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NOTES ON BOUNDEDNESS OF SPECTRAL
MULTIPLIERS ON HARDY SPACES

ASSOCIATED TO OPERATORS

BUI THE ANH

Abstract. Let L be a nonnegative self-adjoint operator on L2(X), where X is
a space of homogeneous type. Assume that L generates an analytic semigroup

e−tL whose kernel satisfies the standard Gaussian upper bounds. We prove that

the spectral multiplier F (L) is bounded on Hp
L(X) for 0 < p ≤ 1, the Hardy

space associated to operator L, when F is a suitable function.

§1. Introduction

Let (X,d,μ) be a metric measure space endowed with a distance d and
a nonnegative Borel doubling measure μ on X . Recall that the measure μ

satisfies doubling condition if there exists a constant C > 0 such that, for
all x ∈ X and for all r > 0,

(1) V (x,2r) ≤ CV (x, r) < ∞,

where B(x, r) = {y ∈ X : d(x, y) < r} and V (x, r) = μ(B(x, r)). In partic-
ular, X is a space of homogeneous type. (A more general definition and
further studies of these spaces can be found in [CW, chapitre 3].) Note that
the doubling property implies the following strong homogeneity property:

(2) V (x,λr) ≤ cλnV (x, r)

for some c,n > 0 uniformly for all λ ≥ 1 and x ∈ X . There also exist c and
N,0 ≤ N ≤ n, such that

(3) V (y, r) ≤ c
(
1 +

d(x, y)
r

)N
V (x, r)
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110 B. T. ANH

uniformly for all x, y ∈ X and r > 0. Indeed, property (3) with N = n is
a direct consequence of the triangle inequality of the metric d and the
strong homogeneity property. To simplify notation, we will often use B for
B(xB, rB). Also, given that λ > 0, we will write λB for the λ-dilated ball,
which is the ball with the same center as B and with radius rλB = λrB . For
each ball B ⊂ X , we set

S0(B) = B and Sj(B) = 2jB\2j−1B for j ∈ N.

In this paper, we assume that L is a nonnegative self-adjoint operator on
L2(X) that satisfies the following assumptions.

The operator L generates an analytic semigroup {e−tL}t>0 whose kernels
pt(x, y) satisfy the Gaussian upper bound; that is, there exist constants C,
c > 0 such that, for almost every x, y ∈ X ,

(G) |pt(x, y)| ≤ C

V (x,
√

t)
exp

(
− d2(x, y)

ct

)
, ∀t > 0.

The Gaussian upper bound considered in [DOS] is more general; that is,
there exist constants C, c > 0 such that, for almost every x, y ∈ X , we
have

(4) |pt(x, y)| ≤ C

V (x, t1/m)
exp

(
− d(x, y)m/(m−1)

ct1/(m−1)

)
, ∀t > 0.

However, in the case where m 	= 2, the results concerning the Hardy spaces
in [HLMMY] may not hold. Consequently, in this paper we restrict ourselves
to considering the case of m = 2.

By the spectral theorem, for any bounded Borel function F : [0, ∞) → C,
one can define the operator

(5) F (L) =
∫ ∞

0
F (λ)dE(λ)

which is bounded on L2(X).
The Lp-boundedness of spectral multipliers is a well-known problem which

has been studied extensively for elliptic operators in [Ho], for sub-Laplacian
on nilpotent groups in [C] and [D], for sub-Laplacian on Lie groups of poly-
nomial growth in [A1], for Schrödinger operator on Euclidean space R

n in
[He], and for sub-Laplacian on Heisenberg groups in [MSt], among other
examples. (For further background information on this topic, we refer the
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NOTES ON BOUNDEDNESS OF SPECTRAL MULTIPLIERS 111

reader to [A1], [A2], [B], [C], [DeM], [DOS], and [FS] and the references
therein.)

Recently, in [DOS], Duong, Ouhabaz, and Sikora investigated the spec-
tral multiplier theorem in a general setting of abstract operators, which
we sketch out briefly here. Let L be a nonnegative self-adjoint operator,
and let L generate an analytic semigroup e−tL whose kernel satisfies the
standard Gaussian upper bounds (equation (4)). It was proved that if, for
q ∈ [2, ∞], s > (n/2), and for some η ∈ C∞

c (R+),

(6) sup
t>0

‖ηδtF ‖W q
s

< ∞,

where δtF (λ) = F (tλ) and ‖F ‖W q
s

= ‖(I − d2/dx2)s/2F ‖Lq , then F (L) is of
weak type (1,1), and hence, by interpolation, F (L) is bounded on Lp(X),1 <

p < ∞.
Working in the same setting as [DOS], this paper is dedicated to studying

the boundedness of F (L) when 0 < p ≤ 1. We show that F (L) is bounded
on Hp

L(X) for 0 < p ≤ 1, the Hardy space associated to the operator L. Note
that the case when p = 1 was investigated in [DP] with stronger assumptions
imposed on F and s. More precisely, it was proved in [DP] that if the
nonnegative self-adjoint L satisfies (G), then F (L) is bounded on H1

L(X) if
(6) holds for q = ∞ and s > n/2, or (6) holds for q = 2 and s > n/2 + 1/2.

The remainder of this article is organized into two sections. In Section 2,
we review the definitions and basic properties of Hardy spaces associated
to operators in [HLMMY] and [DL]. The main results, Theorem 3.1 and
Theorem 3.2, are addressed in Section 3.

§2. Hardy spaces associated to operators

The theory of Hardy spaces associated to nonnegative self-adjoint oper-
ators satisfying Davies-Gaffney estimates was developed recently by Hof-
mann, Lu, Mitrea, Mitrea, and Yan [HLMMY]. Here, we use the definitions
and characterizations of Hardy spaces Hp

L(X) from both [HLMMY] and
[DL].

2.1. The atomic Hardy spaces Hp
L(X) for p ≤ 1

Let us describe the notion of a (p,2,M)-atom, 0 < p ≤ 1, associated to
operators on spaces (X,d,μ). In what follows, assume that

(7) M ∈ N and M >
n(2 − p)

4p
,
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112 B. T. ANH

where the parameter n is the constant in (2). Let us denote by D(T ) the
domain of an operator T .

Definition 2.1.1. A function a(x) ∈ L2(X) is called a (p,2,M)-atom
associated to an operator L if there exist a function b ∈ D(LM ) and a ball
B of X such that

(i) a = LMb;
(ii) suppLkb ⊂ B,k = 0,1, . . . ,M ;
(iii) ‖(r2

BL)kb‖L2(X) ≤ r2M
B V (B)1/2−1/p, k = 0,1, . . . ,M .

In the case μ(X) < ∞, the constant function having value [μ(X)]−1/p is also
considered to be an atom.

Definition 2.1.2. Given 0 < p ≤ 1 and M > n(2 − p)/4p, the atomic
Hardy space Hp

L,at,M (X) is defined as follows. We say that f =
∑

λjaj is an
atomic (p,2,M)-representation if {λj }∞

j=0 ∈ lp, each aj is a (p,2,M)-atom,
and the sum converges in L2(X). Set

H
p
L,at,M (X) =

{
f : f has an atomic (p,2,M)-representation

}
,

with the norm given by

‖f ‖H
p
L,at,M (X) = inf

{(∑
|λj |p

)1/p
: f =

∑
λjaj is an atomic

(p,2,M)-representation
}
.

The space Hp
L,at,M (X) is then defined as the completion of H

p
L,at,M (X) with

respect to the quasi-metric d defined by d(h, g) = ‖h − g‖H
p
L,at,M (X) for all

h, g ∈ H
p
L,at,M (X).

In this case, the mapping h → ‖h‖Hp
L,at,M (X),0 < p < 1 is not a norm,

and d(h, g)) = ‖h − g‖Hp
L,at,M (X) is a quasi-metric. For p = 1, the mapping

h → ‖h‖H1
L,at,M (X) is a norm and H1

L,at,M (X) is complete. In particular,

H1
L,at,M (X) is a Banach space and H1

L,at,M (X) ↪→ L1. A basic result con-
cerning these spaces is the following proposition.

Proposition 2.1.3. If a nonnegative self-adjoint operator L satisfies (G),
then for every 0 < p ≤ 1 and for all integers M ∈ N with M > (n(2 − p)/4p,
the spaces Hp

L,at,M (X) coincide and their norms are equivalent.
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For the proof, we refer to [HLMMY, Theorem 5.1] for p = 1 and to [DL,
Section 3] for p < 1.

We next describe the notion of a (p,2,M, ε)-molecule associated to an
operator L.

Definition 2.1.4. Let 0 < p ≤ 1, let 0 < ε, and let M ∈ N. A function
α ∈ L2(X) is called a (p,2,M, ε)-molecule associated to L if there exist
a function b ∈ D(LM ) and a ball B such that
(i) α = LMb;
(ii) for every k = 0,1, . . . ,M and j = 0,1, . . . , there holds

‖(r2
BL)kb‖L2(Sj(B)) ≤ r2M

B 2−jεV (2jB)1/2−1/p.

Proposition 2.1.5. Suppose that 0 < p ≤ 1 and that M > (n(2 − p)/4p).
If α is a (p,2,M, ε)-molecule or an (p,2,M)-atom associated to L, then
α ∈ Hp

L(X). Moreover, ‖α‖Hp
L(X) is independent of M .

For the proof, we refer the reader to [HLMMY] for p = 1 and to [DL] for
p < 1.

2.2. A characterization of Hp
L,at,M (X) in terms

of square functions
Define

Shf(x) =
(∫ ∞

0

∫
d(x,y)<t

|t2Le−t2Lf(y)|2 dμ (y)
V (x, t)

dt

t

)1/2
, x ∈ X.

The space Hp
L,Sh

(X) is defined as the completion of{
f ∈ L2(X) : ‖Shf ‖Lp(X) < ∞

}
under the norm given by the Lp-norm of the square function; that is,

‖f ‖Hp
L,Sh

(X) = ‖Shf ‖Lp(X), 0 < p ≤ 1.

Then the square function and atomic Hp-spaces are equivalent, if the param-
eter M > n(2 − p)/4p. In fact, we have the following result.

Proposition 2.2.1. Suppose that 0 < p ≤ 1 and that M > n(2 − p)/4p.
Then we have Hp

L,at,M = Hp
L,Sh

(X), and their norms are equivalent.

Proof. For the proof, see [DL, Theorem 3.12].
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Consequently, as in Definition 2.2.2, one may write Hp
L,at in place of

Hp
L,at,M when M > n(2 − p)/4p. Precisely, we have the following definition.

Definition 2.2.2. The Hardy space Hp
L(X), p ≥ 1, is the space

Hp
L(X) := Hp

L,Sh
(X) := Hp

L,at(X) := Hp
L,at,M (X), M >

n(2 − p)
4p

.

We end this section with the following result, which plays an important
role in the remainder of this article.

Proposition 2.2.3. Let T be a bounded linear operator on L2(X). If
there exists C0 > 0 such that for any (p,2,M)-atom a, 0 < p ≤ 1, one has

‖Ta‖Hp
L(X) ≤ C0,

then T can be extended to a bounded operator on Hp
L(X); moreover, there

exists κ > 0 so that ‖T ‖Hp
L(X)→Hp

L(X) ≤ κC0.

The proof is similar to one in [HM, Lemma 4.1], so we omit details here.

§3. Spectral multiplier theorem on Hp
L(X),0 < p ≤ 1

Let T be a bounded linear operator on L2(X). Let the associated kernel
to the operator T be denoted by KT (x, y). By the kernel KT (x, y), we mean

Tf(x) =
∫

X
KT (x, y)f(y)dμ (y),

where KT (x, y) is a measurable function and the formula above holds for
each continuous function f with compact support and for almost all x not
in the support of f .

Our main results are the following two theorems.

Theorem 3.1. Let L be a nonnegative self-adjoint operator satisfying
(G). Suppose that s > n(2 − p)/2p, and suppose that, for any R > 0 and for
all Borel functions F such that suppF ⊂ [0,R],

(8)
∫

X
|KF (

√
L)(x, y)|2 dμ (x) ≤ C

V (y,R−1)
‖δRF ‖2

Lq

for some q ∈ [2, ∞]. Then for any Borel function F such that
supt>0 ‖ηδtF ‖W q

s
< ∞, the operator F (L) is bounded on Hp

L(X) for all
0 < p ≤ 1.
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Note that (8) always holds for q = ∞ (see [DOS]). If (8) holds for some
q < ∞, then the pointwise spectrum of L is empty. Indeed, for all p < ∞
and all y ∈ X , we have

0 = C‖δRχ{a} ‖Lq ≤ V (y,1/R)1/2‖Kχ{a}(
√

L)(·, y)‖L2 ,

so χ{a}(
√

L) = 0. Hence, for elliptic operators on compact manifolds, (8) can-
not be true for any q < ∞. To be able to study these operators as well, we
introduce some variation of condition (8). Following [CS] and [DOS] for
a Borel function F such that suppF ⊂ [−1,2], we define the norm ‖F ‖N,q

by the formula

‖F ‖N,q =
( 1

3N

2N∑
l=1−N

sup
λ∈[ l−1

N
, l
N

)

|F (λ)|q
)1/q

,

where q ∈ [1, ∞) and N ∈ Z+. For q = ∞, we put ‖F ‖N,q = ‖F ‖L∞ . It is
obvious that ‖F ‖N,q increases monotonically in q. The next theorem is
a variation of Theorem 3.1. This variation can be used in case of opera-
tors with nonempty pointwise spectrum (see [CS, Theorem 3.6]).

Theorem 3.2. Assume that μ(X) < ∞. Let L be a nonnegative self-
adjoint operator satisfying (G). Suppose that s > n/2 and for any N ∈ Z+

and all Borel functions F such that suppF ⊂ [−1,N + 1],

(9)
∫

X
|KF (

√
L)(x, y)|2 dμ (x) ≤ C

V (y,1/N)
‖δNF ‖2

N,q

for some q ∈ [2, ∞]. Then for any Borel function F such that
supt>0 ‖ηδtF ‖W q

s
< ∞, the operator F (L) is bounded on H1

L(X).

(For further discussion on conditions (8) and (9), we refer the reader to
[DOS, pp. 467–480]).

Remark 3.3. In Theorem 3.1, we can extend F (L) to a bounded oper-
ator on Hp

L(X) for all 0 < p ≤ 1, whereas Theorem 3.2 only establishes the
boundedness of F (L) on H1

L(X). This is a reason why in Theorem 3.2 we
require s > n/2 instead of s > n(2 − p)/2p as in Theorem 3.1.

In both Theorems 3.1 and 3.2, the kernel KF (
√

L)(x, y) of F (
√

L) always
exists. Indeed, in virtue of the Fourier inversion formula

G(L/R2)e−L/R2
=

1
2π

∫
R

exp
(
(iτ − 1)R−2L

)
Ĝ(τ)dτ,
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and so
KF (

√
L)(x, y) =

1
2π

∫
R

Ĝ(τ)p(iτ −1)R−2(x, y)dτ

where G(λ) = [δRF ](
√

L)eλ. (For details, we refer the reader to
[DOS, p. 454].)

As a preamble to the proof of Theorems 3.1 and 3.2, we record a useful
auxiliary result, which is taken from [DOS, Lemma 4.3].

Lemma 3.4. Let L be a nonnegative self-adjoint operator satisfying (G).

(a) If L satisfies (8) for some q ∈ [2, ∞], R > 0 and s > 0, then for any
ε > 0, there exists a constant C = C(s, ε) such that∫

X
|KF (

√
L)(x, y)|2

(
1 + Rd(x, y)

)s
dμ (x) ≤ C

V (y,R−1)
‖δRF ‖2

W q
s
2+ε

(10)

for all Borel functions F such that suppF ⊆ [R/4,R].
(b) If L satisfies (9) for some q ∈ [2, ∞] and if N > 8 is a natural number,

then for any s > 0, ε > 0, and function ξ ∈ C∞
c ([−1,1]), there exists

a constant C = C(s, ε, ξ) such that

(11)
∫

X
|KF ∗ξ(

√
L)(x, y)|2

(
1+Nd(x, y)

)s
dμ (x) ≤ C

V (y,R−1)
‖δNF ‖2

W q
s
2+ε

for all Borel functions F such that suppF ⊆ [N/4,N ].

Proof of Theorem 3.1. Since condition supt>0 ‖ηδtF ‖W q
s

< ∞ is invariant
under the change of variable λ 
→

√
λ and independent on the choice of η,

the Hp
L(X)-boundedness of F (L) and F (

√
L) is equivalent. Hence, instead

of proving the Hp
L(X)-boundedness of F (L), we will show that F (

√
L) is

bounded on Hp
L(X). Due to Proposition 2.2.3, it suffices to show that there

exists ε > 0 such that, for any (p,2,2M)-atom a = L2Mb in Hp
L, the function

ã = F (
√

L)a

is a multiple of a (p,2,M, ε)-molecule for M > n(2 − p)/4p.

By standard argument, fix a function φ ∈ C∞
c (1/4,1) such that∑

j∈Z

φ(2−jλ) = 1 for λ > 0.
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Set j0 = − log2 rB . Then, for 0 ≤ k ≤ M , one has

(r2
BL)k b̃ = r2k

B

∑
j≥j0

φ(2−j
√

L)F (
√

L)Lk+Mb

+ r2k
B

∑
j<j0

φ(2−j
√

L)LMF (
√

L)Lkb(12)

= r2k
B

∑
j≥j0

φ(2−j
√

L)F (
√

L)b1 + r2k
B

∑
j<j0

φ(2−j
√

L)LMF (
√

L)b2,

where b̃ = LMb.
It is easy to see that

‖b1‖L2 ≤ r2M −2k
B V (B)

1
2

− 1
p and ‖b2‖L2 ≤ r4M −2k

B V (B)
1
2

− 1
p .

Setting

Fj(λ) =

{
F (λ)φ(2−jλ), j ≥ j0

F (λ)(2−jλ)2Mφ(2−jλ), j < j0,

then we can rewrite (12) as follows

(13) (r2
BL)k b̃ = r2k

B

∑
j≥j0

Fj(
√

L)b1 + r2k
B 22jM

∑
j<j0

Fj(
√

L)b2.

Since (13) converges in L2(X), we have, for any k ≥ 0,

‖(r2
BL)kb̃‖L2(Sk(B)) ≤ r2k

B

∑
j≥j0

‖Fj(
√

L)b1‖L2(Sk(B))

+ r2k
B 22jM

∑
j<j0

‖Fj(
√

L)b2‖L2(Sk(B)).

First, let us estimate ‖Fj(
√

L)b1‖L2(Sk(B)) for j ≥ j0. Since suppFj ⊂
[R/4,R] with R = 2j , by applying Lemma 3.4 and the Minskowski inequal-
ity, we have, for s > s′ > n(2 − p)/2p ≥ n/2 and k ≥ 2,

‖Fj(
√

L)b1‖L2(Sk(B))

≤
∥∥∥∫

B
KFj(

√
L)(x, y)b1(y)dμ (y)

∥∥∥
L2(Sk(B))

≤ ‖b1‖L1 sup
y∈B

(∫
Sk(B)

|KFj(
√

L)(x, y)|2 dμ (x)
)1/2
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118 B. T. ANH

≤ ‖b1‖L2V (B)
1
2 sup

y∈B

(∫
Sk(B)

|KFj(
√

L)(x, y)|2 dμ (x)
)1/2

≤ r2M −2k
B V (B)1− 1

p
(
2−(j+k)s′

rs′
B

)
× sup

y∈B

(∫
Sk(B)

|KFj(
√

L)(x, y)|2
(
1 + 2jd(x, y)

)2s′
dμ (x)

)1/2
(14)

≤ Cr2M −2k
B V (B)1− 1

p (2−(j+k)s′
rs′
B) sup

y∈B

1√
V (y,2−j)

‖δ2jFj ‖W q
s

≤ Cr2M −2k
B V (B)1− 1

p (2−(j+k)s′
rs′
B) sup

y∈B

1√
V (y,2−j)

.

For j ≥ j0 = − log2 rB , we have, by (3),

sup
y∈B

1
V (y,2−j)

= sup
y∈B

1
V (y, rB2j0−j)

≤ C sup
y∈B

(2jrB)n

V (y, rB)
≤ C

(2jrB)n

V (B)
.

This together with (14) yields

‖Fj(
√

L)b1‖L2(Sk(B)) ≤ Cr2M −2k
B V (B)1− 1

p 2−(j+k)s′
2−s′j0 (2jrB)

n
2

V (B)
1
2

≤ Cr2M −2k
B V (2kB)

1
2

− 1
p 2−k(s′ − n(2−p)

2p
)2(j−j0)(

n
2
)−s′

.

For k = 0,1, it is not difficult to see that

‖Fj(
√

L)b1‖L2(Sk(B)) ≤ ‖b1‖L2(Sk(B)) ≤ Cr2M −2k
B 2−kεV (2kB)

1
2

− 1
p ,

with ε = s′ − n(2 − p)/2p.
Therefore,

r2k
B

∑
j≥j0

‖Fj(
√

L)b1‖L2(Sk(B)) ≤ C2−kεr2M
B V (2kB)

1
2

− 1
p .

Note that for j ≤ j0,

sup
y∈B

1
V (y,2−j)

= sup
y∈B

≤ C
1

V (y, rB2j0−j)
≤ sup

y∈B
C

1
V (y, rB)

=
C

V (B)
.

At this stage, repeating the argument above, we also obtain

r2k
B 22jM

∑
j<j0

‖Fj(
√

L)b2‖L2(Sk(B)) ≤ C2−kεr2M
B V (2kB)

1
2

− 1
p .
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Hence, ã = F (
√

L)a is a multiple of a (p,2,M, ε)-molecule. The proof is
complete.

Proof of Theorem 3.2. First, we claim that if F supported in [−1,N + 1]
satisfies (9), then

(15) ‖F (
√

L)‖2
H1

L →H1
L

≤ CNn‖δNF ‖N,q.

Since μ(X) < ∞, X is bounded. Therefore, there exists r0 > 1 such that
X ⊂ B(z, r0) for all z ∈ X .

Let a = LMb be a (1,2,M)-atom associated to some ball B. We will show
that F (

√
L)a = LMF (

√
L)b is a multiple of (1,2,M)-atom associated to

the ball B(z, γ) for all z ∈ X and γ = max{rB, r0}. Indeed, by Minskowski
inequality, we have, for all 0 ≤ k ≤ M ,

‖LkF (
√

L)b‖2
L2(B(z,γ)) = ‖F (

√
L)(Lkb)‖2

L2(B(z,γ))

=
∥∥∥∫

X
KF (

√
L)(x, y)(Lkb)(y)dμ (y)

∥∥∥2

L2(X)

≤
(∫

X
‖KF (

√
L)(·, y)‖L2 |(Lkb)(y)| dμ (y)

)2
.

Since a is a (1,2,M)-atom,∫
X

|(Lkb)(y)| dμ (y) ≤ V (B)−1/2‖Lkb‖L2(B) ≤ r2M −2k
B .

So, we get

‖LkF (
√

L)b‖2
L2(B(z,γ)) ≤ C

r4M −4k
B

V (y,1/N)
‖δNF ‖2

N,q

≤ C
(r0N)n

V (y, r0)
r4M −4k
B ‖δNF ‖2

N,q

≤ C

V (z, γ)
γ4M −4kNn‖δNF ‖2

N,q.

Hence, F (
√

L)a is a multiple of (1,2,M)-atom associated to the ball B(z, γ)
for any z ∈ X with a constant Nn/2‖δNF ‖N,q. Therefore, due to Proposi-
tion 2.1.5, one has ‖F (

√
L)a‖2

H1
L

≤ CNn‖δNF ‖2
N,q. So, Proposition 2.2.3

tells us that
‖F (

√
L)‖2

H1
L →H1

L
≤ CNn‖δNF ‖2

N,q.
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Therefore, in order to prove Theorem 3.2, we can assume that suppF ⊂
[1, ∞]. Let φ be the function as in the proof of Theorem 3.1. We set F k(λ) =
φ(2−kλ)F (λ), and

F̃ =
∞∑

k=1

F k ∗ ξ,

where ξ is a function defined in (b) of Lemma 3.4.
By repeating the proof of Theorem 3.1 and using (9) in place of (8), we

can prove that the F̃ (
√

L) is bounded on H1
L(X). Hence, it suffices to show

that F (
√

L) − F̃ (
√

L) is bounded on H1
L(X). To do this, we write

F − F̃ =
∑

k

Hk, where Hk = F k − F k ∗ ξ.

Since suppHk ⊂ [−1,2k + 1], due to (15), we have

‖Hk(
√

L)‖H1
L →HL

L
≤ C2kn‖δ2kHk ‖2k,q.

Therefore, to complete our proof, we need only to show that∑
k 2kn‖δ2kHk ‖2k,q. To do this, we make the following claim (see [DOS,

Proposition 4.6]).

Proposition 3.5. Suppose that ξ ∈ C∞
c is a function such that supp ξ ⊂

[−1,1], ξ ≥ 0, ξ̂(0) = 1 and ξ̂(k)(0) = 0 for all 1 ≤ k ≤ [s] + 2. If suppG ⊂
[0,1], then

‖G − G ∗ ξN ‖N,q ≤ CN −s‖G‖W q
s

for all s > 1/q.

In virtue of Proposition 3.5, we have∑
k

2kn‖δ2kHk ‖2k,q =
∑

k

2kn‖δ2k [F k] − ξ2k ∗ δ2k [F k]‖2k,q

≤ C
∑

k

2nk2−2ks‖δ2k [F k]‖2
W q

s

≤ C sup
k>0

‖δ2k [F k]‖2
W q

s
,

where ξ2k denotes the function ξ(2−k ·).
This completes our proof.
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[B] S. Blunck, A Hörmander-type spectral multiplier theorem for operators without heat

kernel, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 2 (2003), 449–459.

[C] M. Christ, Lp bounds for spectral multipliers on nilpotent groups, Trans. Amer. Math.

Soc. 328 (1991), 73–81.

[CS] M. Cowling and A. Sikora, A spectral multiplier theorem for a sublaplacian on SU(2),

Math. Z. 238 (2001), 1–36.

[CW] R. Coifman and G. Weiss, Analyse harmonique non-commutative sur certains
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