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Abstract. A Lie group is called p-regular if it has the p-local homotopy type
of a product of spheres. (Non)triviality of the Samelson products of the inclusions
of the factor spheres into p-regular SO(2n)(p) is determined, which completes the list
of (non)triviality of such Samelson products in p-regular simple Lie groups. As an
application, we determine the homotopy normality of the inclusion SO(2n − 1) →
SO(2n) in the sense of James at any prime p.

2010 Mathematics Subject Classification. 55Q15.

1. Introduction and statement of the results. Let G be a compact connected Lie
group. By the classical result of Hopf, it is well known that there is a rational homotopy
equivalence

G �(0) S2n1−1 × · · · × S2n�−1,

where n1 ≤ · · · ≤ n�. The sequence n1 ≤ · · · ≤ n� is called the type of G. Here is the list
of the types of simple Lie groups.

SU(n) 2, 3, . . . , n G2 2, 6

SO(2n + 1) 2, 4, . . . , 2n F4 2, 6, 8, 12

Sp(n) 2, 4, . . . , 2n E6 2, 5, 6, 8, 9, 12

SO(2n) 2, 4, . . . , 2n − 2, n E7 2, 6, 8, 10, 12, 14, 18

E8 2, 8, 12, 14, 18, 20, 24, 30

Serre generalizes the above rational homotopy equivalence to a p-local homotopy
equivalence such that when G is semi-simple and G(p) is simply connected, there is a
p-local homotopy equivalence

G �(p) S2n1−1 × · · · × S2n�−1 (1)

if and only if p ≥ n�, in which case G is called p-regular. In this paper, we are interested
in the standard multiplicative structure of the p-localization G(p) when G is p-regular,
and then we assume that G is a simple Lie group in the above table and is p-regular

https://doi.org/10.1017/S001708951600063X Published online by Cambridge University Press

https://doi.org/10.1017/S001708951600063X


166 DAISUKE KISHIMOTO AND MITSUNOBU TSUTAYA

throughout this section. Recall that for a homotopy associative H-space X with inverse
and maps α : A → X, β : B → X , the correspondence

A ∧ B → X, (x, y) �→ α(x)β(y)α(x)−1β(y)−1

is called the Samelson product of α, β in X and is denoted by 〈α, β〉. One easily sees that
in investigating the multiplicative structure of G(p), the Samelson products 〈εi, εj〉 play
the fundamental role as in [9], where εi is the inclusion S2ni−1 → S2n1−1

(p) × · · · × S2n�−1
(p) �

G(p) into the ith factor. So, it is our task to determine (non)triviality of these Samelson
products. In this direction, Bott [2] studied the order of a certain class of Samelson
products in SU(n) and Sp(n), for example.

We here make a remark on the choice of εi which depends on the p-local homotopy
equivalence (1). Recall from [14, Theorem 13.4] that

π∗(S2m−1
(p) ) = 0 for 2m − 1 < ∗ < 2m + 2p − 4. (2)

Then, we see that π2ni−1(G(p)) is a free �(p)-module for all i, and so π2ni−1(G(p)) ∼= �(p) for
all i and G 
= SO(2n) since the entries of the type are distinct for G 
= SO(2n) as in the
above table. Hence, for G 
= SO(2n), we may choose any generator of π2ni−1(G(p)) ∼= �(p)

as εi. For G = SO(2n), we will make an explicit choice of εi below.
We first consider the Samelson products 〈εi, εj〉 in G(p) when G is the classical group

except for SO(2n).

THEOREM 1.1. Let G be the p-regular classical group except for SO(2n), and let εi

be a generator of π2ni−1(G(p)) ∼= �(p) for the type {n1, . . . , n�} of G. Then,

〈εi, εj〉 
= 0 if and only if ni + nj > p.

Proof. If G = SU(n), Sp(n), non-triviality of the Samelson products follows from
the result of Bott [2] and triviality follows from the fact that π2∗(G(p)) = 0 for ∗ < p
which is deduced from (2). Since there is a homotopy equivalence as loop spaces
Sp(n)(p) � SO(2n + 1)(p) due to Friedlander [3], the case of SO(2n + 1)(p) is the same as
Sp(n)(p). �

We next consider the Samelson products 〈εi, εj〉 in G(p) when G is the exceptional
Lie group. Some of these Samelson products are calculated in [5,9], and (non)triviality
of all these Samelson products is determined in [6] as follows.

THEOREM 1.2 ([6]). Let G be a p-regular compact connected exceptional simple Lie
group, and let εi be a generator of π2ni−1(G(p)) ∼= �(p) for the type {n1, . . . , n�} of G. Then,

〈εi, εj〉 
= 0 if and only if ni + nj = nk + p − 1 for some k.

Thus, the only remaining case is SO(2n). The purpose of this paper is to show that a
sufficient condition for non-triviality of the Samelson products 〈εi, εj〉 in G(p) (Lemma
2.1) used in [4–6, 10] is actually a necessary and sufficient condition, and to apply it to
determination of (non)triviality of all the Samelson products 〈εi, εj〉 in SO(2n)(p). The
difficulty of this case is caused by the middle dimensional sphere S2n−1

(p) in SO(2n)(p)

which vanishes by the inclusion SO(2n) → SO(2n + 1). We choose the maps εi. Let εi
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be the composite

S4i−1 → SO(2n − 1)(p)
incl−→ SO(2n)(p),

for i = 1, . . . , n − 1, where the first arrow is a generator of π4i−1(SO(2n − 1)(p)) ∼= �(p).
Let θ : S2n−1 → SO(2n)(p) be the map corresponding to the adjoint of the fibre inclusion
of the canonical homotopy fibre sequence

S2n → BSO(2n) → BSO(2n + 1).

There are only two results on Samelson products in SO(2n) involving θ : Mahowald
[12] showed that the Samelson product 〈θ, θ〉 ∈ π4n−2(SO(2n)) has order (2n − 1)!/8
or (2n − 1)!/4 according as n is even or odd. Hamanaka and Kono [4] showed that
the Samelson product 〈ε p−1

2
, θ〉 ∈ π4n−2(SO(2n)(p)) is non-trivial when p ≤ 2n − 1. Our

main result determines (non)triviality of all Samelson products of εi and θ in p-regular
SO(2n).

THEOREM 1.3. Let εi, θ be the above maps into SO(2n)(p) for p-regular SO(2n). All
non-trivial Samelson products of εi, θ in SO(2n)(p) are

〈εi, εj〉 for 2i + 2j > p and 〈εn−1, θ〉 = 〈θ, εn−1〉, 〈θ, θ〉 for p = 2n − 1.

Recall that an H-map f : X → Y between homotopy associative H-spaces with
inverse is homotopy normal in the sense of James [7] if the Samelson product 〈f, 1Y 〉
can be compressed to X through f up to homotopy. This is a generalization of the
inclusion of a normal subgroup. James proved that O(n) is not homotopy normal
in O(n + 1) when n ≥ 2 using the mod 2 cohomology. His proof implies that the
2-localization SO(n)(2) is not homotopy normal in SO(n + 1)(2) when n ≥ 2. As an
application of Theorem 1.3 we will prove:

THEOREM 1.4. The inclusion ι(p) : SO(2n − 1)(p) → SO(2n)(p) is homotopy normal if
and only if p > 2n − 1.

For p > 2n − 1, we can prove the following stronger result.

THEOREM 1.5. For p > 2n − 1, the map ι(p) · θ : SO(2n − 1)(p) × S2n−1
(p) → SO(2n)(p)

is an H-equivalence, where S2n−1
(p) is a homotopy associative and homotopy commutative

H-space.

Note that we do not need to assume that SO(2n − 1) is p-regular in the last two
theorems.

2. Detecting Samelson products by the Steenrod operations. Let G be a p-torsion
free connected finite loop space of type n1 ≤ · · · ≤ n� throughout this section where
the type of a finite loop space is similarly defined. We set notation for G. Since G is
p-torsion free, we have

H∗(BG(p); �/p) = �/p[x1, . . . , x�], |xi| = 2ni.

We fix this presentation of the mod p co-homology of BG(p). Note that

H∗(G(p); �/p) = 	(e1, . . . , e�)
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for the suspension ei of xi. For each i, we take a non-trivial element εi ∈ π2ni−1(G(p))
which is not divisible by non-units in �(p) such that

(
εi)∗ ◦ ι∗1(xj) =
{

hi
u2ni−1 i = j
0 i 
= j

, (3)

for some hi ∈ �(p), where ι1 : 
G(p) → BG(p) is the canonical map and uk is a generator
of Hk(Sk; �(p)) ∼= �(p). We note that G(p) is a product of spheres if and only if h1, . . . , h�

are units. The following lemma is first used in [10] and is the main tool in the proof of
Theorem 1.2 given in [6]. Here, we reproduce the proof for completeness of the present
paper.

LEMMA 2.1 ([10, Proof of Theorem 1.1]). Suppose that hi and hj are units in �(p). If
P1xk is decomposable and includes the term cxixj (c 
= 0), the Samelson product 〈εi, εj〉
is non-trivial.

Proof. Suppose 〈εi, εj〉 = 0 under the assumption that P1xk includes the term cxixj

(c 
= 0). Let ε̄m : S2nm → BG(p) be the adjoint of εm. Then, by (3), we have ε̄∗
m(xm) =

hmu2m. By adjointness of Samelson products and Whitehead products, the Whitehead
product [ε̄i, ε̄j] in BG(p) is trivial, and then there is a map μ : S2ni × S2nj → BG(p)

satisfying μ|S2ni ∨S2nj = ε̄i ∨ ε̄j. So we get μ∗(xi) = hi(u2ni ⊗ 1) and μ∗(xj) = hj(1 ⊗ u2ni ),
and hence

chihju2ni ⊗ u2nj = μ∗(cxixj) = μ∗(P1xk) = P1μ∗(xk) = 0,

where the second and the last equality follows from the decomposability of P1xk

and triviality of P1 on H∗(S2ni × S2nj ; �/p), respectively. This is a contradiction to
chihj 
= 0. �

In this lemma, the assumption on the decomposability ofP1xk cannot be removed.
Here is a counterexample.

EXAMPLE 2.2. We consider SU(4) at the prime 3. Recall that H∗(BSU(4); �/3) =
�/3[c2, c3, c4], where ci denotes the ith universal Chern class. By inspection, we have

P1c2 = c2
2 + c4.

For a degree reason, the inclusion ε1 : S3 = SU(2) → SU(4) satisfies (
ε1)∗ ◦ ι∗1(c2) =

u3 as in (3), but the Samelson product 〈ε1, ε1〉 is trivial since SU(2) commutes up to
homotopy with itself in SU(4).

We elaborate Lemma 2.1 to prove that its converse is true when G(p) is a product
of spheres. The following lemma is useful to detect the non-triviality of a Samelson
product when G(p) (not necessarily p-regular) is decomposed into a product of a sphere
and some space. The proof is independent of Lemma 2.1.

LEMMA 2.3. For integers 1 ≤ i, j, k ≤ �, suppose that there is a map πk : G(p) →
S2nk−1

(p) such that π∗
k (u2nk−1) = ek, hi and hj are units in �(p), and ni + nj = nk + p − 1.

Then, πk ◦ 〈εi, εj〉 
= 0 if and only if P1xk includes the term cxixj with c 
= 0.

https://doi.org/10.1017/S001708951600063X Published online by Cambridge University Press

https://doi.org/10.1017/S001708951600063X


SAMELSON PRODUCTS IN p-REGULAR SO(2n) 169

Proof. We prove both implications simultaneously. We may suppose that hi = hj =
hk = 1. Let P2G(p) be the projective plane of G(p), i.e. there is a cofibre sequence


G(p) ∧ G(p)
H−→ 
G(p)

ρ1−→ P2G(p), (4)

where H is the Hopf construction. By [11, Section 4], the canonical map ι1 : 
G(p) →
BG extends to a map ι2 : P2G → BG, i.e. ι2 ◦ ρ1 = ι1. Put x̄i = ι∗2(xi). Then, we have
ρ∗

1 (x̄i) = 
ei. By [11, Section 3], we also have δ∗
1 (
2ei ⊗ ej) = x̄ix̄j for the connecting

map δ1 : P2G(p) → 
2G(p) ∧ G(p) of the cofibre sequence (4). Consider the map


 = 
〈εi, εj〉 − [
εi, 
εj] : 
S2ni−1 ∧ S2nj−1 → 
G(p),

where [−,−] denotes the Whitehead product. Note that 
 induces a trivial map on mod
p cohomology since H∗(G(p); �/p) is primitively generated and the Whitehead product
becomes trivial after suspending. The map 
 is connected with the Hopf construction
H through the map constructed by Morisugi [13, Theorem 5.1] such that there is a
map ξ : S2ni−1 ∧ S2nj−1 → G(p) ∧ G(p) satisfying


 = H ◦ 
ξ and ξ ∗(es ⊗ et) =
{

u2ni−1 ⊗ u2nj−1 (s, t) = (i, j), (j, i)
0 otherwise.

Then, we get a homotopy commutative diagram


G(p)
ρ2

�� C


δ2 ��

λ1

��


2S2ni−1 ∧ S2nj−1


2ξ

��


G(p)
ρ1

�� P2G(p)
δ1 �� 
2G(p) ∧ G(p)

whose rows are homotopy cofibrations, implying that

ρ∗
2 ◦ λ∗

1(x̄k) = 
ek and λ∗
1(x̄sx̄t) =

{
δ∗

2 (
2u2ni−1 ⊗ u2nj−1) (s, t) = (i, j), (j, i)
0 otherwise,

(5)

where δ∗
2 (
2u2ni−1 ⊗ u2nj−1) is non-trivial element since 
 is trivial on mod p co-

homology. We have

πk ◦ 〈εi, εj〉 = cα1 (c ∈ �/p),

where α1 is a generator of π2nk+2p−4(S2nk−1) ∼= �/p [14, Proposition 13.6]. Note that
πk ◦ 〈εi, εj〉 is nontrivial if and only if c 
= 0. Then, for the map


̂ = c
α1 − [
πk ◦ εi, 
πk ◦ εj] : 
S2ni−1 ∧ S2nj−1 → 
S2nk−1
(p) ,

there is a homotopy commutative diagram


G(p)
ρ2

��


πk

��

C


δ2 ��

λ2

��


2S2ni−1 ∧ S2nj−1


S2nk−1
ρ3

�� C
̂

δ3 �� 
2S2ni−1 ∧ S2nj−1
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whose rows are homotopy cofibrations. Since α1 is detected by the Steenrod operation
P1 and 

̂ = c
2α1, the mod p cohomology of C
̂ is given by

H̃∗(C
̂; �/p) = 〈a2nk , a2ni+2nj 〉, P1a2nk = ca2ni+2nj

such that δ∗
3 (
2u2ni−1 ⊗ u2nj−1) = a2ni+2nj and ρ∗

3 (a2nk ) = 
u2nk−1. Then, by (5), we get

ρ∗
2 ◦ λ∗

2(a2nk ) = 
ek = ρ∗
2 ◦ λ∗

1(x̄k). By the homotopy cofibre sequence 
G(p)
ρ2−→ C


δ2−→

2S2ni−1 ∧ S2nj−1, one can see that the inclusion ρ2 : 
G(p) → C
 is injective in the mod
p cohomology of dimension 2nk, and then we obtain λ∗

2(a2nk ) = λ∗
1(x̄k). Now consider

an element P1xk in H∗(BG(p); �/p), which is expressed as a polynomial of x1, . . . , x�.
Denote the coefficient of the term xixj in P1xk by d. Then, we have

λ∗
1(P1x̄k) = dδ∗

2 (
2u2ni−1 ⊗ u2nj−1) + a linear combination of λ∗
1(x̄1), . . . , λ∗

1(x̄�)

by (5). On the other hand, we also have

λ∗
1(P1x̄k) = P1λ∗

1(x̄k) = P1λ∗
2(a2nk ) = cδ∗

2 (
2u2ni−1 ⊗ u2nj−1).

Since δ∗
2 (
2u2ni−1 ⊗ u2nj−1) is non-trivial and is not contained in the span of

λ∗
1(x̄1), . . . , λ∗

1(x̄�), we have c = d. Thus, P1xk must include the term cxixj. Therefore,
we have established the lemma. �

THEOREM 2.4. Suppose p ≥ n� − n1 + 2. Then, the Samelson product 〈εi, εj〉 in G(p)

is non-trivial if and only if for some k, P1xk includes the term cxixj with c 
= 0.

Proof. By the result of Kumpel [8], we can choose each εi such as hi = 1. Then, the
composite

S2n1−1 × · · · × S2n�−1 ε1×···×ε�−−−−−→ G(p) × · · · × G(p) → G(p)

induces a p-local homotopy equivalence where the second map is the multiplication,
and we identify G(p) with S2n1−1

(p) × · · · × S2n�−1
(p) by this p-local homotopy equivalence.

Under this assumption, hi is a unit of �(p) for any i. By this decomposition, we can
find a projection πk : G(p) → S2ni−1

(p) such that π∗
k u2ni−1 = ei for each i. By Lemma

2.3, if P1xk includes the term cxixj with c 
= 0, then the Samelson product 〈εi, εj〉 in
G(p) is non-trivial. As in [9], if 〈εi, εj〉 is non-trivial, then for some 1 ≤ k ≤ � we have
nk + p − 1 = ni + nj and πk ◦ 〈εi, εj〉 is non-trivial. Again by Lemma 2.3, this implies
that P1xk includes the term cxixj with c 
= 0. �

3. Proofs of the results. Let p be an odd prime and pi, en ∈ H∗(BSO(2n)(p); �/p)
be the mod p reduction of the ith universal Pontrjagin class for i = 1, . . . , n − 1 and
the Euler class, respectively. Then,

H∗(BSO(2n)(p); �/p) = �/p[p1, . . . , pn−1, en]

and the maps εi and θ correspond to pi and en, respectively, in the sense of (3). In
particular, we take εi so that hi = 1 for i ≤ p−1

2 and θ so that (
θ )∗ ◦ ι∗1(en) = 
u2n−1

and (
θ )∗ ◦ ι∗1(pi) = 0 for any i.

https://doi.org/10.1017/S001708951600063X Published online by Cambridge University Press

https://doi.org/10.1017/S001708951600063X


SAMELSON PRODUCTS IN p-REGULAR SO(2n) 171

LEMMA 3.1. The following statements hold.

(1) The element P1pi does not include the quadratic term cenpj (c 
= 0) for any i and j.
(2) If p = 2n − 1, the element P1p1 is decomposable and includes the term (−1)

p−1
2 e2

n.

Proof. Since pi ∈ H∗(BSO(2n)(p); �/p) is contained in the image from
H∗(BSO(2n + 1)(p); �/p), if a quadratic term of P1pi includes en, it must be a multiple
of e2

n and i = n − p−1
2 ≥ 1. Thus, the first statement holds. Recall that for a maximal

torus T of SO(2n) and the natural map ι : BT(p) → BSO(2n)(p), we have

H∗(BT(p); �/p) = �/p[t1, . . . , tn], |ti| = 2

such that ι∗(pi) is the ith elementary symmetric polynomial in t2
1, . . . , t2

n and ι∗(en) =
t1 · · · tn. In particular, ι is injective in the mod p cohomology. Suppose p = 2n − 1. We
have

ι∗(P1p1) = P1(t2
1 + · · · + t2

n) = 2((t2
1)

p+1
2 + · · · + (t2

n)
p+1

2 ).

Then, we obtain

P1p1 ≡ (−1)
p−1

2 e2
n mod (p1, . . . , pn−1)2

by the Newton formula. Therefore, the second statement holds. �
LEMMA 3.2. The element P1en is decomposable and the following congruence hold:

P1en ≡ (−1)
p−1

2
p−1

2 enp p−1
2

mod (p1, . . . , pn−1)2.

Proof. We set ι : BT(p) → BSO(2n)(p) as in the proof of Lemma 3.1. We have

ι∗(P1en) = P1ι∗(en) = P1(t1 · · · tn) = t1 · · · tn((t2
1)

p−1
2 + · · · + (t2

n)
p−1

2 ).

Then, the proof is completed by the Newton formula. �
Proof of Theorem 1.3 Assume p > 2n − 2. Since the inclusion SO(2n − 1)(p) →

SO(2n)(p) has a left homotopy inverse, it follows from Theorem 1.1 that the Samelson
product 〈εi, εj〉 is non-trivial if and only if 2i + 2j > p. To detect the Samelson products
〈εi, θ〉 = 〈θ, εi〉 and 〈θ, θ〉 by Theorem 2.4, we need the information about the quadratic
terms of P1pi and P1en including en. Now these informations have already been
obtained in Lemma 3.1 and 3.2. Therefore, the proof of Theorem 1.3 is completed. �

Lemma 3.2 implies non-triviality of the Samelson product 〈ε p−1
2

, θ〉 not only when

SO(2n) is p-regular but also when SO(2n) is not p-regular as follows.

COROLLARY 3.3. The Samelson product 〈ε p−1
2

, θ〉 = 〈θ, ε p−1
2

〉 in π2n+2p−4(SO(2n)(p))

is non-trivial for any odd prime p. More precisely, the image of 〈ε p−1
2

, θ〉 under the ho-

momorphism induced by the projection SO(2n)(p) → S2n−1
(p) generates π2n+2p−4(S2n−1

(p) ) ∼=
�/p.

Proof. Note that, for the projection π : SO(2n)(p) → S2n−1
(p) , we have (
π )∗
u2n−1 =

ι∗1(en). Then, the corollary follows from Lemma 2.3 and 3.2. �
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We next prove Theorem 1.4. Let X be a homotopy associative H-space with inverse.
For maps α : A → X and β : B → X , let {α, β} denote the composite

A × B
α×β−−→ X × X → X,

where the last arrow is the commutator map. Then, for the projection q : A × B →
A ∧ B, we have q∗(〈α, β〉) = {α, β} and the induced map q∗ : [A ∧ B, X ] → [A × B, X ]
is injective. In particular, 〈α, β〉 is trivial if and only if so is {α, β}.

LEMMA 3.4 (cf. [9, Proposition 1]). For maps ϕi : Ai → X (i = 1, 2) and β : B →
X, if {ϕ2, β} is trivial, then

{ϕ1 · ϕ2, β} = {ϕ1, β} ◦ ρ2,

where ρ2 : A1 × A2 × B → A1 × B denotes the projection.

Proof. In the group of the homotopy set [A1 × A2 × B, X ], we have

{ϕ1 · ϕ2, β} = [(ϕ1 ◦ π1) · (ϕ2 ◦ π2), β ◦ π ],

where πi : A1 × A2 × B → Ai for i = 1, 2 and π : A1 × A2 × B → B denote the
projections and [−,−] means the commutator. In a group G, we have

[xy, z] = x[y, z]x−1[x, z],

for x, y, z ∈ G. Then, the proof is completed by [ϕ1 ◦ π1, β ◦ π ] = {ϕ1, β} ◦ ρ2. �
Proof of Theorem 1.4 Let ι : SO(2n − 1) → SO(2n) denote the inclusion and

π : SO(2n) → S2n−1 the projection. For p = 2 and n ≥ 2, as remarked in Section 1, the
2-localization ι(2) : SO(2n − 1)(2) → SO(2n)(2) is not homotopy normal by the argument
by James [7, Proof of Theorem (3.1)].

If 2 < p ≤ 2n − 1, then the Samelson product

π(p) ◦ 〈ι(p), 1SO(2n)(p)〉 ◦ (ε p−1
2

∧ θ ) = π(p) ◦ 〈ε p−1
2

, θ〉

is non-trivial in π2n+2p−4(S2n−1
(p) ) by Corollary 3.3. This implies that ι(p) is not homotopy

normal.
Suppose p > 2n − 1. Note that the identity map of SO(2n)(p) is identified with the

map ι(p) · θ : SO(2n − 1)(p) × S2n−1
(p) → SO(2n)(p). Then, it follows from Lemma 3.4 that

ι(p) is homotopy normal if the Samelson product 〈ι(p), θ〉 is trivial. Note also that ι(p)

is identified with the map ε1 · · · εn−1 : S3
(p) × · · · × S4n−5

(p) → SO(2n − 1)(p). Then, it is
sufficient to show that {ε1 · · · εn−1, θ} is trivial. By Lemma 3.4, this is equivalent to that
〈εi, θ〉 are trivial for all i. Thus, ι(p) is homotopy normal by Theorem 1.3. �

We finally prove Theorem 1.5. Let X, Y be homotopy associative H-spaces with
inverse. Recall that the H-deviation d(f ) of a map f : X → Y is defined by

d(f ) : X ∧ X → Y, (x1, x2) �→ f (x1x2)f (x2)−1f (x1)−1.

By definition, f is an H-map if and only if the H-deviation d(f ) is trivial.

https://doi.org/10.1017/S001708951600063X Published online by Cambridge University Press

https://doi.org/10.1017/S001708951600063X


SAMELSON PRODUCTS IN p-REGULAR SO(2n) 173

LEMMA 3.5. Let X1, X2, Y be homotopy associative H-spaces with inverse, and
λi : Xi → Y be H-maps for i = 1, 2. Then, the map λ1 · λ2 : X1 × X2 → Y is an H-map
if and only if the Samelson product 〈λ1, λ2〉 is trivial.

Proof. For xi, x′
i ∈ Xi (i = 1, 2), we have

d(λ1 · λ2)(x1, x2, x′
1, x′

2) � λ1(x1x′
1)λ2(x2x′

2)λ2(x′
2)−1λ1(x′

1)−1λ2(x2)−1λ1(x1)−1

� λ1(x1)(〈λ1, λ2〉(x′
1, x2))λ1(x1)−1

since λ1, λ2 are H-maps. Then, since λ1 is an H-map, d(λ1 · λ2) is trivial if and only if
so is 〈λ1, λ2〉, completing the proof. �

Proof of Theorem 1.5. Obviously, the map ι(p) · θ is a homotopy equivalence, so it
remains to show that it is an H-map. By definition, we have d(θ ) ∈ π4n−2(SO(2n)(p)),
and then by [14, Proposition 13.6] and p > 2n − 1, d(θ ) is trivial, implying that θ is an
H-map. The inclusion ι(p) is clearly an H-map, and in the proof of Theorem 1.4 the
Samelson product 〈ι(p), θ〉 is shown to be trivial for p > 2n − 1. Thus, by Lemma 3.5,
ι(p) · θ is an H-map. Note that we have not fixed an H-structure of S2n−1

(p) . There is a

one to one correspondence between H-structures on S2n−1
(p) and π4n−2(S2n−1

(p) ). By [14,

Proposition 13.6] and p > 2n − 1, π4n−2(S2n−1
(p) ) = 0, so there is only one H-structure

on S2n−1
(p) . By [1], S2n−1

(p) has a homotopy associative and homotopy commutative H-

structure. Then, S2n−1
(p) must be a homotopy associative and homotopy commutative

H-space. �
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