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Abstract. A Lie group is called p-regular if it has the p-local homotopy type
of a product of spheres. (Non)triviality of the Samelson products of the inclusions
of the factor spheres into p-regular SO(2n),,) is determined, which completes the list
of (non)triviality of such Samelson products in p-regular simple Lie groups. As an
application, we determine the homotopy normality of the inclusion SO(2n — 1) —
SO(2n) in the sense of James at any prime p.

2010 Mathematics Subject Classification. 55Q15.

1. Introduction and statement of the results. Let G be a compact connected Lie
group. By the classical result of Hopf, it is well known that there is a rational homotopy
equivalence

G :(0) S2n1—1 X - X San—l’

where n; < --- < ny. The sequence n; < --- < ny is called the type of G. Here is the list
of the types of simple Lie groups.

SU(n) 2,3,....n G, | 2,6
SOQn+1) | 2,4,....2n F. | 2,68 12
Sp(n) 2,4,...,2n Es | 256,89 12
SO(2n) 2,4,...,2n—2,n E; | 2,68, 10,12, 14,18
Es | 2.8, 12,14, 18,20,24, 30

Serre generalizes the above rational homotopy equivalence to a p-local homotopy
equivalence such that when G is semi-simple and Gy is simply connected, there is a
p-local homotopy equivalence

G > S x e x S )

if and only if p > n,, in which case G is called p-regular. In this paper, we are interested
in the standard multiplicative structure of the p-localization G(,) when G is p-regular,
and then we assume that G is a simple Lie group in the above table and is p-regular
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throughout this section. Recall that for a homotopy associative H-space X with inverse
and mapsa: A — X, 8: B — X, the correspondence

ANB— X, (x,) ax)B)a)'B() ™!

is called the Samelson product of «, 8 in X and is denoted by («, 8). One easily sees that
in investigating the multiplicative structure of G, the Samelson products (¢;, €;) play
the fundamental role as in [9], where ¢; is the inclusion $%~! — Sl x SZ";’*l ~
Gy into the ith factor. So, it is our task to determine (non)triviality of these Samelson
products. In this direction, Bott [2] studied the order of a certain class of Samelson
products in SU(n) and Sp(n), for example.

We here make a remark on the choice of ¢; which depends on the p-local homotopy
equivalence (1). Recall from [14, Theorem 13.4] that

(S =0 for 2m—1<x<2m+2p—4 )

Then, we see that 5,1 (Gp)) is a free Z,-module for all i, and so 75, 1(G(,)) = Zy) for
all i and G # SO(2n) since the entries of the type are distinct for G % SO(2n) as in the
above table. Hence, for G # SO(2n), we may choose any generator of m2,,—1(G)) = Z)
as ¢;. For G = SO(2n), we will make an explicit choice of ¢; below.

We first consider the Samelson products (¢;, €;) in G(,) when G is the classical group
except for SO(2n).

THEOREM 1.1. Let G be the p-regular classical group except for SO(2n), and let «;
be a generator of w2,—1(G(p)) = Zp) for the type {ny, ..., ne} of G. Then,

(i, €) # 0 ifandonly if  ni+n; > p.

Proof. If G = SU(n), Sp(n), non-triviality of the Samelson products follows from
the result of Bott [2] and triviality follows from the fact that m2.(G(,)) = 0 for % < p
which is deduced from (2). Since there is a homotopy equivalence as loop spaces
Sp(n)) = SO(2n + 1),y due to Friedlander [3], the case of SO(2n + 1), is the same as

Sp(n))- O

We next consider the Samelson products (¢;, €;) in G(,) when G is the exceptional
Lie group. Some of these Samelson products are calculated in [5,9], and (non)triviality
of all these Samelson products is determined in [6] as follows.

THEOREM 1.2 ([6]). Let G be a p-regular compact connected exceptional simple Lie
group, and let €; be a generator of w2,,_1(G(p)) = Zp) for the type {ny, ..., ne} of G. Then,

(€i,€) #0 ifandonly if n;+n; =n,+p— 1 for some k.

Thus, the only remaining case is SO(2n). The purpose of this paper is to show that a
sufficient condition for non-triviality of the Samelson products (¢;, €;) in G, (Lemma
2.1) used in [4-6, 10] is actually a necessary and sufficient condition, and to apply it to
determination of (non)triviality of all the Samelson products (¢;, €;) in SO(2n),). The
difficulty of this case is caused by the middle dimensional sphere S(zp”)_1 in SO(2n),)
which vanishes by the inclusion SO(2n) — SO(2n + 1). We choose the maps ¢;. Let ¢;
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be the composite

S41 5 8021 — 1) 2% SOQ2n)).
fori=1,...,n— 1, where the first arrow is a generator of m4;_1(SO(2n — 1)) = Zy).
Leto: $*~1 — SO(2n)(,) be the map corresponding to the adjoint of the fibre inclusion
of the canonical homotopy fibre sequence

S — BSO(2n) — BSOQ2n + 1).

There are only two results on Samelson products in SO(2#) involving 8: Mahowald
[12] showed that the Samelson product (0, 8) € m4,-2(SO(2n)) has order (2n — 1)!/8
or (2n — 1)!/4 according as n is even or odd. Hamanaka and Kono [4] showed that
the Samelson product (e p=1,0) € 14,2(SO(2n))) is non-trivial when p < 2n — 1. Our

2
main result determines (non)triviality of all Samelson products of ¢; and 6 in p-regular
SO(2n).

THEOREM 1.3. Let €;, 6 be the above maps into SO(2n) ) for p-regular SO(2n). All
non-trivial Samelson products of €;, 6 in SO(2n),) are

(€i,€) for 2i4+2j>p and (€,-1,0) = (0,€,—1), (6,0) for p=2n—1.

Recall that an H-map f: X — Y between homotopy associative H-spaces with
inverse is homotopy normal in the sense of James [7] if the Samelson product {f, 1y)
can be compressed to X through f up to homotopy. This is a generalization of the
inclusion of a normal subgroup. James proved that O(n) is not homotopy normal
in O(n+ 1) when n > 2 using the mod 2 cohomology. His proof implies that the
2-localization SO(n)() is not homotopy normal in SO(n + 1)) when n > 2. As an
application of Theorem 1.3 we will prove:

THEOREM 1.4. The inclusion 1) : SO(2n — 1),y — SO(2n),) is homotopy normal if
and only if p > 2n — 1.

For p > 2n — 1, we can prove the following stronger result.

THEOREM 1.5. For p > 2n — 1, the map 1) - 6: SO(2n — 1)) x S(Z;)’l — SO(2n),)

is an H-equivalence, where S(zp")_1 is a homotopy associative and homotopy commutative
H-space.

Note that we do not need to assume that SO(2n — 1) is p-regular in the last two
theorems.

2. Detecting Samelson products by the Steenrod operations. Let G be a p-torsion
free connected finite loop space of type n; < --- < n, throughout this section where
the type of a finite loop space is similarly defined. We set notation for G. Since G is
p-torsion free, we have

H*(BG,); Z/p) = Z/plx1, ..., x¢], |xi| = 2n;.
We fix this presentation of the mod p co-homology of BG,). Note that

H*(Gpy; Z/p) = Aey, . ..., €)
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for the suspension e; of x;. For each i, we take a non-trivial element ¢; € m2,,1(G(y))
which is not divisible by non-units in Z, such that

hiZuy,— i=j

(ZBei)" o 6i(x)) = ) it

(©)

for some h; € Z,), where 11 : £G(,) — BGy) is the canonical map and u; is a generator
of H*(S*; 7)) = Z ;). We note that G, is a product of spheres if and only if 4y, . . ., /
are units. The following lemma is first used in [10] and is the main tool in the proof of
Theorem 1.2 given in [6]. Here, we reproduce the proof for completeness of the present

paper.

LEMMA 2.1 ([10, Proof of Theorem 1.1]). Suppose that h; and h; are units in Z ). If
Plxx is decomposable and includes the term exixj (¢ #0), the Samelson product (e, €;)
is non-trivial.

Proof. Suppose (€;, €;) = 0 under the assumption that P'x; includes the term cx;x;
(c #0). Let &,: S?™ — BG, be the adjoint of €,,. Then, by (3), we have &}(x,,) =
hpuny. By adjointness of Samelson products and Whitehead products, the Whitehead
product [€;, &] in BGy) is trivial, and then there is a map pu: S* x $* — BG,
satisfying (| g, @ = & V €. So we get *(x;) = hi(uz,, ® 1) and p*(x)) = hi(1 @ uap,),
and hence

chihjuoy, ® uzy, = W (cx;x;) = wi(P'xp) = Plut(xe) = 0,

where the second and the last equality follows from the decomposability of P!x;
and triviality of P! on H*(S*" x $*%;7Z/p), respectively. This is a contradiction to
C]’ll'hj 75 0. O

In this lemma, the assumption on the decomposability of P! x; cannot be removed.
Here is a counterexample.

EXAMPLE 2.2. We consider SU(4) at the prime 3. Recall that H*(BSU(4);Z/3) =
Z/3[ca, c3, c4], where ¢; denotes the ith universal Chern class. By inspection, we have

Plcz = c% + c4.

For a degree reason, the inclusion €;: S* = SU(2) — SU(4) satisfies (X€;)* o j(e2) =
Yus as in (3), but the Samelson product (e, €;) is trivial since SU(2) commutes up to
homotopy with itself in SU(4).

We elaborate Lemma 2.1 to prove that its converse is true when Gy, is a product
of spheres. The following lemma is useful to detect the non-triviality of a Samelson
product when G, (not necessarily p-regular) is decomposed into a product of a sphere
and some space. The proof is independent of Lemma 2.1.

LEMMA 2.3. For integers 1 <1i,j k < {, suppose that there is a map wi: Gy —
S(zlf)"_l such that 7t} (usy, 1) = ek, h; and h; are units in Z,), and n; +nj = nj +p — 1.
Then, i o (€;, €;) # 0 if and only if P'xy includes the term cx;x; with ¢ # 0.
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Proof. We prove both implications simultaneously. We may suppose that /; = #; =
e = 1. Let P>Gy) be the projective plane of G, i.e. there is a cofibre sequence

£Gy) A Gy = TGy 2 PGy, 4)

where H is the Hopf construction. By [11, Section 4], the canonical map ¢;: £ G, —
BG extends to a map ,: P°G — BG, ie. 1,0 p; =1. Put X; = 3(x;). Then, we have
P (X;) = Ze;. By [11, Section 3], we also have ST(EZei ® e;) = X;X; for the connecting
map 8;: PG,y — X2G() A Gy of the cofibre sequence (4). Consider the map

® = S(e;, ) — [Ze;, Teg]: BSPT A ST Gy,

where [—, —] denotes the Whitehead product. Note that @ induces a trivial map on mod
p cohomology since H*(G,; Z/p) is primitively generated and the Whitehead product
becomes trivial after suspending. The map @ is connected with the Hopf construction
H through the map constructed by Morisugi [13, Theorem 5.1] such that there is a
map &: S A ST G, A G satisfying

B B =G G
d=Hox¢( and &¥(es®e;) = a1 ® -t (5 1) .(l G0

0 otherwise.
Then, we get a homotopy commutative diagram

P2 )

EG(P) s Co $282m—1 5 §2nj—1
L\l J,EZE
P §
2Gp) : PZG(p) 1 EzG(p) A G

whose rows are homotopy cofibrations, implying that

83(Zuzn—1 Q@ uay—1) (s, 1) = (i, )), (v i)

oK (E) = 3 d AERF) = >
05 0 A (Xk) ¢ an 1(%:%0) {0 otherwise, ©

where Sj(Ezuz,,,,,l ® uz,;—1) 18 non-trivial element since @ is trivial on mod p co-
homology. We have
i o (€, €)) =car (c€Z/p),

where « is a generator of 72, 42,-4(S** ') = Z/p [14, Proposition 13.6]. Note that
7 o (€;, €;) 1s nontrivial if and only if ¢ # 0. Then, for the map

6 =cXa| — [an 0 €, L) O Gj]l ESZni—l A SZH/—I N ZS(Z;)/(_I,

there is a homotopy commutative diagram

G —2 Co i 2621 A g2n-1

JE " J,)\z

8
5 521 SN Cp —2 22521 5 §2n—1
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whose rows are homotopy cofibrations. Since «; is detected by the Steenrod operation
P! and T ® = ¢X%ay, the mod p cohomology of Cj is given by

77 . 1
H*(C$, Z/P) = <a2nka a2n,~+2nj)a P Aoy, = Ca211,-+2nj

such that 8§(Ezu2ni,1 ® Unn—1) = Qap42n, AN 03 (a2s,) = Ttz —1. Then, by (5), we get

P5 o Aj(aay) = Xeg = p; o Aj(Xk). By the homotopy cofibre sequence % Gy 2 Co Y
22821 A §2=1 one can see that the inclusion p; : £Gy,) — Co isinjective in the mod
p cohomology of dimension 2y, and then we obtain A3(a2,,) = Aj(Xx). Now consider
an element Plx; in H*(BG,); Z/p), which is expressed as a polynomial of xi, ..., x¢.
Denote the coefficient of the term x;x; in Plx; by d. Then, we have

AT(PIX,C) = dB;(Zzuzni_l ® uay,—1) + a linear combination of A1(X1), ..., A7(X¢)
by (5). On the other hand, we also have
MP'%) = PA(Re) = P'A5(az,) = ¢85(Z uan 1 @ tzy 1)

Since 8;‘(22@”1,1 ® uz,;—1) is non-trivial and is not contained in the span of

Ai(X1), ..., A{(X¢), we have ¢ = d. Thus, P!xr must include the term cx;x;. Therefore,
we have established the lemma. ]

THEOREM 2.4. Suppose p > ng — ny + 2. Then, the Samelson product (€;, €;) in Gy
is non-trivial if and only if for some k, P'xy. includes the term ex;xj with ¢ # 0.

Proof. By the result of Kumpel [8], we can choose each ¢; such as #; = 1. Then, the
composite

San—l N, SZnL—] €1XX€g

G(p) X oo XG@)—) G(p)

induces a p-local homotopy equivalence where the second map is the multiplication,
and we identify G, with S(zp”)l_1 X -ee X Sé")“_l by this p-local homotopy equivalence.
Under this assumption, /; 1s a unit of Z, for any i. By this decomposition, we can
find a projection my: G — S(an)’fl such that mjus, 1 = e; for each i. By Lemma
2.3, if Plx; includes the term cx;x; with ¢ # 0, then the Samelson product (¢;, €;) in
Gy is non-trivial. As in [9], if (e;, €;) is non-trivial, then for some 1 < k < £ we have
ni +p— 1 =n;+n; and my o (€;, €;) is non-trivial. Again by Lemma 2.3, this implies
that P'x; includes the term cx;x; with ¢ # 0. O

3. Proofs of the results. Let p be an odd prime and p;, e, € H*(BSO(2n),); Z/p)
be the mod p reduction of the ith universal Pontrjagin class fori=1,...,n— 1 and
the Euler class, respectively. Then,

H*(BSO(2n)): Z/p) = Z/pIp1. - Pn-1 €n]

and the maps ¢; and 6 correspond to p; and e,, respectively, in the sense of (3). In
particular, we take ¢; so that ; = 1 for i < 221 and 6 so that (Z0)* o tf(en) = Buap—i

2
and (26)* o (j(p;) = 0 for any i.
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LEMMA 3.1. The following statements hold.

(1) The element P'p; does not include the quadratic term ce,p; (¢ # 0) for any i and j.

(2) If p =2n — 1, the element P'py is decomposable and includes the term (—1)/%1 e.
Proof. Since p; € H*(BSO(2n)(,); Z/p) is contained in the image from

H*(BSOQ2n + 1),); Z/p), if a quadratic term of P!p; includes e,, it must be a multiple

of ef, andi=n— ’%1 > 1. Thus, the first statement holds. Recall that for a maximal
torus 7" of SO(2n) and the natural map ¢: BT,y — BSO(2n),, we have

H (BT Z/p) = Z/plts. ... 1], |ti] =2

such that *(p;) is the ith elementary symmetric polynomial in 72, ..., 2 and ¢*(e,) =
t - - - t,. In particular, ¢ is injective in the mod p cohomology. Suppose p = 2n — 1. We
have

CPp) = PUE + -+ ) = 2T 4+ (D).

Then, we obtain

1 el 2
Ppl E(—l) 2 e, mod ([)1,...,]7,1_1)
by the Newton formula. Therefore, the second statement holds. ]

LEMMA 3.2. The element P'e, is decomposable and the following congruence hold:

Ple, = (—1)‘%1’%@,{)% mod (1, - .., pu_1)*.

Proof. We set t: BT,y — BSO(2n),) as in the proof of Lemma 3.1. We have

‘*(Plen) = Plt*(en) = Pl(ll ely) =1 tn((t%)% +- 4+ (ti)%)
Then, the proof is completed by the Newton formula. ]

Proof of Theorem 1.3 Assume p > 2n — 2. Since the inclusion SO(2n — 1), —
SO(2n)(y) has a left homotopy inverse, it follows from Theorem 1.1 that the Samelson
product (¢, €;) is non-trivial if and only if 2i 4 2j > p. To detect the Samelson products
(€:,0) = (0, €;) and (0, 0) by Theorem 2.4, we need the information about the quadratic
terms of P'p; and Ple, including e,. Now these informations have already been
obtained in Lemma 3.1 and 3.2. Therefore, the proof of Theorem 1.3 is completed. [

Lemma 3.2 implies non-triviality of the Samelson product (€ -1, &) not only when
SO(2n) is p-regular but also when SO(2#) is not p-regular as folloévs.
COROLLARY 3.3. The Samelson product (€ p—1 , 0) = (0, € p—1) in w212, 4(SO(2n) )
is non-trivial for any odd prime p. More precisély, the image 5f (€p—1,0) under the ho-
2

momorphism induced by the projection SO(2n),) — ,S'(zp”)_l generates 712,,+2,,_4(S(2p”)_]) =
Z/p.

Proof. Note that, for the projection 7 : SO(2n),) — S(zp’gfl ,we have ()" Xuy,—) =
tj(ey). Then, the corollary follows from Lemma 2.3 and 3.2. ]
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We next prove Theorem 1.4. Let X be a homotopy associative H-space with inverse.
Formapsa: A — X and 8: B — X, let {«, B} denote the composite

AxBa—Xﬁ>X><X—>X,

where the last arrow is the commutator map. Then, for the projection ¢: 4 x B —
A A B, we have ¢*({«, B)) = {«, B} and the induced map ¢*: [A A B, X] — [4 x B, X]
is injective. In particular, («, 8) is trivial if and only if so is {«, B}.

LEMMA 3.4 (cf. [9, Proposition 1]). For maps ¢;: A; — X (i=1,2) and B: B —
X, if {@2, B} is trivial, then

{192, BY = {e1, B} o p2,
where py: A1 X Ay x B — Ay x B denotes the projection.

Proof. In the group of the homotopy set [4; x A x B, X], we have

{o1 - @2, B} =[(@1 o m1) - (92 0 M2), B o],

where m;: A1 x Ao x B— A; for i=1,2 and 7: 4 x A, x B— B denote the
projections and [—, —] means the commutator. In a group G, we have

[xy, 2] = xlp, 2lx [, 21,
for x, y, z € G. Then, the proof is completed by [¢; o 71, B o 7] = {¢1, B} o p2. O

Proof of Theorem 1.4 Let ¢: SO2n — 1) — SO(2n) denote the inclusion and
7: SO(2n) — S¥'~! the projection. For p = 2 and n > 2, as remarked in Section 1, the
2-localization tz): SO(2n — 1)2) = SO(2n)) is not homotopy normal by the argument
by James [7, Proof of Theorem (3.1)].

If 2 < p < 2n — 1, then the Samelson product

() © {Lp)> 1so@ny,) © (€p=1 AO) = () 0 (€p-1,0)
2 2
is non-trivial in 712,,+2p_4(S(2;’)’1) by Corollary 3.3. This implies that ¢(,) is not homotopy

normal.

Suppose p > 2n — 1. Note that the identity map of SO(2n),) is identified with the
map () - 6: SO(2n — 1), x S(Zp")’1 — SO(2n),). Then, it follows from Lemma 3.4 that
L(p) is homotopy normal if the Samelson product (i(,), ) is trivial. Note also that ¢,
is identified with the map € ---¢€,_1: S(3p) X oo X S4")’5 — SO(2n — 1)(,). Then, it is
sufficient to show that {¢; - - - €,,_1, 6} is trivial. By Lemma 3.4, this is equivalent to that
(€;, 0) are trivial for all i. Thus, ¢(,) is homotopy normal by Theorem 1.3. O

We finally prove Theorem 1.5. Let X, Y be homotopy associative H-spaces with
inverse. Recall that the H-deviation d(f) of a map f: X — Y is defined by

dif): X AX = Y, (x1,x2) > f(x1x)f () ()"

By definition, f is an H-map if and only if the H-deviation d(f) is trivial.
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LEMMA 3.5. Let X1, X», Y be homotopy associative H-spaces with inverse, and
At Xi = Y be H-maps for i = 1,2. Then, the map 7y - Ay: X1 X Xo — Y is an H-map
if and only if the Samelson product (\, A;) is trivial.

Proof. For x;, x; € X; (i =1, 2), we have

d(r - 2)(x1, X2, X, X5) 22 A (15 A2(x2X5) o (x5) T A (x)) T Ao (x2) T A (e) !
~ A (xD)((Ar, k) (X, X2))A () ™!

since A1, A are H-maps. Then, since A, is an H-map, d(X - A;) is trivial if and only if
s0 is (A1, A7), completing the proof. O

Proof of Theorem 1.5. Obviously, the map ¢, - 6 is a homotopy equivalence, so it
remains to show that it is an H-map. By definition, we have d(0) € m4,—2(SO(2n)(,)),
and then by [14, Proposition 13.6] and p > 2n — 1, d(0) is trivial, implying that 6 is an
H-map. The inclusion ¢, is clearly an H-map, and in the proof of Theorem 1.4 the
Samelson product (¢, #) is shown to be trivial for p > 2n — 1. Thus, by Lemma 3.5,
L) - 6 1s an H-map. Note that we have not fixed an H-structure of S(Zp")_l. There is a

one to one correspondence between H-structures on S(zlf)*l and n4n_2(S(2p”)*1). By [14,
Proposition 13.6] and p > 2n — 1, 7r4n_2(S(2p")_1) =0, so there is only one H-structure
on S(zp”)*l. By [1], S(ZI;’)*I has a homotopy associative and homotopy commutative H-

structure. Then, Sé”)_l must be a homotopy associative and homotopy commutative
H-space. ]

ACKNOWLEDGEMENTS. D.K. is supported by JSPS KAKENHI (No. 25400087).

REFERENCES

1. J. F. Adams, The sphere, considered as an H-space mod p, Quart. J. Math. 12 (1961),
52-60.
2. R. Bott, A note on the Samelson products in the classical groups, Comment. Math.
Helv. 34 (1960), 249-256.
3. E. M. Friedlander, Exceptional isogenies and the classifying spaces of simple Lie groups,
Ann. Math. 101 (1975), 510-520.
4. H. Hamanaka and A. Kono, A note on the Samelson products in 7,(SO(2r)) and the
group [SO(2n), SO(2n)], Topology Appl. 154(3) (2007), 567-572.
5. H. Hamanaka and A. Kono, A note on Samelson products and mod p cohomology of
classifying spaces of the exceptional Lie groups, Topology Appl. 157(2) (2010), 393-400.
6. S. Hasui, D. Kishimoto and A. Ohsita, Samelson products in p-regular exceptional Lie
groups, Topology Appl. 178(1) (2014), 17-29.
7. 1. M. James, On homotopy theory of classical groups, Ann. Acad. Brasil. Cienc. 39
(1967), 39-44.
8. P. G. Kumpel, Mod p-equivalences of mod p H-spaces, Quart. J. Math. 23 (1972),
173-178.
9. S. Kaji and D. Kishimoto, Homotopy nilpotency in p-regular loop spaces, Math. Z.
264(1) (2010), 209-224.
10. A. Kono and H. Oshima, Commutativity of the group of self homotopy classes of Lie
groups, Bull. London Math. Soc. 36 (2004), 37-52.
11. J. Lin, H-spaces with finiteness conditions, in Handbook of algebraic topology (James
1. M., Editors) (Elsevier, North-Holland, 1995), 1095-1141, Chapter 22.
12. M. Mahowald, A Samelson product in SO(2n), Bol. Soc. Math. Mexicana 10 (1965),
80-83.

https://doi.org/10.1017/5001708951600063X Published online by Cambridge University Press


https://doi.org/10.1017/S001708951600063X

174 DAISUKE KISHIMOTO AND MITSUNOBU TSUTAYA

13. K. Morisugi, Hopf construction, Samelson products and suspension maps,
Contemporary Math. 239 (1999), 225-238.

14. H. Toda, Composition methods in homotopy groups of spheres, Ann. of Math. Studies,
vol. 49 (Princeton University Press, Princeton N.J., 1962).

https://doi.org/10.1017/5001708951600063X Published online by Cambridge University Press


https://doi.org/10.1017/S001708951600063X

