THE DIAMETERS OF THE GRAPHS OF SEMIRINGS

J. S. RATTI and Y.-F. LIN
(Received 23 June 1969)
Communicated by G. B. Preston

1. Introduction

Let \mathscr{F} be a family of sets, $\left\{F_{\alpha} \mid \alpha \in \Lambda\right\}$. By the graph $G(\mathscr{F})$ of the system \mathscr{F}, we mean the graph whose set of vertices is \mathscr{F} and in which the vertices F_{α}, $F_{\beta} \in \mathscr{F}$ are adjacent (that is, are joined by an edge) if and only if $F_{\alpha} \neq F_{\beta}$ and $F_{\alpha} \cap F_{\beta} \neq \square$, where \square denotes the empty set.

Definition 1. Let \mathscr{F} be a family of sets, a subfamily $\left\{F_{1}, F_{2} \cdots, F_{n}\right\}$ of \mathscr{F} forms a path, or a chain, between F_{1} and F_{n} in the graph $G(\mathscr{F})$ if and only if $F_{i} \cap F_{i+1} \neq \square$ for all $i=1, \cdots, n-1$. A graph is said to be connected provided, for every pair of vertices there is a path between them.

Definition 2. The distance $d\left(F_{\alpha}, F_{\beta}\right)$ between two vertices F_{α} and F_{β} of a graph is the number of edges in a shortest path between these vertices (if no such path exists, we define $d\left(F_{\alpha}, F_{\beta}\right)=+\infty$; of course $d\left(F_{\alpha}, F_{\alpha}\right)=0$). The diameter of a graph is the supremum of $d\left(F_{\alpha}, F_{\beta}\right)$, where $\left(F_{\alpha}, F_{\beta}\right)$ runs over all pairs of vertices of the graph.

Definition 3. A semiring is a non-empty set R equipped with two binary operations, called addition + and multiplication (denoted by juxtaposition), such that R is multiplicatively a semigroup, additively a commutative semigroup and multiplication is distributive across the addition.

We have the following well-known theorem.
Theorem A [1]. For any graph G there exists a system \mathscr{F} of sets such that the graph G is isomorphic with the graph $G(\mathscr{F})$.

Theorem A shows that the general case is not very interesting. It would be of interest to know more information about the graph $G(\mathscr{F})$, when the members of \mathscr{F} have an algebraic structure. The first step in this direction was taken by Bosák [1].

Throughout this paper, let S be a given semigroup and \mathscr{P} be the system of all proper subsemigroups of S; let R be a given semiring and \mathscr{R} the family of all proper subsemirings of R.

Bosák [1] proved the following theorem.
Theorem B. Let S be a periodic semigroup with more than two elements. Then its graph $G(\mathscr{S})$ is connected and the diameter $D(S)$ of this graph is equal to:
(i) 0 if S is a cyclic group of prime order;
(ii) 1 if S has a single idempotent, but S is not a cyclic group of prime order;
(iii) 3 if there exist in S two idempotents $u \neq v$ such that $S=\langle u, v\rangle$ (that is, S is the semigroup generated by the idempotents u, v as its generators);
(iv) 2 in the remaining cases.

Bosák then raised the following open problem: Does there exist a semigroup with more than two elements whose graph is disconnected?

Lin [2] answered Bosák's problem by proving the following theorem:
Theorem C. The graph of every semigroup with more than two elements is connected.

In [3] we discussed the graph $G(\mathscr{R})$ of a semiring R and posed the following
CONJECTURE. The graph of every semiring with more than two elements is connected.

Although we could not prove our conjecture for an arbitrary semiring R, we did prove it for the cases (i) R is left unital (ii) R is normal (iii) R is commutative (iv) R is uncountable.

In § 2 we prove that for some special semirings R the diameter $D(R)$ of the graphs $G(\mathscr{R})$ is $\leqq 3$.

2. The diameter of the graph of a semiring

In this section we discuss the diameter of the graphs of some special types of semirings.

Theorem 1. The diameter of the graph of a left unital semiring with more than two elements does not exceed three.

Proof. Let R be such a semiring with left unit e. Let R_{1} and R_{2} be any two disjoint proper subsemirings of R, and let $a \in R_{1}$ and $b \in R_{2}$ be two arbitrary fixed elements. We shall construct a path, in $G(\mathscr{R})$, of length at most three between R_{1} and R_{2}. Clearly, either $\left\{R_{1},\langle a, 2 e\rangle,\langle 2 e, b\rangle, R_{2}\right\}$ is a path, or else $\langle a, 2 e\rangle=R$, or $\langle 2 e, b\rangle=R$ (throughout this paper, $\left\langle x_{1}, \cdots, x_{n}\right\rangle$ means the subsemiring generated by $x_{1}, \cdots x_{n}$, as its generators). Let us assume $\langle a, 2 e\rangle=R$; the case $\langle 2 e, b\rangle=R$ can be handled similarly.

It is sufficient to construct a proper subsemiring R_{α} of R such that $R_{1} \cap R_{\alpha} \neq \square$ and $R_{\alpha} \cap\langle e\rangle \neq \square$. Since if this has been established, then similarly there must exist R_{β} in $G(\mathscr{R})$ such that $R_{\beta} \cap\langle e\rangle \neq \square$ and $R_{\beta} \cap R_{2} \neq \square$. Consequently,
$\left\{R_{1}, R_{\alpha}, R_{\beta}, R_{2}\right\}$ will be a path of length 3 . To this end, we divide the rest of the proof into the cases (1) $2 e=e$ and $a^{2}=a$, (2) $2 e=e$ and $a^{2} \neq a$, and (3) $2 e \neq e$.

CASE 1: $2 e=e$ and $a^{2}=a$.
(1.1) $a=e$. In this case we choose $R_{\alpha}=\langle a\rangle=\langle e\rangle$
(1.2) $a \neq e$. In this case we have semiring $R=\{e, a, a e, e+a, e+a e, a+a e$, $e+a+a e\}$, with the following multiplication table (the addition table, which may be constructed easily is omitted for the sake of space saving).

	e	a	$a e$	$e+a$	$e+a e$	$a+a e$	$e+a+a e$
	e	e	a	$a e$	$e+a$	$e+a e$	$a+a e$
e	$a e$	a	$a e$	$a+a e$	$a e$	$a+a e$	$a+a+a e$
a	$a e$	a	$a e$	$a+a e$	$a e$	$a+a e$	$a+a e$
$a e$	$e+a e$	a	$a e$	$e+a+a e$	$e+a e$	$a+a e$	$e+a+a e$
$e+a$	$a+a e$	a	$a e$	$e+a+a e$	$e+a e$	$a+a e$	$e+a+a e$
$e+a e$	$a e$	a	$a e$	$a+a e$	$a e$	$a+a e$	$a+a e$
$a+a e$	a	$a e$	$e+a+a e$	$e+a e$	$a+a e$	$e+a+a e$	
$e+a+a e$	$e+a e$	a	$a e$				

From the above multiplication table, we find the following two 'master' proper subsemirings:

$$
\{a, a e, e+a e, a+a e, e+a, e+a+a e\}
$$

and

$$
\{e, a e, e+a e, a+a e, e+a, e+a+a e\}
$$

Since the union of these two proper subsemirings contains R, the graph $G(\mathscr{R})$ is connected and $D(R)=3$.

CASE 2. $2 e=e$ and $a^{2} \neq a$. In this case we chose $R_{\alpha}=\left\langle e, a^{3}\right\rangle$, unless $R_{\alpha}=R$. Assume $R=\left\langle e, a^{3}\right\rangle$. Since $a \in R$, we have the following possibilities:
(2.1) $a=e$. This cannot happen, since $a^{2} \neq a$.
(2.2) $a=a^{3 l_{1}}+a^{3 l_{2}}+\cdots+a^{3 l_{n}}$, where $l_{i}, i=1, \cdots, n$, are positive integers.

Let $p(a)=a^{3 l_{1}-1}+\cdots+a^{3 l_{n}-1}$. Then (2.2) gives $a=a p(a)$; which implies $p^{2}(a)=p(a)$ and the proof follows from Case 1 by replacing a by $p(a)$.
(2.3) $a=e+q\left(a^{3}\right)+r\left(a^{3}\right) e$, for some $q\left(a^{3}\right)$ and $r\left(a^{3}\right)$ in $\left\langle a^{3}\right\rangle$. Since $a \in R_{1} \cap(e+R)$ and $e=2 e \in(e+R) \cap\langle e\rangle$; we may choose $R_{\alpha}=e+R$, unless $e+R=R$. Assume $e+R=R$. For $x \in R$, there exists $y \in R$ such that $x=e+y$; and $e+x=e+(e+y)=2 e+y=e+y=x$. Thus, e functions as the additive zero for R. Hence from (2.3) we get $a=q\left(a^{3}\right)+r\left(a^{3}\right) e$. By multiplying this last expression by a, we get $a^{2}=a^{2} Q(a)$ where $Q(a)=a^{3 l_{1}-1}+\cdots+a^{3 l_{n}-1}$, for some integers l_{1}, \cdots, l_{n}.

This implies that $Q^{2}(a)=Q(a)$. Thus the proof follows from Case 1 by replacing a by $Q(a)$.
(2.4) $a=e+q\left(a^{3}\right)$.
(2.5) $a=q\left(a^{3}\right)+r\left(a^{3}\right) e$.
(2.6) $a=r\left(a^{3}\right) e$
(2.7) $a=e+r\left(a^{3}\right) e$.

The subcases (2.4), (2.5), (2.6), and (2.7) are similar to the subcase (2.3), the proof for these cases is therefore omitted.

Case 3. $e+e \neq e$. In this case we have $R=\langle 2 e, a\rangle$, because otherwise we choose $R_{\alpha}=\langle 2 e, a\rangle$. Since $e \in R, e$ can be expressed as:
(3.1) $e=2 m e$ for some integer $m>1$.

Let $e_{1}=(2 m-1) e$, then $e_{1}+e_{1}=e_{1}$ and $e_{1}^{2}=e_{1}$. Since $(2 m-1) a=e_{1} a \in$ $R_{1} \cap e_{1} R$ and $(2 m-1) e \in e_{1} R \cap\langle e\rangle$. We must have $R=e_{1} R$ (if $R \neq e_{1} R$, we choose $R_{\alpha}=e_{1} R$). Since $e_{1}^{2}=e_{1}$ and $e_{1} R=R$, it is easily seen that e_{1} is a left unit for R with $e_{1}+e_{1}=e_{1}$, and the proof follows from cases 1 and 2.
(3.2) $e=f(a)$ for some $f(a) \in\langle a\rangle$.

Since $e=f(a)$, we have $R=\langle 2 e, a\rangle \subset R_{1} \neq R, a$ contradiction.
(3.3) $e=p(a) e$ for some $p(a) \in\langle a\rangle$.

Since $p(a) \in R_{1} \cap\langle 2 e, p(a)\rangle$ and $2 e \in\langle 2 e, p(a)\rangle \cap\langle e\rangle$, we have $R=\langle 2 e$, $p(a)\rangle$ (otherwise choose $R_{\alpha}=\langle 2 e, p(a)\rangle$). Also the equation $e=p(a) e$ gives $a=p(a) a$, which implies that $p^{2}(a)=p(a)$. Since $e \in R=\langle 2 e, p(a)\rangle$, we have the following possibilities:
(3.3.1) $e=2 m e$. This case is the same as subcase (3.1) already discussed.
(3.3.2) $e=n p(a)$ for some integer $n \geqq 1$. This case is similar to the subcase (3.2).
(3.3.3) $e=2 n p(a) e=2 n e$. This is the subcase (3.1).
(3.3.4) $e=n p(a)+2 m p(a) e$. This equation gives $e=e^{2}=n p(a) e+2 m p(a) e$ $=(n+2 m) e$, which is the subcase (3.1).
(3.3.5) $e=2 m e+n p(a)$. We again have $e=e^{2}=2 m e+n p(a) e=(2 m+n) e$, which is the subcase (3.1).
(3.3.6) $e=2 n e+m p(a) e$.
(3.3.7) $e=2 n e+m p(a)+2 l p(a) e$.

The cases (3.3.6) and (3.3.7) can be similarly handled.
(3.4) $e=f(a)+p(a) e$, for some $f(a)$ and $p(a)$ in $\langle a\rangle$. In this case we have $e=e^{2}=f(a) e+p(a) e=[f(a)+p(a)] e=h(a) e$, where $h(a)=f(a)+p(a) \in\langle a\rangle$. The subcase (3.3) now applies.
(3.5) $e=2 m e+f(a) e$ for some integer $m \geqq 1$ and $f(a) \in\langle a\rangle$.

Let $d=(2 m-1) e+f(a) e=d_{1} e$ where $d_{1}=(2 m-1) e+f(a)$. With this notation, we get $e=e+d$, and hence

$$
\begin{aligned}
d+d & =(2 m-1) e+f(a) e+d \\
& =[(2 m-1) e+d]+f(a) e \\
& =(2 m-1) e+f(a) e \\
& =d
\end{aligned}
$$

By squaring both sides of the equality $e=e+d$, we obtain $e=e+d^{2}$. Consequently,

$$
d+d^{2}=[f(a) e+(2 n-1) e]+d^{2}=f(a) e+(2 n-1) e=d
$$

while

$$
\begin{aligned}
d+d^{2} & =d+[(2 m-1) e+f(a) e]^{2} \\
& =d+(2 m-1)^{2} e+2(2 m-1) f(a) e+f^{2}(a) e \\
& =\left[d+(2 m-1)^{2} e\right]+2(2 m-1) f(a) e+f^{2}(a) e \\
& =(2 m-1)^{2} e+2(2 m-1) f(a) e+f^{2}(a) e \\
& =d^{2}
\end{aligned}
$$

Thus $d=d^{2}$.
Let $R_{d_{1}}=\left\{x \mid x \in R\right.$ and $\left(x+d_{1}\right) e=2 k e$ for some positive integer $\left.k\right\}$. If $x_{1}, x_{2} \in R_{d_{1}}$, then $x_{1}+d_{1}=2 k_{1} e$ and $x_{2}+d_{1}=2 k_{2} e$. Consequently

$$
\begin{aligned}
\left(x_{1}+x_{2}+d_{1}\right) e & =\left(x_{1}+x_{2}\right) e+d \\
& =\left(x_{1}+x_{2}\right) e+2 d=\left(x_{1}+d_{1}\right) e+\left(x_{2}+d_{1}\right) e \\
& =2\left(k_{1}+k_{2}\right) e
\end{aligned}
$$

and

$$
\begin{aligned}
4 k_{1} k_{2} e & =\left[\left(x_{1}+d_{1}\right) e\right]\left[\left(x_{2}+d_{1}\right) e\right] \\
& =\left(x_{1} e+d\right)\left(x_{2} e+d\right) \\
& =x_{1} x_{2} e+x_{1} d+d x_{2} e+d^{2} \\
& =x_{1} x_{2} e+x_{1} d+d^{2}+d x_{2} e+d^{2}, \quad \text { since } d^{2}=2 d^{2} \\
& =x_{1} x_{2} e+\left(x_{1}+d\right) d+d x_{2} e+d^{2} e, \quad \text { since } d^{2} e=d^{2} \\
& =x_{1} x_{2} e+\left(x_{1}+d\right) e d+d\left(x_{2}+d\right) e \\
& =x_{1} x_{2} e+2 k_{1} e d+d\left(2 k_{2} e\right) \\
& =x_{1} x_{2} e+2 k_{1} d+2 k_{2} d \\
& =x_{1} x_{2} e+d \\
& =\left(x_{1} x_{2}+d_{1}\right) e .
\end{aligned}
$$

Since $2 e \in R_{d_{1}}, R_{d_{1}} \neq \square$. Consequently $R_{d_{1}}$ is a subsemiring of R. Also

$$
\begin{aligned}
{\left[d_{1}+f^{2}(a)\right] e } & =d+f^{2}(a) e \\
& =(2 m-1)[(2 m-1) e+f(a) e]+f^{2}(a) e \\
& =(2 m-1)^{2} e+f(a)[(2 m-1) e+f(a)] e \\
& =(2 m-1)^{2} e+f(a) d \\
& =(2 m-1)^{2} e+(2 m-1) d+f(a) d, \quad \text { since } e+d=e \\
& =(2 m-1)^{2} e+[(2 m-1) e+f(a) e] d, \quad \text { since } \quad e d=d \\
& =(2 m-1)^{2} e+d^{2} \\
& =(2 m-1)^{2} e
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\left(2 f^{2}(a)+d_{1}\right) e & =2 f^{2}(a) e+d \\
& =2 f^{2}(a) e+2 d \\
& =2\left(f^{2}(a) e+d\right) \\
& =2(2 m-1)^{2} e
\end{aligned}
$$

Therefore, $2 f^{2}(a) \in R_{d_{1}}$.
Now $2 f^{2}(a) \in R_{1} \cap R_{d_{1}}$ and $2 e \in R_{d_{1}} \cap\langle e\rangle$, we have $R_{d_{1}}=R$ (otherwise choose $\left.R_{\alpha}=R_{d_{1}}\right)$.

Since $e \in R=R_{d_{1}}$, we have $\left(e+d_{1}\right) e=2 k e$ for some positive integer k. Therefore,

$$
2 k e=\left(e+d_{1}\right) e=e+d_{1} e=e+d=e
$$

and the proof follows from subcase (3.1).
(3.6) $e=2 m e+f(a)$ for some positive integer m and $f(a) \in\langle a\rangle$. In this case $e=e^{2}=2 m e+f(a) e$, and which reduces to (3.5).
(3.7) $e=2 m e+f(a)+2 n p(a) e$. We again have

$$
\begin{aligned}
e & =e^{2}=2 m e+(f(a)+2 n p(a)) e \\
& =2 m e+h(a) e, \text { where } h(a) \in\langle a\rangle
\end{aligned}
$$

and this case also reduces to (3.5).
Theorem 2. The diameter of the graph of a commutative semiring R with more than elements does not exceed three.

Proof. Let R_{1} and R_{2} be two disjoint proper subsemirings of R, and let $a \in R_{1}$ and $b \in R_{2}$ be any two fixed elements. Then $\left\{R_{1}, a R, R b, R_{2}\right\}$ is a path of length three between R_{1} and R_{2}, unless $a R=R$ or $R b=R$. Assume $a R=R$ (the case $R b=R$ may be handled similarly). Since R is commutative, we have $R=a R=R a$. It follows that there exists an element $e \in R$ such that $a=e a$. For each $x \in R, R=a R$ implies that there exists an element $y \in R$ such that $x=a y$.

Thus,

$$
e x=e(a y)=(e a) y=a y=x
$$

which shows that R is left unital and thus, by Theorem 1 , the diameter of the graph $G(\mathscr{R})$ is $\leqq 3$.

Theorem 3. The graph of a semiring R with more than two elements, having ascending chain condition (A.C.C.) or descending chain condition (D.C.C.), is connected and the diameter $D(R)$ does not exceed three.

Proof. Let R_{1} and R_{2} be two disjoint proper subsemirings of R and let $a \in R_{1}$ and $b \in R_{2}$ be two fixed elements. We observe that $\left\{R_{1}, a R, R b, R_{2}\right\}$ is a path of length at most 3 between R_{1} and R_{2} unless $a R=R$ or $R b=R$. Assume $a R=R$ (the case $R b=R$ may be similarly handled). Since $2 a=a+a \in R_{1} \cap(R+R)$ and $2 b=b+b \in R_{2} \cap(R+R),\left\{R_{1}, R+R, R_{2}\right\}$ is a path between R_{1} and R_{2} unless $R+R=R$. Let us assume that $R+R=R$.

Let

$$
A=\{x \mid x \in R \text { and } x R=R\} .
$$

It is easily seen that A is a subsemiring of R and $a \in A$.
Suppose $b \notin A$, i.e. $b R \in \mathscr{R}$. In this case $\left\{R_{1}, R a, b R, R_{2}\right\}$ is a path between R_{1} and R_{2}, unless $R a=R$. Assume $R a=R$. We then have

$$
R a=R=a R
$$

which implies that R is left unital and the proof follows from Theorem 2.
On the other hand if $b \in A$, then $\left\{R_{1}, A, R_{2}\right\}$ is a path between R_{1} and R_{2}, unless $A=R$. Let us assume that $A=R$.

Case 1. R satisfies A.C.C.
Since $a R=R$, there exists a sequence $\left\{x_{i}\right\} \subset R$ such that $a=a x_{1}=a^{2} x_{2}=\cdots$, where $x_{i}=a x_{i+1}$ for $i=1,2, \cdots$. We then have $R a \subset R x_{1} \subset R x_{2} \subset \cdots$. Since R satisfies A.C.C. there exists an n such that $R x_{n}=R x_{n+1}$, which implies that $x_{n}=a x_{n+1} \in R x_{n+1}=R x_{n}$. Thus there exists an element $e \in R$ such that $x_{n}=e x_{n}$. We also have $x_{n} R=R$ (since $A=R$). Let $x \in R$. There exists $y \in R$ such that $x=x_{n} y$ and $e x=e\left(x_{n} y\right)=\left(e x_{n}\right) y=x_{n} y=x$. Thus e is a left unit for R and the proof follows from Theorem 1.

Case 2. R satisfies D.C.C.
It R satisfies D.C.C., we see from $R a \supset R a^{2} \supset R a^{3} \supset \cdots$, that for some m; $R a^{m}=R a^{m+1}$. Thus $a^{m+1} \in R a^{m}=R a^{m+1}$, which implies that there exists an e^{*} such that $a^{m+1}=e^{*} a^{m+1}$ and by the same argument as in Case 1 we can show that e^{*} is a left unit for R and the proof follows from Theorem 1.

Remark. In [3] we showed that the graph of a semiring R with two elements is not necessarily connected.

The following example shows that the diameter $D(R)$ of the graph of semiring R is equal to three.

EXAMPLE. Let $R=\{e, a, b\}$ be a semiring with the following addition and multiplication tables. The graph $G(\mathscr{R})$ is illustrated in Fig. 1.

+	e	a	b
e	e	b	b
a	b	a	b
b	b	b	b

\cdot	e	a	b
e	e	a	b
a	a	a	a
b	b	a	b

Figure 1

References

[1] J. Bosák, The graphs of semigroups, theory of graphs, and its applications Proc. Symp. Graph Theory, Smolenice 1 (963), Academic Press (1965), pp. 119-125.
[2] Y-F. Lin, 'A problem of Bosák concerning the graphs of semigroups', Proc. American Math. Society 21 (1969), 343-346.
[3] Y.-F. Lin and J. S. Ratti, 'The graphs of semirings', Journal of Algebra 14 (1970), 73-82.

University of South Florida
Tampa, Florida

