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1. Introduction. If {a a:a/= 1,2,..., N}, with
—_— v v
N - o as y—=+ oo, is a double sequence of real numbers with the
v
N
v
property that Z a =0, then
va
a=1
max (a a)
. 1< a< v
(1.1) lim —a’_NV -0
v+ N
v
= a.2
o= 1 vo

is known in statistical literature as the Wald- Wolfowitz- Noether
condition and it plays an important role in the proofs of certain
types of central limit theorems (see e.g., [1], [2] ). The
purpose of this note is to show that for certain types of numbers
(ava's whose construction is described below), the condition

(1.1) is always satisfied. For example, consider a sequence

A = (61, 92, ..., 0 ) of real numbers (not all 8's are equal),

v v

and form all possible pairs of differences aij = ei - ej' iF .

The total number of such differences is N =y(v-1) and if the
v
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ordered pairs (i,j), with 1 #) and i,j=1,2,...,v, are

labelled ¢ =1,2,...,N in some convenient manner, the
v

condition (1.1) takes the form:

2
max (6. - 6)
1<i,j<v
(1.2) lim = -
v s (6 - 9)°
1<i,j<v !

It follows from our results that (1.2) is always satisfied with-
out any restriction on the numbers 6 . This result was
proved and employed by one of us in 1[2], and although the
proof there is quite elementary and does not resemble in any
way the proof for the general case here, the result itself is
rather elusive. The results of the present note, however, are
stronger and more general: we obtain for the left hand side
(L.H.S.) of (1.2), with the second power replaced by the

absolute pth power, the best possible bound for all p,

0< p< o, which converges to zero as v—> . Our main result
is concerned with finding an upper bound for the L.H.S. of
(1.1), with the second power replaced by the absolute pth power

and a 's as numbers formed by selecting all possible subsets
va

of size s (2<s<v-1) from A and using a generalization of
- - v

the notion of differences, such that the bound is independent of
the 8's and converges to zero as v—+ o . The authors hope
that although the results are of rather elementary nature, they
might be useful and of interest to others.

2. The main theorem. Let A =(6,6_,...,8 ) bea
v 1" 2 v

sequence of real numbers, not all equal, and consider all

possible subsets, t =( :) in number, of A of size
v v
s(2 < s<vy-1), labelling them in some convenient manner,
th
2 =1,2,...,t . Let Cz denote the /¢ subset of size s and

v

AI = {i; Gie Cﬂ }.
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THEOREM 1. For all p, 0<p<w, andall
s(2<s<v-1), .

max max le,-Ez Ip s-1\P K
(2.1) 1<2<t ieA ' s P
: < -
v _ f{(s-i) P + s-1} -2 + v-2 ,
= = Jo.-e P |1 s s-1) " \s-2),
1 2 sp ]
=1 ie¢ A
J
where 6 = ,Z 6./ s, and K =1 or 2p—1 according
{ ie Ag i P

as p<1 or p>1.

Proof. We may assume without loss of generality that

max [e -6 |
[61-6 l:1§i<j§v I, First, we observe that
v
max max ]e-eﬂl
1<4<t icA !
- T v
max max IG-G]
< 1<e<t ieA{ = : k}
v ! ke A -{i}
.
max {/5-1 IG -6 {}
<t1<g<tl\®
v
s-1
—(S ,61—9 "
so that
max max IG -62 ]p <-4\ P IG -8 ]P
(2.2) 1<4<t ieA o <( ) v
- T v £ —\ s/
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Next, let B, = {f: iEAﬂ } and denote by D1 the class of all
1 Vv

subsets of A of (s - 1) elements chosen out of
v

A -{6, 6}, labelling these subsets by r =1,2,...,t¥
v 1 v 2 v

where t¥ = (1;-1 ). We now observe that
v -
t
v —
pX = ]a-%|p
1
=1 ie A
4 le y
> T _ + T + = p ;e,-Eﬂlp
- 1
B B B B B B ie A
Le 12y, Le 1B, Le B, le A,
> T |ei-61 P+ T 0z le. -8 |P
- 1
B B B B ie A -{1
Le {8, Le B, 4y {1}
oz le -0, P+ z, = le_-Ellp
B v . ) i
Le 1Bv leBti 1eA£ {v}

+ 0z e -6 [P + |6 -8 |PL .
12e1313{1 . v 1
1 v

The last inequality follows by ignoring certain terms. Now

let C; denote the yth subset in D1v and

A~ = {i:8¢C }. Then letting 6 = ( z e_> / s-1 and
Y i Y i

s

ie A'P
Y

regrouping the terms, we note that the last expression is

—o #*
t (s-1)8 +6 |P ¢
v Y 1 v
=z |o,- | += | -
y=1 s y =1 v
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" _
t * t *
v (s-1)6_ +8, P v (s-1)0_+6_ P
+ = p> 9. - + = = 9. - .
. * 1 S . 3 1
=1 ie A =1 ie AT
Y y Y y
+ = {[91-6'1[}’4- ]ev-«@lip}
2eB B
1 v
t*
o1 % * %k
:(S) {[ei-e P+le -8 [Py
\ et Y
3
t =\ o | —*"p}
- Zi‘ei-(sei-(s-i)e\{)! +‘ev-(sei-(s-1)e\{>[ )
v=1 1eAY $P
+ = {le, -6 |P+1]e -6 |7}
EeBiB
&
P ‘ "
?-(S;i> z 1?1_ o, -9, Py il 5 i%:— 9,-® ®
\{:1 P Sp y=1 P
+ = -1 le,-o [P
J¢B B K 1 v
1 v P

where K =1 or ZP-1 according to p<1 or p>1. The last
inequality follows from a well known result (see [3], p. 156).
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Consequently,

tv -
@2 121 ieZA ei_eﬂ !
2
, -0 |P
(_s_:_ P s-1)] /v -2 v -2 [61 v
2 [L\ s ) * Sp \s— 1) * <s-2> Kp :

The proof of (2.1) 1is then complete on account of (2.2) and
(2.3) .

From Theorem 1 the result stated in the previous section
follows immediately.

COROLLARY For all p, 0<p<w, andall
s (2<s<v),

max max !6.-_8- Ip
1<1<t ie A i
(2.4) lim ==y 2 = 0.
v = t
v —
T = |e,-eﬂ |P
1=1 icA 1

£

We remark that the result of Theorem 1 will remain valid
if Av = (81, ] - ev) is replaced by a double sequence

P
A =(0 ,0 _,...,0 ). Accordingly the result of the above
v vi v2 vy
corollary will again hold if the 6's are allowed to vary as
vV >,
3. The case s = 2. We will show in this section that,

for the case s = 2, the bound derived in the preceding theorem
is sharp for all 1 < p < w. In addition, for this case, we also
obtain an improved constant bound for all 0<p <1 and show
that it is also attained. For s > 2, however, our bounds do not
seem to be the best possible. The derivation of the best
possible bounds for s> 3 and for all p, 0 < p <o, we pose as

166

https://doi.org/10.4153/CMB-1966-020-2 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1966-020-2

an interesting open question. Let us denote for convenience,

the left-hand and the right-hand sides of (2.1) by R (p,s)

and Bv (p, s) respectively. v
THEOREM 2. (i) For 1<p<x, R (p, Z)SBV (p, 2)

and the bound is sharp for each p;

(ii) For 0<p< 1, R (p,2)<B (4,2)
1 — - v v

= 2.(\1—-‘1) and the bound is sharp for each p.

Proof. For s =2, it follows from Theorem 1 that for
1< p<o Rv (p,2) < Bv (p,2). To prove that the bound

B (p,2) is sharp, we need simply to show that the bound is
v
attained for some sequence Av . Consider the sequence

(1) 1 1 1. .
= 5 —’ . > 3 . . H H d
Av (0, 1, ) > ), i.e. one zero, one 1, an
1 . (1) .
(v -2) E’S ; then it is easy to show that Rv (p,2) at A , 1S

equal to Bv (p,2). To prove (ii), we first note that for

0<p<i,

max le.-e.lp
itdj '
R (p,2) =
= le-0 [P
1] !
le, -8 [P
1 v
= P P P
2 { = [ei-ei] + = lei-ev[ + ]ei-e I }
i¥1, v i1, v
le -6 [P
1 v
= p P
2 {'z lo,-8, [P+ o -0 | ]
1%1,11 J
1 *
- Z(V—i) - BV (P: 2) (SaY)
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where Bv (p,2) is in fact equal to Bv (1,2). It can easily be
shown that B (1,2)< B (p,2); hence the new bound B: (p, 2)
v - v

is a better bound than that given in Theorem 4. Finally, by

(2)

taking the sequence A =(0,1,1,...,1), i.e. one zero and
v

e

(v-1) 1's, it is easy to see that B: (p, 2) 1is attained for each
p» 0<p< 1. The proof is thus complete.
4. Concluding remarks. It is important to observe that

in proving Theorem 1, we have employed the technique of
finding an upper bound (2.2) for the numerator of Rv (p, s)

and a lower bound (2.3) for the denominator of Rv (p,s); and

these upper and lower bounds respectively are sharp for all
s, 2<s<v-1, andall p, 1< p<w. (The equality in (2.2)

2
will hold for A(v) and similarly equality in (2.3) will hold for

1
A(v) ). However, the ratio of these bounds, Bv (p, s), is sharp
only for the case s = 2. For securing a sharp bound for s > 2,
the present approach does not seem to be adequate. It is also
noteworthy that for s > 2, and 0< p < 41, the best lower bound
for Rv (p, s) must depend upon p (unlike the case s =2).

Specifically, it can be shown that for sufficiently large v,
Bv(i,s)> Bv(p,s) for all 0<p<1 andall s> 2.
We would like to point out also that an analogue of (2. 4)

exists in general function spaces. Let {fa} be elements of

some normed linear space, not all the same, then we can prove
that for 1 < p < w,

max “ fi—fj ”p
(4.1) vh_inoo lstyzy =0
> ”fi—f.Hp
1<i,j<v J

Statements of this sort are useful in the study of exterior power
spaces and Gram-determinants (see [4] and the references
given there). Similarly an integral analogue of (2.4) may be
stated as follows: for 41 < p < w, and any continuous function
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£(x, y),

max ,f(s, t)lp
0<s<x
. 0<t<gy
(4.2) Hm =0
X = 0 x v
y = f f lf(s,t)lpdsdt
0 0

Although the proofs of (4.1) and (4.2) are different in nature
from the proof of Theorem 1 presented above, they can easily
be constructed with the aid of Hélder's inequality.
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