LINEAR TRANSFORMATIONS ON ALGEBRAS OF MATRICES

MARVIN MARCUS and B. N. MOYLS

1. Introduction. Let M_{n} denote the algebra of n-square matrices over the complex numbers; and let U_{n}, H_{n}, and R_{k} denote respectively the unimodular group, the set of Hermitian matrices, and the set of matrices of rank k, in M_{n}. Let $\operatorname{ev}(A)$ be the set of n eigenvalues of A counting multiplicities. We consider the problem of determining the structure of any linear transformation (l.t.) T of M_{n} into M_{n} having one or more of the following properties:
(a) $T\left(R_{k}\right) \subseteq R_{k}$ for $k=1, \ldots, n$.
(b) $T\left(U_{n}\right) \subseteq U_{n}$
(c) $\operatorname{det} T(A)=\operatorname{det} A$ for all $A \in H_{n}$.
(d) $\operatorname{ev}(T(A))=\operatorname{ev}(A)$ for all $A \in H_{n}$.

We remark that we are not in general assuming that T is a multiplicative homomorphism; more precisely, T is a mapping of M_{n} into itself, satisfying

$$
T(a A+b B)=a T(A)+b T(B)
$$

for all A, B in M_{n} and all complex numbers a, b.
We shall show first that if T satisfies property (a), then there exist nonsingular matrices U and V such that either

$$
T(A)=U A V
$$

or

$$
T(A)=U A^{\prime} V,
$$

for all $A \in M_{n}$, where A^{\prime} is the transpose of A. We shall then show that any T satisfying (b), (c), or (d) must in turn satisfy (a), and determine the additional restrictions on U and V required in these cases.
2. Rank Preservers. In this section we shall characterize all linear transformations of M_{n} which preserve rank. To this end it is convenient to consider each matrix of M_{n} as an n^{2}-vector, and to represent the l.t. T as an $n^{2} \times n^{2}$ matrix.

$$
T=\left(\begin{array}{cccc}
T_{11} & T_{12} & \ldots & T_{1 n} \tag{1}\\
\vdots & & \\
\vdots & & \\
T_{n 1} & \ldots & T_{n n}
\end{array}\right)
$$

[^0]where each $T_{i j}$ is an n-square matrix. If $v_{j}(A)$ denotes the j th column of A, then T maps $A=\left(v_{1}(A), v_{2}(A), \ldots, v_{n}(A)\right)$ into the matrix
$$
\left(\sum_{j=1}^{n} T_{1 j} v_{j}(A), \ldots, \sum_{j=1}^{n} T_{n j} v_{j}(A)\right) .
$$

Let $\rho(A)$ denote the rank of A. If T preserves rank, $T(x, 0, \ldots, 0)=\left(T_{11} x\right.$ $\left.\ldots, T_{n 1} x\right)$ has rank 1 for any non-zero vector x where 0 is the zero vector. We shall call $m n$-square matrices A_{1}, \ldots, A_{m} collinear if, for every nonzero n-vector x,

$$
\rho\left(A_{1} x, \ldots, A_{m} x\right)=1
$$

Lemma 1. If A_{1}, \ldots, A_{m} are collinear, there exist non-zero vectors z_{1}, \ldots, z_{n} such that

$$
\begin{equation*}
v_{j}\left(A_{i}\right)=k_{i j} z_{j}, \quad i=1, \ldots, m ; j=1, \ldots, n ; \tag{2}
\end{equation*}
$$

where the $k_{i j}$ are scalars. Moreover, for each $j, k_{i j} \neq 0$ for some i.
Proof. Let e_{j} denote the unit vector with j th entry equal to 1 . Then $A_{i} e_{j}=v_{j}\left(A_{i}\right)$. The lemma follows from the fact that $\rho\left(v_{j}\left(A_{1}\right), \ldots, v_{j}\left(A_{m}\right)\right)=1$.

Lemma 2. If the matrices A_{1}, \ldots, A_{m} are collinear, and z_{1}, z_{β} are linearly independent for some β (cf. (2)), then there exists a non-singular matrix A and scalars l_{i}, not all zero, such that

$$
\begin{equation*}
A_{i}=l_{i} A, \quad i=1, \ldots, m \tag{3}
\end{equation*}
$$

Proof. The matrix $\left(A_{1}\left(e_{1}+e_{\beta}\right), \ldots, A_{m}\left(e_{1}+e_{\beta}\right)\right)=\left(k_{11} z_{1}+k_{1 \beta} z_{\beta}, \ldots\right.$, $\left.k_{m 1} z_{1}+k_{m \beta} z_{\beta}\right)$ has rank 1 . For some $s, k_{s 1} \neq 0$, by Lemma 1. The Grassmann products

$$
\left(k_{s 1} z_{1}+k_{s y} z_{\beta}\right) \wedge\left(k_{i 1} z_{1}+k_{i \beta} z_{\beta}\right)=0
$$

for $i=1, \ldots, m$. Since $z_{1} \wedge z_{\beta} \neq 0$, it follows that $k_{s 1} k_{i \beta}-k_{s \beta} k_{i 1}=0$, or

$$
\begin{equation*}
k_{i \beta}=\frac{k_{s \beta} k_{i 1}}{k_{s 1}}, \quad i=1, \ldots, m \tag{4}
\end{equation*}
$$

Moreover, $k_{s \beta} \neq 0$ (otherwise all $k_{i \beta}=0$); and (4) holds for all β such that z_{1} and z_{β} are independent.

Suppose now that z_{1} and z_{γ} are dependent; then z_{β} and z_{γ} are independent. By the preceding argument,

$$
k_{i \gamma}=\frac{k_{s \gamma} k_{i \beta}}{k_{s \beta}}=\frac{k_{s \gamma}}{k_{s \beta}}\left(\frac{k_{s \beta} k_{i 1}}{k_{s 1}}\right)=\frac{k_{s \gamma} k_{i 1}}{k_{s 1}}, \quad i=1, \ldots, m .
$$

Thus equations (4) hold for all $1 \leqslant \beta \leqslant n$. It follows that $A_{i}=l_{i} A_{s}, i=1$, \ldots, m, where $l_{i}=k_{i 1} / k_{s 1}$. In particular $l_{s}=1$.

The matrix A_{s} cannot be singular, for then $\rho\left(A_{1} x, \ldots, A_{m} x\right)=0$ when x is an eigenvector of A_{s} corresponding to the eigenvalue 0 .

An immediate consequence of Lemmas 1 and 2 is

Lemma 3. If the matrices A_{l}, \ldots, A_{n} are all singular and collinear, then there exist scalars $k_{i j}$ and a non-zero vector z such that $v_{j}\left(A_{i}\right)=k_{i j} z, i, j=1$, ..., n.

Lemma 4. Let T be a rank preserver on M_{n}. If some block $T_{\alpha \beta}$ in the representation (1) of T is non-singular, then there exist scalars $c_{i j}$ such that

$$
\begin{equation*}
T_{i j}=c_{i j} T_{\alpha \beta} ; \quad \quad i, j=1, \ldots, n \tag{5}
\end{equation*}
$$

Proof. First note that $T_{1 \beta}, \ldots, T_{n \beta}$ are collinear. Since $T_{\alpha \beta}$ is non-singular, the vectors z_{1}, \ldots, z_{n} of Lemma 1 are linearly independent. Hence $T_{i \beta}=c_{i \beta}$ $T_{\alpha \beta}, i=1, \ldots, n$.

Suppose $T_{\sigma \gamma}$ is also non-singular, $\gamma \neq \beta$. Then $T_{i \gamma}=l_{i \gamma} T_{\sigma \gamma}, i=1, \ldots, n$. If $T_{\sigma \gamma}$ is not a multiple of $T_{\alpha \beta}$, choose a vector x so that $T_{\alpha \beta} x$ and $T_{\sigma \gamma} x$ are linearly independent; and let X be the matrix with $v_{j}(X)=x$ for $j=\beta, \gamma$, and $v_{j}(X)=0$ for $j \neq \beta, \gamma$. Then $\rho(T(X))=1$. This implies that

$$
\left(T_{i \beta} x+T_{i \gamma} x\right) \wedge\left(T_{t \beta} x+T_{t \gamma} x\right)=0, \quad i, t=1, \ldots, n
$$

Since $T_{\alpha \beta} x \wedge T_{\sigma \gamma} x \neq 0$,

$$
\begin{equation*}
c_{i \beta} l_{t \gamma}-l_{i \gamma} c_{t \beta}=0 \text { for all } i, t \tag{6}
\end{equation*}
$$

Let Y be a matrix for which $v_{\beta}(Y)$ and $v_{\gamma}(Y)$ are independent and $v_{j}(Y)=0$ for $j \neq \beta, \gamma$. Then $\rho(Y)=2$, while $\rho(T(Y)) \leqslant 1$ by (6). This contradiction shows that $T_{\sigma \gamma}$ is a multiple of $T_{\alpha \beta}$, and (5) holds for $T_{i \gamma}, i=1, \ldots, n$.

Finally suppose that $T_{i \gamma}$ is singular for some γ and all i. By Lemma 3 there exist scalars $k_{i j}$ and a non-zero vector z such that $v_{j}\left(T_{i \gamma}\right)=k_{i j} z$. Thus $T_{i \gamma} x$ is a multiple of z for any vector x. Choose y so that $T_{\alpha \beta} y=z$, and choose x independent of y. For the matrix Y above with $v_{\beta}(Y)=y$ and $v_{\gamma}(Y)=x$, $\rho(Y)=2$, while $\rho(T(Y)) \leqslant 1$. Hence this case cannot arise. This completes the proof of the lemma.

Not every rank preserver need have a non-singular block in its representation (1). For example, the transformation T_{1}, which maps each matrix onto its transpose, is linear and preserves rank. In its matrix, $T_{i j}=E_{j i}$, where $E_{i j}$ is the matrix with 1 in the i, j position and 0 's elsewhere. We have, however, the following result.

Lemma 5. Let T be a rank preserver. If every $T_{i j}$ in the representation (1) is singular, then the $n^{2} \times n^{2}$ matrix $T T_{1}$ has a non-singular block.

Proof. By Lemma 3, there exist vectors z_{1}, \ldots, z_{n} such that each column of $T_{i j}$ is a multiple of z_{j} for $i, j=1, \ldots, n$. For any matrix $A, v_{i}(T(A))$ is a linear combination of the columns of the $T_{i j}$. Hence the columns of $T(A)$ are linear combinations of the vectors z_{j}. This implies that z_{1}, \ldots, z_{n} are linearly independent; for, if not, the columns of $T(A)$ would be linearly dependent, which is not the case when A is non-singular. Denote the blocks of $T T_{1}$ by $W_{i j}, i, j=1, \ldots, n$. Then

$$
W_{i j}=\sum_{k=1}^{n} T_{i k} E_{j k},
$$

and $v_{k}\left(W_{i j}\right)=v_{j}\left(T_{i k}\right)$. Thus the k th column of each $W_{i j}$ is a multiple of z_{k}. Since $T T_{1}$ preserves rank, the blocks $W_{11}, \ldots, W_{n 1}$ are collinear. The result then follows from Lemma 2.

Theorem 1. Let T be a l.t. of M_{n} into M_{n}. T is a rank preserver if and only if there exist non-singular matrices U and V such that either:

$$
\begin{equation*}
T(A)=U A V \quad \text { for all } A \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
T(A)=U A^{\prime} V \quad \text { for all } A \tag{or}
\end{equation*}
$$

Proof. The sufficiency of the condition is obvious. For the necessity, if the representation (1) of T has a non-singular block $T_{\alpha \beta}$, choose $U=T_{\alpha \beta}$ and $V=\left(c_{j i}\right)$ in Lemma 4. If T has no non-singular block, define the rank preserver T_{2} by $T_{2}\left(A^{\prime}\right)=T(A)$. By Lemma $5, T_{2}$ has a non-singular block; hence there exist U and V non-singular such that $T(A)=T_{2}\left(A^{\prime}\right)=U A^{\prime} V$ for all A.
3. Determinant Preservers. We shall show that, if a linear transformation T of M_{n} maps unimodular matrices into unimodular matrices, it preserves determinant; that if it preserves determinant, it preserves rank; and determine the appropriate forms of U and V in Theorem 1 .

Lemma 6. If the l.t. T maps U_{n} into U_{n}, then $\operatorname{det} T(A)=\operatorname{det} A$ for all matrices A.

Proof. If $\operatorname{det} A \neq 0$, $\operatorname{det}\left[A /(\operatorname{det} A)^{1 / n}\right]=1$; hence $\operatorname{det} T(A)=(\operatorname{det} A)$. $\operatorname{det}\left[T\left(A /(\operatorname{det} A)^{1 / n}\right)\right]=\operatorname{det} A$. Now $\operatorname{det} T(A)$ is a polynomial in the entries $a_{i j}$ of A which is equal to $\operatorname{det} A$ for all non-singular A; thus this relation is an identity so that $\operatorname{det} T(A)=\operatorname{det} A$ for all A.

Lemma 7. If T preserves determinant, then T is non-singular and hence onto.
Proof. Suppose $T(A)=0$; then $\rho(A)<n$. There exist non-singular matrices M and N such that $M A N=I_{r}+0_{n-r}$, where $r=\rho(A), I_{r}$ is the $r \times r$ unit matrix, 0_{n-r} is the $(n-r) \times(n-r)$ zero matrix and $\dot{+}$ denotes the direct sum. For any $X,[\operatorname{det}(M A N+X)] / \operatorname{det} M N=\operatorname{det}\left(A+M^{-1} X N^{-1}\right)=$ $\operatorname{det} T\left(A+M^{-1} X N^{-1}\right)=\operatorname{det} T\left(M^{-1} X N^{-1}\right)=\operatorname{det} M^{-1} X N^{-1}$. Hence $\operatorname{det}(M A N$ $+X)=\operatorname{det} X$. Set $X=0_{r}+I_{n-r}$. Then $\operatorname{det}(M A N+X)=1$, while $\operatorname{det} X$ $=0$ unless $r=0$. Hence $A=0$.
Lemma 8. If T preserves determinant, then T preserves rank.
Proof. Let A be an arbitrary matrix. There exist non-singular matrices $M_{1}, N_{1}, M_{2}, N_{2}$, such that $M_{1} A N_{1}=Y_{1}=I_{r} \dot{+} 0_{n-r}$ and $M_{2} T(A) N_{2}=Y_{2}$ $=I_{s} \dot{+} 0_{n-s}$ where $r=\rho(A)$ and $s=\rho(T(A))$. Define a mapping ϕ of M_{n} by:

$$
\phi(X)=M_{2} T\left(M_{1}^{-1} X N_{1}^{-1}\right) N_{2} .
$$

Then ϕ is linear with the property: $\operatorname{det} \phi(X)=k \operatorname{det} X$, where

$$
k=\operatorname{det}\left(M_{2} M_{1}^{-1} N_{1}^{-1} N_{2}\right) ;
$$

also $\phi\left(Y_{1}\right)=Y_{2}$. Set $Y_{3}=0_{r} \dot{+} I_{n-r}$. For any scalar λ, $\operatorname{det}\left(\lambda Y_{1}+Y_{3}\right)=\lambda^{\tau}$. On the other hand, $\operatorname{det} \phi\left(\lambda Y_{1}+Y_{3}\right)=\operatorname{det}\left(\lambda Y_{2}+\phi\left(Y_{3}\right)\right)=p(\lambda)$, a polynomial in λ of degrees $\leqslant s$. Since $p(\lambda) \equiv k \lambda^{\tau}, k \neq 0$, identically in λ, it follows that $r \leqslant s$, and $\rho(A) \leqslant \rho(T(A))$.

By Lemma 7, T^{-1} exists; moreover, since T preserves determinant, $\operatorname{det} B$ $=\operatorname{det}\left(\mathrm{TT}^{-1}(B)\right)=\operatorname{det} T^{-1}(B)$ for all B in M_{n}. Thus T^{-1} preserves determinant, and $\rho(T(A)) \leqslant \rho\left(T^{-1} T(A)\right)=\rho(A)$. Therefore $\rho(A)=\rho(T(A))$.

Theorem 2. Let T be a 1.t. of M_{n}. The following conditions are equivalent:
(i) T maps U_{n} into U_{n}.
(ii) T preserves determinant.
(iii) There exist unimodular matrices U and V such that either (7) or (8) holds.

Proof. Lemma 6 gives (i) \leftrightarrow (ii); (iii) \rightarrow (ii) is obvious. If T preserves determinant, then by Lemma 8 and Theorem 1, there exist non-singular matrices U_{1} and V_{1} such that $T(A)=U_{1} A V_{1}$ or $T(A)=U_{1} A^{\prime} V_{1}$. Since $\operatorname{det} T(I)=1$, $\quad \operatorname{det} U_{1} V_{1}=1$. Choose $U=U_{1} /\left(\operatorname{det} U_{1}\right)^{1 / n}$ and $V=V_{1} /\left(\operatorname{det} V_{1}\right)^{1 / n}$. Thus (ii) \rightarrow (iii).

We shall show in the next section that preservation of determinant for Hermitian matrices is also equivalent to conditions (i)-(iii).

4. Eigenvalue Preservers.

Lemma 9. Let T be a 1.t. of M_{n}. If $\mathrm{ev}(T(H))=\mathrm{ev}(H)$ for all Hermitian matrices H, then $\operatorname{ev}(T(A))=\operatorname{ev}(A)$ for all A in M_{n}.

Proof. Note first that if H is Hermitian and satisfies the given condition, then $\operatorname{tr}\left\{[T(H)]^{m}\right\}=\operatorname{tr}\left\{H^{m}\right\}$ for $m=1,2, \ldots$, where $\operatorname{tr}(X)$ denotes the trace of X. For any matrix A there exist Hermitian matrices K, L such that $A=K+i L$. For real $\alpha, K+\alpha L$ is Hermitian and

$$
\begin{equation*}
\operatorname{tr}\left\{[T(K+\alpha L)]^{m}\right\}=\operatorname{tr}\left\{(K+\alpha L)^{m}\right\} \tag{9}
\end{equation*}
$$

For each m, equation (9) is a polynomial equation in α of degree $\leqslant m$ satisfied by all real α. Hence (9) is satisfied by all complex α, and in particular by $\alpha=i$. If the eigenvalues of A and $T(A)$ are λ_{j} and μ_{j}, respectively, $j=1, \ldots, n$, then

$$
\sum_{j=1}^{n} \lambda_{j}{ }^{m}=\sum_{j=1}^{n} \mu_{j}^{m} \quad m=1,2, \ldots
$$

It follows that the corresponding elementary symmetric functions of the λ_{j} and the μ_{j} are equal, and that $\operatorname{ev}(T(A))=\operatorname{ev}(A)$.

Lemma 10. If $\operatorname{ev}(T(A))=\operatorname{ev}(A)$ for all $A \in M_{n}$, then $T(I)=I$, where I is the unit matrix of order n.

Proof. T preserves determinant. Hence, for λ complex and $A \in M_{n}$, $\operatorname{det}(\lambda I-A)=\operatorname{det}(\lambda T(I)-T(A))=\operatorname{det}(\lambda I-C T(A))$, where $C=(T(I))^{-1}$. Thus ev $(T(A))=\operatorname{ev}(A)=\operatorname{ev}(C T(A))$. Since T is non-singular by Lemma 7 , $T(A)$ ranges over all of M_{n} as A does. Hence $\operatorname{ev}(A)=\operatorname{ev}(C A)$ for all A. Choose U unitary so that $C U=H$, where H is positive definite Hermitian. Then $\operatorname{ev}(U)=\operatorname{ev}(C U)=\operatorname{ev}(H)$, so that U has positive eigenvalues. Hence $U=1$ and $C=H$. Since the eigenvalues of $C=(T(I))^{-1}$ are all $1, C=I$, $C^{-1}=I$, and $T(I)=I$.

From Lemmas 9 and 10 and Theorem 2 we obtain
Theorem 3. Let T be a l.t. of M_{n}. The following conditions are equivalent:
(i) T preserves eigenvalues for all Hermitian matrices in M_{n}.
(ii) T preserves eigenvalues for all matrices in M_{n}.
(iii) There exists a unimodular matrix U such that either $T(A)=U A U^{-1}$ for all $A \in M$ or $T(A)=U A^{\prime} U^{-1}$ for all $A \in M_{n}$.

Theorem 4. Let T be a l.t. of M_{n}. If $\mathrm{ev}(T(H))=\mathrm{ev}(H)$ and $T(H)$ is Hermitian for all Hermitian H in M_{n}, then the matrix U in Theorem 3 (iii) is unitary.

Proof. $T(H)=(T(H))^{*}$ implies $U H U^{-1}=U^{-1 *} H U^{*}$ and $U^{*} U H=H U^{*} U$. for all Hermitian H. It follows easily that $U^{*} U=I$.

Theorem 5. Let T be a 1.t. of M_{n}. Then T preserves determinant if and only if it preserves determinant for Hermitian matrices.

Proof. Define $\phi(A)=C T(A)$, where $C=(T(I))^{-1}$. If T preserves determinant for Hermitian H, then $\operatorname{det}(\lambda I-H)=\operatorname{det}(\lambda T(I)-T(H))=\operatorname{det}$ $(\lambda I-\phi(H))$ for all real λ. Hence $\operatorname{ev}(\phi(H))=\operatorname{ev}(H)$, and by Lemma 9 , $\operatorname{ev}(\phi(A))=\operatorname{ev}(A)$ for all A. Thus $\operatorname{det} A=\operatorname{det} \phi(A)=\operatorname{det} \mathrm{T}(A)$ for all A.

Professor N. Jacobson communicated to us the following information while this paper was in press: Theorem 1 was obtained by L. K. Hua (Science Reports of the National Tsing Hua University, Ser. A, 5 (1948) pp. 150-81) and in more general form by H. Jacob (Amer. J. Math., 77 (1955) pp. 177-89). In both these papers T is assumed non-singular; actually our proof of Theorem 1 requires only that $T\left(R_{i}\right) \subseteq R_{i}$, for $i=1,2, n$ without the assumption that T be non-singular. Also Dieudonné (Archiv. d. Math., 1 (1948) pp. 282-7) shows that if T preserves the cone $\operatorname{det} A=0$ and T is non-singular then T has the form indicated in Theorem 2 (iii). Again, our result does not require the assumption that T be non-singular: this follows if T preserves all determinants (Lemma 7).

University of British Columbia

[^0]: Received March 19, 1958. The work of the first author was partially completed under U.S. National Science Foundation Grant No. NSF-G 5416. The work of the second author was supported in part by the United States Air Force Office of Scientific Research and Development Command.

