SAMELSON PRODUCTS IN p-REGULAR SO(2n) AND ITS HOMOTOPY NORMALITY

DAISUKE KISHIMOTO

Department of Mathematics, Kyoto University, Kyoto, 606-8502, Japan e-mail: kishi@math.kyoto-u.ac.jp

and MITSUNOBU TSUTAYA

Faculty of Mathematics, Kyushu University, Fukuoka, 819-0395, Japan e-mail: tsutaya@math.kyushu-u.ac.jp

(Received 14 July 2015; revised 6 January 2016; accepted 2 June 2016; first published online 7 February 2017)

Abstract. A Lie group is called *p*-regular if it has the *p*-local homotopy type of a product of spheres. (Non)triviality of the Samelson products of the inclusions of the factor spheres into *p*-regular $SO(2n)_{(p)}$ is determined, which completes the list of (non)triviality of such Samelson products in *p*-regular simple Lie groups. As an application, we determine the homotopy normality of the inclusion $SO(2n-1) \rightarrow SO(2n)$ in the sense of James at any prime *p*.

2010 Mathematics Subject Classification. 55Q15.

1. Introduction and statement of the results. Let G be a compact connected Lie group. By the classical result of Hopf, it is well known that there is a rational homotopy equivalence

$$G \simeq_{(0)} S^{2n_1-1} \times \cdots \times S^{2n_\ell-1},$$

where $n_1 \leq \cdots \leq n_\ell$. The sequence $n_1 \leq \cdots \leq n_\ell$ is called the type of G. Here is the list of the types of simple Lie groups.

SU(n)	$2,3,\ldots,n$	G_2	2, 6
SO(2n+1)	$2,4,\ldots,2n$	F_4	2, 6, 8, 12
Sp(n)	$2,4,\ldots,2n$	E_6	2, 5, 6, 8, 9, 12
SO(2n)	$2,4,\ldots,2n-2,n$	E_7	2, 6, 8, 10, 12, 14, 18
		E_8	2, 8, 12, 14, 18, 20, 24, 30

Serre generalizes the above rational homotopy equivalence to a p-local homotopy equivalence such that when G is semi-simple and $G_{(p)}$ is simply connected, there is a p-local homotopy equivalence

$$G \simeq_{(p)} S^{2n_1-1} \times \dots \times S^{2n_\ell-1} \tag{1}$$

if and only if $p \ge n_\ell$, in which case G is called p-regular. In this paper, we are interested in the standard multiplicative structure of the p-localization $G_{(p)}$ when G is p-regular, and then we assume that G is a simple Lie group in the above table and is p-regular

throughout this section. Recall that for a homotopy associative H-space X with inverse and maps $\alpha: A \to X$, $\beta: B \to X$, the correspondence

$$A \wedge B \to X$$
, $(x, y) \mapsto \alpha(x)\beta(y)\alpha(x)^{-1}\beta(y)^{-1}$

is called the Samelson product of α , β in X and is denoted by $\langle \alpha, \beta \rangle$. One easily sees that in investigating the multiplicative structure of $G_{(p)}$, the Samelson products $\langle \epsilon_i, \epsilon_j \rangle$ play the fundamental role as in [9], where ϵ_i is the inclusion $S^{2n_i-1} \to S_{(p)}^{2n_i-1} \times \cdots \times S_{(p)}^{2n_i-1} \simeq G_{(p)}$ into the ith factor. So, it is our task to determine (non)triviality of these Samelson products. In this direction, Bott [2] studied the order of a certain class of Samelson products in SU(n) and Sp(n), for example.

We here make a remark on the choice of ϵ_i which depends on the *p*-local homotopy equivalence (1). Recall from [14, Theorem 13.4] that

$$\pi_*(S_{(p)}^{2m-1}) = 0$$
 for $2m-1 < * < 2m+2p-4$. (2)

Then, we see that $\pi_{2n_i-1}(G_{(p)})$ is a free $\mathbb{Z}_{(p)}$ -module for all i, and so $\pi_{2n_i-1}(G_{(p)}) \cong \mathbb{Z}_{(p)}$ for all i and $G \neq SO(2n)$ since the entries of the type are distinct for $G \neq SO(2n)$ as in the above table. Hence, for $G \neq SO(2n)$, we may choose any generator of $\pi_{2n_i-1}(G_{(p)}) \cong \mathbb{Z}_{(p)}$ as ϵ_i . For G = SO(2n), we will make an explicit choice of ϵ_i below.

We first consider the Samelson products $\langle \epsilon_i, \epsilon_j \rangle$ in $G_{(p)}$ when G is the classical group except for SO(2n).

THEOREM 1.1. Let G be the p-regular classical group except for SO(2n), and let ϵ_i be a generator of $\pi_{2n_i-1}(G_{(p)}) \cong \mathbb{Z}_{(p)}$ for the type $\{n_1, \ldots, n_\ell\}$ of G. Then,

$$\langle \epsilon_i, \epsilon_i \rangle \neq 0$$
 if and only if $n_i + n_i > p$.

Proof. If G = SU(n), Sp(n), non-triviality of the Samelson products follows from the result of Bott [2] and triviality follows from the fact that $\pi_{2*}(G_{(p)}) = 0$ for * < p which is deduced from (2). Since there is a homotopy equivalence as loop spaces $Sp(n)_{(p)} \cong SO(2n+1)_{(p)}$ due to Friedlander [3], the case of $SO(2n+1)_{(p)}$ is the same as $Sp(n)_{(p)}$.

We next consider the Samelson products $\langle \epsilon_i, \epsilon_j \rangle$ in $G_{(p)}$ when G is the exceptional Lie group. Some of these Samelson products are calculated in [5,9], and (non)triviality of all these Samelson products is determined in [6] as follows.

THEOREM 1.2 ([6]). Let G be a p-regular compact connected exceptional simple Lie group, and let ϵ_i be a generator of $\pi_{2n_i-1}(G_{(p)}) \cong \mathbb{Z}_{(p)}$ for the type $\{n_1, \ldots, n_\ell\}$ of G. Then,

$$\langle \epsilon_i, \epsilon_j \rangle \neq 0$$
 if and only if $n_i + n_j = n_k + p - 1$ for some k .

Thus, the only remaining case is SO(2n). The purpose of this paper is to show that a sufficient condition for non-triviality of the Samelson products $\langle \epsilon_i, \epsilon_j \rangle$ in $G_{(p)}$ (Lemma 2.1) used in [4–6, 10] is actually a necessary and sufficient condition, and to apply it to determination of (non)triviality of all the Samelson products $\langle \epsilon_i, \epsilon_j \rangle$ in $SO(2n)_{(p)}$. The difficulty of this case is caused by the middle dimensional sphere $S_{(p)}^{2n-1}$ in $SO(2n)_{(p)}$ which vanishes by the inclusion $SO(2n) \rightarrow SO(2n+1)$. We choose the maps ϵ_i . Let ϵ_i

be the composite

$$S^{4i-1} \to SO(2n-1)_{(p)} \xrightarrow{\text{incl}} SO(2n)_{(p)},$$

for i = 1, ..., n-1, where the first arrow is a generator of $\pi_{4i-1}(SO(2n-1)_{(p)}) \cong \mathbb{Z}_{(p)}$. Let $\theta : S^{2n-1} \to SO(2n)_{(p)}$ be the map corresponding to the adjoint of the fibre inclusion of the canonical homotopy fibre sequence

$$S^{2n} \to BSO(2n) \to BSO(2n+1).$$

There are only two results on Samelson products in SO(2*n*) involving θ : Mahowald [12] showed that the Samelson product $\langle \theta, \theta \rangle \in \pi_{4n-2}(SO(2n))$ has order (2n-1)!/8 or (2n-1)!/4 according as *n* is even or odd. Hamanaka and Kono [4] showed that the Samelson product $\langle \epsilon_{p-1}, \theta \rangle \in \pi_{4n-2}(SO(2n)_{(p)})$ is non-trivial when $p \le 2n-1$. Our main result determines (non)triviality of all Samelson products of ϵ_i and θ in *p*-regular SO(2n).

THEOREM 1.3. Let ϵ_i , θ be the above maps into $SO(2n)_{(p)}$ for p-regular SO(2n). All non-trivial Samelson products of ϵ_i , θ in $SO(2n)_{(p)}$ are

$$\langle \epsilon_i, \epsilon_i \rangle$$
 for $2i + 2j > p$ and $\langle \epsilon_{n-1}, \theta \rangle = \langle \theta, \epsilon_{n-1} \rangle$, $\langle \theta, \theta \rangle$ for $p = 2n - 1$.

Recall that an H-map $f: X \to Y$ between homotopy associative H-spaces with inverse is homotopy normal in the sense of James [7] if the Samelson product $\langle f, 1_Y \rangle$ can be compressed to X through f up to homotopy. This is a generalization of the inclusion of a normal subgroup. James proved that O(n) is not homotopy normal in O(n+1) when $n \ge 2$ using the mod 2 cohomology. His proof implies that the 2-localization $SO(n)_{(2)}$ is not homotopy normal in $SO(n+1)_{(2)}$ when $n \ge 2$. As an application of Theorem 1.3 we will prove:

THEOREM 1.4. The inclusion $\iota_{(p)} \colon SO(2n-1)_{(p)} \to SO(2n)_{(p)}$ is homotopy normal if and only if p > 2n-1.

For p > 2n - 1, we can prove the following stronger result.

THEOREM 1.5. For p > 2n-1, the map $\iota_{(p)} \cdot \theta : SO(2n-1)_{(p)} \times S_{(p)}^{2n-1} \to SO(2n)_{(p)}$ is an H-equivalence, where $S_{(p)}^{2n-1}$ is a homotopy associative and homotopy commutative H-space.

Note that we do not need to assume that SO(2n-1) is p-regular in the last two theorems.

2. Detecting Samelson products by the Steenrod operations. Let G be a p-torsion free connected finite loop space of type $n_1 \le \cdots \le n_\ell$ throughout this section where the type of a finite loop space is similarly defined. We set notation for G. Since G is p-torsion free, we have

$$H^*(BG_{(p)}; \mathbb{Z}/p) = \mathbb{Z}/p[x_1, \dots, x_{\ell}], \qquad |x_i| = 2n_i.$$

We fix this presentation of the mod p co-homology of $BG_{(p)}$. Note that

$$H^*(G_{(p)}; \mathbb{Z}/p) = \Lambda(e_1, \ldots, e_\ell)$$

for the suspension e_i of x_i . For each i, we take a non-trivial element $\epsilon_i \in \pi_{2n_i-1}(G_{(p)})$ which is not divisible by non-units in $\mathbb{Z}_{(p)}$ such that

$$(\Sigma \epsilon_i)^* \circ \iota_1^*(x_j) = \begin{cases} h_i \Sigma u_{2n_i - 1} & i = j \\ 0 & i \neq j \end{cases}, \tag{3}$$

for some $h_i \in \mathbb{Z}_{(p)}$, where $\iota_1 \colon \Sigma G_{(p)} \to BG_{(p)}$ is the canonical map and u_k is a generator of $H^k(S^k; \mathbb{Z}_{(p)}) \cong \mathbb{Z}_{(p)}$. We note that $G_{(p)}$ is a product of spheres if and only if h_1, \ldots, h_ℓ are units. The following lemma is first used in [10] and is the main tool in the proof of Theorem 1.2 given in [6]. Here, we reproduce the proof for completeness of the present paper.

LEMMA 2.1 ([10, Proof of Theorem 1.1]). Suppose that h_i and h_j are units in $\mathbb{Z}_{(p)}$. If \mathcal{P}^1x_k is decomposable and includes the term cx_ix_j $(c \neq 0)$, the Samelson product $\langle \epsilon_i, \epsilon_j \rangle$ is non-trivial.

Proof. Suppose $\langle \epsilon_i, \epsilon_j \rangle = 0$ under the assumption that $\mathcal{P}^1 x_k$ includes the term $cx_i x_j$ $(c \neq 0)$. Let $\bar{\epsilon}_m \colon S^{2n_m} \to BG_{(p)}$ be the adjoint of ϵ_m . Then, by (3), we have $\bar{\epsilon}_m^*(x_m) = h_m u_{2m}$. By adjointness of Samelson products and Whitehead products, the Whitehead product $[\bar{\epsilon}_i, \bar{\epsilon}_j]$ in $BG_{(p)}$ is trivial, and then there is a map $\mu \colon S^{2n_i} \times S^{2n_j} \to BG_{(p)}$ satisfying $\mu|_{S^{2n_i} \vee S^{2n_j}} = \bar{\epsilon}_i \vee \bar{\epsilon}_j$. So we get $\mu^*(x_i) = h_i(u_{2n_i} \otimes 1)$ and $\mu^*(x_j) = h_j(1 \otimes u_{2n_i})$, and hence

$$ch_i h_j u_{2n_i} \otimes u_{2n_i} = \mu^*(cx_i x_j) = \mu^*(\mathcal{P}^1 x_k) = \mathcal{P}^1 \mu^*(x_k) = 0,$$

where the second and the last equality follows from the decomposability of $\mathcal{P}^1 x_k$ and triviality of \mathcal{P}^1 on $H^*(S^{2n_i} \times S^{2n_j}; \mathbb{Z}/p)$, respectively. This is a contradiction to $ch_ih_i \neq 0$.

In this lemma, the assumption on the decomposability of $\mathcal{P}^1 x_k$ cannot be removed. Here is a counterexample.

EXAMPLE 2.2. We consider SU(4) at the prime 3. Recall that $H^*(BSU(4); \mathbb{Z}/3) = \mathbb{Z}/3[c_2, c_3, c_4]$, where c_i denotes the *i*th universal Chern class. By inspection, we have

$$\mathcal{P}^1 c_2 = c_2^2 + c_4.$$

For a degree reason, the inclusion ϵ_1 : $S^3 = SU(2) \rightarrow SU(4)$ satisfies $(\Sigma \epsilon_1)^* \circ \iota_1^*(c_2) = \Sigma u_3$ as in (3), but the Samelson product $\langle \epsilon_1, \epsilon_1 \rangle$ is trivial since SU(2) commutes up to homotopy with itself in SU(4).

We elaborate Lemma 2.1 to prove that its converse is true when $G_{(p)}$ is a product of spheres. The following lemma is useful to detect the non-triviality of a Samelson product when $G_{(p)}$ (not necessarily *p*-regular) is decomposed into a product of a sphere and some space. The proof is independent of Lemma 2.1.

LEMMA 2.3. For integers $1 \le i, j, k \le \ell$, suppose that there is a map $\pi_k \colon G_{(p)} \to S_{(p)}^{2n_k-1}$ such that $\pi_k^*(u_{2n_k-1}) = e_k$, h_i and h_j are units in $\mathbb{Z}_{(p)}$, and $n_i + n_j = n_k + p - 1$. Then, $\pi_k \circ \langle \epsilon_i, \epsilon_j \rangle \neq 0$ if and only if $\mathcal{P}^1 x_k$ includes the term $cx_i x_j$ with $c \ne 0$.

Proof. We prove both implications simultaneously. We may suppose that $h_i = h_j = h_k = 1$. Let $P^2G_{(p)}$ be the projective plane of $G_{(p)}$, i.e. there is a cofibre sequence

$$\Sigma G_{(p)} \wedge G_{(p)} \xrightarrow{H} \Sigma G_{(p)} \xrightarrow{\rho_1} P^2 G_{(p)},$$
 (4)

where H is the Hopf construction. By [11, Section 4], the canonical map $\iota_1 \colon \Sigma G_{(p)} \to BG$ extends to a map $\iota_2 \colon P^2G \to BG$, i.e. $\iota_2 \circ \rho_1 = \iota_1$. Put $\bar{x}_i = \iota_2^*(x_i)$. Then, we have $\rho_1^*(\bar{x}_i) = \Sigma e_i$. By [11, Section 3], we also have $\delta_1^*(\Sigma^2 e_i \otimes e_j) = \bar{x}_i \bar{x}_j$ for the connecting map $\delta_1 \colon P^2G_{(p)} \to \Sigma^2G_{(p)} \wedge G_{(p)}$ of the cofibre sequence (4). Consider the map

$$\Phi = \Sigma \langle \epsilon_i, \epsilon_j \rangle - [\Sigma \epsilon_i, \Sigma \epsilon_j] \colon \Sigma S^{2n_i - 1} \wedge S^{2n_j - 1} \to \Sigma G_{(p)},$$

where [-,-] denotes the Whitehead product. Note that Φ induces a trivial map on mod p cohomology since $H^*(G_{(p)}; \mathbb{Z}/p)$ is primitively generated and the Whitehead product becomes trivial after suspending. The map Φ is connected with the Hopf construction H through the map constructed by Morisugi [13, Theorem 5.1] such that there is a map $\xi: S^{2n_i-1} \wedge S^{2n_j-1} \to G_{(p)} \wedge G_{(p)}$ satisfying

$$\Phi = H \circ \Sigma \xi \quad \text{and} \quad \xi^*(e_s \otimes e_t) = \begin{cases} u_{2n_i - 1} \otimes u_{2n_j - 1} & (s, t) = (i, j), (j, i) \\ 0 & \text{otherwise.} \end{cases}$$

Then, we get a homotopy commutative diagram

$$\begin{array}{ccc}
\Sigma G_{(p)} & \xrightarrow{\rho_2} & C_{\Phi} & \xrightarrow{\delta_2} & \Sigma^2 S^{2n_i - 1} \wedge S^{2n_j - 1} \\
\parallel & & \downarrow_{\lambda_1} & & \downarrow_{\Sigma^2 \xi} \\
\Sigma G_{(p)} & \xrightarrow{\rho_1} & P^2 G_{(p)} & \xrightarrow{\delta_1} & \Sigma^2 G_{(p)} \wedge G_{(p)}
\end{array}$$

whose rows are homotopy cofibrations, implying that

$$\rho_2^* \circ \lambda_1^*(\bar{x}_k) = \Sigma e_k \quad \text{and} \quad \lambda_1^*(\bar{x}_s \bar{x}_t) = \begin{cases} \delta_2^*(\Sigma^2 u_{2n_i - 1} \otimes u_{2n_j - 1}) & (s, t) = (i, j), (j, i) \\ 0 & \text{otherwise,} \end{cases}$$
(5)

where $\delta_2^*(\Sigma^2 u_{2n_i-1} \otimes u_{2n_j-1})$ is non-trivial element since Φ is trivial on mod p cohomology. We have

$$\pi_k \circ \langle \epsilon_i, \epsilon_i \rangle = c\alpha_1 \quad (c \in \mathbb{Z}/p),$$

where α_1 is a generator of $\pi_{2n_k+2p-4}(S^{2n_k-1}) \cong \mathbb{Z}/p$ [14, Proposition 13.6]. Note that $\pi_k \circ \langle \epsilon_i, \epsilon_j \rangle$ is nontrivial if and only if $c \neq 0$. Then, for the map

$$\widehat{\Phi} = c \Sigma \alpha_1 - [\Sigma \pi_k \circ \epsilon_i, \, \Sigma \pi_k \circ \epsilon_j] \colon \Sigma S^{2n_i - 1} \wedge S^{2n_j - 1} \to \Sigma S^{2n_k - 1}_{(p)},$$

there is a homotopy commutative diagram

whose rows are homotopy cofibrations. Since α_1 is detected by the Steenrod operation \mathcal{P}^1 and $\Sigma \hat{\Phi} = c \Sigma^2 \alpha_1$, the mod p cohomology of $C_{\widehat{\Phi}}$ is given by

$$\widetilde{H}^*(C_{\widehat{\Phi}}; \mathbb{Z}/p) = \langle a_{2n_k}, a_{2n_i+2n_i} \rangle, \quad \mathcal{P}^1 a_{2n_k} = c a_{2n_i+2n_i}$$

such that $\delta_3^*(\Sigma^2 u_{2n_i-1} \otimes u_{2n_j-1}) = a_{2n_i+2n_j}$ and $\rho_3^*(a_{2n_k}) = \Sigma u_{2n_k-1}$. Then, by (5), we get $\rho_2^* \circ \lambda_2^*(a_{2n_k}) = \Sigma e_k = \rho_2^* \circ \lambda_1^*(\bar{x}_k)$. By the homotopy cofibre sequence $\Sigma G_{(p)} \stackrel{\rho_2}{\to} C_{\Phi} \stackrel{\delta_2}{\to} \Sigma^2 S^{2n_i-1} \wedge S^{2n_j-1}$, one can see that the inclusion $\rho_2 \colon \Sigma G_{(p)} \to C_{\Phi}$ is injective in the mod p cohomology of dimension $2n_k$, and then we obtain $\lambda_2^*(a_{2n_k}) = \lambda_1^*(\bar{x}_k)$. Now consider an element $\mathcal{P}^1 x_k$ in $H^*(BG_{(p)}; \mathbb{Z}/p)$, which is expressed as a polynomial of x_1, \ldots, x_ℓ . Denote the coefficient of the term $x_i x_j$ in $\mathcal{P}^1 x_k$ by d. Then, we have

$$\lambda_1^*(\mathcal{P}^1\bar{x}_k) = d\delta_2^*(\Sigma^2 u_{2n_i-1} \otimes u_{2n_i-1}) + \text{ a linear combination of } \lambda_1^*(\bar{x}_1), \dots, \lambda_1^*(\bar{x}_\ell)$$

by (5). On the other hand, we also have

$$\lambda_1^*(\mathcal{P}^1\bar{x}_k) = \mathcal{P}^1\lambda_1^*(\bar{x}_k) = \mathcal{P}^1\lambda_2^*(a_{2n_k}) = c\delta_2^*(\Sigma^2 u_{2n_i-1} \otimes u_{2n_i-1}).$$

Since $\delta_2^*(\Sigma^2 u_{2n_i-1} \otimes u_{2n_j-1})$ is non-trivial and is not contained in the span of $\lambda_1^*(\bar{x}_1), \ldots, \lambda_1^*(\bar{x}_\ell)$, we have c = d. Thus, $\mathcal{P}^1 x_k$ must include the term $cx_i x_j$. Therefore, we have established the lemma.

THEOREM 2.4. Suppose $p \ge n_{\ell} - n_1 + 2$. Then, the Samelson product $\langle \epsilon_i, \epsilon_j \rangle$ in $G_{(p)}$ is non-trivial if and only if for some k, $\mathcal{P}^1 x_k$ includes the term $cx_i x_j$ with $c \ne 0$.

Proof. By the result of Kumpel [8], we can choose each ϵ_i such as $h_i = 1$. Then, the composite

$$S^{2n_1-1} \times \cdots \times S^{2n_\ell-1} \xrightarrow{\epsilon_1 \times \cdots \times \epsilon_\ell} G_{(p)} \times \cdots \times G_{(p)} \to G_{(p)}$$

induces a p-local homotopy equivalence where the second map is the multiplication, and we identify $G_{(p)}$ with $S_{(p)}^{2n_1-1} \times \cdots \times S_{(p)}^{2n_\ell-1}$ by this p-local homotopy equivalence. Under this assumption, h_i is a unit of $\mathbb{Z}_{(p)}$ for any i. By this decomposition, we can find a projection $\pi_k \colon G_{(p)} \to S_{(p)}^{2n_\ell-1}$ such that $\pi_k^* u_{2n_\ell-1} = e_i$ for each i. By Lemma 2.3, if $\mathcal{P}^1 x_k$ includes the term $cx_i x_j$ with $c \neq 0$, then the Samelson product $\langle \epsilon_i, \epsilon_j \rangle$ in $G_{(p)}$ is non-trivial. As in [9], if $\langle \epsilon_i, \epsilon_j \rangle$ is non-trivial, then for some $1 \leq k \leq \ell$ we have $n_k + p - 1 = n_i + n_j$ and $\pi_k \circ \langle \epsilon_i, \epsilon_j \rangle$ is non-trivial. Again by Lemma 2.3, this implies that $\mathcal{P}^1 x_k$ includes the term $cx_i x_j$ with $c \neq 0$.

3. Proofs of the results. Let p be an odd prime and p_i , $e_n \in H^*(BSO(2n)_{(p)}; \mathbb{Z}/p)$ be the mod p reduction of the ith universal Pontrjagin class for $i = 1, \ldots, n-1$ and the Euler class, respectively. Then,

$$H^*(BSO(2n)_{(p)}; \mathbb{Z}/p) = \mathbb{Z}/p[p_1, \ldots, p_{n-1}, e_n]$$

and the maps ϵ_i and θ correspond to p_i and e_n , respectively, in the sense of (3). In particular, we take ϵ_i so that $h_i = 1$ for $i \leq \frac{p-1}{2}$ and θ so that $(\Sigma \theta)^* \circ \iota_1^*(e_n) = \Sigma u_{2n-1}$ and $(\Sigma \theta)^* \circ \iota_1^*(p_i) = 0$ for any i.

LEMMA 3.1. The following statements hold.

- (1) The element $\mathcal{P}^1 p_i$ does not include the quadratic term $ce_n p_i$ $(c \neq 0)$ for any i and j.
- (2) If p = 2n 1, the element $\mathcal{P}^1 p_1$ is decomposable and includes the term $(-1)^{\frac{p-1}{2}} e_n^2$.

Proof. Since $p_i \in H^*(BSO(2n)_{(p)}; \mathbb{Z}/p)$ is contained in the image from $H^*(BSO(2n+1)_{(p)}; \mathbb{Z}/p)$, if a quadratic term of \mathcal{P}^1p_i includes e_n , it must be a multiple of e_n^2 and $i = n - \frac{p-1}{2} \ge 1$. Thus, the first statement holds. Recall that for a maximal torus T of SO(2n) and the natural map $\iota \colon BT_{(p)} \to BSO(2n)_{(p)}$, we have

$$H^*(BT_{(p)}; \mathbb{Z}/p) = \mathbb{Z}/p[t_1, \ldots, t_n], \quad |t_i| = 2$$

such that $\iota^*(p_i)$ is the *i*th elementary symmetric polynomial in t_1^2, \ldots, t_n^2 and $\iota^*(e_n) = t_1 \cdots t_n$. In particular, ι is injective in the mod p cohomology. Suppose p = 2n - 1. We have

$$\iota^*(\mathcal{P}^1p_1) = \mathcal{P}^1(t_1^2 + \dots + t_n^2) = 2((t_1^2)^{\frac{p+1}{2}} + \dots + (t_n^2)^{\frac{p+1}{2}}).$$

Then, we obtain

$$\mathcal{P}^1 p_1 \equiv (-1)^{\frac{p-1}{2}} e_n^2 \mod (p_1, \dots, p_{n-1})^2$$

by the Newton formula. Therefore, the second statement holds.

LEMMA 3.2. The element \mathcal{P}^1e_n is decomposable and the following congruence hold:

$$\mathcal{P}^1 e_n \equiv (-1)^{\frac{p-1}{2}} \frac{p-1}{2} e_n p_{\frac{p-1}{2}} \mod (p_1, \dots, p_{n-1})^2.$$

Proof. We set $\iota: BT_{(p)} \to BSO(2n)_{(p)}$ as in the proof of Lemma 3.1. We have

$$\iota^*(\mathcal{P}^1 e_n) = \mathcal{P}^1 \iota^*(e_n) = \mathcal{P}^1(t_1 \cdots t_n) = t_1 \cdots t_n ((t_1^2)^{\frac{p-1}{2}} + \cdots + (t_n^2)^{\frac{p-1}{2}}).$$

Then, the proof is completed by the Newton formula.

Proof of Theorem 1.3 Assume p > 2n - 2. Since the inclusion $SO(2n - 1)_{(p)} \to SO(2n)_{(p)}$ has a left homotopy inverse, it follows from Theorem 1.1 that the Samelson product $\langle \epsilon_i, \epsilon_j \rangle$ is non-trivial if and only if 2i + 2j > p. To detect the Samelson products $\langle \epsilon_i, \theta \rangle = \langle \theta, \epsilon_i \rangle$ and $\langle \theta, \theta \rangle$ by Theorem 2.4, we need the information about the quadratic terms of $\mathcal{P}^1 p_i$ and $\mathcal{P}^1 e_n$ including e_n . Now these informations have already been obtained in Lemma 3.1 and 3.2. Therefore, the proof of Theorem 1.3 is completed. \square

Lemma 3.2 implies non-triviality of the Samelson product $\langle \epsilon_{\underline{p-1}}, \theta \rangle$ not only when SO(2n) is p-regular but also when SO(2n) is not p-regular as follows.

COROLLARY 3.3. The Samelson product $\langle \epsilon_{\underline{p-1}}, \theta \rangle = \langle \theta, \epsilon_{\underline{p-1}} \rangle$ in $\pi_{2n+2p-4}(SO(2n)_{(p)})$ is non-trivial for any odd prime p. More precisely, the image of $\langle \epsilon_{\underline{p-1}}, \theta \rangle$ under the homomorphism induced by the projection $SO(2n)_{(p)} \to S_{(p)}^{2n-1}$ generates $\pi_{2n+2p-4}(S_{(p)}^{2n-1}) \cong \mathbb{Z}/p$.

Proof. Note that, for the projection π : SO $(2n)_{(p)} \to S_{(p)}^{2n-1}$, we have $(\Sigma \pi)^* \Sigma u_{2n-1} = \iota_1^*(e_n)$. Then, the corollary follows from Lemma 2.3 and 3.2.

We next prove Theorem 1.4. Let X be a homotopy associative H-space with inverse. For maps $\alpha: A \to X$ and $\beta: B \to X$, let $\{\alpha, \beta\}$ denote the composite

$$A \times B \xrightarrow{\alpha \times \beta} X \times X \to X$$

where the last arrow is the commutator map. Then, for the projection $q: A \times B \to A \wedge B$, we have $q^*(\langle \alpha, \beta \rangle) = \{\alpha, \beta\}$ and the induced map $q^*: [A \wedge B, X] \to [A \times B, X]$ is injective. In particular, $\langle \alpha, \beta \rangle$ is trivial if and only if so is $\{\alpha, \beta\}$.

LEMMA 3.4 (cf. [9, Proposition 1]). For maps φ_i : $A_i \to X$ (i = 1, 2) and β : $B \to X$, if $\{\varphi_2, \beta\}$ is trivial, then

$$\{\varphi_1 \cdot \varphi_2, \beta\} = \{\varphi_1, \beta\} \circ \rho_2,$$

where ρ_2 : $A_1 \times A_2 \times B \rightarrow A_1 \times B$ denotes the projection.

Proof. In the group of the homotopy set $[A_1 \times A_2 \times B, X]$, we have

$$\{\varphi_1 \cdot \varphi_2, \beta\} = [(\varphi_1 \circ \pi_1) \cdot (\varphi_2 \circ \pi_2), \beta \circ \pi],$$

where π_i : $A_1 \times A_2 \times B \to A_i$ for i = 1, 2 and π : $A_1 \times A_2 \times B \to B$ denote the projections and [-, -] means the commutator. In a group G, we have

$$[xy, z] = x[y, z]x^{-1}[x, z],$$

for $x, y, z \in G$. Then, the proof is completed by $[\varphi_1 \circ \pi_1, \beta \circ \pi] = {\varphi_1, \beta} \circ \rho_2$.

Proof of Theorem 1.4 Let $\iota: SO(2n-1) \to SO(2n)$ denote the inclusion and $\pi: SO(2n) \to S^{2n-1}$ the projection. For p=2 and $n \ge 2$, as remarked in Section 1, the 2-localization $\iota_{(2)}: SO(2n-1)_{(2)} \to SO(2n)_{(2)}$ is not homotopy normal by the argument by James [7, Proof of Theorem (3.1)].

If 2 , then the Samelson product

$$\pi_{(p)} \circ \langle \iota_{(p)}, 1_{SO(2n)_{(p)}} \rangle \circ (\epsilon_{\frac{p-1}{2}} \wedge \theta) = \pi_{(p)} \circ \langle \epsilon_{\frac{p-1}{2}}, \theta \rangle$$

is non-trivial in $\pi_{2n+2p-4}(S_{(p)}^{2n-1})$ by Corollary 3.3. This implies that $\iota_{(p)}$ is not homotopy normal.

Suppose p > 2n-1. Note that the identity map of $SO(2n)_{(p)}$ is identified with the map $\iota_{(p)} \cdot \theta \colon SO(2n-1)_{(p)} \times S_{(p)}^{2n-1} \to SO(2n)_{(p)}$. Then, it follows from Lemma 3.4 that $\iota_{(p)}$ is homotopy normal if the Samelson product $\langle \iota_{(p)}, \theta \rangle$ is trivial. Note also that $\iota_{(p)}$ is identified with the map $\epsilon_1 \cdots \epsilon_{n-1} \colon S_{(p)}^3 \times \cdots \times S_{(p)}^{4n-5} \to SO(2n-1)_{(p)}$. Then, it is sufficient to show that $\{\epsilon_1 \cdots \epsilon_{n-1}, \theta\}$ is trivial. By Lemma 3.4, this is equivalent to that $\langle \epsilon_i, \theta \rangle$ are trivial for all i. Thus, $\iota_{(p)}$ is homotopy normal by Theorem 1.3.

We finally prove Theorem 1.5. Let X, Y be homotopy associative H-spaces with inverse. Recall that the H-deviation d(f) of a map $f: X \to Y$ is defined by

$$d(f): X \wedge X \to Y, \quad (x_1, x_2) \mapsto f(x_1 x_2) f(x_2)^{-1} f(x_1)^{-1}.$$

By definition, f is an H-map if and only if the H-deviation d(f) is trivial.

LEMMA 3.5. Let X_1, X_2, Y be homotopy associative H-spaces with inverse, and $\lambda_i \colon X_i \to Y$ be H-maps for i = 1, 2. Then, the map $\lambda_1 \cdot \lambda_2 \colon X_1 \times X_2 \to Y$ is an H-map if and only if the Samelson product $\langle \lambda_1, \lambda_2 \rangle$ is trivial.

Proof. For $x_i, x_i' \in X_i$ (i = 1, 2), we have

$$d(\lambda_1 \cdot \lambda_2)(x_1, x_2, x_1', x_2') \simeq \lambda_1(x_1 x_1') \lambda_2(x_2 x_2') \lambda_2(x_2')^{-1} \lambda_1(x_1')^{-1} \lambda_2(x_2)^{-1} \lambda_1(x_1)^{-1}$$

$$\simeq \lambda_1(x_1) (\langle \lambda_1, \lambda_2 \rangle (x_1', x_2)) \lambda_1(x_1)^{-1}$$

since λ_1 , λ_2 are H-maps. Then, since λ_1 is an H-map, $d(\lambda_1 \cdot \lambda_2)$ is trivial if and only if so is (λ_1, λ_2) , completing the proof.

Proof of Theorem 1.5. Obviously, the map $\iota_{(p)} \cdot \theta$ is a homotopy equivalence, so it remains to show that it is an H-map. By definition, we have $d(\theta) \in \pi_{4n-2}(\mathrm{SO}(2n)_{(p)})$, and then by [14, Proposition 13.6] and p > 2n-1, $d(\theta)$ is trivial, implying that θ is an H-map. The inclusion $\iota_{(p)}$ is clearly an H-map, and in the proof of Theorem 1.4 the Samelson product $\langle \iota_{(p)}, \theta \rangle$ is shown to be trivial for p > 2n-1. Thus, by Lemma 3.5, $\iota_{(p)} \cdot \theta$ is an H-map. Note that we have not fixed an H-structure of $S_{(p)}^{2n-1}$. There is a one to one correspondence between H-structures on $S_{(p)}^{2n-1}$ and $\pi_{4n-2}(S_{(p)}^{2n-1})$. By [14, Proposition 13.6] and p > 2n-1, $\pi_{4n-2}(S_{(p)}^{2n-1}) = 0$, so there is only one H-structure on $S_{(p)}^{2n-1}$. By [1], $S_{(p)}^{2n-1}$ has a homotopy associative and homotopy commutative H-structure. Then, $S_{(p)}^{2n-1}$ must be a homotopy associative and homotopy commutative H-space.

ACKNOWLEDGEMENTS. D.K. is supported by JSPS KAKENHI (No. 25400087).

REFERENCES

- 1. J. F. Adams, The sphere, considered as an H-space mod p, Quart. J. Math. 12 (1961), 52–60.
- **2.** R. Bott, A note on the Samelson products in the classical groups, *Comment. Math. Helv.* **34** (1960), 249–256.
- 3. É. M. Friedlander, Exceptional isogenies and the classifying spaces of simple Lie groups, *Ann. Math.* **101** (1975), 510–520.
- **4.** H. Hamanaka and A. Kono, A note on the Samelson products in $\pi_*(SO(2n))$ and the group [SO(2n), SO(2n)], Topology Appl. 154(3) (2007), 567–572.
- **5.** H. Hamanaka and A. Kono, A note on Samelson products and mod *p* cohomology of classifying spaces of the exceptional Lie groups, *Topology Appl.* **157**(2) (2010), 393–400.
- **6.** S. Hasui, D. Kishimoto and A. Ohsita, Samelson products in *p*-regular exceptional Lie groups, *Topology Appl.* **178**(1) (2014), 17–29.
- 7. I. M. James, On homotopy theory of classical groups, Ann. Acad. Brasil. Cienc. 39 (1967), 39-44.
- **8.** P. G. Kumpel, Mod *p*-equivalences of mod *p H*-spaces, *Quart. J. Math.* **23** (1972), 173–178.
- **9.** S. Kaji and D. Kishimoto, Homotopy nilpotency in *p*-regular loop spaces, *Math. Z.* **264**(1) (2010), 209–224.
- 10. A. Kono and H. Ōshima, Commutativity of the group of self homotopy classes of Lie groups, *Bull. London Math. Soc.* 36 (2004), 37–52.
- **11.** J. Lin, H-spaces with finiteness conditions, in *Handbook of algebraic topology* (James I. M., Editors) (Elsevier, North-Holland, 1995), 1095–1141, Chapter 22.
- 12. M. Mahowald, A Samelson product in SO(2n), Bol. Soc. Math. Mexicana 10 (1965), 80–83.

DAISUKE KISHIMOTO AND MITSUNOBU TSUTAYA 174

- 13. K. Morisugi, Hopf construction, Samelson products and suspension maps,
- Contemporary Math. 239 (1999), 225–238.

 14. H. Toda, Composition methods in homotopy groups of spheres, Ann. of Math. Studies, vol. 49 (Princeton University Press, Princeton N.J., 1962).