R1 and bubble
displacement Δ. This high-speed recording is ‘Movie 2’ in the supplementary material and movies.
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Bubble collapse near porous plates

3.2. Numerical model
Bubbles collapsing in complex geometries experience varied degrees of asymmetry. This
asymmetry can be quantified with the ‘anisotropy parameter’ ζ , a dimensionless equivalent
of the Kelvin impulse, which can predict several bubble collapse properties (Supponen
et al. 2016, 2017; Supponen, Obreschkow & Farhat 2018).

We have previously presented a numerical model, based on the boundary element
method, capable of predicting the anisotropy parameter for arbitrary rigid geometries
(Andrews & Peters 2022). This model assumes that the bubble is spherical and stationary.
Thus, the bubble can be treated as a fixed three-dimensional point sink in potential
flow with a strength depending on the bubble radius and radial velocity of the bubble
surface which are calculated by numerically solving the Rayleigh–Plesset equation. Nearby
boundaries are modelled by a distribution of point sink elements and the no-through-flow
boundary condition is imposed at their centroids. Each element i has a constant sink
strength density σi across its surface and area Ai such that the sink strength of the centroid
point sink is σiAi and the velocity induced at a point j by the element i is

∇Φ|j = σiAi(xj − xi)

4π|xj − xi|3 , (3.1)

where Φ is the velocity potential, xj is a point in the fluid and xi is the centroid position of
the element i.

The bubble is assumed to be stationary and the integral of pressures on the boundary
surface is calculated and integrated over time. This allows the Kelvin impulse to be
estimated and then non-dimensionalised to the anisotropy parameter ζ . Although this
model does not fully capture the flow field, it is sufficient to accurately predict the
anisotropy parameter while remaining comparatively simple.

Porous plates could be directly modelled this way, however a high number of elements
would be required to adequately resolve the holes. Here we propose an adaptation of the
previous model that does not require each hole to be resolved separately.

By assuming that the plate has zero thickness, the plate can be modelled with a single
layer of boundary elements. Elements could then be constructed to surround the holes,
however this would simply act to redistribute the element centroids and reduce the overall
area. Instead, we assume that the plate is homogeneous, and simply scale the element areas
using the void fraction so that the porous element area Ai is

Ai = (1 − φ)Ais, (3.2)
where Ais is the area of the equivalent non-porous element. This method assumes that the
shape of the holes does not matter, and that the holes are small enough that any difference
in horizontal position is negligible. A further description of this area scaling is available
in the supplementary material and movies.

After scaling the areas, the boundary element method solution can proceed as usual,
using the reduced Ai for both the boundary conditions and pressure integration. We have
previously presented the core boundary element method procedure (Andrews et al. 2020)
and anisotropy computations (Andrews & Peters 2022) in detail.

4. Experimental results

4.1. Bubbles close to porous boundaries
Bubbles collapsing in close proximity to porous boundaries show a broad range of
interesting dynamics. In this section, frames from high-speed recordings of five bubble
collapses are presented, demonstrating some of these dynamics.
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t = 129 µs t = 279 µs t = 319 µs t = 359 µs t = 369 µs t = 459 µs

1 mm

Figure 5. Frames from a high-speed recording of a bubble collapsing with a strong jet passing through a hole
in a porous plate with void fraction φ = 44.7 % and square holes of size W = 1.94 mm. A cross-section of
the plate at the bubble position is superimposed with hatched areas indicating the solid part of the plate. This
high-speed recording is ‘Movie 3’ in the supplementary material and movies.

When bubbles collapse close to non-porous boundaries, they produce strong jets that
often impinge on the boundaries. When the bubble is nucleated above a hole (positioned
above the orange circles in figure 1), these jets can propagate through the hole, producing
very long regions of entrained vapour. One such example is shown in figure 5. In this
figure, by measuring the position of the vapour jet tip, an average jet velocity of 39 m s−1

is found between t = 279 and 319 μs. The frame at t = 359 μs shows that the vapour
entrained by the jet extends beyond the bottom of the frame. This region of vapour then
itself very rapidly collapses, as seen at t = 369 μs, followed by the rest of the bubble
collapsing down towards the hole.

As well as allowing jets to pass through the holes, the holes reduce the impedance of the
boundary. Bubbles collapse towards rigid boundaries because the rigid boundary impedes
the flow out from the bubble during expansion and into the bubble during collapse. This
results in the opposite side of the bubble expanding and collapsing much faster, leading
to the overall motion towards the boundary (Blake 1983). When the bubble is directly
over a hole (positioned above the orange circles in figure 1), the hole does not impede
the bubble expansion and collapse. Figure 6 shows one such configuration. Initially, the
bubble expands mostly spherically. However, the bottom of the bubble, positioned directly
over the hole, expands more than the rest of the lower side, resulting in a protrusion visible
in the frame at t = 80 μs. The protrusion expands into the hole when the bubble is at
its maximum size at t = 160 μs. Subsequently, during collapse, the protrusion entirely
withdraws by t = 240 μs, with a clear gap visible between the now-flattened lower surface
and the boundary. Owing to the low impedance of the hole compared with the surrounding
boundary, the centre of the bottom side of the bubble continues collapsing much more
rapidly than the surrounding areas. This leads to a full inversion of the bottom of the
bubble, visible by the upward-facing triangular jet entering from the bottom side of the
bubble at t = 300 μs. These qualitative observations agree well with those reported by
Khoo et al. (2005). The bubble then fully collapses and re-expands by t = 410 μs. It is
interesting to note in the frame at t = 410 μs that the bubble undergoes a rapid ejection
event on the upper right surface, the cause of which is unknown. The bubble goes on to
travel through the hole, breaking up as it goes.

Bubbles positioned above the solid boundary between holes also expand preferentially
towards nearby holes. Figure 7 shows a bubble positioned between four square holes (above
the green cross in figure 1b). At the lower edge of the bubble, the areas closest to the holes
expand more than the centre. These appear as two sharper protrusions on either side of the
bottom of the bubble in the frames at t = 60 and 80 μs. On the boundary, an extremely
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t = 0 µs t = 80 µs t = 160 µs t = 240 µs t = 300 µs t = 410 µs

1 mm

Figure 6. Frames from a high-speed recording of a bubble collapsing through a hole in a porous plate with
void fraction φ = 21.6 % and circular holes of size W = 1.14 mm. A cross-section of the plate at the bubble
position is superimposed with hatched areas indicating the solid part of the plate. This high-speed recording is
‘Movie 4’ in the supplementary material and movies.

t = 0 µs t = 60 µs t = 80 µs t = 230 µs t = 280 µs t = 400 µs

1 mm

Figure 7. Frames from a high-speed recording of a bubble collapsing above the area between four holes in
a porous plate with void fraction φ = 44.7 % and square holes of size W = 1.94 mm. A cross-section of the
plate through the row of holes in front of the bubble is superimposed with hatched areas indicating the solid
part of the plate. This high-speed recording is ‘Movie 5’ in the supplementary material and movies.

small bubble is nucleated by the laser impinging on the boundary. This bubble is visible
in the first three frames as a shadow directly below the main bubble. The main bubble,
however, does not contact the boundary at the centre until the frame at t = 230 μs, showing
how the solid parts of the boundary strongly limit the growth and collapse of the bubble
when compared with the holes. As the bubble begins to collapse, surface instabilities
become visible in the frame at t = 230 μs, growing initially from the holes and spreading
across the bubble surface. The top surface of the bubble rapidly collapses, leaving an
indentation on the top of the collapsing bubble at t = 280 μs. The bubble then re-expands
along the solid parts of the boundary, splitting into multiple sections visible at t = 400 μs.

These effects can be further explored by observing a bubble positioned between just
two holes. This case is shown in figure 8. As in figure 7, the bubble in figure 8 expands
preferentially towards the nearby holes. Again, protrusions are visible on either side of
the lower surface of the bubble. However, as the bubble collapses, the motion of these
protrusions is in the camera plane and so can be more clearly observed. The surface
of the bubble directly adjacent to the solid part of the boundary remains significantly
impeded throughout the collapse and so does not move significantly. At t = 170 μs the
two expanded protrusions have begun to collapse towards bubble centroid. As the collapse
advances the protrusions retain their additional curvature, forming ‘ears’ on either side of
the bubble which are visible until t = 270 μs. The longevity of these ears is a surprising
feature as the areas of a bubble with greatest curvature are expected to collapse most
rapidly (Lauterborn 1982).
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t = 270 µst = 260 µst = 250 µst = 220 µst = 170 µst = 130 µs

1 mm

Figure 8. Frames from a high-speed recording of a bubble collapsing above the area between two holes in a
porous plate with void fraction φ = 44.7 % and square holes of size W = 1.94 mm. A cross-section of the plate
at the bubble position is superimposed with hatched areas indicating the solid part of the plate. This high-speed
recording is ‘Movie 6’ in the supplementary material and movies.

t = 780 µst = 500 µst = 450 µst = 400 µst = 150 µst = 10 µs

1 mm

Figure 9. Frames from a high-speed recording of a bubble collapsing above a non-porous boundary. The
horizontal position of the bubble at its maximum size is shown by the grey vertical line in each frame. The
plate is indicated by the hatched grey area at the bottom of the frame. This high-speed recording is ‘Movie 7’
in the supplementary material and movies.

We note here that the rapid jet, often seen around the time of the first re-expansion of
the bubble, is not always aligned with the overall motion of the bubble. This suggests
that small asymmetries in the initial plasma formation may affect the bubble dynamics
beyond the initial formation and expansion, despite the bubble being very spherical at its
maximum size. The mechanism for this behaviour could be some history of the initial
plasma and expansion being retained due to insufficient mixing and homogenisation of
the internal gases of the bubble. An example of an offset jet is shown in figure 9 where the
bubble is collapsing near a non-porous plate. Despite the bubble appearing very spherical
at its maximum size, and the plate being highly symmetric, the jet that appears at t =
400 μs is clearly offset from the vertical axis (shown by the grey dashed line). Although
this jet is strong, it does not affect the overall motion of the bubble as the bubble proceeds
to collapse in the expected vertical direction. This effect is visible in data sets we have used
previously (Andrews & Peters 2022) and can be found in some other publications such as
figure 5 in Požar, Agrež & Petkovšek (2021) and figure 4(a) in Sieber et al. (2022).

4.2. Variation of displacement and rebound radius with standoff distance
Bubble displacement Δ/R0 and rebound radius R1/R0 are known to depend strongly on
the standoff distance γ = Y/R0 (Supponen et al. 2016, 2018). In figure 10, the blue data
points are experimental data from bubbles collapsing near a non-porous plate. As the
standoff distance increases, the displacement decreases, approximately following a power
law. Similarly, the rebound radius decreases as the standoff distance increases, although
this approximately follows a log law rather than a power law. A porous plate impedes flow,
but to a lesser degree than a non-porous plate. Thus, it induces a lesser displacement and

962 A11-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

26
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.266


Bubble collapse near porous plates

γ = Y/R0

10–1

100

Non-porous

φ = 29.3 %

2 3 4 5 6 2 3 4 5 6

γ = Y/R0

0.2

0.4

0.6

0.8
Δ

/R
0

R 1
/R

0

(a) (b)

W/R0 = 0.73

Figure 10. (a) Normalised displacement plotted against standoff distance. (b) Normalised rebound radius
plotted against standoff distance. Blue diamonds are data from bubbles collapsing near a non-porous plate.
Orange circles are data from bubbles collapsing near a porous plate.

rebound radius than a non-porous plate as shown by the orange data in figure 10. For the
porous plate, the displacement approximately follows a power law and the rebound radius
approximately follows a log law, which are the same trends as for the non-porous plate.

4.3. Comparing horizontal position, hole size and hole shape
Many parameters govern the porous plate and a vast number of plates could be considered
with a range of hole shapes and sizes. In addition, the bubble can vary in position relative
to the plate both horizontally and vertically. In order to reduce the parameter space, it is
thus desirable to determine which parameters can be considered negligible.

As discussed in § 2, the horizontal position of the bubble has two extremes: above a
hole (above the orange circles in figure 1), or directly above an area of plate between holes
(above the green crosses in figure 1). Intuitively, it can be understood that a bubble above
a hole will displace less than a bubble above solid boundary because the fluid does not
impede the collapse of the bottom of the bubble. In the limiting case of an infinitely large
hole, the bubble experiences no asymmetry, and thus no displacement. Conversely, with
a fixed void fraction, infinitely large holes produce infinitely large spaces between holes.
Thus, for bubbles nucleated between-holes, the bubble is no longer affected by the holes
and so tends towards the solution for a simple non-porous plate. However, for sufficiently
small holes, the difference between bubbles collapsing above a hole and bubbles collapsing
between-holes is expected to become negligible.

Here we define a dimensionless area parameter A′ to be the ratio between the area of one
tessellation unit and the projected area of the bubble. The tessellation unit area is the total
area that would be used to calculate the void fraction of one hole. These units are shown
graphically in figure 11. Thus, the parameter A′ is defined as

A′ = A

φπR0
2 , (4.1)

where A is the area of one hole and R0 is the mean maximum bubble radius of bubble
collapse experiments near the plate.
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(a) (b) (c)

Figure 11. Top-down view diagrams of porous plates with (a) circular holes, (b) square holes and (c) triangular
holes. The tessellation pattern is shown by the green dashed lines with a single tessellation area shaded in green.
The orange circles indicate the size of a bubble with equal area to each tessellation area such that A′ = 1.

γ = Y/R0

10–1

100

Above a hole

Between-holes

W/R0 A′ φ

1.54,    3.28,    22.9 %
1.68,    3.03,    23.3 %
1.73,    1.78,    23.1 %
3.37,  12.54,    22.7 %

2 4 6 2 4 6

γ = Y/R0

0.2

0.4

0.6

0.8

Δ
/R

0

R 1
/R

0
(a) (b)

Figure 12. (a) Normalised displacement plotted against standoff distance. (b) Normalised rebound radius
plotted against standoff distance. Data are plotted for four porous plates with tesselation unit areas A′ > 1.5. To
more easily distinguish data sets, data for bubbles positioned between-holes are traced by solid lines and data
for bubbles positioned above holes are traced by dashed lines. Data markers have shapes corresponding to the
shape of holes in the plates (circles, squares and triangles). Similar plots for all data sets are available in the
supplementary material and movies.

Figure 12 shows data for four different plates. One plate has very large tessellation
unit area compared with the average bubble size (A′ = 12.54), whereas the other three
have area ratios in the range 1.78 ≤ A′ ≤ 3.28. For each plate, bubbles are positioned
above a hole and between-holes. The dashed lines follow bubbles above holes and
the solid lines follow bubbles between-holes. It is immediately clear that there is a
distinct separation of data, with bubbles above holes displacing significantly less, and
rebounding to a smaller size, than bubbles between-holes. However, as the standoff
distance increases, the dashed and solid lines converge. For the three plates with smaller
holes, at sufficiently large standoff distances, the lines merge completely and the data
become independent of horizontal position (within experimental variation). For these three
data sets, the data become independent of horizontal position at approximately γ = 3.
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In general, as A′ decreases, convergence occurs at lower standoff distances. Thus, the
horizontal position of the bubble is unimportant for displacement and rebound size when
the pattern of holes is on a scale smaller than the bubble size. This is confirmed by
figure 10 where the porous plate data (with A′ = 0.13) for above a hole and between-holes
are plotted together and show no greater spread than the non-porous plate data in
the same figure. In addition, for small holes (low W/R0) at very low void fractions,
the dimensionless area A′ can be large but does not result in significant splitting of
the data.

The data in figure 12 represent three different hole shapes: a square, a circle and a
triangle. The square and smaller circular holes have very similar area ratios and produce
almost identical curves for both displacement and rebound size. The triangular holes are
slightly smaller and show slightly less splitting of the data. Thus, using the dimensionless
area A′, the shape of holes can be considered unimportant. This can be explained by the
short timescale on which these flows occur. In less rapid flows, the shape of a hole is
important due to the viscous boundary layers that form around the edge of the hole. Shapes
such as triangles have a greater perimeter per unit area when compared with circles. This
increased surface leads to more boundary layers forming which further restrict the flow.
However, for flow induced by a bubble collapsing near a hole, there is insufficient time
for a significant viscous boundary layer to form and, thus, the shape of the hole becomes
insignificant. This can be shown with the approximate relation δ ∼ √

νt where δ is the
approximate scale of the boundary layer thickness, ν is the kinematic viscosity and t is
the time over which the boundary layer would develop. The kinematic viscosity of water
at room temperature is approximately 1 × 10−6 m2 s−1. From our experiments, a typical
initial growth and collapse cycle occurs in approximately 0.5 ms. Thus, the boundary layer
formed in this time would be on the scale of 0.02 mm which is much smaller than the size
of the holes and so can be considered insignificant.

4.4. Variation of displacement and rebound ratio with void fraction
From the observations above, we can neglect the influence of hole size, hole shape and
horizontal position for porous plates with dimensionless area A′ < 1.5 or with small holes
(W/R0 < 1). All analysis hereafter relies only on data within this regime and we now
further investigate the influence of the void fraction.

Starting from a non-porous plate, with zero void fraction and then increasing
the void fraction, figure 13(a) shows that displacement decreases as void fraction
increases. Similarly, figure 13(b) shows that the rebound size ratio decreases as the
void fraction increases. Both of these confirm that higher plate porosity results in less
asymmetry in the bubble collapse. Despite the decrease in displacement and rebound
ratio with increasing void fraction, the gradient remains remarkably similar for all void
fractions.

To find out how the displacement and rebound size depend on void fraction, we
take vertical slices at three stand-off distances. For each slice, the displacement and
rebound size values at a given void fraction are calculated from straight-line fits to each
data set shown in figures 13(a) and 13(b). Three such curve fits are shown on each of
figures 13(a) and 13(b) as examples. Figures 13(c) and 13(d) show displacement and
rebound size ratio as functions of void fraction for three values of standoff distance.
The displacement and rebound radius both decrease as the void fraction increases. Both
displacement and rebound radius show fairly uniform sensitivity to void fraction across
different standoff distances, although the displacement is marginally more sensitive at low
standoff distances.
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Figure 13. (a) Normalised displacement plotted against standoff distance for a range of void fractions φ.
(b) Bubble rebound radius ratio plotted against standoff distance for a range of void fractions φ. Straight-line
curve fits are shown for three representative cases in each of (a) and (b). (c) Normalised displacement plotted
against void fraction φ for standoff distances corresponding to the grey dashed lines in (a). (d) Bubble rebound
radius ratio plotted against void fraction for standoff distances corresponding to the grey dashed lines in (b).
Only data for plates with A′ < 1.5 or W/R0 < 1 are included in these plots.

5. Anisotropy parameter for porous plates

In the previous section, we have shown how displacement and radius ratio vary with both
standoff distance and void fraction. In order to unify these parameters, and compare these
results with other geometries, it is desirable to formulate the anisotropy parameter as a
function of standoff distance and void fraction. We assume that the anisotropy of a porous
plate is only a function of void fraction φ and standoff distance γ :

ζ = f (φ, γ ). (5.1)

In this section, we present two methods of determining the function f (φ, γ ).

5.1. Displacement and rebound ratio as a function of anisotropy
The first formulation of the anisotropy parameter is the implementation of the
numerical method described in § 3.2. Using this method, experimental measurements of
displacement and rebound ratio can be plotted as a function of the anisotropy predictions
as shown in figure 14(a,b). Although not perfect, it shows reasonable collapse of most data
onto a single curve for each of the two measurements.
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Figure 14. (a) Normalised displacement and (b) rebound radius ratio plotted against the anisotropy parameter
magnitude ζ predicted by the numerical model. (c) Normalised displacement and (d) rebound radius ratio
plotted against the anisotropy parameter magnitude ζ estimated by fitting displacement data to the non-porous
plate data. Data are coloured by void fraction φ. The grey data points in (c) and (d) are from Andrews & Peters
(2022). The black dashed line is a curve fit to the porous plates data. The black dash-dotted line is the curve fit
from Andrews & Peters (2022). The black dash-dot-dotted line is derived from the curve fit of Supponen et al.
(2018).

Using the numerical model, we find that the anisotropy parameter varies almost exactly
with γ −2 across all porous plates (a plot of this is available in the supplementary material
and movies). This is consistent with all the other anisotropy functions for flat geometries
presented by Supponen et al. (2016). Thus, we simplify (5.1) to

ζ = g(φ)γ −2, (5.2)

leaving only the function g(φ) to be determined. Using the numerical model, the prefactor
g(φ) is plotted as the orange line in figure 15. This was computed for a 50 mm × 50 mm
plate using 19 756 elements, with element lengths ranging between 0.35 and 0.42 mm,
where larger elements were used around the edge of the plate. As the void fraction
increases, the prefactor g(φ) decreases. At a void fraction φ = 0, identically a non-porous
plate, the prefactor approaches the solution for a non-porous plate g(0) = 0.195. Notably,
due to differences between the numerical model and analytic solution for a flat plate,
the boundary element method solution does not reach 0.195. At the opposite limit,
with void fraction φ = 1, the plate does not exist, resulting in zero anisotropy, thus
g(1) = 0. Between these limits the gradient of the prefactor is highest at low void fractions,

962 A11-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

26
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.266


E.D. Andrews, D. Fernández Rivas and I.R. Peters
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Figure 15. Prefactors g(φ) where ζ = g(φ)γ −2 plotted against void fraction φ. Experiment data points are
computed from fitting displacement data for porous plates with the non-porous plate data. Horizontal error
bars represent the range of possible void fractions for each data point. Vertical error bars are the standard
deviation from the least squares fit of g(φ). Points are coloured by the dimensionless width of the holes.

indicating higher sensitivity to void fraction when the void fraction is low. This conclusion
is also reflected in the shape of the curves in figure 13(c,d).

The second formulation for the anisotropy parameter assumes that displacement is solely
a function of the anisotropy parameter ζ and maintains the assumption that the anisotropy
can be written as (5.2). The analytic solution for a non-porous plate (g(0) = 0.195) can
be applied to the non-porous plate data to give the measured displacement as a function
of anisotropy. Then, for each porous plate data set, the prefactor g(φ) can be fitted such
that the porous plate data follows the same curve for displacement against anisotropy. This
curve fit is performed using the logarithmic least-squares difference between each data set
and the curve fit on the non-porous plate data.

Using the fitted prefactors g(φ), the data collapses very well onto single curves for
displacement and rebound radius as shown in figure 14(c,d). It should be noted that only
the displacement curve is fitted and the resulting values cause the rebound radius data to
collapse as well, suggesting that these values are representative of the underlying physics
and not simply overfitting to the data.

The fitted prefactors are shown alongside the numerically predicted curve in figure 15
with vertical error bars of one standard deviation of the least-squares fit. In this plot,
different horizontal positions are treated as distinct data sets, resulting in two data points
for each porous plate which are typically very closely aligned.

Figure 15 shows that the boundary element method agrees well with the experimentally
determined prefactors. However, at low void fractions the experimental values tend to be
below the numerical predictions, whereas at higher void fractions they tend to be above.
This may suggest that there are some nuances to the behaviour that the numerical model
cannot capture. For example, the model does not account for how bubble deformation and
displacement may interact with the porous plates. Despite these differences, the overall
agreement with experimentally determined prefactors suggests that the principal effect of
porosity on the anisotropy parameter is the reduction in effective area compared with a
non-porous plate.

An empirical curve fit for the anisotropy parameter is desirable in order to further reduce
the cost of modelling porous boundaries. It is noted that the two limits of g(φ) are g(0) =
0.195 and g(1) = 0. We assume that g(φ) is a nonlinear, smooth function between these
limits of the form

g(φ) = 0.195(1 − φk), (5.3)
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where k is the single parameter to be fitted. Using the experimental data shown in figure 15,
the fitted parameter k is found to be 0.50 with a standard deviation of 0.03. This curve fit
is plotted alongside the data in figure 15 which shows good agreement with experimental
data. The anisotropy can therefore be written as

ζ = 0.195(1 − φ0.5)γ −2, (5.4)

for all φ ∈ [0, 1], effectively providing a single equation for displacement and rebound
radius for any void fraction and standoff distance.

5.2. Disparity with other experimental methodologies
Computing the anisotropy for these data allows them to be compared with prior research,
as shown in figure 14(c,d). Figure 14(d) shows the curve presented by Supponen et al.
(2017) as well as data points from Andrews & Peters (2022) which used a different
experimental method than the present research. Although there is significant spread in
the data from Andrews & Peters (2022), it does not follow the same curve as the present
research. The curve presented by Supponen et al. (2017) is even further different. This
reinforces our previous suggestion that there is likely another factor that varies between
experimental methodologies that can significantly affect the bubble rebound size (Andrews
& Peters 2022).

Figure 14(c) shows data points and the curve fit for displacement against anisotropy for
a range of complex geometries presented by Andrews & Peters (2022). This collapsed
curve is markedly different to the curve presented in the present research. The principal
difference between the two works is that the previous research used a microscope objective
to create bubbles whereas the current research uses an off-axis parabolic mirror. This
difference in displacement is likely partly due to smaller rebounds, but may also be affected
by bubble morphology due to the difference in plasma shapes created by different focusing
optical elements.

6. Conclusion

In this research, we have investigated how a pattern of through-holes in a rigid boundary
affect the dynamics of a collapsing bubble. We have demonstrated how bubbles expand
preferentially towards the holes and less towards the solid parts of the boundaries.
We have shown that the displacement and rebound radius do not depend significantly
on the shape of the holes, and the size of the holes only becomes important when
comparable to the bubble size (dimensionless tessellation unit area A′ > 1.5). Bubbles
used in ultrasonic cleaning theoretically vary between 0.1 and 100 μm in radius, depending
on the driving frequency and power, with experiments showing typical radii of the order
of a few micrometres up to approximately 20 μm (Brotchie, Grieser & Ashokkumar
2009; Fernandez Rivas et al. 2012, 2013). The pore size of filters varies depending on
the intended application. Reuter et al. (2017) reference a pore size of 30 nm, for example.
Thus, the applicability of this regime varies with application.

The bubble displacement and rebound radius depend strongly on both the standoff
distance and void fraction of the porous plate. These parameters can be unified in terms of
the anisotropy parameter with (5.4). Using this unified parameter, all data for porous plates
collapse onto single curves for displacement and rebound radius. However, the collapsed
curves vary from those found for our previous work (Andrews & Peters 2022) which used
a different experimental method. Nevertheless, (5.4) can be combined with scaling laws
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from prior research (Supponen et al. 2016) to predict other bubble collapse properties such
as jet speed.

This work provides a solid first step towards characterising bubble behaviour near porous
plates and connects this geometry to the wider framework of investigations using the
anisotropy parameter. Further work is required to connect this framework of single-bubble
collapse to applications such as ultrasonic cleaning. For example, understanding the
geometric distribution of bubble collapse events induced by an ultrasound field; the
combined effect of multiple bubbles; and the relation between surface shear stress and the
anisotropy parameter. Investigation of the surface pressure distribution of porous plates,
and complex geometries in general, would also provide valuable insight into the cleaning
effects of collapsing bubbles. This could be addressed either experimentally or with more
complex numerical models than the one employed in the present research.

Supplementary material and movies. Supplementary material and movies are available at https://doi.org/
10.1017/jfm.2023.266.
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