Second Meeting, December 9th, 1892.

John Alison, Esq., M.A., F.R.S.E., President, in the Chair.

On certain results involving Areal and Trilinear

 co-ordinates.
By Professor A. H. Anglin.

We propose to obtain certain results involving areal and trilinear co-ordinates, by a uniform method of changing to Cartesian co-ordinates with two sides of the triangle of reference as axes.

Taking ABC as the triangle of reference, change to Cartesian co-ordinates with CA and CB as axes. Then, if \bar{x}, \bar{y} denote the Cartesian, x, y, z the areal, and a, β, γ the trilinear co-ordinates of any point, we have at once
and

$$
\bar{x}=b x, \quad \bar{y}=a y ;
$$

$$
\bar{x}=\alpha / \sin C, \quad \bar{y}=\beta / \sin C .
$$

1. To find the distance between two points.

If r be the distance between two points whose areal co ordinates are given, substituting in the usual expression in oblique Cartesians for the square of the distance, we get

$$
\begin{aligned}
& r^{2}=b^{2}\left(x_{1}-x_{2}\right)^{2}+a^{2}\left(y_{1}-y_{3}\right)^{2}+2 a b\left(x_{1}-x_{2}\right)\left(y_{1}-y_{2}\right) \cos C . \\
& \therefore \quad-r^{2}=c^{2}\left(x_{1}-x_{2}\right)\left(y_{1}-y_{2}\right)-a^{2}\left(y_{1}-y_{2}\right)\left(x_{1}-x_{2}+y_{1}-y_{2}\right) \\
&-b^{2}\left(x_{1}-x_{2}\right)\left(x_{1}-x_{2}+y_{1}-y_{2}\right) .
\end{aligned}
$$

Thus, by the invariable relation $x+y+z=1$ in areals, we have $-r^{2}=a^{2}\left(y_{1}-y_{2}\right)\left(z_{1}-z_{2}\right)+b^{2}\left(z_{1}-z_{2}\right)\left(x_{1}-x_{2}\right)+c^{2}\left(x_{1}-x_{2}\right)\left(y_{1}-y_{2}\right) \ldots$

The corresponding in trilinears may be obtained independently in like manner, or deduced from the foregoing, the result being

$$
\begin{equation*}
-r^{2}=\left\{\left(\beta_{1}-\beta_{2}\right)\left(\gamma_{1}-\gamma_{2}\right) \sin A+\ldots\right\} / \sin A \sin B \sin C \tag{1}
\end{equation*}
$$

The distance between two points may also be expressed in other interesting forms.

Since

$$
\left(x_{1}-x_{2}\right)+\left(y_{1}-y_{2}\right)=-\left(z_{1}-z_{2}\right),
$$

we have

$$
2\left(x_{1}-x_{2}\right)\left(y_{1}-y_{2}\right)=\left(z_{1}-z_{2}\right)^{2}-\left(x_{1}-x_{2}\right)^{2}-\left(y_{1}-y_{2}\right)^{2} .
$$

Substituting in

$$
r^{2}=b^{2}\left(x_{1}-x_{2}\right)^{2}+a^{2}\left(y_{1}-y_{2}\right)^{2}+\left(a^{2}+b^{2}-c^{2}\right)\left(x_{1}-x_{2}\right)\left(y_{1}-y_{2}\right),
$$

we shall get

$$
2 r^{2}=\left(b^{2}+c^{2}-a^{2}\right)\left(x_{1}-x_{2}\right)^{2}+\text { two similar expressions, }
$$

or

$$
\begin{equation*}
r^{2}=b c \cos A\left(x_{1}-x_{2}\right)^{2}+c a \cos B\left(y_{1}-y_{2}\right)^{2}+a b \cos C\left(z_{1}-z_{2}\right)^{2} \ldots \tag{2}
\end{equation*}
$$

The corresponding in trilinears will be found to be

$$
\begin{equation*}
r^{2}=\frac{\sin 2 A\left(a_{1}-a_{2}\right)^{2}+\sin 2 B\left(\beta_{1}-\beta_{2}\right)^{2}+\sin 2 C\left(\gamma_{1}-\gamma_{2}\right)^{2}}{2 \sin A \sin B \sin C} \cdots \tag{2}
\end{equation*}
$$

Further, since

$$
x_{1}-x_{2}=\left(x_{1} y_{2}-x_{2} y_{1}\right)-\left(z_{1} x_{2}-z_{2} x_{1}\right)=Z-Y \text { suppose, }
$$

with like equivalents for $y_{1}-y_{2}$ and $z_{1}-z_{2}$, substituting in (1) and (2) we shall get the additional forms

$$
\begin{align*}
r^{2} & =a^{2}(X-Y)(X-Z)+b^{2}(Y-Z)(Y-X)+c^{2}(Z-X)(Z-Y) \ldots \tag{3}\\
& =b c \cdot \cos A(Y-Z)^{2}+c a \cos B(Z-X)^{2}+a b \cos C(X-Y)^{2} \\
& =a^{2} X^{2}+b^{2} Y^{2}+c^{2} Z^{2}-2 b c Y Z \cos A-2 c a Z X \cos B-2 a b X Y \cos C,
\end{align*}
$$

which are sometimes useful.
2. To find the perpendicular distance of a point from a straight line.

Let the equation to the line in areal co-ordinates be

$$
l x+m y+n z=0
$$

and $x^{\prime}, y^{\prime}, z^{\prime}$ the co-ordinates of the point.
Reducing the problem to the oblique Cartesian system, we have to find the perpendicular from the point ($b x^{\prime}, a y^{\prime}$) on the line

$$
a(l-n) \bar{x}+b(m-n) \bar{y}+n a b=0 .
$$

Now the perpendicular from (x^{\prime}, y^{\prime}) on the line $A x+B y+C=0$ in oblique Cartesians being

$$
\left(A x^{\prime}+B y^{\prime}+C\right) \sin \omega / \sqrt{A^{2}+B^{2}-2 \overline{A B} \cos \omega},
$$

the required perpendicular

$$
\begin{aligned}
& =\frac{a b \sin C\left\{(l-n) x^{\prime}+(m-n) y^{\prime}+n\right\}}{\sqrt{\left\{a^{2}(l-n)^{2}+b^{2}(m-n)^{2}-2 a b(l-n)(m-n) \cos C\right\}}} \\
& =\quad 2\left(l x^{\prime}+m y^{\prime}+n z^{\prime}\right) / d,
\end{aligned}
$$

where

$$
\begin{aligned}
d^{2} & =a^{2} l^{2}+b^{2} m^{2}+c^{3} n^{2}-2 b c m n \cos A-\ldots \\
& =(l-m)(l-n) a^{2}+(n-n)(m-l) b^{2}+(n-l)(n-m) c^{2} .
\end{aligned}
$$

[The corresponding expression in Trilinears may be deduced from this, or obtained independently, as follows :-

If the point be ($\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}$). and the line $l a+m \beta+n \gamma=0$, changing to Cartesians, we seek the perpendicular from the point ($a^{\prime} \operatorname{cosec} C$, $\beta^{\prime} \operatorname{cosec} C$) on the line

$$
(c l-a n) \bar{x}+(c m-b n) \bar{y}+2 n \Delta \operatorname{cosec} C=0
$$

which

$$
\begin{aligned}
& =\frac{(c l-a n) a^{\prime}+(c m-b n) \beta^{\prime}+2 n \Delta}{\sqrt{\left\{(c l-a n)^{2}+(c m-b n)^{2}-2(c l-a n)(c m-b n) \cos C\right\}}} \\
& =\quad\left(l a^{\prime}+m \beta^{\prime}+n \gamma^{\prime}\right) / d,
\end{aligned}
$$

where

$$
\left.d^{2}=l^{2}+m^{2}+n^{2}-2 m n \cos A-2 n l \cos B-2 l m \cos C .\right]
$$

3. The perpendicular from a given point on the line joining two other given points may be noticed.

The equation to the line joining the points $\left(x_{1}, y_{1}, z_{1}\right),\left(x_{2}, y_{2}, z_{2}\right)$ being

$$
\Sigma\left(y_{1} z_{2}-y_{2} z_{1}\right) x+\left(z_{1} x_{2}-z_{2} x_{1}\right) y+\left(x_{1} y_{2}-x_{2} y_{1}\right) z=0
$$

the perpendicular on it from the point $\left(x_{3}, y_{3}, z_{3}\right)$ becomes

$$
2 \Delta\left\{\left(y_{1} z_{2}-y_{3} z_{1}\right) x_{3}+\ldots\right\} / d
$$

where

$$
d^{2}=(X-Y)(X-Z) a^{2}+(Y-Z)(Y-X) b^{2}+(Z-X)(Z-Y) c^{2}
$$

Thus, by reference to the third expression for the distance between two points, we see that the perpendicular is

$$
2 \Delta\left(x_{1} y_{2} z_{3}\right) / d
$$

where d is the distance between the points $\left(x_{1}, y_{1}, z_{1}\right),\left(x_{2}, y_{2}, z_{2}\right)$.

In Trilinears, the corresponding expression will be found to be

$$
a b c\left(\alpha_{1} \beta_{2} \gamma_{3}\right) / 4 \Delta^{2} d .
$$

These results also follow directly from the consideration that, in Cartesians, the perpendicular is

$$
\left|\begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y & 1
\end{array}\right| \frac{\sin \omega}{d} ;
$$

and on transformation to the other systems we readily obtain the above expressions.
4. To find the area of a triangle in terms of the co-ordinates of its angular points.
(1) Independently of the corresponding expression in Cartesians.

If Δ^{\prime} denote the area, since twice area $=$ side \times perpendicular, we have by the foregoing

$$
\begin{aligned}
& 2 \Delta^{\prime} & =2 \Delta\left(x_{1} y_{z_{3}}\right) \cdot \frac{d}{d} \\
\therefore & \Delta^{\prime} & =\Delta\left(x_{1} y_{2} z_{3}\right),
\end{aligned}
$$

involving the areal co-ordinates; and

$$
\Delta^{\prime}=a b c\left(a_{1} \beta_{2} \gamma_{3}\right) / 8 \Delta^{2},
$$

involving the trilinear co-ordinates of the points.
(2) Directly from the expression in Cartesians. We have

$$
\begin{aligned}
& 2 \Delta^{\prime}=\left|\begin{array}{lll}
\bar{x}_{1} & \overline{y_{1}} & 1 \\
\overline{x_{2}} & \overline{y_{3}} & 1 \\
\overline{x_{3}} & \overline{y_{3}} & 1
\end{array}\right| \sin C=a b \sin C\left|\begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right| \\
& =2 \Delta\left|\begin{array}{lll}
x_{1} & y_{1} & z_{1} \\
x_{2} & y_{2} & z_{2} \\
x_{3} & y_{3} & z_{3}
\end{array}\right|, \text { since } x+y+z=1 . \\
& \Delta^{\prime}=\Delta\left(x_{1} y_{2} z_{3}\right) .
\end{aligned}
$$

Thus
[The corresponding in Trilinears may be deduced from this, or obtained independently thus:-

$$
\begin{gathered}
2 \Delta^{\prime}=\left|\begin{array}{lll}
\alpha_{1} & \beta_{1} & 1 \\
a_{2} & \beta_{2} & 1 \\
\alpha_{3} & \beta_{3} & 1
\end{array}\right| \frac{\sin C}{\sin ^{2} C}, \text { by direct substitution; } \\
\therefore \quad j \Delta^{\prime} \sin C \cdot 2 \Delta=\left|\begin{array}{lll}
a_{1}, & \beta_{1} & a a_{1}+b \beta_{1}+c \gamma_{1} \\
\alpha_{2}, & \beta_{2}, & a a_{2}+b \beta_{2}+c \gamma_{2} \\
\alpha_{33}, & \beta_{3}, & a a_{3}+b \beta_{3}+c \gamma_{3}
\end{array}\right| \text {, since } a a+b \beta+c \gamma=2 \Delta \\
=c\left|\begin{array}{ccc}
a_{1} & \beta_{1} & \gamma_{1} \\
a_{2} & \beta_{2} & \gamma_{2} \\
a_{3} & \beta_{3} & \gamma_{3}
\end{array}\right|
\end{gathered}
$$

Thus

$$
\left.\Delta^{\prime}=a b c\left(\alpha_{1} \beta_{2} \gamma_{3}\right) / 8 \Delta^{2} .\right]
$$

5. To find the condition that two lines may be at right angles.

In Trilinears, if the equations to the lines be of the form $l a+m \beta+n \gamma=0$, on changing to Cartesians they will be of the form

$$
(c l-a n) \bar{x}+(c m-b n) \bar{y}+2 n \Delta \operatorname{cosec} C=0
$$

Hence, the condition that two lines in oblique Cartesians may be at right angles, becomes

$$
\begin{aligned}
(c l-a n)\left(c l^{\prime}\right. & \left.-a n^{\prime}\right)+(c m-b n)\left(c m^{\prime}-b n^{\prime}\right) \\
& -\left\{(c l-a n)\left(c m^{\prime}-b n^{\prime}\right)+\left(c l^{\prime}-a n^{\prime}\right)(c m-b n)\right\} \cos C=0 .
\end{aligned}
$$

Now the co-efficient of $l l^{\prime}+m m^{\prime}+n n^{\prime}$ is c^{2}, while that of $m n^{\prime}+m^{\prime} n$ is $-(b c-a c \cos C)$, that is $-c^{2} \cos A$; and those of $\dot{n} l^{\prime}+n^{\prime} l$ and $l m^{\prime}+l^{\prime} m$ are - $c^{2} \cos B$ and $-c^{2} \cos C$ respectively.

Hence the condition becomes

$$
\begin{aligned}
l l^{\prime}+m m^{\prime}+n n^{\prime}-\left(m n^{\prime}+m^{\prime} n\right) \cos A- & \left(n l^{\prime}+n^{\prime} l\right) \cos B \\
& -\left(l m^{\prime}+l^{\prime} m\right) \cos C=0 .
\end{aligned}
$$

[The corresponding for areals may be obtained in like manner, or deduced from the foregoing by writing $l a, m b, n c$ for l, m, n respectively; and is

$$
\left.a^{2} l l^{\prime}+\ldots-\left(m n^{\prime}+m^{\prime} n\right) b c \cos A-\ldots=0 .\right]
$$

6. To find the condition that two lines may be parallel.

The equation $l x+m y+n z=0$ in areals becomes

$$
a(l-n) \bar{x}+b(m-n) \bar{y}+n a b=0
$$

in Cartesians; and the condition for parallelism of two lines is therefore

$$
(l-n)\left(m^{\prime}-n^{\prime}\right)-\left(l^{\prime}-n^{\prime}\right)(m-n)=0,
$$

that is,

$$
m n^{\prime}-m^{\prime} n+n l^{\prime}-n^{\prime} l+l m^{\prime}-l^{\prime} m=0,
$$

or

$$
\left|\begin{array}{ccc}
l, & m & n \\
l^{\prime} & m^{\prime} & n^{\prime} \\
\mathrm{l} & 1 & 1
\end{array}\right|=0 ;
$$

the corresponding in trilinears being

$$
\left|\begin{array}{ccc}
l & m & n \\
l^{\prime} & m^{\prime} & n^{\prime} \\
a & b & c
\end{array}\right|=0 .
$$

7. To find the angle between two lines.

If ϕ be the angle between two lines in oblique Cartesians whose equations are of the form $A x+B y+C=0$,

$$
\tan \phi=\frac{\left(A B^{\prime}-A^{\prime} B\right) \sin \omega}{A A^{\prime}+B B^{\prime}-\left(A B^{\prime}+\Lambda^{\prime} B\right) \cos \omega}
$$

Expressing the trilinear equations in Cartesians and substituting, we get

$$
\begin{aligned}
\tan \phi & =\frac{c\left\{a\left(m n^{\prime}-m^{\prime} n\right)+\ldots\right\} \sin C}{c^{2}\left\{l l^{\prime}+\ldots-\left(m n^{\prime}+m^{\prime} n\right) \cos A-\ldots\right\}} \\
& =\frac{\left(m n^{\prime}-m^{\prime} n\right) \sin A+\ldots}{l l^{\prime}+\ldots-\left(m n^{\prime}+m^{\prime} n\right) \cos A-\ldots}
\end{aligned}
$$

In areals this becomes

$$
\tan \phi=\frac{2 \Delta\left(m n^{\prime}-m^{\prime} n+\ldots\right)}{a^{2} l l^{\prime}+\ldots-\left(m n^{\prime}+m^{\prime} n\right) b c \cos A-\ldots}
$$

[The expressions for sin ϕ may be worth noticing; and may be deduced from those for $\tan \phi$, or obtained independently, thus :-

In oblique Cartesians

$$
\sin \phi=\frac{\left(A B^{\prime}-A^{\prime} B\right) \sin \omega}{\sqrt{A^{2}+B^{2}-2 A B \cos \omega .}} \sqrt{A^{\prime 2}+B^{\prime 2}-2 A^{\prime} \bar{B}^{\prime} \cos \omega}
$$

2 Vol. 11
which for areals becomes

$$
\frac{2 \Delta\left(m n^{\prime}-m^{\prime} n+\ldots\right)}{\sqrt{\left(\overline{l-m)(l-n)} a^{2}+\ldots \cdot\right.} \sqrt{\left(l^{\prime}-m^{\prime}\right)\left(l^{\prime}-n^{\prime}\right) a^{2}+\ldots}}
$$

and for trilinears

$$
\left.\frac{\left(m n^{\prime}-m^{\prime} n\right) \sin A+\ldots}{\sqrt{l^{3}+\ldots-2 m n \cos A-\ldots} \sqrt{l^{\prime 2}+\ldots-2 m^{\prime} n^{\prime} \cos A-\ldots}}\right]
$$

8. We will now consider the general equation of the second degree and obtain certain results by the same method.

To find the conditions that the equation may represent a circle.
Let the equation in areals be

$$
u x^{2}+v y^{2}+w z^{2}+2 u^{\prime} y z+2 v^{\prime} z x+2 w^{\prime} x y=0
$$

Changing to Cartesians, and removing z by the relation $x+y+z=1$, this becomes

$$
\begin{aligned}
\left(2 v^{\prime}-w-u\right) \frac{\bar{x}^{2}}{b^{2}}+\left(2 u^{\prime}-v-w\right) \frac{\bar{y}^{2}}{a^{2}} & +2\left(u^{\prime}+v^{\prime}-w-w^{\prime}\right) \frac{\bar{x} \bar{y}}{a b} \\
+. . & =0 .
\end{aligned}
$$

Now the general equation

$$
A x^{2}+2 B x y+C y^{2}+\ldots=0
$$

in oblique Cartesians will represent a circle if $A=C=B$ sec ω; hence the required conditions are

$$
\frac{2 u^{\prime}-v-w}{a^{2}}=\frac{2 v^{\prime}-w-u}{b^{2}} \cdot=\frac{u^{\prime}+v^{\prime}-w-w^{\prime}}{a b \cos C}
$$

each of which ratios

$$
=\frac{2 w^{\prime}-u-v}{a^{2}+b^{2}-2 a b \cos C}=\frac{2 w^{\prime}-u-v}{c^{2}} .
$$

[The corresponding for trilinears may be likewise obtained, or at once deduced, when we get

$$
\left.2 b c u^{\prime}-c^{2} v-b^{2} w=2 c a v^{\prime}-a^{2} w-c^{2} u=2 a b w^{\prime}-b^{2} u-a^{2} v .\right]
$$

9. To find the condition that the equation may represent an ellipse, parabola, or hyperbola.

The above equation in Cartesians will represent these curves
respectively according as $B^{2}-A C$ is negative, zero, or positive. If we take the general equation in trilinears

$$
u a^{2}+v \beta^{2}+u \gamma^{2}+2 u^{\prime} \beta \gamma+2 v^{\prime} \gamma \alpha+2 w^{\prime} \alpha \beta=0
$$

and change to Cartesians, removing γ by the relation $a u+b \beta+c \gamma=2 \Delta$, it becomes

$$
\begin{aligned}
\left(a^{2} w+c^{2} u-2 c a v^{\prime}\right) x^{2} & +\left(c^{2} v+b^{2} w-2 b c u^{\prime}\right) y^{2} \\
& +2\left(a b w+c^{2} w^{\prime}-c a u^{\prime}-b c v^{\prime}\right) x y+\ldots=0
\end{aligned}
$$

Thus the required condition is that

$$
-\left(a b w+c^{2} w^{\prime}-c a u^{\prime}-b c v^{\prime}\right)^{2}+\left(a^{2} w+c^{2} u-2 c a v^{\prime}\right)\left(c^{2} v+b^{2} w-2 b c u^{\prime}\right)
$$

or, with a known notation,

$$
U a^{2}+V b^{2}+W c^{2}+2 U^{\prime} b c+2 V^{\prime} c a+2 W^{\prime} a b
$$

is positive, zero, or negative ; or that

$$
\left|\begin{array}{llll}
u, & w^{\prime}, & v^{\prime}, & a \\
w^{\prime}, & v, & u^{\prime}, & b \\
v^{\prime}, & u^{\prime}, & u, & c \\
a, & b, & c & 0
\end{array}\right| \text { is negative, zero, or positive. }
$$

The corresponding in areals may be obtained in a similar way, or deduced from the preceding by putting $a=b=c=1$, when the condition is that

$$
\begin{gathered}
\left(2 u^{\prime}-v-w\right)\left(2 v^{\prime}-w-u\right)-\left(u^{\prime}+v^{\prime}-w-w^{\prime}\right)^{2} \\
U+V+W+2 U^{\prime}+2 V^{\prime}+2 W^{\prime}
\end{gathered}
$$

or,
is positive, zero, or negative; or that

$$
\left|\begin{array}{llll}
u, & w^{\prime}, & v^{\prime}, & 1 \\
w^{\prime}, & v, & u^{\prime}, & 1 \\
v^{\prime}, & u^{\prime}, & w, & 1 \\
1, & 1, & 1, & 0
\end{array}\right| \text { is negative, zero, or positive. }
$$

The condition that the equation in areals may represent a parabola can also be expressed under another interesting form.

Since

$$
2\left(u^{\prime}+v^{\prime}-w-w^{\prime}\right)=\left(2 u^{\prime}-v-w\right)+\left(2 v^{\prime}-w-u\right)-\left(2 w^{\prime}-u-v\right),
$$

the expression

$$
4\left(u^{\prime}+v^{\prime}-w-w^{\prime}\right)^{2}-4\left(2 u^{\prime}-v-w\right)\left(2 v^{\prime}-w-u\right)
$$

is equal to the product of the four expressions

$$
\sqrt{2 u^{\prime}-v-w} \pm \sqrt{2 v^{\prime}-w-u} \pm \sqrt{2 w^{\prime}-u-v}
$$

Hence the equation represents a parabola if any one of these expressions is zero.
10. To find the condition that the equation may represent a rectangular hyperbola.

The equation $A x^{2}+2 B x y+C y^{2}+\ldots=0$ in oblique Cartesians will represent a rectangular hyperbola if the lines $A x^{2}+2 B x y$ $+C y^{2}=0$ are at right angles, the condition for which is that

$$
A+C-2 B \cos \omega=0
$$

Hence, for trilinears, the required condition is that

$$
\begin{array}{rcr}
a^{2} w+c^{2} u-2 c a v^{\prime}+c^{2} v+b^{2} w-2 b c u^{\prime} \\
& -2\left(a b w+c^{2} w^{\prime}-c a u^{\prime}-b c v^{\prime}\right) \cos \mathrm{C} & =0, \\
\therefore \quad c^{2}(u+v+w)-2 c(b-a \cos \mathrm{C}) u^{\prime}-\ldots & =0,
\end{array}
$$

that is,

$$
u+v+w-2 u^{\prime} \cos \mathrm{A}-2 v^{\prime} \cos \mathrm{B}-2 w^{\prime} \cos \mathrm{C}=0 .
$$

[For areals, the condition is that

$$
a^{2} u+b^{2} v+c^{2} w-2 b c \cos \mathrm{~A} \cdot u^{\prime}-\ldots=0
$$

or

$$
a^{2}\left(u+u^{\prime}-v^{\prime}-w^{\prime}\right)+b^{2}\left(v+v^{\prime}-w^{\prime}-u^{\prime}\right)+c^{2}\left(w+w^{\prime}-u^{\prime}-v^{\prime}\right)=0 \text {.] }
$$

11. To find expressions for the product, and sum of squares of the semi-axes, when the equation represents a central conic.

If the general Cartesian equation $a^{\prime} x^{2}+2 h x y+b^{\prime} y^{2}+2 g x+2 f y+c$ $=0$ become $A x^{2}+B y^{2}+C=0$ when the conic is referred to its principal axes, the product of the semi-axes is $C / \sqrt{A B}$, and the sum of their squares is $-C(A+B) / A B$; and if the original axes be oblique these are respectively equal to

$$
\begin{aligned}
& D_{\sin \omega} /\left(a^{\prime} b^{\prime}-h^{2}\right)^{\frac{3}{2}} \text { and }-D\left(a^{\prime}+b^{\prime}-2 h \cos \omega\right) /\left(a^{\prime} b^{\prime}-h^{2}\right)^{2}, \\
& \text { where } D=\text { the discriminant }\left|\begin{array}{lll}
a^{\prime} & h & g \\
h & b^{\prime} & f \\
g & f & c
\end{array}\right| .
\end{aligned}
$$

Transforming the general equation

$$
u x^{2}+v y^{2}+w z^{2}+2 u^{\prime} y z+2 v^{\prime} z x+2 w^{\prime} x y=0
$$

in areals to the Cartesian system, it becomes

$$
\begin{gathered}
\left(w+u-2 v^{\prime}\right)_{\frac{\bar{x}^{2}}{b^{2}}}+\left(v+w-2 u^{\prime}\right) \frac{\bar{y}^{2}}{a^{2}}+2\left(w+w^{\prime}-u-v^{\prime}\right) \frac{\overline{x y}}{a b} \\
\quad+2\left(v^{\prime}-w\right) \frac{\bar{x}}{b}+2\left(u^{\prime}-w\right) \frac{\bar{y}}{a}+w=0 ;
\end{gathered}
$$

whence, substituting, we shall get

$$
\begin{gathered}
a^{2} b^{2} D=\left|\begin{array}{ccc}
u & w^{\prime} & v^{\prime} \\
w^{\prime} & v^{\prime} & u^{\prime} \\
v^{\prime} & u^{\prime} & w
\end{array}\right| \equiv H, \\
a^{2} b^{2}\left(a^{\prime} b^{\prime}-l^{2}\right)=-\left|\begin{array}{cccc}
u & w^{\prime} & v^{\prime} & 1 \\
w^{\prime} & v & u^{\prime} & 1 \\
v^{\prime} & u^{\prime} & w & 1 \\
1 & 1 & 1 & 0
\end{array}\right| \equiv-K
\end{gathered}
$$

and

$$
a^{2} b^{2}\left(a^{\prime}+b^{\prime}-2 h \cos \omega\right)
$$

$$
=\left(u+u^{\prime}-v^{\prime}-w^{\prime}\right) a^{2}+\left(v+v^{\prime}-w^{\prime}-u^{\prime}\right) b^{\prime \prime}+\left(w+w^{\prime}-u^{\prime}-v^{\prime}\right) c^{2} \equiv I .
$$

Thus, the product of the semi-axes $=2 \Delta H /(-K)^{\frac{3}{2}}$,
and the sum of their squares $=-H I / K^{2}$.
[Proceeding in like manner with the general equation

$$
u a^{2}+v \beta^{2}+w \gamma^{2}+2 u^{\prime} \beta \gamma+2 v^{\prime} \gamma a+2 w^{\prime} a \beta=0
$$

in trilinears, we shall get

$$
\begin{gathered}
D=a^{2} b^{2} c^{4} . H, \\
a^{\prime} b^{\prime}-h^{2}=-c^{2}\left|\begin{array}{lll}
u, & w^{\prime}, & v^{\prime}, \\
w^{\prime}, & v, & u^{\prime}, \\
v^{\prime}, & u^{\prime}, & w, \\
a, & b, & c, \\
a
\end{array}\right|=-c^{2} K^{\prime} \text { suppose, } \\
a^{\prime}+b^{\prime}-2 h \cos \omega=c^{2}\left(u+v+w-2 u^{\prime} \cos A-2 v^{\prime} \cos B-2 w^{\prime} \cos C\right) \\
=c^{2} . I^{\prime} \text { suppose. }
\end{gathered}
$$

Thus, the product of the semi-axes $=2 a b c \Delta H /\left(-K^{\prime}\right)^{\frac{8}{2}}$, and the sum of their squares $\quad=-a^{2} b^{2} c^{2} H \Gamma / K^{\prime 2}$.]
12. Particular forms of the general equation.

The general equation in areals represents :-

Two straight lines if $H=0$;
an ellipse, parabola, or hyperbola according as $K<=>0$;
a rectangular hyperbola if $I=0$;
while in trilinears the corresponding conditions are

$$
H=0, K<=>0, I^{\prime}=0 \text { respectively. }
$$

We append the values of these functions for three particular forms of the general equation.
(1) For the circumscribed conic in areals, $l y z+m z x+n x y=0$
or

$$
\begin{aligned}
4 I I & =l m n ; 4 K=l^{2}+m^{2}+n^{2}-2 m n-2 n l-2 l m ; \\
2 I & =a^{2}(l-m-n)+b^{2}(m-n-l)+c^{2}(n-l-m) \\
-I & =l b c \cos A+m c a \cos B+n a b \cos C ;
\end{aligned}
$$

and the condition for a parabola is equivalent to

$$
\sqrt{ } l \pm \sqrt{ } m \pm \sqrt{ } n=0
$$

For the same conic in trilinears, $l \beta \gamma+m \gamma a+n a \beta=0$,

$$
\begin{aligned}
4 H & =l m n ; 4 K^{\prime}=a l^{2}+b^{2} m^{2}+c^{2} n^{2}-2 b c m n-2 c a n l-2 a b l m \\
-I^{\prime} & =l \cos A+m \cos B+n \cos C
\end{aligned}
$$

and condition for a parabola becomes

$$
\sqrt{a l} \pm \sqrt{b m} \pm \sqrt{c n}=0
$$

(2) For the inscribed conic, or conics touching sides of triangle of reference in areals, $\sqrt{l x} \pm \sqrt{m y} \pm \sqrt{n z}=0$.

$$
\begin{aligned}
H & =-4 l^{2} m^{2} n^{2} ; K=-4 l m n(l+m+n) ; \\
I & =(l+m+n)\left(a^{2} l+b^{3} m+c^{2} n\right)-a^{2} m n-b^{2} n l-c^{2} l m .
\end{aligned}
$$

For the same conics in trilinears, $\sqrt{l a} \pm \sqrt{m \beta} \pm \sqrt{n \gamma}=0$

$$
\begin{aligned}
H & =-4 l^{2} m^{2} n^{2} ; K=-4 l m n(b c l+c a m+a b n) ; \\
I & =l^{2}+m^{2}+n^{4}+m n+n l+l m .
\end{aligned}
$$

(3) For the conic with respect to which the triangle of reference is self-conjugate, the equation to which in areals is $l x^{2}+m y^{2}+n z^{2}=0$,

$$
\begin{aligned}
H & =l m n ;-K=m n+n l+l m \\
I & =l a^{2}+m b^{2}+n c^{2}
\end{aligned}
$$

and for the same conic in trilinears $l a^{2}+m \beta^{2}+n \gamma^{2}=0$

$$
\begin{aligned}
& H=l m n ; K^{\prime}=m n a^{2}+u l l^{2}+l m c^{2} ; \\
& \Gamma=l+m+n .
\end{aligned}
$$

