LINEAR TRANSFORMATIONS ON ALGEBRAS
OF MATRICES

MARVIN MARCUS anxp B. N. MOYLS

1. Introduction. Let M, denote the algebra of n-square matrices over the
complex numbers; and let U,, H,, and R; denote respectively the unimodular
group, the set of Hermitian matrices, and the set of matrices of rank &, in
M,. Let ev(4) be the set of »n eigenvalues of 4 counting multiplicities. We
consider the problem of determining the structure of any linear transforma-
tion (l.t.) T of M, into M, having one or more of the following properties:

(a) T(Ry) SR, for k=1,...,n.

(b) (U, & U,

(c) det 7'(4) = det 4 for all A € H,.

(d) ev(T(4)) = ev(4) for all 4 € H,.
We remark that we are not in general assuming that 7" is a multiplicative
homomorphism; more precisely, 7" is a mapping of M, into itself, satisfying

T(@ad + bB) = aT(A) + bT(B)
for all 4, B in M, and all complex numbers a, b.

We shall show first that if T satisfies property (a), then there exist non-
singular matrices U and V such that either

(1) = UAV

or
T(4) = UA'V,

for all A € M,, where A’ is the transpose of 4. We shall then show that any
T satisfying (b), (c), or (d) must in turn satisfy (a), and determine the
additional restrictions on U and V required in these cases.

2. Rank Preservers. In this section we shall characterize all linear trans-
formations of M, which preserve rank. To this end it is convenient to consider
each matrix of M, as an n?vector, and to represent the 1.t.7" as an n? X n?

matrix.
Tiw Ty ... Ty
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where each T'; is an n-square matrix. If v,(4) denotes the jth column of 4,

then T maps A = (v:(4), v2(4),...,9,(4)) into the matrix
n n
<Z ]‘ljv]'("él)r ceey Z Y‘njvj(A )) .
j=1 j=1
Let p(.1) denote the rank of . If 7" preserves rank, 1'(x,0,...,0) = (Tx
., Th1x) has rank 1 for any non-zero vector x where 0 is the zero vector.
We shall call m n-square matrices 4., ..., 4, collinear if, for every non-
zero m-vector x,
o(dwx, ..., Anx) = 1.
LEmMma 1. If 4y, ..., A, are collinear, there exist non-zero vectors z, . . ., 3,
such that
(2) 7)_7‘(/1'5)=k“2j, 1:=].,...,m;j=1,...,7l',

where the k.; are scalars. Moreover, for each j, k;; # 0 for some 1.

Proof. Let e; denote the unit vector with jth entry equal to 1. Then
Aqe; = v;(c1;). The lemma follows from the fact that p(v,(4,4), . . ., v;(4,)) = 1.

LemMA 2. If the matrices Ay, ..., A, are collinear, and 2., z5 are linearly
independent for some B (cf. (2)), then there exists a non-singular matrix A and
scalars 1;, not all zero, such that

3) A4, =14, 1=1,...,m

Proof. The matrix (Ai(ex + €)y ..., dnler + €)) = (kriz1 + kiszs, - . .,
kn121 + Ruszs) has rank 1. For some s, k51 5% 0, by Lemma 1. The Grassmann

products
(ksiz1 + kyze) A (Bazi + kigzs) = 0,
fori = 1,...,m. Since z2:A 25 = 0, it follows that ku ks — kgkis = 0, or
4) by = Ritfa i=1...m
ksl

Moreover, kg # 0 (otherwise all k5 = 0); and (4) holds for all 8 such that
z; and zg are independent.

Suppose now that 2, and z, are dependent; then z; and z, are independent.
By the preceding argument,

_knks _ kg (@@) _ kaka -
ki-y— kss _kslg kg] = 1 = 1,...,m.

Thus equations (4) hold for all 1 < 8 < #. It follows that 4, = [, A, 7 = 1,
..., m, where I, = ky/kq. In particular I, = 1.

The matrix A, cannot be singular, for then p(4x, ..., 4,x) = 0 when x
is an eigenvector of .4, corresponding to the eigenvalue 0.

An immediate consequence of Lemmas 1 and 2 is
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LEmMA 3. If the matrices A, ..., A, are all singular and collinear, then
there exist scalars k;y and a non-zero vector z such that v;(A,) = k24,7 =1,
., M. .

LEMMA 4. Let T be a rank preserver on M,. If some block 1,5 in the repre-
sentatton (1) of T is non-singular, then there exist scalars c,;; such that

(5) Ti]= CijTaﬂ; ’l'r,j = 1,..‘,'”.
Proof. First note that T, ..., 1,4 are collinear. Since 744 is non-singular,
the vectors 2y, . . ., 2, of Lemma 1 are linearly independent. Hence 75 = ¢y
Tog, 2 =1, , M.
Suppose T” is also non-singular, v # B. Then Ty, = 1,1, 1 = 1,..., n.

If 7%, is not a multiple of 7,5, choose a vector x so that T.sx and T.,,x are
linearly independent; and let X be the matrix with v,(X) = x for j = 8, «,
and v,(X) = 0 for j 5 B,v. Then p(7T(X)) = 1. This implies that

(Tigx + Tux)N\ (Tygx + Tpx) =0, Lt=1 ..., n
Since Tagx A\ Tox # 0,
(6) Ciglyy — Lincig = 0 for all 4, £

Let ¥ be a matrix for which v3(Y) and v,(Y) are independent and v,(¥) = 0
for 7 # B, v. Then p(Y) = 2, while p(T(Y)) < 1 by (6). This contradiction
shows that 7,, is a multiple of T,s, and (5) holds for 7°;,, i = 1, ..., n.

Finally suppose that 7', is singular for some vy and all 7. By Lemma 3
there exist scalars k;; and a non-zero vector z such that v;(7";y) = k;;2. Thus
T wx is a multiple of z for any vector x. Choose y so that T,y = 2, and choose
x independent of y. For the matrix ¥ above with (V) = y and »,(Y) = x,
p(Y) = 2, while p(7°(Y)) < 1. Hence this case cannot arise. This completes
the proof of the lemma.

Not every rank preserver need have a non-singular block in its repre-
sentation (1). For example, the transformation 7%, which maps each matrix
onto its transpose, is linear and preserves rank. In its matrix, 7y; = E,;,
where E,; is the matrix with 1 in the 7, j position and 0’s elsewhere. We have,
however, the following result.

LEMMA 5. Let T be a rank preserver. If every T;; in the representation (1) is
singular, then the n* X n* matrix TT, has a non-singular block.

Proof. By Lemma 3, there exist vectors 2, ..., 2, such that each column
of T, is a multiple of z; for 4,7 = 1,..., n. For any matrix 4, v,(T(4)) is
a linear combination of the columns of the T';;. Hence the columns of T(4)
are linear combinations of the vectors z;. This implies that z;,..., 2, are
linearly independent; for, if not, the columns of 7°(4) would be linearly
dependent, which is not the case when 4 is non-singular. Denote the blocks
of TT: by Wy, 2,7 =1,...,n. Then
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Wu = kZ_l TikEjky

and v, (W;;) = v;(1"). Thus the kth column of each W,; is a multiple of 3.
Since T'T, preserves rank, the blocks Wi, ..., W, are collinear. The result
then follows from Lemma 2.

THEOREM 1. Let T be a 1.t. of M, tnto M,. T is a rank preserver if and only
if there exist non-singular matrices U and V such that either:

(7) T(A) = UAV for all 4,
or
(8) T(A4) = UA'V for all 4.
Proof. The sufficiency of the condition is obvious. For the necessity, if the
representation (1) of 7" has a non-singular block 7T, choose U = T, and

IV = (¢;;) in Lemma 4. If T has no non-singular block, define the rank pre-
server Ts by 72(A") = T(A4). By Lemma 5, 7 has a non-singular block;
hence there exist {7 and V non-singular such that T(4) = Ty(4’) = UA'V
for all 4.

3. Determinant Preservers. We shall show that, if a linear transformation
T of M, maps unimodular matrices into unimodular matrices, it preserves
determinant; that if it preserves determinant, it preserves rank; and deter-
mine the appropriate forms of U and V in Theorem 1.

LeMMA 6. If the L.t. T maps U, into U,, then det T(A) = det A for all
matrices A.

Proof. 1f det A # 0, det [4/(det 4)*] = 1; hence det T(4) = (det 4).
det [T'(4/(det 4)')] = det A. Now det T'(4) is a polynomial in the entries
a;; of 4 which is equal to det A for all non-singular 4; thus this relation is
an identity so that det 7°(4) = det A for all 4.

LemMA 7. If T preserves determinant, then T is non-singular and hence onto.

Proof. Suppose T(4) = 0; then p(4) < n. There exist non-singular matrices
M and N such that MAN = I, + 0,_,, where r = p(A4), I, is the » X 7 unit
matrix, 0,_, is the (# — ) X (# — 7) zero matrix and + denotes the direct
sum. For any X, [det (MAN 4+ X)]/det MN = det (4 + M7'XN) =
detT(A + MXN™Y) =detT(M'XN™') = det M X N~'. Hence det (MAN
4+ X) = det X. Set X = 0, + I,_,. Then det (MAN + X) = 1, while det X
= 0 unless » = 0. Hence 4 = 0.

LEMMA 8. If T preserves determinant, then T preserves rank.

Proof. Let A be an arbitrary matrix. There exist non-singular matrices
Ml, ]Vl, Mz, Nz, SUCh that MlANl = Yl = IT + On—r and ]V[gT(A)JVg = Yg
= J, 4+ 0,_, where r = p(4) and s = p(T(4)). Define a mapping ¢ of M, by:

6(X) = MyT(Mm' XN, ")) N,
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Then ¢ is linear with the property: det ¢(X) = kdet X, where
k = det (M:M;ININ,);

also (V1) = Vs Set Vi = 0, + I,_,. For any scalar \, det \V, 4+ V) = A",
On the other hand, det ¢(A\Y: + V3) = det AV, 4+ ¢(V3)) = p(N\), a poly-
nomial in X of degrees < s. Since p(A\) = kN, k 5 0, identically in A, it follows
that » < s, and p(4) < p(T°(4)).

By Lemma 7, 7! exists; moreover, since T preserves determinant, det B
= det (TT-1(B)) = det T7(B) for all B in M,. Thus T preserves deter-
minant, and p(7T(4)) < p(T71T(A4)) = p(A). Therefore p(4) = p(T(4)).

THEOREM 2. Let T be a 1.t. of M,. The following conditions are equivalent:
(1) T maps U, into U,.
(i) T preserves determinant.

(iii) There exist unimodular matrices U and V such that either (7) or (8)
holds.

Proof. Lemma 6 gives (i) <> (ii); (iii) — (ii) is obvious. If T preserves
determinant, then by Lemma 8 and Theorem 1, there exist non-singular
matrices U; and V; such that 7T(4) = U4V, or T(4) = U,A'V..
Since detT(I) =1, det U;V,=1. Choose U = U,;/(det U))'*» and
V = Vi/(det V1)/*. Thus (ii) — (iii).

We shall show in the next section that preservation of determinant for
Hermitian matrices is also equivalent to conditions (i)—(iii).

4. Eigenvalue Preservers.

LEMMA 9. Let T be a 1.t. of M,. If ev(T(H)) = ev (H) for all Hermitian
matrices H, then ev(T(A)) = ev(A4) for all A n M,.

Proof. Note first that if H is Hermitian and satisfies the given condition,
then tr{[T(H)]™} = tr{H™} for m = 1,2, ..., where {r(X) denotes the trace
of X. For any matrix 4 there exist Hermitian matrices K, L such that
A = K + 7L. For real «, K + «L is Hermitian and

9) r{|T(K 4+ oL)]"} = tr{ (K + «L)™}.

For each m, equation (9) is a polynomial equation in « of degree < m satis-
fied by all real a. Hence (9) is satisfied by all complex «, and in particular
by a = 1. If the eigenvalues of 4 and 7(4) are \; and u;, respectively,
j=1,...,n, then

2N =2 S m=12....
=1 =1

It follows that the corresponding elementary symmetric functions of the A,
and the u, are equal, and that ev(7'(4)) = ev(4).
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Lemma 10. If ev(T(4)) = ev(4) for all A € M, then T(I) = I, where I
is the unit matrix of order n.

Proof. T preserves determinant. Hence, for A complex and A4 € M,
det(\] — 4) =det(\T'(I) — T'(4)) = det(\] — CT(A)), where C = (T'(I))~".
Thus ev(T'(4)) = ev(4) = ev(CT(A4)). Since T is non-singular by Lemma 7,
T(A) ranges over all of M, as A does. Hence ev(4) = ev(C4) for all 4.
Choose U unitary so that CU = H, where H is positive definite Hermitian.
Then ev(U) = ev(CU) = ev(H), so that U has positive eigenvalues. Hence
U =1 and C = H. Since the eigenvalues of C = (T(I))tareall 1, C = I,
Ct=1and T{) = I.

From Lemmas 9 and 10 and Theorem 2 we obtain

THEOREM 3. Let T be a l.t. of M,. The following conditions are equivalent:
(1) T preserves eigenvalues for all Hermitian matrices in M,.
(i1) T preserves eigenvalues for all matrices in M,.

(iii) There exists a unimodular matrix U such that either T(A) = UAU™!
forall A € Mor T(A) = UA'U for all A € M,.

THEOREM 4. Let T be a 1.t. of M,. If ev(T'(H)) = ev(H) and T(H) is Her-
mitian for all Hermitian H in M,, then the matrix U in Theorem 3 (ii1) is
unitary.

Proof. T(H) = (I'(H))* implies UHU™' = U"YHU*and U*UH = HU*U.
for all Hermitian H. It follows easily that U¥*U = I.

THEOREM 5. Let T be a 1.t. of M,. Then T preserves determinant if and only
if it preserves determinant for Hermitian matrices.

Proof. Define ¢(A) = CT(4), where C = (T'(I))~'. If T preserves deter-
minant for Hermitian H, then det(\] — H) = det(A\T'(I) — T'(H)) = det
(M — ¢(H)) for all real N\. Hence ev(¢(H)) = ev(H), and by Lemma 9,
ev(ep(4)) = ev(4) for all A. Thus det 4 = det ¢(A) = det T(A4) for all 4.

Professor N. Jacobson communicated to us the following information while
this paper was in press: Theorem 1 was obtained by L. K. Hua (Science Re-
ports of the National Tsing Hua University, Ser. A, 5 (1948) pp. 150-81) and
in more general form by H. Jacob (Amer. J. Math., 77 (1955) pp. 177-89). In
both these papers T is assumed non-singular; actually our proof of Theorem
1 requires only that T'(R;) C Ry, for 2 = 1, 2, » without the assumption that 7°
be non-singular. Also Dieudonné (Archiv. d. Math., 1 (1948) pp. 282-7) shows
that if 7" preserves the cone det 4 = 0 and 7" is non-singular then T has the
form indicated in Theorem 2 (iii). Again, our result does not require the
assumption that 7" be non-singular: this follows if T" preserves all determinants
(Lemma 7).
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