7

On the use of Dimensional Equations.

By W. Peddie, D.Sc.

[Abstract.]
The second law of motion may be expressed as a dimensional equation in the form

$$
\begin{equation*}
f=m \frac{l}{t^{2}} \tag{1}
\end{equation*}
$$

where the meanings of the quantities are obvious.
If we cut out the factor m from each side, we may write this in the usual form,

$$
\begin{equation*}
\ddot{x}=a \frac{x}{t^{2}} \quad \cdots \quad \ldots \quad \quad \ldots \tag{2}
\end{equation*}
$$

The general solution is
where

$$
\begin{aligned}
& x=\mathrm{A} t^{n}+\mathrm{B} t^{-m}, \\
& m(m+1)=n(n-1) .
\end{aligned}
$$

Taking one term only, we get

$$
\begin{equation*}
\ddot{x}=n(n-1) \mathrm{A} i^{n-2}=n(n-1) \mathrm{A}^{\frac{2}{n}} x^{\frac{n-2}{n}} \quad \ldots \quad \ldots \tag{3}
\end{equation*}
$$

so that the limited problem corresponds to powers of the distance as the law of acceleration.

We then have in (2) $a=n(n-1)$, and so, when the law of force is given in terms of the distance, we can use (2) and (3) to get an expression for t.

