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According to linear theory and assuming the liquids to be inviscid and the bubbles to
remain spherical, bubbles set in oscillation attract or repel each other with a force that
is proportional to the product of their amplitude of volume pulsations and inversely
proportional to the square of their distance apart. This force is attractive, if the
forcing frequency lies outside the range of eigenfrequencies for volume oscillation of
the two bubbles. Here we study the nonlinear interaction of two deformable bubbles
set in oscillation in water by a step change in the ambient pressure, by solving the
Navier–Stokes equations numerically. As in typical experiments, the bubble radii
are in the range 1–1000 µm. We find that the smaller bubbles (∼5 µm) deform only
slightly, especially when they are close to each other initially. Increasing the bubble
size decreases the capillary force and increases bubble acceleration towards each
other, leading to oblate or spherical cap or even globally deformed shapes. These
deformations may develop primarily in the rear side of the bubbles because of a
combination of their translation and harmonic or subharmonic resonance between
the breathing mode and the surface harmonics. Bubble deformation is also promoted
when they are further apart or when the disturbance amplitude decreases. The
attractive force depends on the Ohnesorge number and the ambient pressure to
capillary forces ratio, linearly on the radius of each bubble and inversely on the square
of their separation. Additional damping either because of liquid compressibility or
heat transfer in the bubble is also examined.

Key words: bubble dynamics, interfacial flows (free surface)

1. Introduction
Bubble dynamics plays a central role in several practical applications and physical

phenomena and, hence, it has challenged researchers for many decades. Early on,
Rayleigh (1917) described the collapse of a single bubble as a result of changes in the
local pressure field, but in the absence of other surfaces in their vicinity. The violent
collapse of cavities can cause high pressure, resulting in serious damage of nearby solid
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surfaces. Often, the generation, stabilization or interaction of bubbles is enhanced
by introducing a pressure wave or other disturbance in the host liquid. Bubbles,
depending on their size, are trapped in pressure nodes (larger bubbles) or antinodes
(smaller bubbles) of a standing pressure wave, feeling an effective force known as the
primary Bjerknes force (Bjerknes 1906). There, owing to rectified diffusion of dissolved
gases and volume pulsations, bubbles may grow until they eventually reach a state of
dynamic equilibrium that is characterized by stable radial oscillations (Leighton 1994).
These processes are part of what is called acoustic cavitation. Besides their interaction
with nearby solid surfaces, bubbles also interact with each other as each bubble moves
due to fluid acceleration caused by the volume oscillations of another bubble. This
is the so-called secondary Bjerknes force, since it was first investigated by V. F. K.
Bjerknes (1906, 1909). The primary and secondary Bjerknes forces were explained by
postulating that every body that is moving in an accelerating fluid is subjected to a
‘kinetic buoyancy’, which is proportional to the product of the acceleration of the fluid,
g, multiplied by the mass, ρV , of the fluid displaced by the body: F ∼ gρV . Bjerknes
(1906) hoped to use this phenomenon to explain the effects of electromagnetism and
gravitation. The analogy with these forces was supported by the fact that, according
to linear theory and assuming inviscid and incompressible fluids and bubbles that
remain spherical, the secondary Bjerknes force is proportional to the product of the
amplitude of volume pulsations of the two bubbles and inversely proportional to the
square of the distance between their centres of volume. This force can be attractive
or repulsive depending on whether the bubbles oscillate in-phase or out-of-phase,
respectively.

On the basis of the reasoning that the primary Bjerknes force drives the bubbles
to pressure nodes or antinodes, Crum (1975) used a stationary pressure wave in
the vertical direction to counterbalance gravity. The induced volume oscillations
generated bubble translation as well. He measured their relative velocity of approach
in the horizontal direction and found that the secondary Bjerknes force is much
smaller than the primary one. However, it can increase by increasing the frequency
of the pulsations and consequently ultrasonic pressure variations can be used in
separation processes in order to remove gases from gas/liquid dispersions (Batchelor
1967). Moreover, the secondary Bjerknes force is responsible for several interesting
dynamic phenomena which, among others, include bubble coalescence, formation
of stable bubble pairs that move together in the host liquid and the formation of
satellite bubbles (Kornfeld & Suvorov 1944). More recently, the field of cavitation
gained significant momentum, due to the remarkable phenomenon of single bubble
sonoluminescence (Brenner, Hilgenfeldt & Lohse 2002; Lauterborn et al. 2007), which
is associated with light emission during collapse of either a cavitating or a laser-
induced bubble. During the last decade, there has been an emerging biomedical
application of bubbles in the form of contrast agents, which are micron-sized bubbles
that are encapsulated in a lipid polymer or albumin shell (Goldberg, Raichlen &
Forsberg 2001; Tsiglifis & Pelekasis 2008). Controlled oscillations and collapse of such
bubbles have also been used recently for enhanced drug and gene delivery (Li et al.
2003).

Over the past several decades, a significant amount of research has been devoted
to the study of single bubble dynamics (see Plesset & Prosperetti 1977 and Feng
& Leal 1997 for reviews on earlier and more recent work on the subject). For the
problem of bubble–bubble interaction, efforts to evaluate the secondary Bjerknes
force in the context of linear oscillations were reported by Zabolotskaya (1984) and
later on by Doinikov & Zavtrak (1995) and Doinikov (1999), who included viscous
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effects on interacting spherical bubbles. More recently, Pelekasis et al. (2004) have
made a systematic effort to evaluate the two available mechanisms that explain the
formation of stable bubble clusters, when bubbles oscillate below resonance under
an intense acoustic disturbance, extending the earlier work of Oguz & Prosperetti
(1990) and Mettin et al. (1997). In this effort, the viscous boundary layers around
each bubble were systematically accounted for, but the bubbles were still assumed
to remain spherical because of the large interbubble distance compared to their
radii. Earlier, Pelekasis & Tsamopoulos (1993a, b) reported a detailed study of the
volume and shape oscillations of two bubbles assuming that the surrounding liquid
is inviscid. This assumption is acceptable for a bubble radius larger than ∼1 mm.
They examined a certain range of frequencies, pressures and pressure amplitudes,
bubble sizes and distances. This is the only study to date in which the surface of each
bubble was allowed to deform in response to capillary, pressure and inertia forces,
while retaining their axial symmetry. The results of these simulations show agreement
with linear theory with respect to the influence of the separation distance, volumes of
the bubbles, forcing amplitude and frequency upon the average acceleration acquired
by the bubbles in relative motion. An important nonlinear result is the fact that
when the Bond number, Bo = (ρ∗〈g∗〉R∗2)/σ ∗, based on the time-averaged bubble
acceleration, 〈g∗〉, the bubble radius, R∗, and the properties of the liquid (density,
ρ∗, and surface tension, σ ∗), lies above a critical value, the bubble shapes resemble
the spherical-cap shapes first reported by Davies & Taylor (1950) for steadily rising
bubbles. On the contrary, when Bo lies below a critical value, globally deformed
shapes appear, which have been reported by Kornfeld & Suvorov (1944). These
shape instabilities arise because of harmonic or subharmonic resonance of the surface
modes with the volume oscillations of the bubble, the so-called parametric instability.
These instabilities more often arise on the back side of the bubbles, because of the
stabilizing effect of the straining motion of the liquid adjoining the front bubble
interface (Batchelor 1987). However, in Pelekasis & Tsamopoulos (1993a, b), due to
the assumption of negligible viscous effects, the bubble motion and deformation
could not be followed for very long as they approached each other due to very
sharp shape distortions, possibly leading to premature bubble breakup. Another
aspect that was not included was bubble coalescence, which is known to occur under
cavitation conditions. The process of bubble coalescence was studied numerically, for
example by Chen, Li & Manasseh (1998), in the context of rising bubbles using a
control volume technique for the discretization of the surrounding fluid. The dynamic
phenomena involved, however, in the interaction of cavitating or laser-induced bubbles
are more severe and of different nature, in view of the large disturbances that
are applied, thus requiring the more sophisticated numerical approach presented
herein.

In the present work, the nonlinear interactions of two deforming bubbles of radius
ranging between 1 µm and 1 mm will be examined. In contrast to the work of Pelekasis
& Tsamopoulos (1993a, b), viscous effects will be accounted in full and the effect of
liquid compressibility and heat transfer in the bubble will be examined as additional
damping mechanisms. The two bubbles will be subjected to a step change in pressure
at infinity, not an oscillatory one in order to avoid introducing another parameter in
the present study. In § 2, we present the governing equations and boundary conditions
of the problem. In § 3, we very briefly mention the numerical method of solution.
The results in terms of the relevant eigenmodes and nonlinear bubble interactions
for equal bubbles under a step change in the far-field pressure are presented in § 4.
Finally, conclusions are drawn in § 5.
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Figure 1. Schematic diagram of the flow geometry and the coordinate system of the problem.

2. Problem formulation
The motion and the nonlinear interactions of two equal gas bubbles surrounded by

a viscous liquid are considered. Axial symmetry around the axis connecting the two
bubble centres is assumed. The density and viscosity of the gas inside the bubbles is
assumed to be much smaller than that of the liquid, which are ρ∗ and µ∗, respectively,
so that the gas is considered to be inertialess and inviscid. Therefore, its pressure
varies only with time according to a polytropic law. Figure 1 illustrates a schematic
of the flow geometry examined herein. The two bubbles are initially spherical with
radius R∗

b1 = R∗
b2 = R∗

b , which is used as the length scale and distance D∗ between their
two centres of volume. Because of the absence of an explicit velocity, surface tension
σ ∗ is used for making velocity, time and pressure dimensionless. Therefore, velocity
is scaled with (σ ∗/R∗

bρ
∗)1/2, time with (R∗3

b ρ∗/σ ∗)1/2 and pressure with σ ∗/R∗
b . The

dimensionless number that arises is the Ohnesorge number, Oh= (µ∗2/ρ∗R∗
bσ

∗)1/2.
The importance of surface tension can be deduced directly because it is used to scale
the initial hydrostatic pressure in the liquid, P ∗.

Motion is induced by a step change in pressure far away from the bubbles, which
means that for time greater than zero, the pressure at infinity is given by

P∞ = P (1 + ε), (2.1)

where ε is the amplitude of the disturbance. The flow is governed by the momentum
and mass conservation equations, which in their dimensionless form are

Du
Dt

− ∇ · σ = 0, (2.2)

∇ · u = 0, (2.3)

where σ is the total stress tensor,

σ ≡ −P I + τ = −P I + Oh[∇u + (∇u)T], (2.4)

where u is the velocity vector, σ is the total stress tensor, P is the pressure in the
liquid, ∇ is the gradient operator and I is the identity matrix. Along the free surface
of the bubbles, the velocity field should satisfy a local force balance between the
capillary forces, viscous stresses in the liquid and pressure inside the bubble:

n · σ = −nPg + 2H n, (2.5)

where Pg is the pressure inside each bubble, n is the outward unit normal to its
surface and 2H is its mean curvature which is defined as

2H = −∇s · n, ∇s = (I − nn) · ∇. (2.6)
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Moreover, along each bubble interface, the kinematic condition must be imposed:

DF
Dt

= u, (2.7)

where F is the position vector of the interface, given by

F = fser , (2.8)

where fs is the radial distance to the bubble surface from the centre of the respective
local spherical coordinate system and er the respective unit vector.

The gas inside each bubble is considered ideal and its pressure varies adiabatically
with the instantaneous volume:

Pg = Pgo

(
Vo

V

)γ

, (2.9)

where Pgo and Vo are the initial pressure and the volume, V is the instantaneous
volume of each bubble and γ is the polytropic constant that is assumed here equal
to 1.4. The volume of each bubble is calculated in local spherical coordinates after
each time step through

V =
2π

3

∫ π

0

f 3
s sin θdθ. (2.10)

Along the axis of symmetry, the usual symmetry conditions are applied. The infinite
domain of the fluid around the two bubbles is truncated to a finite spherical domain
with a radius R∞, which is much larger than the bubble radii, so that this boundary
does not affect the flow around the two bubbles. This is further facilitated by using
the open boundary condition suggested by Papanastasiou, Malamataris & Elwood
(1992). This condition is equivalent to extending the validity of the weak form of the
governing equations to the outflow boundary, instead of replacing them with arbitrary
boundary conditions there.

3. Numerical solution
These equations are solved numerically using the mixed finite element method to

discretize the velocity and pressure fields, combined with an advanced elliptic grid
generator for the initial construction and subsequent motion of the mesh points in
the liquid domain. Details of this method applied in the present problem are given
in Chatzidai et al. (2009), where a number of convergence tests have also been
reported to determine (i) the number of elements required on the bubble surfaces
in particular, to resolve the boundary layers that may arise in this problem and
(ii) the radial distance, R∞, of the far-field boundary condition. Through numerous
tests, it was determined that setting R∞ = 30 was more than sufficient to guarantee
that the outflow boundary did not affect our results in any measurable way. This
method has been applied successfully to a number of free- or moving-boundary
problems (Dimakopoulos & Tsamopoulos 2003; Karapetsas & Tsamopoulos 2006;
Foteinopoulou et al. 2006; Tsamopoulos et al. 2008). In Tsamopoulos et al. (2008), the
steady rise and deformation of a bubble in a Newtonian or a viscoplastic material was
studied and the accuracy of the present code was demonstrated, because its predictions
for the bubble shape and rise velocity and the various geometric characteristics of the
vortex behind it were found to be in excellent agreement with results of numerous
earlier experimental and theoretical studies.
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Here particular problems that arise when simulations are carried out to long times
are the corrugated bubble surfaces and the translation of the bubbles very close
to each other. The first problem makes the discretization of the mesh coarser and
coarser within the bubble troughs, while the second problem makes it unnecessarily
fine in the area between the two bubbles. Both increase the skewness of the elements,
forcing the Jacobian of some finite elements to be close to zero and consequently
the global Jacobian matrix to be nearly singular. In order to overcome this, the
mesh is reconstructed when it is considered necessary, i.e. before the elements become
overly skewed. The need to reconstruct the mesh is signalled by the increase or
decrease beyond a certain limit of the number of elements around the two bubbles,
depending on the case. During the whole simulation, the results are accurate and mesh-
independent in contrast to Eulerian-type methods (e.g. level set). For the solution of
the linear algebraic systems of equations that arise at each time step after the Newton–
Rapshon linearization, we have used a message passing interface (MPI) – parallel
library based on multilevel incomplete LU decomposition (ILU) pre-conditioner
(Hènon & Saad 2006; Gaidamour & Hènon 2008).

4. Results
4.1. Normal-mode analysis

Before proceeding with the nonlinear dynamics and in order to interpret and classify
the numerical predictions, it is imperative to perform a normal-mode analysis of the
two deformable bubbles interacting in a Newtonian liquid. This will determine the
frequencies and the damping rates of the system under small disturbances. Such data
have not been reported before because even these linearized equations do not seem to
be amenable to analytical treatment. Nevertheless, these data can be extracted with
our numerical code by assuming that initially no flow exists and the two bubbles are
spherical due to capillarity and, then, subjecting all the flow variables including the
bubble shapes to an infinitesimal disturbance. More specifically, the normal modes
of the system are computed by assuming that all variables are split into their base
(static equilibrium) values and a small disturbance:⎡

⎢⎢⎣
u(r, θ, t)

P (r, θ, t)

Pg(r, θ, t)

x(r, θ, t)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

ub

Pb

Pgb

xb

⎤
⎥⎥⎦ + δ

⎡
⎢⎢⎣

up(r, θ)

Pp(r, θ)

Pgp(r, θ)

xp(r, θ)

⎤
⎥⎥⎦ ect . (4.1)

Here, the new subscripts b and p indicate the equilibrium and the perturbed states,
respectively, δ � 1 is the amplitude of the infinitesimal disturbance, and x denotes
the position vector of the mesh nodes including the nodes at the interfaces of the
bubbles. Hence, ub =0, Pb equals the hydrostatic pressure in the liquid and Pgb, the
bubble basic pressure, which is set by capillarity with respect to Pb. Substituting
expressions (4.1) into the governing equations, including the kinematic equation (2.7)
and the equation of state (2.9), and neglecting terms of order higher than linear in the
perturbation parameter, δ, we obtain a generalized eigenvalue problem of the form

JY = cMY , (4.2)

where J is the Jacobian matrix, M is the mass matrix, c are the eigenvalues, and Y
are the corresponding eigenvectors. In order to solve the eigenvalue problem, we used
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the Arnoldi method as it is implemented in the Arpack library (Lehoucq, Sorensen
& Young 1998).

On the other hand, analytical results of the simpler normal-mode analysis for
an isolated bubble in a Newtonian liquid have been reported in the literature.
Comparing our numerical predictions for the computed eigenfrequencies in the limit
of large distance between the bubble centres in comparison with their radii to the
analytical expressions for a single bubble provides a strict and demanding test for the
accuracy of our numerical simulations and an indication for the extent to which
the computational mesh must be refined. In particular, assuming that (i) the
surrounding liquid is incompressible, (ii) thermal effects are negligible, (iii) the interface
has no elasticity or intrinsic viscosity, and that the bubble undergoes only radial
oscillations, yields the classical Rayleigh–Plesset equation (Plesset & Prosperetti 1977;
Brennen 1995; Tsiglifis & Pelekasis 2007). Further assuming that the disturbance
amplitude is small and using the scales for the variables employed herein reduces it
to the linearized equation

R′′
p + 4 Oh R′

p + {3γ (Pb + 2) − 2} Rp = 0, (4.3)

where the primes indicate differentiation with respect to time. The roots of its
characteristic polynomial furnish the eigenvalue of (4.3), co,∞ = −βo,∞ ± iωo,∞, written
in terms of the dimensionless resonance frequency, ωo,∞ (or the oscillation period,
To,∞) and damping, βo,∞, of the isolated bubble:

To,∞ =
2π

ωo,∞
=

2π

[3γ (Pb + 2) − 2 − 4 Oh2]1/2
=

2π[
3γ

(
P ∗

b

σ ∗/R∗
b

+ 2

)
− 2 − 4µ∗2

ρ∗σ ∗R∗
b

]1/2
,

βo,∞ = 2 Oh. (4.4)

The subscript ‘o’ indicates that the corresponding variables refer to the mode
preserving spherical symmetry, often called the breathing or the zeroth mode, while
the subscript ∞ indicates that the bubble is isolated. These expressions demonstrate
that the dimensionless damping rate is proportional to Oh, while the period decreases
with the dimensionless ambient pressure (scaled with capillarity), but increases with
the Ohnesorge number approximately as P −1/2 and Oh, respectively, when each one
of them dominates the rest of the terms in the denominator of (4.4) or that the period
increases when the liquid viscosity increases and it decreases when the bubble radius
increases.

The corresponding eigenmode analysis which allows even for deformations of the
bubble surface is quite more involved. Miller & Scriven (1968) have examined the
more general problem of a deformable spherical globule composed of a Newtonian
fluid and immersed in another immiscible fluid which extends to infinity. They have
shown that the vorticity and the radial velocity of the linearized equations may
be expressed in terms of spherical harmonics and generalized radial functions, and
provided expressions to determine the eigenvalues of the system. In the limit of inner
to outer fluid density and viscosity ratios approaching zero, the problem of an isolated
bubble is recovered. In this case, the dimensional eigenvalues c∗

l,∞ are given by the
following closed-form but implicit expression:

ω∗2
inv

c∗2
l,∞

=
l + 2

ω∗2R∗2
b

[
(2l + 1)ω∗2R∗2

b − 2(l − 1)(l + 1)
(
2l + 1 − ω∗R∗

bQ
H
l+(1/2)

)
2l + 1 − ω∗R∗

bQ
H
l+(1/2) + ω∗2R∗2

b /2

]
− 1,

l = 2, 3, . . . , (4.5a)
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where ω∗ =
√

c∗
l,∞ρ∗/µ∗ has units of inverse length, is related to the eigenvalue c∗

l,∞ and

is introduced only for convenience, while ω∗
inv = {[σ ∗(l + 1)(l − 1)(l + 2)]/R∗3

b ρ∗}1/2 is
the frequency of oscillation, if the surrounding liquid is assumed to be inviscid and the
gas in the bubble does not contribute to the dynamics of the problem (see Rayleigh
1917; Tsamopoulos & Brown 1983). Finally,

QH
l+(1/2) ≡

H
(1)
l+(3/2)(ω

∗R∗
b)

H
(1)
l+(1/2)(ω

∗R∗
b)

, (4.5b)

where H
(1)
l+(1/2) and H

(1)
l+(3/2) are the half-integral-order Hankel functions of the first

kind. In these expressions, l corresponds to the index of the Legendre polynomial
characterizing the shape of the bubble. The analytical solution does not apply to
volume oscillations of the bubble (l = 0) or bubble translation (l = 1). Here again,
writing cl,∞ = −βl,∞ ± iωl,∞, one obtains the decay factor as the real part of cl,∞, while
its imaginary part is the angular frequency of the lth mode.

Next, the oscillation frequencies and decay factors computed numerically with our
code are compared with their values calculated by solving (4.5a) using standard
software for the l � 2 modes and directly from (4.4) for the l = 0 mode. Typically,
properties of pure water at an ambient temperature of 20◦C and pressure 1 bar
are used, i.e. ρ∗ =103 kg m−3, µ∗ = 10−3 Ns m−2, σ ∗ = 0.0727 Nm−1. When these are
combined with the bubble size, they yield the particular Ohnesorge number and
dimensionless pressure. Table 1(a) gives the dimensionless eigenvalues obtained for
two equal bubbles with R∗

b = 5 µm in water; hence, Oh−1 = 19.065, P =6.878, located
at a large distance D = 17, where it is anticipated that the bubbles will not interact,
at least in the linear limit. Indeed, two identical sets of eigenvalues result for each
wavenumber, each set corresponding to each one of the bubbles. The eigenvalues
obtained with the increased spatial discretization of the meshes M3, M4 and M5
monotonically approach their values calculated using the analytical expressions of
(4.4) and (4.5a). This confirms that in spite of the large distance between the bubbles
which increases the distance between the nodes in the computational mesh, the
numerical values are highly accurate even with the coarsest mesh. The characteristics
of the mesh are given in table 1(d ). In general, the eigenvalues have converged to at
least 2–3 digits with the M3 mesh and to 3–4 digits with the M5 mesh.

The eigenfrequencies of the same bubbles when they are closer together at D = 2.8
or 5 are given in table 1(b, c). The smaller distance between the two bubbles increases
the local refinement around each bubble and, hence, improves the convergence of the
eigenvalues to 4–5 digits typically even with less refined mesh. Therefore, for these
two smaller interbubble distances, discretization even with the M3 mesh is more than
sufficient in the dynamic simulations that will follow. This mesh will be used in the
bulk of the remaining calculations. Now, two different sets of eigenvalues arise for
each wavenumber, the one with smaller real and imaginary parts corresponding to in-
phase oscillations of the bubbles and the larger one to out-of-phase oscillations. This
difference in the two eigenvalues is larger for the lower modes of oscillation. For the
zeroth mode, in-phase oscillations arise when the two bubbles expand and contract
simultaneously, whereas out-of-phase oscillations arise when one of the bubbles
expands while the other one contracts. For the second mode, in-phase oscillations arise
when both bubbles assume the prolate shape (extended along the axis of symmetry)
and then the oblate shape (flattened at their poles) simultaneously, while out-of-
phase oscillations arise when one bubble assumes the prolate shape while the other
assumes the oblate shape. A similar differentiation of the eigenvalues was obtained
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(a) D = 17 (nearly isolated bubbles)
l For l = 0 from (4.4), M3 M4 M5

for l � 2 from (4.5a)
0 −0.1049 ± 5.9394i −0.1057 ± 5.9641i −0.1055 ± 5.9640i −0.1055 ± 5.9639i
2 −0.7533 ± 3.2030i −0.7568 ± 3.2858i −0.7551 ± 3.2447i −0.7543 ± 3.2268i
3 −1.3166 ± 5.8695i −1.3192 ± 5.9312i −1.3179 ± 5.9004i −1.3173 ± 5.8871i
4 −2.0104 ± 8.7725i −2.0128 ± 8.8243i −2.0116 ± 8.7984i −2.0111 ± 8.7872i
5 −2.8326 ± 11.9223i −2.8349 ± 11.9681i −2.8337 ± 11.9452i −2.8332 ± 11.9354i

(b) D = 5
l cl (in-phase) cl (out-of-phase)

M3 M4 M5 M3 M4 M5
0 −0.09316 ± 5.57261i −0.09312 ± 5.57260i −0.093126 ± 5.57259i −0.13295 ± 6.6249i −0.13293 ± 6.62489i −0.13292 ± 6.62488i
2 −0.752958 ± 3.19809i −0.752952 ± 3.19808i −0.752950 ± 3.19807i −0.753699 ± 3.20847i −0.753693 ± 3.20846i −0.753691 ± 3.20845i
3 −1.31659 ± 5.86827i −1.31658 ± 5.86826i −1.31657 ± 5.86825i −1.31664 ± 5.8709i −1.31663 ± 5.87089i −1.31662 ± 5.87088i
4 −2.01048 ± 8.77222i −2.01043 ± 8.77219i −2.01042 ± 8.77218i −2.01048 ± 8.77278i −2.01044 ± 8.77275i −2.01043 ± 8.77274i
5 −2.8327 ± 11.9225i −2.8326 ± 11.9224i −2.83257 ± 11.9223i −2.8326 ± 11.9226i −2.83259 ± 11.9225i −2.83258 ± 11.9224i

(c) D = 2.8
l cl (in-phase) cl (out-of-phase)

M3 M4 M5 M3 M4 M5
0 −0.08763 ± 5.17987i −0.08762 ± 5.17987i −0.08761 ± 5.17987i −0.179 ± 7.1377i −0.17897 ± 7.1377i −0.17895 ± 7.1377i
2 −0.74939 ± 3.12178i −0.74938 ± 3.12177i −0.74937 ± 3.12176i −0.76495 ± 3.30662i −0.76494 ± 3.30661i −0.76493 ± 3.3066i
3 −1.31604 ± 5.80397i −1.31602 ± 5.80396i −1.31601 ± 5.80395i −1.31916 ± 5.94968i −1.31914 ± 5.94967i −1.31913 ± 5.94966i
4 −2.00989 ± 8.72786i −2.00983 ± 8.72783i −2.00981 ± 8.72782i −2.0112 ± 8.82386i −2.01118 ± 8.82382i −2.01117 ± 8.82381i
5 −2.8315 ± 11.8943i −2.83137 ± 11.8944i −2.83133 ± 11.8942i −2.8338 ± 11.9533i −2.83368 ± 11.9532i −2.83365 ± 11.9531i

(d) Characteristics of the three meshes used
Mesh Total number of

triangles after
local refinement

Number of nodes on
each free surface
after refinement

	rmin around the
free surface after
local refinement

	zmin around the
free surface after
local refinement

M3 15 360 641 0.01 0.002
M4 30 720 1281 0.005 0.002
M5 53 760 2241 0.003 0.002

Table 1. Eigenvalues for two bubbles of equal radii R∗
b = 5 µm, immersed in pure water at ambient temperature T ∗ = 20◦C and pressure P ∗ = 1 bar;

hence Oh−1 = 19.065 and P = 6.878 for three different interbubble distances: (a) D = 17, (b) D = 5 and (c) D =2.8. In table 1(d ) we give the
characteristics of the three meshes that are used.
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T0,∞ based T0,∞ based T0,∞ based
Case R∗

bi D ε on P on P (1 + ε) on algorithm Rb.eq/Rb

1 5 µm 2.8 1 1.057 0.676 0.762 0.868
2 10 µm 2.8 1 0.784 0.479 0.541 0.859
3 20 µm 2.8 1 0.569 0.347 0.393 0.854
4 30 µm 2.8 1 0.468 0.284 0.333 0.852
5 30 µm 5 1 0.468 0.284 0.309 0.852
6 40 µm 2.8 1 0.407 0.247 0.285 0.851
7 40 µm 2.8 0.2 0.407 0.357 0.409 0.958
8 100 µm 5 1 0.260 0.156 0.168 0.849
9 1 mm 2.8 1 0.082 0.049 0.058 0.848

10 1 mm 2.8 0.3 0.082 0.068 0.078 0.939
11 1 mm 5 1 0.082 0.049 0.053 0.848
12 1 mm 9.9 1 0.082 0.049 0.051 0.848
13 1 mm 9.9 0.3 0.082 0.068 0.069 0.939

Table 2. The period of the breathing mode calculated from (4.4) either with the initial
hydrostatic pressure P or after imposing the step increase in pressure P (1+ε). The first period
of volume oscillations resulting from the present algorithm and the ratio of the equilibrium to
the initial bubble radius are also given.

in Pelekasis & Tsamopoulos (1993a), where the liquid surrounding the two bubbles
was assumed to be inviscid and a much larger dimensionless hydrostatic pressure
was used, resulting in larger eigenvalues of the zeroth mode. In Newtonian liquids
as well, we find that as D decreases, both parts of the eigenvalue corresponding to
in-phase oscillations decrease, while those corresponding to out-of-phase oscillations
increase. Physically, one may explain this by noting that in the first case, during
their simultaneous expansion, the bubbles interfere with each other, decreasing their
eigenfrequency, whereas in the second case the expansion of one bubble promotes
the contraction of the other bubble, increasing their frequency. This is demonstrated
here by comparing in table 1 the eigenvalues for D =2.8, 5 and 17, where we see
that in smaller distances the deviation between the two sets of eigenvalues is clear,
in the intermediate distance it occurs in the third or fourth significant digit of the
eigenvalues, whereas there is no deviation in the largest distance.

4.2. Nonlinear dynamics of equal bubbles

The code used for the stability analysis is modified to perform nonlinear simulations
of two interacting bubbles for a wide range of radii (1 µm–1 mm) immersed in pure
water, when the ambient pressure increases from 1 bar by up to 100 %. Hence, the
disturbance amplitude, ε, in the following simulations, except for those in § 4.2.4,
where the effect of ε is examined, is set to ε =1. Among the several cases that we
have examined, the discussion that follows is focused on those cases listed in table 2.
Although these exhibit very different bubble dynamics and shape deformations, they
will help us extract certain common features related to the secondary Bjerknes force.

4.2.1. Bubbles with R∗
b = 5 µm and D∗ = 14 µm and general characteristics of the

motion

First, two equal bubbles of a relatively small radius, 5 µm, are examined, when
immersed in pure water. Therefore, for this case the pressure at the far field is
increased at t = 0 to P∞ =P (1 + ε) = 13.756. The initial distance between the centres
of volume of the two bubbles is set to D = 2.8. Figure 2 shows the time variation
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Figure 2. Variation with time of the volume of the left bubble. The two bubbles are equal
with R∗

b = 5 µm, Oh−1 = 19.065, P =6.878 and D =2.8.

of the dimensionless volume of the left bubble, which initially is V = 4π/3 = 4.1888.
Doubling of the far-field pressure quickly reduces the bubble volume below its new
equilibrium value, Veq = 2.742, and even to less than half its initial size, V ≈ 1.75.
Subsequently, the bubble undergoes damped oscillations because of fluid viscosity.
The volume of the right bubble varies with time in exactly the same way owing
to symmetry. Oscillations of the two bubbles are in-phase and their first common
period is found to be T0 = 0.762, and subsequent periods of volume oscillations slowly
increase with time: 0.768, 0.778 and 0.792. All these are lower than the value predicted
by the normal-mode analysis for in-phase volume oscillations for P =6.878, which
according to (4.4) gives To,∞ =1.057. This decrease in the period of the nonlinear
oscillations is because the zeroth mode that corresponds to the volume oscillations
is mainly affected by changes in dimensionless pressure. The large pressure increase
leads to a new equilibrium bubble radius of 0.868, resulting in a linear period of
0.676 (see table 2). This value is slightly smaller than the numerically calculated one
because nonlinear effects increase the importance of inertia and hence the period of
bubble oscillations (see Tsamopoulos & Brown 1983).

Figure 3 shows the evolution of the centres of volume of each bubble with time,
for the present and some other cases to be discussed subsequently. Their locations,
Zi , for each bubble, i, are determined along their common axis of symmetry via

Zi =

∫∫∫
V

z dV∫∫∫
V

dV

=

∫
zρ(z)2 dz∫
ρ(z)2 dz

=

∫
zρ(z)2

dz

ds
ds∫

ρ(z)2
dz

ds
ds

, i = 1, 2, (4.6a)

where cylindrical coordinates (z, ρ) have been introduced, which are centred at their
common axis. In the third ratio of integrals, the integration with respect to the axial
distance has been transformed into integration with respect to the arclength, s, along
the bubble surface to avoid the multi-valuedness of some bubble shapes, as we will
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Figure 3. Evolution of the centres of volume of the two equal bubbles with (—) R∗
b = 5 µm,

D = 2.8, ε = 1; (−−) R∗
b = 10 µm, D = 2.8, ε = 1; (· · · · · ·) R∗

b = 20 µm, D = 2.8, ε = 1; (–·–)
R∗

b = 30 µm, D = 2.8, ε = 1; (−··−) R∗
b = 30 µm, D =5, ε = 1; (- -) R∗

b = 40 µm, D = 2.8, ε =1;
(-·-) R∗

b = 40 µm, D = 2.8, ε = 0.2.

see in the next sections. The combined centre of volume Z is computed via

Z =
Z1V1 + Z2V2

V1 + V2

. (4.6b)

The two centres of volume are seen to oscillate symmetrically and keep approaching
each other in a slower time scale. The combined centre of volume remains at zero
owing to the plane of symmetry, verifying once again the accuracy of our calculations.
The final distance between the bubble centres is ∼1.55, i.e. less than the sum of the
current bubble radii, which is ∼1.85. This reveals that the bubbles have approached
each other so much that they have squeezed each other, attaining a deformed oblate
shape. Bubble pairs flattened on the portion of their interfaces facing each other when
they get close together and just before coalescence have been observed experimentally
(e.g. Lauterborn et al. 1999). Calculating the average distance between the bubble
centres within each oscillation period and fitting these data to a quadratic polynomial
in time, one obtains

Daverage = 2.804 − 0.186 t − 0.06 t2. (4.7)

This time-dependence shows that the bubbles accelerate towards each other on
average.

In figure 4(a, b), the velocity and acceleration, respectively, of the centre of the
left bubble are shown and are also oscillatory. These are determined by numerically
differentiating with respect to time the instantaneous locations of the bubble centres.
This figure and figures 2 and 3 are given up to t =3.778, when the bubble surfaces
are too close to each other as shown next. The average velocity over a period of
volume oscillations initially increases with time almost linearly, then it increases at a
lower rate and, finally, decreases at the last stages of the simulations and after the two
bubbles have approached each other significantly. Apparently, the two bubbles have
come so close together that their translation along their common axis cannot continue.
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Figure 4. Evolution with time of (a) the velocity and (b) the acceleration of the left bubble.
The two bubbles are equal with parameters as in figure 2.

Figure 4(b) shows that the left bubble spends more time accelerating towards the right
one than decelerating away from it. The values of the average acceleration over each
period of volume oscillation are 〈g〉 = 0.248, 0.099, 0.007, 0.089 and remain always
positive, so that the average force remains attractive until the end of the simulation.
Because of this strong time-dependence of the bubble acceleration, in all calculations
determining the secondary Bjerknes force that follow the average acceleration of the
bubbles will be measured and reported on the first period of volume oscillations.
This seems to be most appropriate since the bubbles deform and approach each
other with time, both of which affect their acceleration. The oscillation periods of the
velocity and the acceleration slowly increase, following the same trend of the periods
in the volume oscillations. Only the last figure signals a decrease in the amplitude just
because the two bubbles are now very close and prevent each other from accelerating
further. This increase in the periods is attributed to the slow viscous damping of the
nonlinear oscillations (Nayfeh & Mook 1979).

Figure 5 presents the bubble shapes and contour plots of both velocity components
and pressure at t = 3.148. At this instant, the bubbles have approached each other
significantly, as their nearby surfaces are at a distance of 0.039 or 0.195 µm. This
distance still allows us to neglect van der Waals and other surface forces or merging
of the bubbles. The field variables are presented with respect to a spherical coordinate
system centred at the middle of the distance between the initial centroids of the two
bubbles. The radial velocity, given in the upper half of figure 5(a), takes its smallest
(negative) values at the rear side of the bubbles, while it takes positive values between
the two bubbles. This distribution of vr indicates that the two bubbles are in the
contracting phase of their radial oscillation but still approach each other, squeezing
fluid away from the gap between them. The former can be confirmed by observing in
figure 2 that the time t =3.148 is just after the last maximum in the volume oscillations
of the bubbles, indicating that they have started their final contraction. The azimuthal
velocity, given in the lower half of figure 5(a), is symmetric with respect to θ = π/2,
because the two bubbles are equal and undergo in-phase oscillations, producing a
plane of symmetry normal to their common axis. As the two bubbles contract, the
azimuthal velocity takes negative values around the left bubble and positive values
around the right bubble, while it is zero at θ = 0 and θ = π, due to axial symmetry.
The pressure field, which is given in figure 5(b), forms contours surrounding both
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(a) (b)

–0.001 0.001

0

0 0

8.859

13.018

0.196
0.658
–0.467
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–0.467

Figure 5. Contours of (a) ur (upper half), uθ (lower half) and (b) P at t = 3.73 for R∗
b = 5 µm,

Oh−1 = 19.065, P = 6.67, ε = 1 and D =2.8. The range of the respective variable is divided
into 20 equal intervals.

bubbles very close to them. Apparently, the bubbles, being in their contraction phase,
have overshot their new equilibrium position and the pressure near their surface
is well below than that imposed in the outer boundary. Indeed, the pressure just
outside the bubbles is 8.859. At a distance less than 7 bubble radii from the centre of
this coordinate system, the pressure attains radial symmetry. Moreover, the pressure,
which has been set at P∞ = P (1+ε) = 13.756 at R∞ = 30, decreases only to P =13.018
very close to the bubble, at a distance of approximately r ≈ 5 in this coordinate
system, which verifies once more that locating the outer boundary at R∞ = 30 does
not affect even the pressure field, which is the most sensitive of the flow variables.

The Fourier–Legendre decomposition of the bubble shape helps in determining
the detailed dynamics of the interacting bubbles. The Fourier–Legendre coefficients
are computed with respect to spherical coordinates with origin located at the
instantaneous centre of each bubble and are given by

Cl =

∫ π

0

fs(θ)Pl(θ) sin(θ) dθ, l = 0, 1, 2, 3 . . . . (4.8)

Since the bubbles are equal and oscillate in-phase, the normal-mode decomposition
of their interface is identical. The amplitude of the zeroth mode undergoes damped
oscillations in exact correspondence to the volume oscillations reported in figure 2.
Figure 6 shows the time evolution of the coefficient C2 of the second Legendre
polynomial P2, of the left bubble for this and some cases to follow. Positive values of
the coefficient C2 signify prolate bubble shapes (elongated along the axis of symmetry),
whereas negative values signify oblate bubble shapes (flattened at the bubble poles).
Both bubbles oscillate, initially attaining alternatively prolate and oblate shapes, but
eventually they attain only oblate shapes because they have squeezed each other
along their common axis. Although the two bubbles have approached each other
considerably, as can be seen in figure 5, they did not flatten significantly, because of
their very small size which makes capillary forces dominant over all other forces, as
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Figure 6. Time evolution of the C2 coefficient of the Fourier–Legendre decomposition of the
bubble surface. The two bubbles are equal with (—) R∗

b = 5 µm, (--) R∗
b = 10 µm and (· · · · · ·)

R∗
b = 20 µm.

indicated by the small value of Oh−1. For the same reason, all modes higher than P2

have negligible contribution to the bubble shape.

4.2.2. Effect of bubble size when they are close to each other

Retaining the initial dimensionless distance between the two bubbles at D = 2.8, we
increased the bubble radius from 5 to 10 µm (Oh−1 = 26.962, P = 13.755) and then
to 20 µm (Oh−1 = 38.131, P =27.51). As seen in table 2, the dimensionless period
of volume oscillations decreases as the bubble radii increase irrespective of whether
it is calculated based on the initial pressure or after imposing the step increase in
pressure, both from (4.4) or from the present algorithm. One may easily verify that
the discussion that follows is not affected in any way, if one chooses to calculate the
eigenfrequencies with the equilibrium bubble radius prior or after applying the step
change in pressure. As expected, this variation in the oscillation period with the bubble
radius is reversed when the time scale we employed, (R∗3

b ρ∗/σ ∗)1/2, is accounted for to
obtain the dimensional period. Because of the smaller period of volume oscillations
and larger bubble volumes, it is expected that the average acceleration of the bubbles
will increase with their size and, consequently, the dimensionless time needed to
approach each other will decrease. Indeed, from figure 3, where the locations of the
centres of volume for the present two cases are given as well, it is obvious that the
larger the bubbles, the less time is needed to approach each other. Again, we can
calculate the average distance between the two bubble centres within each oscillation
period and fit these data to a quadratic polynomial in time. For R∗

b = 10 µm, this yields

Daverage = 2.778 − 0.222 t − 0.308 t2. (4.9)

As for the R∗
b = 5 µm case, this expression gives approximately the initial interbubble

distance and the average acceleration, which here is 0.616, i.e. much larger than in
bubbles with R∗

b = 5 µm. In figure 3, we can also see that the final distance between
the bubble centres is smaller than the sum of their current radii and somewhat
smaller than for the 5 µm bubbles.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

10
00

63
61

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112010006361


528 N. Chatzidai, Y. Dimakopoulos and J. Tsamopoulos

Z
–2.0

1.2

0.8

0.4

0

–0.4

–0.8

–1.2

–1.6 –1.2 –0.8 –0.4 0 0.4 0.8 1.2

(a)

(b)

(c)

(d)

1.6 2.0

X

Figure 7. Bubble shapes at (a) t = 0.738, (b) t = 0.788, (c) t = 0.837 and (d) t = 0.886 for two
equal bubbles with R∗

b = 30 µm, Oh−1 = 46.701, P = 41.265, ε = 1 and D =2.8.

The time evolution of the zeroth, C0, coefficients of the Legendre polynomials,
P0, for these two radii, are available in Chatzidai (2008). They also demonstrate
that the period of the volume oscillations decreases when the size of the bubble
increases, while the amplitude of the oscillations increases. The former results from
the increased dimensionless pressure, while the latter results from the increased inertia.
The deformations of the bubble surfaces are expected to be larger, since the increased
Oh−1 signifies less important capillary forces with respect to viscous forces. Coupling
this effect with the increased average acceleration when the bubble size increases leads
to the anticipation that the larger bubbles will attain more flattened shapes. Indeed,
comparing the values of C2 in figure 6 for the bubbles of 5, 10 and 20 µm, it is clear
that the shape of the larger bubble is characterized by a more negative coefficient
towards the end of the simulations, which signals a flatter bubble. Comparing the
oscillation periods of the zeroth 0.541, 0.548, 0.562 and the second modes 0.528,
0.552, 0.574, for example, for the R∗

b =10 µm bubbles, we find not only that they
both increase in time but, more importantly, that the periods of these two modes
are similar. It is noteworthy that the linear period of P2 is 1.901 (or 1.397 when the
decreased equilibrium radius is accounted for), i.e. very different from the periods of
the computed modes. This implies that the bubbles are deformed not because of a
harmonic or subharmonic resonance of the second mode, but because of their volume
oscillation and their squeezing each other.

Increasing the bubble radius even more to 30 µm (Oh−1 = 46.701, P = 41.265),
modes higher than P2 start to arise and the two bubbles deform on the side facing
away from the direction of average acceleration. Hereafter, this side will be called
the rear side, while the other side will be called the front side. Figure 7 gives a
sequence of bubble shapes at the same initial interbubble distance up to the instant
that the bubble front surfaces are too close to each other. The Fourier–Legendre
decomposition of these shapes is given in figure 8 for the coefficients of P2–P6. Among
the surface harmonics, the second harmonic is seen to start growing immediately with
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l cl (in-phase) cl (out-of-phase) Tl

0 −0.0357 ± 11.6850i −0.0764 ± 16.0745i 0.332
2 −0.3500 ± 3.3078i −0.3584 ± 3.5035i 0.29
3 −0.6158 ± 6.1316i −0.6189 ± 6.2859i 0.5
4 −0.9471 ± 9.2444i −0.9480 ± 9.3470i 0.437
5 −1.3436 ± 12.6470i −1.3436 ± 12.7104i 0.421
6 −1.8045 ± 16.3220i −1.8047 ± 16.3598i 0.418

Table 3. Eigenvalues cl and first periods of the nonlinear oscillations Tl for equal bubbles
with R∗

b = 30 µm, Oh−1 = 46.701, P =41.265 and D = 2.8.
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Figure 8. Time evolution of the coefficients c2–c6 of the Fourier–Legendre decomposition of
the bubble surface for two equal bubbles with the parameters as in figure 7.

approximately the same period as the zeroth mode, followed by the third one, then
the rest of the higher modes follow. Towards the end of the simulations, the second
harmonic has the largest amplitude, which has even approached the amplitude of the
zeroth mode, followed by the fifth and sixth modes. Table 3 presents the eigenvalues of
the breathing mode and the P2–P6 modes calculated using (4.4) and (4.5a) respectively.
The table also presents the corresponding nonlinear periods of the first oscillation as
computed by our finite element algorithm. We observe that the computed frequency
of the P3 mode is almost half the frequency of the in-phase breathing mode, while
the frequencies of the P5 and P6 modes are close to its value. This indicates a shape
deformation not observed above with smaller bubbles, but arising through the so-
called parametric resonance, first discussed by Plesset (1954), for a single bubble.
Later, Hall & Seminara 1980, using perturbation expansions with respect to the
assumed small amplitude of the breathing mode showed that, when the frequency of
the radial motion of a single bubble happens to be twice the linear frequency of a
shape mode, subharmonic excitation of the later mode occurs. Moreover, when the
frequency of the radial motion happens to be equal to the linear frequency of a shape
mode, harmonic resonance can arise. The former should arise first, as it is inversely
proportional to the square of the excitation amplitude followed by the latter, as it
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is inversely proportional to the excitation amplitude, when this amplitude is much
less than one. This is exactly what is observed in figure 8, although the amplitude
here is large, ε = 1. The dominance of the P2 mode throughout and more so towards
the end of the simulations and its oscillation with a frequency similar to that of the
breathing mode verifies that it is generated by the combined volume oscillation and
linear translation of the bubbles and the squeezing that they apply to each other
eventually, but not by some type of resonance. In other words, this mode is excited
here by the same mechanism as was excited in the smaller bubbles.

The fact that in this case of interacting bubble pairs, shape deformations appear only
at the rear side of both bubbles, although based on the Rayleigh–Taylor instability
one would have anticipated the opposite, can be explained by extending the analysis
of Batchelor (1987). He was intrigued by the fact that the upper surface of steadily
rising gas bubbles, where the less dense gas displaces the more dense liquid, is stable,
whereas the rear side often has ripples, and he showed that the pure straining motion
of the liquid ahead of the bubble stretches the front bubble interface and convects
whichever disturbance may arise there to the rear of the bubble. This is exactly the
reason that as the bubbles approach each other and the parametric resonance excites
the third Legendre mode, the front of the bubble always remains undisturbed by this
mode.

Further increasing the bubble size to R∗
b =1 mm gives rise to even higher surface

modes, but the bubbles always deform at their rear side and flatten at their front
side. On the contrary, decreasing the bubble radius below 5 µm increases the viscous
effects so much that the oscillations are damped very fast even when the amplitude
is increased. For example, when R∗

b = 1 µm and D =2.8 with ε increased to either
1.5 or 2, the bubbles undergo up to 5 volume oscillations and their final distance is
2.56 and 2.45, respectively. Therefore, the bubble size of approximately R∗

b = 5 µm in
water constitutes the lower limit below which the secondary Bjerknes force induced
by a step change in pressure is ineffective to bring the bubbles close enough to lead
to bubble merging. This, of course, does not necessarily imply that a continuously
applied oscillatory forcing will not bring these bubbles together.

4.2.3. Effect of initial bubble distance, D

Retaining the size of the bubbles at R∗
b = 30 µm in water, we increase the initial

distance between their centres from D = 2.8 to D = 5. Since the bubbles are now
further apart, their interaction will be weaker and their average acceleration is
expected to decrease. Hence, the time needed for the two bubbles to approach each
other will be increased and larger shape deformations are allowed to arise, since
there will be more time for the two bubbles to oscillate and accelerate. Figure 9
presents the time evolution of the acceleration of the centre of the left bubble for
D =2.8 and D = 5. Indeed, the average acceleration over the first period of volume
oscillation is 〈g〉 = 1.231 for D =2.8, but decreases to 〈g〉 = 0.529 for D = 5. However,
as time proceeds and the bubbles approach each other, the amplitude of their
periodic acceleration in each period of volume oscillation increases monotonically
and eventually approaches the value of the initial acceleration of the bubbles at
the smaller initial distance of D =2.8. In this figure, we observe that, for both
distances, the periods of the acceleration are in the range 0.308–0.328, which is close
to the nonlinear period of the breathing mode (table 2). This indicates that bubble
acceleration is generated by the volume oscillations, and it is not significantly affected
by bubble deformation, at least when this is not too large. The translation of the
centres of volume for D = 2.8 and D =5 is given in figure 3 for easier comparison
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Figure 9. Time evolution of the acceleration of the left bubble for two different distances
D = 2.8 (---) and D =5 (—). The two bubbles are equal with R∗

b = 30 µm, Oh−1 = 46.701,
P = 41.265 and ε = 1.

with the other cases. As anticipated, the time needed for the two bubbles to approach
each other increases with their distance. When the initial distance, D, is set at 2.8,

simulations stop at t =0.914, while when D = 5, simulations stop at t = 2.61, because
of close proximity of the two bubbles. The evolution of the coefficients of the P2–P6

Legendre polynomials for D = 5 is given in Chatzidai (2008). Comparing them with
the coefficients of the modes for D = 2.8 (figure 8) makes it plain that the final bubble
shapes are less squeezed when they are initially closer together, although their initial
acceleration is higher, and their deformations described by higher modes, such as P3

and P4, are less significant, since there was not enough time for them to increase.
Keeping the initial dimensionless distance at D =5 and increasing the bubble size to

R∗
b = 100 µm, and even more to R∗

b = 1 mm, results in even more deformed shapes. The
deformations are limited again in the rear bubble side, while the front side remains
almost spherical. Such shapes have also been reported by Pelekasis & Tsamopoulos
(1993a, b), and have been called spherical-cap shapes, because of the resemblance of
their front side to the classical spherical-cap shapes reported by Davis & Taylor (1950).
Now computations stop before the two bubbles come very close together due to the
large amplitude deformations. Figure 10 shows selected shapes of the two bubbles for
the case with R∗

b =1 mm in water (Oh−1 = 269.63, P =1375.51, ε = 1, D =5). The
Fourier–Legendre decomposition of the bubble surface reveals that the lowest surface
mode P2 is again the dominant one throughout the simulation but after t ∼= 0.13
even higher modes start to arise and finally the modes P12 and P13 dominate the
shape of the bubble. This can be confirmed by noticing the 13 lumps in the bubble
shapes in figure 10. Examination of the linear frequencies of the breathing mode
and of the P12 and P13 modes at ωo = 76.05 (table 2), ω12 = 44.857 and ω13 = 50.332
verifies that these higher modes also arise through subharmonic resonance, i.e. a
parametric instability. As should have been expected, in larger bubbles, capillarity is
less effective and disturbances of shorter wavelength may arise, especially when these
are excited by the parametric resonance. These disturbances should grow and lead to
bubble breakup, which is known to occur, but not captured numerically as yet. Again,
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Figure 10. (a–d ) Spherical cap shapes of the bubbles at t = 0.15, 0.165, 0.18 and 0.187,
respectively, for two equal bubbles with R∗

b = 1 mm, Oh−1 = 269.63, P = 1375.51, ε = 1
and D = 5.

isolated bubbles deformed in this way have been repeatedly observed experimentally
(e.g. Kornfeld & Suvorov 1944; Ohl et al. 1999; Daglia & Poulain 2010; Versluis et al.
2010). These deformations have often led to the formation of multiple small satellite
bubbles surrounding the parent bubble (Ohl et al. 1999). Formation of such satellite
bubbles in only one side of a bubble, the one away from nearby walls, has also been
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(a)

(b)

Figure 11. (a, b) Streamlines at t = 0.179 and 0.187 for two equal bubbles with R∗
b = 1 mm,

Oh−1 = 269.63, P = 1375.51, ε = 1 and D = 5.

observed (Lauterborn 1972). Instantaneous streamlines for this case are given in
figure 11. While the bubbles undergo contraction, the flow is towards them
from infinity and away from them subsequently under expansion. Axisymmetric
extensional flow takes place between them with oscillating direction contributing to
the stabilization of this part of the bubble surface. The increased deformation on the
bubble back side during expansion leads to closed streamlines there.

In an attempt to explain the formation of the so-called bubble grapes, it has been
shown by Pelekasis et al. (2004) and Mettin et al. (1997) that bubbles at very large
distances from each other in an oscillatory pressure field can accelerate towards or
away from each other or remain at a constant distance after a very large number
of cycles of volume oscillations. One of the basic assumptions made in these studies
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Figure 12. (a–d ) Spherical-cap shapes of the right bubble at t = 0.19, 0.2, 0.22 and 0.226,
respectively. The two bubbles are equal with R∗

b =1mm, Oh−1 = 269.63, P = 1375.51, ε = 1
and D = 9.9. The left bubble shapes are the mirror images of these.

was that the bubbles could retain their spherical shape and weak viscous effects were
introduced, in the form of boundary layers around each bubble in the first of the
above studies. To test the viability of large bubbles to retain their spherical shapes
while they undergo volume oscillations and accelerate along their common axis, we
examined bubbles of radius of 1 mm and increased their initial distance D to 9.9.
This bubble size is larger whereas their distance is smaller than those examined in
these papers. Hence, their interaction and acceleration will be stronger here, which
should lead to shape instabilities faster. On the other hand, in the present model we
have included viscous forces in full and examined a step change in pressure and not
an oscillatory one, which could lead to resonance with the forcing frequency as well.
This large interbubble distance requires more elements to be used in order to retain
the accuracy of our computations, so mesh M5 is used. Unfortunately, this distance
cannot be increased further, given our hardware/software configuration, without
compromising accuracy. Fairly soon, the bubbles are seen to develop spherical-cap
shapes and short waves on their back side, although one would have expected that
capillarity and viscous damping could prevent the higher modes from growing. Owing
to the corrugated surfaces and the microflow that arise within each trough we have
refined the mesh, but the computations could not proceed much further even with
the denser mesh.

Selected bubble shapes are given in figure 12 for the right bubble, while the
left bubble will be symmetric, as the two bubbles are equal. Similar shapes for
R∗

b = 1 mm, at a large initial distance between the two bubbles but for much lower
disturbance amplitude, have been predicted by Pelekasis & Tsamopoulos (1993a) using
a completely different code, based on boundary elements, and assuming irrotational
flow. It is noteworthy that due to the absence of viscosity there, the bubble shape
deformations were even sharper and these irregularities arose earlier (Pelekasis 1991).
On the contrary, the shapes predicted here are much smoother because of the complete
accounting of the effect of viscous forces. An examination of the Legendre coefficients
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Figure 13. (a) Variation of the average acceleration of the left bubble with the initial distance
between the two centres of volume for R∗

b =30 µm (
), R∗
b = 100 µm (�), R∗

b = 500 µm (�) and
R∗

b = 1 mm (�), and (b) variation of B∗ with the bubble size for equal bubbles and ε = 1.

reveals that P2 is the dominant mode until t ∼= 0.16. Subsequently, modes higher than
P15 start to increase abruptly and almost simultaneously (Chatzidai 2008). At t ∼= 0.2,
figure 12 shows that the bubbles tend to return to their spherical shape, as all higher
modes become negligible and P2 becomes the dominant mode again. A little later, the
higher modes increase again. The period of the zeroth mode at the later stages of the
simulation is found to be 0.058, while P19 oscillates with a period 0.0256 and modes
P15–P18 and P20 are oscillating with a period 0.032 approximately. This points to the
possibility of a parametric instability through superharmonic resonance of all these
modes with the breathing mode, although their eigenfrequencies are not exactly half
the eigenfrequency of the breathing mode. According to Hall & Seminara (1980), this
should follow the subharmonic and harmonic resonances, but their analysis assumed
that ε is much smaller than 1, not equal to it, as it is here.

In order to examine whether the Bjerknes prediction that this force is inversely
proportional to the square of the bubble distance still holds, we performed a
number of computations with R∗

b =30, 100, 500 and 1000 µm, when this distance is
D = 2.8, 3.5, 4, 5, 8 and 9.9. The average acceleration is obtained as before over
the first period of the particular volume oscillations. Figure 13(a) shows the resulting
linear acceleration 〈g〉 values versus 1/D2 for all the above cases and the linear best
fits to approximate the four data sets. The expressions for these lines along with the
correlation coefficient, C, and the standard deviation, SD, are

R∗
b = 30 µm, 〈g〉 = 0.104 + 10.123/D2, C = 0.983, SD = 0.092,

R∗
b = 100 µm, 〈g〉 = 0.312 + 37.896/D2, C = 0.994, SD = 0.203,

R∗
b = 500 µm, 〈g〉 = 0.995 + 205.887/D2, C = 0.994, SD = 1.067,

R∗
b = 1 mm, 〈g〉 = 2.892 + 404.137/D2, C = 0.995, SD = 0.2.

⎫⎪⎪⎬
⎪⎪⎭ (4.10a)

It can be safely concluded that the average acceleration, 〈g〉, scales linearly with 1/D2,
even when the viscosity of water is accounted for. However, all linear fits are of the
form

〈g〉 = A + B/D2, (4.10b)

with the size of the first coefficient on the right-hand-side much smaller than the
second one. If only the larger bubble distances (1/D2 � 0.04) are included in these
linear fits, the magnitude of the intercepts decreases further, indicating that this
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Figure 14. Time evolution of the coefficients of the Legendre polynomials (a) Po and (b) P2

for two different disturbance amplitudes, ε = 0.2 (---) and ε = 1 (—). The two bubbles are equal
with R∗

b = 40 µm, Oh−1 = 53.926, P = 55.02 and D = 2.8.

prediction does not contradict the asymptotic result (Bjerknes 1906; Doinikov 1999)
that as the bubble distance approaches infinity, the attractive force will tend to zero.

Another important observation is related to the dependence of the Bjerknes force
on bubble size. According to linear theory for inviscid liquids, it should depend on
the product of the amplitude of volume pulsations of the two bubbles (Bjerknes 1906;
Batchelor 1967; Pelekasis & Tsamopoulos 1993a, b). Plotting the slope B from (20b)
in dimensional form versus the bubble radius in a linear–linear plot confirms that

B∗ ∼ R∗
b, (4.11)

i.e. the Bjerknes force in viscous liquids is proportional to the bubble radius. This
confirms that the asymptotic analysis by Doinikov (1999), which was derived for
viscous liquids assuming spherical bubbles at very large distances from each other,
holds even when all these assumptions are removed. The same dependence is given
in figure 13(b) in a log–log scale to expand the range of smaller bubble sizes. In this
way, a very small deviation from (4.11) is found for smaller bubbles, possibly because
of the increased importance of viscous drag. In order to closely determine the size
of bubbles below which this slope starts to deviate, we carried out simulations with
additional bubble radii (Chatzidai 2008) and found only a very small decrease of the
initial acceleration for bubbles of radius R∗

b � 120 µm.

4.2.4. Effect of the disturbance amplitude, ε

Next, we examine the importance of the magnitude of the step change in pressure to
initiate bubble attraction in a viscous liquid, since in typical experiments, amplitudes
smaller than ε = 1.2–1.4 have been employed. As discussed in § 4.2.1, decreasing the
disturbance amplitude increases the period of volume oscillations, because the pressure
at infinity will increase less than before (see (4.4)). This should lead to a decrease in
the average acceleration of the bubbles and consequently to an increase in the time
needed for the two bubbles to approach each other. First, cases of bubbles up to 80 µm
in water and initial distance D = 2.8 are examined. When ε =1, it was shown that
bubbles larger than 30 µm deform at their rear side. Decreasing the amplitude ε to 0.2,
the bubbles remain almost spherical until the end of the simulations even when their
initial radius is 80 µm. Figure 14 shows the coefficients C0 and C2 of the corresponding
modes, for bubble radius 40 µm in water (Oh−1 = 53.926, P = 55.02), at an initial
distance 2.8 with disturbance amplitudes 0.2 and 1. Clearly, the C0 coefficient, which is
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Figure 15. Variation of the average acceleration of the left bubble with the disturbance, ε,
for R∗

b = 40 µm, Oh−1 = 53.926, P = 55.02 and D = 2.8.

related to volume oscillations, demonstrates that when ε is decreased to 0.2, the period
of volume oscillations increases, while their amplitude decreases, in comparison to the
case with ε = 1. It is also noteworthy that for ε =0.2, the value of the period (0.409)
is very close to that predicted from linear theory To,∞ =0.407; see table 2. When ε

increases to 1, the period decreases to 0.285. Moreover, the smaller coefficient of the
P2 mode makes it clear that the bubble retains a more spherical shape until the end of
the simulations when ε is decreased to 0.2, although it alternates between oblate and
prolate configurations with a constant trend towards an oblate one. Figure 3 includes
the evolution of the centres of volume of the two bubbles for these two cases as well.
We find that the time needed for the two bubbles to approach each other increases,
in the case of ε = 0.2, allowing the simulations to proceed to much longer times.

In order to examine whether the dependence of the acceleration on the disturbance
still follows predictions for inviscid liquids (Batchelor 1967; Pelekasis & Tsamopoulos
1993a), i.e. it increases proportionately to ε2, we also carried out simulations for
ε = 0.1, 0.3, 0.5, 0.7 and 0.8. Figure 15 shows that indeed the average acceleration
follows this dependence although the amplitudes used herein are as large as 1, while
the linear expression that best fits these data points is

〈g〉 = 0.01 + 2.031ε2. (4.12)

This occurs as in Pelekasis & Tsamopoulos (1993a), in spite of the fact that the
bubble radii are very small, and viscous effects are accounted in full here.

In order to directly compare with the results in figure 9 of Pelekasis & Tsamopoulos
(1993a), we increased the bubble radius to 1 mm (Oh−1 = 269.63, P = 1375.51), set
their initial distance at 2.5 and the amplitude to 0.3. In Pelekasis & Tsamopoulos
(1993a), the average acceleration over the first period of volume oscillations was found
to be 7.198, whereas it decreases here, as it should, to 6.72, because of viscous damping.
Retaining all the physical parameters to their previous values, except for the initial
interbubble distance, which we increase to 2.8, we find that the two bubbles deform
at their rear side and flatten at the front, a picture similar to that of ε = 1. Because
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Case 〈g〉 Revi/Retr Cavi/Catr Bubble shape

1 0.248 113.236/1.304 0.311/0.004 Almost spherical
2 0.256 215.983/3.343 0.297/0.005 Almost spherical
3 0.724 421.072/9.571 0.289/0.007 Oblate
4 1.265 728.547/16.485 0.286/0.006 Spherical cap
5 0.543 728.547/6.406 0.286/0.003 Spherical cap
6 2.095 831.028/17.903 0.286/0.006 Spherical cap
7 0.137 831.028/0.216 0.286/7.428 × 10−5 Almost spherical
8 1.975 2060.709/56.36 0.283/0.008 Spherical cap
9 51.188 20505.25/675.691 0.282/0.009 Spherical cap

10 6.028 20505.25/73.69 0.282/0.001 Spherical cap
11 20.376 20505.25/227.432 0.282/0.003 Spherical cap
12 5.503 20505.25/60.747 0.282/8.356 × 10−4 Spherical cap
13 0.698 20505.25/7.792 0.282/1.072 × 10−4 Globally deformed

Table 4. The acceleration during the first period of oscillation, the vibration and translation
Reynolds and capillary numbers and the observed final bubble shapes for the 13 cases in table 2.

of the lower disturbance in pressure at infinity, the time needed for the two bubbles
to approach increases relative to when ε =1, the average acceleration decreases and
consequently the deformations of the bubble surfaces are less intense. If the initial
distance between the two bubbles is increased further to 9.9 while the size of the
bubbles remains at 1 mm and ε at 0.3, the average acceleration decreases, as seen in
table 4. Now, the bubble shapes that arise towards the end of the simulations are wavy
in both their front and rear sides. Such shapes were called ‘globally deformed shapes’
by Pelekasis & Tsamopoulos (1993a) and earlier observed by Kornefeld & Suvorov
(1944) for isolated bubbles. These are clearly distinct from the ‘spherical-cap’ shapes
predicted above when ε = 1 (figure 12). The smaller disturbance amplitude combined
with the viscous resistance to flow produces a decrease in the average acceleration,
and the streaming flow in the bubble front, which, in turn, is not sufficient to ‘stabilize’
the front bubble surface, as explained by Batchelor (1987).

Figure 16 shows the evolution of the shape of the right bubble for these parameters.
As the time needed for the two bubbles to approach increases due to the large
distance and the small disturbance, there is enough time for even higher and higher
modes to arise. The Legendre decomposition (Chatzidai 2008) of the bubble shape
shows that until t ≈ 0.45, P2 is the only mode that can be seen. After t ≈ 0.45,
higher modes start to appear and finally P10 and P11 become dominant in the
bubble shape due to subharmonic resonance with the zeroth mode (Hall & Seminara
1980). Indeed, the eigenvalues are c0 = −0.0074 ± 76.05i, c10 = −1.013 ± 34.55i and
c11 = −1.204 ± 39.59i, indicating that not only a very slow damping of the zeroth
mode but also its eigenfrequency is twice as that of these two higher modes. The
coupling of these shape modes here leads to the formation of a jet at the back side of
the bubbles which is directed towards their front side (figure 16). The large shape
deformation prevents obtaining converged solutions at later times, but it is reasonable
to expect that this fast-moving jet will pierce the bubble before any other disturbance
becomes appreciable and lead to a bubble of doughnut shape. The formation of a jet
on the side of a cavitation bubble away from a nearby solid wall and moving towards
this wall has been predicted theoretically (Plesset & Chapman 1971; Blake, Taib &
Doherty 1986; Popinet & Zaleski 2002) and observed experimentally (Lauterborn &
Bolle 1975; Tomita & Shima 1986; Vogel, Lauterborn & Timm 1989). In the present
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Figure 16. (a–d ) Shapes of the right bubble at t = 0.5, 0.55, 0.6 and 0.651, respectively. The
two bubbles are equal with R∗

b =1mm, Oh−1 = 296.63, P = 1375.51, ε = 0.3 and D = 9.9. At
the later stages of the simulation, globally deformed shapes arise.

case of interacting bubbles of equal size, the symmetry plane between the bubbles
introduces the same boundary conditions as a solid wall would have on a single
bubble. Therefore, it is not surprising that we predict here the formation of a jet at
this particular location on the bubble surface and directed towards the other bubble.

Pelekasis & Tsamopoulos (1993a) determined that the appearance of the two
distinct types of bubble shapes observed in their inviscid simulations, namely
‘spherical cap shapes’ and ‘globally deformed shapes’, depended on the Bond number,
Bo =(〈g∗〉 R∗

bρ
∗/σ ∗), which measures the relative importance of acceleration and

surface tension. When the ambient pressure was 1 atmosphere, they found that
when Bo > 1.5, spherical-cap shapes appear, whereas when Bo < 1 the entire interface
deformed. For a pair of equal bubbles and following the present characteristic scales,
Bo is identical to the dimensionless average acceleration 〈g〉. Thus, we can readily
examine whether a similar rule applies when viscous forces are included in the model.
Table 4 presents several of the cases which we have computed until either the bubbles
came too close to each other or formed large bubble distortions, and the final shapes
observed in each case. We predict globally deformed shapes only in one simulation
with large bubbles of 1 mm, resulting in a large Oh−1, i.e. negligible viscous effects,
when they are far apart and under a small pressure perturbation. In the table, we also
present the Reynolds and capillary numbers based either on bubble initial translation
or vibration velocity, defined as

Retr =
ρ∗UU ∗

ch
R∗

b

µ∗ , Revi =
ρ∗R∗2

b ω∗
o

µ∗ , Catr =
µ∗ŪU ∗

ch

σ ∗ , Cavi =
µ∗R∗

bω
∗
o

σ ∗ . (4.13)

It is observed that globally deformed shapes were obtained only in case 13, where
Revi assumes its largest value favouring surface instabilities and Retr is quite small,
preventing convective smoothing of the bubble front surface. Clearly, all these factors
allow high surface modes to appear and remain after extended oscillation and
interaction between the bubbles. On the contrary, as the bubble size decreases, Oh−1

and P decrease, leading to higher viscous and capillary forces, and as the disturbance
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amplitude increases, the bubble interaction time decreases. All these favour the
formation of bubbles that are either slightly deformed or have spherical cap shapes.
Of the simulation results presented in table 4, only six reached accelerations less than
one and in only two of them the interbubble distance was more than 2.8, to allow
enough time for the bubbles to interact and translate. First of these two is case 13
and the second is case 5, which is the only case that does not follow the rule observed
by Pelekasis & Tsamopoulos (1993a). In other words, fluid viscosity enhances the
stabilizing effect of the extensional flow at the front side of the bubble. Table 4 also
demonstrates that both Revi and Retr increase with the bubble radius and the latter is
more than an order of magnitude smaller than the former, validating the assumptions
of Pelekasis et al. (2004).

4.3. Other damping mechanisms

4.3.1. Liquid compressibility

Often, in bubble collapse studies, its surface velocity may reach an appreciable
fraction of the velocity of sound in the liquid, raising the question as to how liquid
compressibility could affect the bubble dynamics studied herein. Moreover, it is known
that liquid compressibility slowly damps oscillations of isolated bubbles (see Keller &
Miksis 1980). When liquid compressibility is accounted for, (2.2)–(2.4) are modified
as follows:

ρ∗
c

ρ∗
Du
Dt

− ∇ · σ = 0, (4.14)

∂

∂t

(
ρ∗

c

ρ∗

)
+ ∇ ·

(
ρ∗

c

ρ∗ u
)

= 0, (4.15)

σ = −P I +
µ∗

c

µ∗ Oh

[
(∇u + (∇u)T) − 2

3
(∇ · u)I

]
, (4.16)

where ρ∗
c and µ∗

c are the density and viscosity of the liquid accounting for its
compressibility, respectively. The former is determined by the modified Tait equation
(Prosperetti & Lezzi 1986; Fujikawa & Akamatsu 1980):(

ρ∗
c

ρ∗

)n

=
P ∗

c + B∗

P ∗
∞ + B∗ , (4.17)

where P ∗
∞ is the far-field pressure and using B∗ = 3049.13 bar and n= 7.15, (4.17)

describes quite accurately the behaviour of water. The latter property also depends
on the liquid pressure (Yasui 1995):

µ∗
c = A∗ exp(B∗

1P
∗
c ), (4.18)

where the dimensional constants are given by A∗ = 1.0019 × 10−3 Pa s and B∗
1 = 7 ×

10−10 Pa−1 for water at 20◦C.
In order to compare with our previous results, we repeat the simulations of § 4.2.1

for the bubble radius of 5 µm, but including liquid compressibility. Now, doubling
the far-field pressure to 13.756 generates a spherical wave, which is transmitted
inwards, towards the bubbles, with a finite speed. Before reaching the bubbles, the
maximum pressure increases locally up to ∼18. When the wave reaches the back side
of each bubble, it deforms the bubble only slightly, but more importantly it pushes
it towards the other bubble. As the pressure wave continues to interact with the
bubbles proceeding towards the centre, it is partially reflected on their surfaces and
forms an expansion wave. Subsequently, the bubbles start to expand. Coupling the
reflection of the pressure wave with the bubble expansion leads to a pressure wave
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with a more complicated shape and much larger pressure locally (as high as 100 at
t ∼ 0.2). Such maxima have also been also reported by Johnsen & Colonius (2009). In
spite of this strong and uneven pressure field, the strong capillary force in these small
bubbles allows them to keep their spherical shape. However, these high-pressure
waves lead to volume oscillations with higher amplitude and consequently higher
acceleration of the two bubbles. Similarly, Toilliez & Szeri (2008) have predicted an
increased acceleration of bubble translation due to the primary Bjerkens force when
liquid compressibility is accounted for. Moreover, comparing the evolution of the
volume of the left bubble in figure 17(a), we observe that although the period of
volume oscillation is nearly the same, the amplitude is higher when compressibility is
accounted for. For a finite time at the beginning of the simulations, the volume of the
bubble remains constant, indicating the time delay for the pressure wave to reach the
bubble wall. Thereafter, the volume starts to decrease with an increasing bubble wall
velocity, contributing to the pressure rise in the liquid near the bubble. The strongly
varying pressure around the bubbles makes the oscillation of its volume slightly more
complex when the second period starts.

Thereafter, the pressure slowly becomes more uniform throughout the liquid.
Another consequence of the large pressure maxima periodically reaching the bubbles
is that it takes them about half the time to approach each other compared to that in an
incompressible liquid, as seen in figure 17(b). Their larger acceleration towards each
other produces more flattened shapes at their fronts, as seen in figure 17(c). Finally,
compressibility seems to have increased the damping of the bubble oscillations only
slightly. Although we have examined a bubble of radius only 5 µm, i.e. in the low
end of bubble sizes examined, yielding higher radial velocities, the predicted highest
velocity during this simulation is only 1.304 m s−1. Given that the speed of sound in
water at 20◦C is 1481 m s−1, the resulting Mach number is only 0.0009, making it plain
that liquid compressibility should not affect the bubble interactions studied herein.

4.3.2. Thermal damping

Depending on the bubble size and its natural or forcing frequency, if one is applied,
heat conduction inside the bubble could induce damping in its oscillation. Moreover,
its natural frequency depends on the thermal behaviour of the gas, which can range
from adiabatic to isothermal. In general, if the driving frequency is relatively low,
or the bubble radius is relatively small, then the time required for heat to flow in
or out of the bubble is short with respect to an acoustic period. The temperature
of the gas remains effectively constant across the bubble diameter and the bubble is
said to behave isothermally. On the other hand, if the driving frequency is relatively
high, or the bubble is relatively large, then the time required for heat to flow in and
out of the bubble is long with respect to an acoustic period. In this case, there are
significant temperature gradients across the bubble diameter and the system is said
to behave adiabatically.

For the free oscillations examined here, we will employ the results of the linear
theory developed by Chapman & Plesset (1971) to estimate the additional damping
caused by heat conduction in the bubble, expressed by the additional coefficient of the
thermal viscosity, µth = µ∗

th/µ
∗, and also the affected polytropic exponent, κ . These

are obtained after numerically solving (17), (24)–(25) and (31) as given in Chapman
and Plesset (1971). The thermophysical properties of air used are ρ∗

g =1.29 kg m−3,

k∗ =0.0247 W (m K)−1 and C∗
v =714.29 kJ (kg K)−1 . To isolate the effect of thermal

damping, the surrounding liquid is considered incompressible. The momentum and
mass conservation (2.2) and (2.3) remain the same, while the total stress tensor is
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Figure 17. Time evolution of (a) the volume of the left bubble and (b) the centres of volume
of the two bubbles both for an incompressible (—) and a compressible (---) liquid and
(c) bubble shapes towards the end of simulations. The two bubbles are equal, with the same
parameters as in figure 2, except that liquid compressibility is accounted for.
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Figure 18. Time evolution of the volume of the right bubble. The two bubbles are equal
with R∗

b = 1 mm, Oh−1 = 269.63, P =1375.51, ε = 1 and D = 9.9.

given by

σ = −P I + Oh(1 + µth)[(∇u + (∇u)T)]. (4.19)

As the effective viscosity of the liquid will now increase, it is expected that the
amplitude of volume oscillations will decrease and, hence, the mutual Bjerknes forces
will decrease and last for shorter times. We considered both small (5 µm) and large
(1 mm) bubbles and set the initial distance of the two bubbles at D = 9.9 and the
disturbance amplitude at ε = 1. As expected from the results of Chapman & Plesset
(1971) for the smaller bubbles, thermal damping is of the order of the viscous damping,
µth ≈ 3, and the gas behaves isothermally, κ = 1.03. This was confirmed by the results
of our complete dynamic simulations, which also demonstrated little deviation from
the previous ones.

On the contrary, more interesting is the case of large bubbles, for which we obtain
µth = 124 and κ = 1.36, i.e. the gas behaves adiabatically. In this case, large-amplitude
deformations appeared at the bubble surface when they were at moderate or large
distance from each other (figures 10 and 12). As can be seen in figure 18, although the
period is not affected, the amplitude of the volume oscillation quickly decreases down
to zero. This occurs after about 20 periods of oscillation. Until then, the two bubbles
approach each other, but at the end their distance decreases by only 10 %. The much
larger effective viscosity helps the bubbles to maintain their nearly spherical shape.
Similar is the picture for initial distance between the two bubbles of D = 5. Of course,
an accurate evaluation of the thermal behaviour and the motion and deformation
of the bubbles requires the simultaneous solution of the mass, momentum and
energy equations for the liquid and the bubble, combined with appropriate boundary
conditions at the bubble surface. Such simulations are beyond the goals of this study.

5. Concluding remarks
The motion of two gas bubbles immersed in pure water and subjected to a step

change in ambient pressure at the far field was studied. The present study covered
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a wide range of bubble sizes, 1 µm–1 mm. In contrast to previous works, viscous
forces were fully accounted for and shape deformations were allowed. In fact, this
is the first direct numerical simulation of this problem. Our newly developed finite
element methodology, based on generating the computational mesh, to follow the
large deformations of the bubbles and to become finer near the bubble surfaces in
order to resolve the sharp boundary layers that develop there as the bubble sizes
increase, proved to be accurate, robust and versatile. The step change in pressure
induces volume oscillations on the two bubbles. The volume oscillations of one
bubble generate a secondary pressure field to the ambient liquid which accelerates the
other bubble along their common axis of symmetry. This acceleration is known as
‘secondary Bjerknes effect’ and, according to linear theory, when viscosity and bubble
deformations are neglected it has been shown to be proportional to the amplitude
of volume pulsations of the two bubbles and inversely proportional to the distance
squared of their centres.

In the present study, we have demonstrated that the principle of the ‘secondary
Bjerknes law’ applies for viscous fluids and deformable bubbles as well, but there are
certain new aspects to it. (i) The constant of proportionality in this law depends on
the viscous drag only for bubble radii in the lower end of the range we examined and
more so when liquids more viscous than water are involved. (ii) Even when viscous
effects are fully accounted for, bubble deformation seems to be the rule rather than
the exception for bubbles with R∗

b � 100 µm and seems to lead to their breakup in spite
of the stabilizing effects of capillary and viscous forces. It seems that when additional
damping caused by heat transfer in the bubble is accounted for, shape deformations
are prevented, especially for larger bubbles. (iii) Their interaction force increases and,
hence, the time needed for the two bubbles to approach each other decreases with
increasing Oh−1 and dimensionless pressure P and the increase applied to it to set
them in motion, all three of these parameters decrease the period of the breathing
mode. (iv) Even a large step increase in the ambient pressure is ineffective for bubbles
in pure water with R∗

b < 5 µm and for more viscous than water liquids even for larger
bubbles. (v) A step change in pressure always leads to bubble attraction, although the
amplitude of the disturbance was very large, in agreement with the linear analysis,
possibly because the viscous damping decreased the oscillation amplitudes and the
duration of the interaction, both of which are necessary to observe deviations from
this analysis (Pelekasis et al. 2004). (vi) Our predictions are in agreement with those
of Doinikov (1999), although we have allowed the bubbles to be very close to each
other and to deform. (v) Liquid compressibility does not seem to have an appreciable
effect on bubble interaction.

More specifically, as the size of the bubbles increases and consequently Oh−1

increases, surface modes arise through parametric resonance of order which depends
on their eigenvalues, which, in turn, depend on their size and applied disturbance
in pressure. Increasing the interbubble distance affects bubble deformation by
giving them more time to develop. When their initial distance is quite small, the
bubbles remain almost spherical until the end of the computations when their
size is very small (< 5 µm), or they take an oblate shape for 5 µm <R∗

b � 20 µm,
or finally deformations arise and are kept at their rear side for R∗

b > 20 µm,
because of the stabilizing influence of the pure straining motion at the front
of the bubbles. Increasing their initial distance D for relatively large bubbles
R∗

b � 100 µm, instabilities increase substantially. When the two bubbles are set far
enough from each other, globally deformed shapes appear. Decreasing the disturbance
amplitude, ε, the time needed for the deformations to appear increases, while the
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bubbles remain almost spherical till the end of the computations even for R∗
b =

80 µm.
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