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Note on monoidal localisation

Brian Day

If a class Z of morphisms in a monoidal category A is closed

under tensoring with the objects of A then the category-

obtained by inverting the morphisms in Z is monoidal. We note

the immediate properties of this induced structure. The main

application describes monoidal completions in terms of the

ordinary category completions introduced by Applegate and

Tierney. This application in turn suggests a "change-of-

universe" procedure for category theory based on a given monoidal

closed category. Several features of this procedure are

discussed.

0. Introduction

The first step in this article is to apply a reflection theorem ([5],

Theorem 2.1) for closed categories to the convolution structure of closed

functor categories described in [3]. This combination is used to discuss

monoidal localisation in the following sense. If a class Z of morphisms

in a symmetric monoidal category 8 has the property that e € Z implies

1 D ® e € Z for all objects B € B then the category 8, of fractions of

8 with respect to Z (as constructed in [fl]. Chapter l) is a monoidal

category. Moreover, the projection functor P : 8 -* 8, then solves the

corresponding universal problem in terms of monoidal functors; hence such

a class Z is called monoidal.

To each class Z of morphisms in a monoidal category 8 there

corresponds a monoidal interior Z , namely the largest monoidal class
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2 Brian Day

contained in Z . If 8 i s monoidal closed and suitably complete then the

monoidal projection 8 •+ 8 Q has a right adjoint whenever the projection
Z

8 -• 8™ has one. Thus the interior operation on morphism classes in 8

provides a closure operation on the class of full reflective subcategories

of 8 , embedding each such subcategory in a monoidal closed "completion".

In §2 the application to monoidal completion is described through work

of App legate and Tierney [2 ] . Results from [2] are used to obtain the

right adjoints mentioned above, and then to deduce that any small monoidal

category can be continuously embedded in a complete and cocomplete monoidal

closed category in such a way as to preserve tensor products and also those

colimits preserved originally by the tensor product.

At the same time i t i s seen that any dense and strongly cogenerated

completion of a monoidal closed category is again monoidal closed. This

provides a convenient method of enriching (/-constructions that are

i l legi t imately large with respect to a given monoidal closed category V .

The constructions given here are based on a category S of "small"

sets and set maps. Under suitable hypotheses regarding (/-localisation

(as given by Wolff [ 9 ] ) , the category S can be replaced by a symmetric

monoidal closed category V . In brief, we require that the functor

category [A, S] may be replaced by the (/-functor category [A, I/]

throughout the discussion. When A i s a large (/-category and the

V-functor category [A, V] is unavailable, the remarks concerning

completions V of V may be used to introduce the (/-functor category

[A, V] . The need for the embedding V c 1/ to preserve colimits i s

apparent at th i s stage from the dependence of (/-localisation constructions

on (/-colimits (see [-9] and [J'0]).

We describe the symmetric set-based version of the applications so i t

i s supposed throughout the a r t ic le that each monoidal structure has a

symmetry. A non-symmetric (or "biclosed") version may be obtained by

considering morphism classes Z for which 8 i. Z implies 1 ® 8 and

8 ® 1 are in Z .

The terminology is essentially that of [3 ] , [5] and [6 ] , and

familiarity with the representation theorem is assumed. The basic formulas

from [3] and [5] are recalled in §1 below.
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Monoidal localisation 3

1. Reflection in closed functor categories

An adjoint pair of functors if) -i <j> : C -»• B i s . called a reflective

embedding i f the right adjoint <j> is full and faithful on morphisms. When

B has a fixed monoidal closed structure (B, ®, J , I, r, a, a, [ - , - ] )

the reflective embedding is called normal i f there exists a monoidal closed

structure on C and monoidal functor structures [ty, ij), if) ) and

[<t>> <l>. <J> ) on lji and <(> for which (j) is a normal closed functor and the
unit and counit of the adjunction are monoidal natural transformations.
For convenience, the symbol <f is usually omitted and the adjunction unit
is denoted simply by r| : 1 •* i|) .

The significance of this situation is that normal enrichment is unique
(up to monoidal isomorphism) and i t exists if and only i f one of the
following equivalent conditions is satisfied for a l l objects A € A ,
B, B' € B , C € C , and D d V :

(1.1) n : [BC] S

(1.2) n : [AD] '=s

(1.3) [n , 1] : IW, C] S [BC]

(l.U) *(1 ® n) : <KB' ® B) as 1M

(1.5) 0(1 ®n) : i|)(i« ® B) '=£ i|iU

(1.6) <p(n ® n) : *(B' ® B) S

where A is a strongly generating class of objects in B and V i s

strongly cogenerating in C . This is the reflection theorem established

in [5] . The f i r s t condition requires that C be closed under

exponentiation in B , while the final condition is equivalent to the

enrichment [ip, iji, i|> ) preserving tensor products.

Let S denote the cartesian closed category of small sets and set
maps, l e t A = (A, ®, I, . . . ) be a small monoidal category, and le t
[A, S] denote the category whose objects are the functors from A to S
and whose morphisms are the natural transformations between them. This
functor category admits a canonical monoidal closed structure whose tensor
product and internal horn are given by the following formulas:
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( 1 . 7 ) F ® G = J FA x QA' x A(A ® A ' , -) ,

(1.8) [F, C] = f S[FA, CM®-)) •

This structure is called the coMtwZwtion closed structure on [A, S] ;
when A itself is closed, the formula (1.7) takes the form

(A
F ® G = £4 x G[A-] . The convolution tensor product has the property

that a ®-monoid in [A, S] corresponds to a monoidal functor from A to
S . The details of these constructions are given in C3] and [4].

The preceding formulas are derived from the fact that each functor
F € [A, S] is canonically isomorphic to i ts coend expansion

I FA * A(J4, -) in terms of represented functors; this is one instance of

the representation theorem. It also follows from this that the set of
representable functors from A to S is dense, hence strongly generating,
in [A, S] .

On taking the category 8 in the reflection theorem to be the
convolution [A, S] , we obtain:

PROPOSITION 1.1. A reflective embedding ty H <\> : C •* [A, S] admits

normal enrichment if and only if the functor F{.A ® - ) has an isomorph in

C whenever F € C and A (. A .

Proof. This follows from condition (1.2), with A taken to be the
set of all represented functors from A to 5 . By the representation
theorem, we have

, - ) , F] = f S{A{A, A 1 ) , FW © - ) ) ~F{A © » ) ,
' A '

as required.

PROPOSITION 1.2. Let P : A •»• A,, be a functor for which

[P, l] : [A^, S] •* [A, S] ie a full embedding. Then the following

conditiane are equivalent:

(a) the Kan adjunction P -" [P, l ] admits normal enrichment,

(b) the functor FP(A ® - ) : A -»• S factors through P for each
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Monoidal localisation 5

A I A and F € [A,, S] ,

(c) the functor P admits enrichment to a tensor product preserving

monoidal functor.

Proof, (a) =» (a). The left adjoint of [P, l] is given by the coend

(A
formula P(G) = I A*(PA, -) x GA for G € [A, S] . By the hypothesis

Col, the conditions of the reflection theorem are fulfilled and P becomes

a tensor product preserving monoidal functor. Thus P° P has the same

property. By the representation theorem, the functor P : A •+. AH may be

regarded as the restriction of P to represented functors, and the

result (c) follows.

(a) - (b). Let P : PA ® PA' = P{A ® A' ) be the tensor component of

the monoidal structure on P . Then FP{A ® -) = F(PA 0 P-) : A -»• S for

each A € A and F € [A,,, S] , as required.

(b) =» (a}. By Proposition 1.1.

We now consider categories of fractions and ask when projection onto a

category of fractions is compatible with a given monoidal structure on the

domain category. Let A be a (symmetric) monoidal category and let Z be

a class of morphisms in A .

DEFINITION 1.3. The monoidal interior of Z is the class

Z° = {a i Z ; 1^ ® 8 € Z for all A € A} . The class Z is called

monoidal if Z = Z .

COROLLARY 1.4. If Z is monoidal in A then the projection functor

P = P_ : A •*• A_ admits enrichment to a tensor product preserving monoidal

functor.

Proof. The functor [?„, l ] i s characterist ically a full embedding of

[A_, S] onto the class of those functors in [A, S] which invert the

members of Z (Gabriel and Zisman I SI). Thus the result follows on taking

P = Pz : A ->• Az in Proposition 1.2.

This fact , combined with condition (1.6), gives the following:
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COROLLARY 1.5. If Z is a monoidal class of morphism in a monoidal

closed category B and if the projection P : 8 -*• 8» has a right adjoint

R then this adjvnction admits normal enrichment.

We shall suppose that the category S of sets may be enlarged so that

the preceding resul ts are established when A has a class of objects and

Z is a monoidal class of morphisms in A .

I t follows readily from Corollary X.k, and the axioms for a monoidal

functor, that any monoidal functor on A which factors (uniquely) through

a monoidal projection A •+ A_ receives a unique monoidal functor

s t ruc ture . Thus the construction of A_ with Z monoidal is universal in

the category of monoidal categories and functors.

A reflective embedding i/J —• <f> : C -»• B establishes a category

equivalence between C and B-, , where Z is the class of unit components

of the adjunction, thus condition (l.U) and Corollary 1.5 together mean

tha t normal ref lect ive embeddings in B correspond to those monoidal

projections 8 -»• B_ which have a right adjoint.

2. Monoidal completion

Throughout th i s section we consider a monoidal closed category

B = (B, ®, I, I, r, a, c, [-, - ] ) which is assumed to be complete and to

contain a small strongly generating set A . The tensor-hom adjunction of

B then associates to each adjoint pair S -* T : C •*• B over B , a new

adjoint pair 5H -H TA : c ' A ' * B defined by SA(B)A = S{A ® B) and

T*lc
A) = T T G*. TCA] for each A € A , B € B , and [CA)AtA i c'Al . In

A
this section an adjunction 5 -H T over B is fixed, and Z is the class

of morphisms inverted by 5 .

LEMMA 2 . 1 . The class Z,, of morphistre inverted by SA is the

monoidal interior of Z .

Proof. Clearly Z° c Z,, , To show Z* c Z° , take 8 : By •*• B£ in

Z* and consider the following commuting diagram:
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C{S[A ® B2) , C) C ^ 5 ( l ® 8 ) ' ^ . C(S[A ® B j , C)

n<
> TC) B[A ®BV TC)

\\i tic

H A , [ B 2 , TC\) ' B(1> [s> 1}) ' * { A . [ B l , TC]) .

In this diagram the vertical isomorphisms are those of the S —i T and

tensor-hom adjunctions over 8 . The top arrow is an isomorphism for a l l

A € A and C € C because e € Z* . Thus [s , l ] : [fig, TC] •+ [fl^ TC1]

is an isomorphism in 8 for a l l C € C , because A is strongly

generating in 8 . Now reverse the direction of the argument, replacing

A € A by an arbitrary object B (. 8 . By the representation theorem

applied to C (. C we then have that S(lfl ® e) : S[B ® B.J +S(B® B2) is

an isomorphism in C for a l l B € 8 . Thus 8 € Z , as required.

PROPOSITION 2.2. 2%e monoidal projection functor P : 8 -»• 8 has a
Z

right adjoint.

Proof. F i rs t , the category 8 is assumed to be complete and to

contain a small strongly generating set A . The la t te r assumption means

that the functor 8 ->- [Aop, S] which sends B € B to B(-B) : Aop -»• S ,

is an isomorphism-reflecting embedding. This implies that B is well-

powered. Secondly, by Lemma 2 .1 , the class Z is the class of morphisms

inverted by a functor, namely S^ , which already has a right adjoint.'

Thus the hypotheses of [2] Theorem 3-1 are satisfied, whence 8 .->• 8
Z

has a right adjoint.

The results of Corollary 1.5 and Proposition 2.2 could be summarised

by forming the partially ordered class RB of reflective embeddings into

8 and observing that the monoidal interior operation on Z's determines a

closure operation on RB which embeds each 8_ (Z saturated) in i t s

monoidal closure B , and thus determines the subclass NRB of normally
Z

enriched reflections in 8 .
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Returning to the situation S -t T : C •*• 8 , we have:

PROPOSITION 2 . 3 . Let V be a strongly oogenerating class of objects

in C . Then Z ie monoidal if the functor C[s(A © - ) , D) : 8 ° p •* S

factors through 5 o p : B o p •+ Co p for each A € A and D € V .

Proof. By hypothesis, i f a (. Z then C(5(l^ © a) , D) is an

isomorphism in S for each A € A and D £ V . Thus S[l. © e) is an

isomorphism in C for a l l A £ A , because V is strongly cogenerating in

C . Thus 8 £ Z by Lemma 2.1.

For the remainder of this section let A be a small monoidal category

and let B = (A p , Sj be the convolution of the monoidal dual of A with

S . By the representation theorem, the Yoneda embedding v : A •* [A°p, S]

is dense and preserves monoidal structure so that the convolution is an

extension of the monoidal structure on A .

Suppose that the category C in the adjunction 5 -• T : C •* B "is

(A
cocomplete. Then the functors 5 and T take the form SF = FA'MA

and TC = C(M-, C) respectively, where M denotes the composite functor

SY : A -»• C . Conversely, any functor M : A •+ C yields an adjunction

5 -i T by means of these formulas. This is the "models" situation studied

by App legate and Tierney [2] for which we now discuss monoidal structure.

Again, Z is the class of morphisms in [A , S] inverted by the

cocontinuous functor S .

PROPOSITION 2.4. If the given monoidal category A is closed and

the functor M : A -»• C is a full embedding which strongly cogeneratee C

then Z is monoidal.

Proof. This is a computation using the definition (1.7) of the

convolution tensor product. For each A € A and F € [A p , S] we have

that
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rA 'A"rA A
A ( - , A) ® F = I FA' x A(A", A) * A ( - , A ' ® A" )

(A>

= j FA' x A ( - , A' ® A)

by the representation theorem. But

rA" i,A'
S(A(-, A)®F) = | y

3 I FA''MW ® i4]

by the representation theorem. Thus

tA'
, M") & C

= [ S ( F 4 ' , CfAf^1 ® 4 ) , Ml"))
'A'

S f S(Bft', k(A< ®A, A"))
A'

because M i s a f u l l embedding,

^ | S{FA', A ( 4 ' , [AA"])) because A i s c losed ,
'A'

S[FA', C(MA' , M[AA"]))

because W is a full embedding,

= C(SF, M[AA"])

for all A, A" € A and F € [Aop, S] . Thus the result follows from

Proposition 2.3 since the image of M is strongly cogenerating in C .

The hypothesis of Proposition 2.3 is satisfied whenever M : A •+ C is

a tensor product preserving monoidal functor for which the canonical map:

rA i (A
I FA-(MA ® MA') -> U FA'MA\ ® MA'

i s an isomorphism. For example, this i s true of the inclusion functor from

A = {compact Hausdorff spaces and continuous maps} into

https://doi.org/10.1017/S0004972700045433 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700045433


10 Brian Day

C = {al l topological spaces and continuous maps} . When these categories

are taken with the cartesian monoidal structure we have that - x A : C •*• C

preserves topological colimits for each compact Hausdorff space A . The

resul t ing category [Aop, Sj_ i s (equivalent to) the usual cartesian

closed category of compactly generated topological spaces (see [/] and

[5 ] ) . Many other closed categories may be constructed in th is way.

Another cartesian example appears in [7 ] , Theorem 8.9.

An important example is the (dense) cotriple-tower completion (see

Applegate and Tierney [2]) of a small monoidal closed category A with

respect to the codense Yoneda embedding A -»• [A, S] . Such a completion

A , when expressed as a reflective subcategory [A , Sj_ of [A , S] ,

i s again monoidal closed by Proposition 2.k. Moreover, Corollary 1.5
implies that A i s a normal reflective subcategory of the convolution,
hence the conditions ( l . l ) and (1.6) mean that A is closed under

exponentiation in [Aop, Sj and the reflection preserves tensor products.

Thus, because the Yoneda embedding A -»• [A , Sj preserves both the tensor

product and internal horn of A , so does the embedding of A into X .

In the case where A i s known only to be monoidal, the process of

taking the monoidal closure of a completion gives the following:

PROPOSITION 2.5. A small monoidal category A can be continuously

embedded in a complete and cocomplete monoidal closed category such that

the embedding preserves the monoidal structure of A and any colimits in

A that are preserved by the tensor product of A .

Proof. Let M : A -*• [Aop, Sj_ be a (dense) Lambek completion of A ,

with Z saturated. The exterior of the following diagram commutes to

within a natural isomorphism:
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[AOP, s L •

In this diagram, E is the right adjoint to the factorisation of V-
i>

through P - . Then the composite functor EM is an embedding of the
Z

required type. First, it preserves all limits because each factor does.

Secondly, it is naturally isomorphic to P •Y which preserves tensor

products. Finally, if K : K •*• A is a functor and X, : Kk •*• colim Kk is
K k

a colimit cone in A then the canonical transformation

e : colim A(-, Kk) •+ A - , colim Kk
k ^ k

is in Z because [AOp, S] is a completion, which implies that P^

inverts 8 . If this cone is mapped to a colimit cone in A by each

functor - ® A : A -»• A then the map 8 is in Z Hence P - inverts

Z

a so that EM will preserve the colimit of K .

3. A chain rule for localisations

Suppose that H -< K : B •*• 8' i s an S-adJunction between categories
8 and B1 , with counit a : UK * 1 and unit B : 1 •» AZT , and le t Z be
a class of morphisms in 8 with projection P : 8 •* %„ . Let Z' be the

class of morphisms in B' inverted by PH .

PROPOSITION 3.1. If Pa is an isomorphism then 82 is category

equivalent to B^, .

Proof. Consider the following diagram where P' : 8' •+ B'z, i s the

canonical projection:
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P'

°z •

The functor i s defined because PH inverts Z' The hypothesis is

that Pa : PHK^P so 8 € Z implies KB ( Z' . This defines the functor
Kg . Moreover, P'B : P' ** P'JCff i s an isomorphism because the tr iangle

ident i ty aS-H& = 1 implies that PaH-PH& = 1 ; hence PflB is an

isomorphism so, 3 € Z1 . Hence there are natural isomorphisms H-

and KJiz '= 1 .

= 1

To interpret this resul t in the "models" s i tuat ion, suppose that
N : A' -»• A and M : A -»• C are functors with C a suitably cocomplete
category (having the coends required below). As in §2, the Kan extensions
of M and MN respectively provide cocontinuous functors

S : 8 = [Aop, S] •+ C and 5 ' : B' = [A'o p , S] * C .

[ A ° P )

"IT* c •
If H i s taken to be the lef t Kan adjoint ? of [N, l ] then S' S SH .

Again, l e t Z and Z' be the classes of morphisms inverted by 5 and S'

respectively.

COROLLARY 3.2. The categories [Aop, S ] z and [A'o p, S]z, are

equivalent if the canonical map

(3.1) I A(NA', A)'MNA' —=*• MA

ia an isomorphism for all A € A .

Proof. The counit of the adjunction N -* [N, l] is the canonical
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transformation whose component at f ( [A p , S] is

Ct_ . : A(A, NA') * FNA' + FA .

Thus SOL is the canonical transformation

rA , « * ' 1 dt
A U , iKd') x FNA'\'MA * FA'MA .

By the representation theorem applied to A € A , So is an isomorphism if

and only if (3-1) is an isomorphism. The result follows by Proposition

3.1.

For example, let M : A -*• C be a full embedding whose image strongly

cogenerates C . Then (3.1) is an isomorphism when the induced map

:[[C(MA, MB) •*• C A(NA', A)'MNA' , i

is an isomorphism; that is, when the transformation

A(A, B) •*• [ S[A{NA', A), A(NA', B))
'A'

is an isomorphism for all A, B € A . Thus the chain rule implies that any

dense subcategory of A is again dense in a (dense) completion of A .

In a similar manner, if A has a monoidal structure, then the

monoidal closure [Aop, S] of [Aop, S ] , may also be presented as a
Z

full reflective subcategory of [A1 , S] if the transformation

(3.2) I A{NA', A)-M(NA' ® -) -=+ M{A ® -)

is an isomorphism for all A € A . This reduces to (3-1) on evaluation at

the identity object of A . The condition (3.2) ensures that a : HK •* 1

is in the monoidal interior of Z so that Proposition 3.1 applies to 2; .

The information, in Corollaries 2.5 and 3.2 gives a procedure for

enriching "(/-constructions" that are too large for a given symmetric

monoidal closed category V (based on S ). This is done by replacing

1/ with its completion V with respect to the Yoneda embedding
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V •*• [V, S ] o p , where S is a suitable enlargement of the given category S

of s e t s . Then Corollary 3.2 ensures that V is category equivalent to S

when C i s taken to be S ; this follows on taking the functor N to be

the dense inclusion of a one-point category into S . The u t i l i t y of such

a "change of U-universe" was suggested to the author by G.M. Kel ly.

4. Completion of functor categories

More generally, suppose that A is a category whose class of objects

i s small with respect to S , and l e t Z be a class of natural

transformations in [A, S] . As in [7 ] , §8, a functor F : A -*• S i s

called Z-aontinuous i f for each 8 : G *» H in Z and natural a : G=> P

there exists a unique natural 3 : B =* F such that a = 3'8 .

Let C be the full subcategory of [A, S] determined by the

Z-continuous functors and suppose that the inclusion C c [A, S] is

isomorphic to C'—• C(N-, C) for some (necessarily dense) functor

N : AOp -»• C . Then, by Corollary 3.2, the completion C of C can be

described as a ful l reflective subcategory of [A, S] . As such, C is

equivalent to the category of Z-continuous functors in [A, S] where Z

i s the class of natural transformations inverted by the functor

S : [A, S] -> [C, 5]° P , S(F) = [ S[FA, C(NA, -)) . But S inverts a l l
>A

the members of Z , thus we obtain the following:

PROPOSITION 4 . 1 . There is a canonical full errbedding E : 6 •+ B of

the completion of C into the full euboategory B of Z-continuous

functors from A to S . This embedding is an equivalence if and only if

8 i s S-cooomplete and is strongly cogenerated by C .

Proof. If E i s an equivalence then C strongly cogenerates B

because C strongly cogenerates C which is also cocomplete. Conversely,

i f C strongly cogenerates 8 then each Z-continuous functor F : A •*• S

admits an emnedding F •*• 1 T G with G € C and X € § . Because B is
X X

cocomplete, this embedding has a cokernel pair in B. whose codomain is

embedded in a product Y~[ H with H € C and Y € S . Thus F is the
y y
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equaliser in [A, S] of a pair of morphisms from "| f G to "| f H
xtX x y

This implies that F i s Z-continuous, whence E is an equivalence.

In part icular , the completion of a functor category [A, S] i s
equivalent to [A, S] because the class of functors
(S(A(-,/l), x) ; A € A, X d S] strongly cogenerates the larger functor
category. If A is a (finitary) algebraic theory and Z is the class of
natural transformations defined by (f ini te) products in A then the
embedding of the completion of the category C of A-algebras in S into
the category 8 of A-algebras in S may or may not be an equivalence.
For example, i f A is the theory of groups then C is not strongly
cogenerating in B because each functor B(-, C) with C € C sends the
constant map of a simple group in S , not in 5 , to an isomorphism. On
the other hand, i f A is the theory of i?-modules for a ring R in S
then the category of i?-module structures in S is equivalent to the
completion of the category of i?-module structures in S .
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