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Abstract

In this article we show that the quotient M∞/B(Qp) of the Lubin–Tate space at infinite level
M∞ by the Borel subgroup of upper triangular matrices B(Qp) ⊂ GL2(Qp) exists as a perfectoid
space. As an application we show that Scholze’s functor H i

ét(P1
Cp
,Fπ ) is concentrated in degree one

whenever π is an irreducible principal series representation or a twist of the Steinberg representation
of GL2(Qp).

2010 Mathematics Subject Classification: 11S37 (primary); 14G22 (secondary)

1. Introduction

In [13], Scholze constructs a candidate for the mod p local Langlands
correspondence for the group GLn(F), where n > 1 and F/Qp is a finite
extension. His construction is purely local, satisfies some local–global
compatibility and also gives a candidate for the mod p Jacquet–Langlands
transfer from GLn(F) to D∗, the group of units in the central division algebra
over F with invariant 1/n.

Slightly more precisely, for any admissible smooth representation π of GLn(F)
on an Fp-vector space, Scholze constructs an étale sheaf Fπ on Pn−1

Cp
using the

infinite-level Lubin–Tate space M∞ and the Gross–Hopkins period morphism
M∞→ Pn−1

Cp
. The cohomology groups

S i(π) := H i
ét(P

n−1
Cp
,Fπ ), i > 0,

are admissible D∗-representations which carry an action of Gal(F/F) and vanish
in degree i > 2(n − 1) [13, Theorem 1.1].
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Let n = 2 and F = Qp, and denote by B(Qp) ⊂ GL2(Qp) the Borel subgroup
of upper triangular matrices. For two smooth characters χi : Q∗p → F∗q , i = 1, 2,

let IndGL2(Qp)

B(Qp)
(χ1, χ2) denote the parabolic induction.

In this article we show the following vanishing result.

THEOREM (4.6). Let χi : Q∗p → F∗q , i = 1, 2, be two smooth characters. Then

S2
(

IndGL2(Qp)

B(Qp)
(χ1, χ2)

)
= 0.

The main ingredient to prove the theorem is the construction of a quotient
M∞/B(Qp) of the infinite-level Lubin–Tate tower M∞ by the Borel subgroup
B(Qp) as a perfectoid space.

In order to explain our results in more detail we introduce some notation. We
fix a connected p-divisible group H/Fp of dimension one and height two. Then
for any compact open subgroup K ⊂ GL2(Qp) we have the Lubin–Tate space
MK of level K , which is a rigid analytic variety over Cp. Varying K one gets a
tower (MK )K⊂GL2(Qp) with finite étale transition maps and in the limit one has a
perfectoid space

M∞ ∼ lim
←−

K

MK .

In particular, M∞ is an adic space and an object of Huber’s ambient category V .
The group GL2(Qp) acts on M∞. We have a decomposition

M∞
∼=

⊔
i∈Z

M(i)
∞

and for any i ∈ Z, there is a noncanonical isomorphism M(i)
∞
∼= M(0)

∞
. The

stabilizer in GL2(Qp) of M(0)
∞

is given by

G ′ := {g ∈ GL2(Qp) : det(g) ∈ Z∗p}.

As we recall in Section 2.2 we can form a quotient M∞/B(Qp) in the category
V . The key to proving Theorem 4.6 is the following.

THEOREM (3.14). The object

M∞/B(Qp)

of V is a perfectoid space.

The proof of this theorem is done in three steps, the first step is the most difficult
one. There one constructs a candidate perfectoid space MB for the quotient
M(0)
∞
/B(Zp) using infinite-level modular curves, the geometry of the Hodge–Tate

period map and various other results of [11].
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THEOREM (3.11). There exists a unique (up to unique isomorphism) perfectoid
space

MB ∼ lim
←−

M(0)
m /B(Z/pmZ).

In a second step one shows that the candidate space MB agrees with the
object M(0)

∞
/B(Zp) in V . Finally one gets from M(0)

∞
/B(Zp) to a perfectoid space

M∞/B(Qp) using the geometry of the Gross–Hopkins period morphism.
The Gross–Hopkins period morphism πGH :M∞ → P1

Cp
factors through the

quotient M∞/B(Qp) and we get an induced map

πGH :M∞/B(Qp)→ P1
Cp

with many nice properties (see Section 3.6), for example, it is quasicompact. From
a character χ : B(Qp) → F∗q one can construct an étale local system Fχ on
M∞/B(Qp) such that

Fπ
∼= πGH,∗Fχ ,

where π := IndGL2(Qp)

B(Qp)
(χ). We show that all higher direct images RiπGH,∗Fχ ,

i > 0, vanish (Proposition 4.4) and so

S i
(

IndGL2(Qp)

B(Qp)
(χ)

)
= H i

ét(M∞/B(Qp),Fχ ).

We see that at the expense of a more complicated space, the sheaf has simplified a
great deal. And although the space is more complicated, it is perfectoid. This
fact and the good properties of πGH make it possible to show vanishing of
S2(IndGL2(Qp)

B(Qp)
(χ)) in Theorem 4.6.

The article is structured as follows. In Section 2 we give some background on
inverse limits of adic spaces, quotients of adic spaces and we introduce some
auxiliary spaces that we need in the construction of M∞/B(Qp). The quotient
is constructed in Section 3. In the last section we prove the vanishing result in
cohomological degree two.

1.1. Notation. All adic spaces occurring are defined over (K ,OK ), where K
is a nonarchimedean field, that is, a nondiscrete complete topological field K
whose topology is induced by a nonarchimedean absolute value | · | : K → R>0.
Throughout we fix a topologically nilpotent unit $ ∈ K ∗. In particular all
adic spaces considered in this article are analytic. We often use that if X and
Y are affinoid analytic adic spaces and f : X → Y is a morphism, then the
preimage of a rational subset U ⊂ Y is a rational subset in X . As is usual, for
an analytic adic space X we identify its points x ∈ X with their underlying maps
Spa(K , K+)→ X without introducing separate notation. In the context of adic
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spaces we use the terminology introduced in [15], that is Huber rings, Huber
pairs, and so forth.

We use the pro-étale site as defined in [12], that is, in a tower we want the
transition maps to eventually be finite étale surjective.

2. Background on adic spaces and quotients

2.1. Inverse limits of adic spaces.

DEFINITION 2.1 (See [14, Definition 2.4.1]). Let (Xm)m∈I be a cofiltered inverse
system of adic spaces with finite étale transition maps. Let X be an adic space and
let pm : X → Xm be a compatible family of maps. Write

X ∼ lim
←−

Xm

if the map of underlying topological spaces |X | → lim
←−
|Xm | is a homeomorphism

and if there is an open cover of X by affinoid subsets Spa(A, A+) ⊂ X such that
the map

lim
−→

Spa(Am ,A+m )⊂Xm

Am → A

has dense image, where the direct limit runs over all open affinoids
Spa(Am, A+m) ⊂ Xm over which Spa(A, A+) ⊂ X → Xm factors.

Recall the following result.

PROPOSITION 2.2. Let (K ,OK ) be a perfectoid field, (Xm)m∈I a cofiltered
inverse system of adic spaces with finite étale transition maps. Assume there is a
perfectoid space X over Spa(K ,OK ) such that X ∼ lim

←−
Xm . Then for any affinoid

uniform (K ,OK )-algebra (R, R+), we have

X (R, R+) = lim
←−

Xm(R, R+).

In particular, if Y is a perfectoid space over Spa(K ,OK )with a compatible system
of maps Y → Xm , then Y factors over X uniquely, making X unique up to unique
isomorphism.

Proof. For (R, R+) affinoid perfectoid, this is [14, Proposition 2.4.5]. However,
the same proof works for any affinoid (K ,OK )-algebra (R, R+) with R uniform
or what is equivalent, with R+ $ -adically complete.

Consider also the following stronger notion.
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DEFINITION 2.3. Let (K ,OK ) be a nonarchimedean field. Let

(Xm = Spa(Rm, R+m ))m∈I

be a cofiltered inverse system of affinoid adic spaces over Spa(K ,OK ) with finite
étale transition maps. Assume X = Spa(R, R+) is an affinoid adic space over
Spa(K ,OK ) with a compatible family of maps pm : X → Xm . We write

X ≈ lim
←−

Xm

if R+ is the $ -adic completion of lim
−→m

R+m .

Obviously if X ≈ lim
←−

Xm then also X ∼ lim
←−

Xm . The reason for introducing
this stronger notion is the following. When X ∼ lim

←−
Xm , we do not know whether

an arbitrary affinoid open U = Spa(R, R+) ⊂ X is the preimage p−1
m (Um) of an

open affinoid subset Um = Spa(Rm, R+m ) ⊂ Xm for sufficiently large m and if it
satisfies R+ ∼= (lim

−→
R+m )

∧. For this reason some of the arguments below become
slightly technical.

We can however always pass to rational subsets.

LEMMA 2.4. Let (Xm = Spa(Rm, R+m ))m∈I be a cofiltered inverse system of
affinoid analytic spaces over Spa(K ,OK ). Assume X = Spa(R, R+) is an affinoid
perfectoid space over Spa(K ,OK ), with compatible maps pm : X → Xm and
such that X ≈ lim

←−
Xm . Let U ⊂ X be a rational subset. Then U = p−1

m0
(Um0) for

a rational subset Um0 ⊂ Xm0 and m0 sufficiently large and

U ≈ lim
←−

Um0 ×Xm0
Xm .

Proof. We write U = X ( f1/g, . . . , fn/g) for some elements fi , g ∈ R such that
f1, . . . , fn generate R. Then for some small open neighbourhood V of 0 ∈ R, the
rational subset defined by any choice of functions f ′i ∈ fi + V , g′ ∈ g+ V agrees
with U . As lim

−→
Rm is dense in R, we may assume the f ′i and g′ are elements of

Rm0 for some m0. Define

Um0 := Xm0

(
f ′1
g′
, . . . ,

f ′n
g′

)
∼= Spa

(
Rm0

〈
f ′1
g′
, . . . ,

f ′n
g′

〉
, B̂m0

)
,

where B̂m0 is the completion of the integral closure Bm0 of R+m0
[ f ′1/g′, . . . , f ′n/g′]

in Rm0[g
′−1
]. Then

Um := Um0 ×Xm0
Xm
∼= Spa

(
Rm

〈
f ′1
g′
, . . . ,

f ′n
g′

〉
, B̂m

)
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with Bm the obvious ring and

U ∼= X
(

f ′1
g′
, . . . ,

f ′n
g′

)
∼= Spa

(
R
〈

f ′1
g′
, . . . ,

f ′n
g′

〉
, B̂
)
.

As (R, R+) is perfectoid, B̂ is $ -adically complete. We see that

U ∼= X
(

f ′1
g′
, . . . ,

f ′n
g′

)
∼= Um0 ×Xm0

X ≈ lim
←−

Um0 ×Xm0
Xm

as lim
−→

Bm ⊂ B̂ is dense in the $ -adic topology.

In this article, we call an analytic adic space X over a nonarchimedean field
(K , K+) partially proper if X is quasiseparated and if for all affinoid (K , K+)-
algebras (k, k+) with k a nonarchimedean field and k+ a valuation ring,

X (k, k+) = X (k,Ok).

As we want to use this concept in the context of perfectoid spaces, there
is no finiteness condition involved. So our definition is slightly weaker than
Definition 1.3.3 in [8].

From Proposition 2.2 above one immediately concludes

PROPOSITION 2.5. Let X ∼ lim
←−

Xm and assume X is perfectoid. If there exists
m0 such that Xm is partially proper for all m > m0, then X is partially proper.

2.2. Quotients in Huber’s category V . The category V is defined in [7] as
follows. Its objects are triples

X = (|X |,OX , {| · |x}x∈|X |),

where |X | is a topological space, OX is a sheaf of complete topological rings on
|X | and | · |x is a valuation on the stalk OX,x := lim

−→x∈U
OX (U ). A morphism

X → Y in V is a pair ( f, ϕ) consisting of a continuous map f : |X | → |Y | and
a morphism ϕ : OY → f∗OX of sheaves of topological rings, such that for every
x ∈ X , the induced ring homomorphism ϕx : OY, f (x) → OX,x is compatible with
the valuations | · |x and | · | f (x).

Let X ∈ V be an object with a right action of a group G, that is, with a
homomorphism

Gop
→ AutV(X).

Consider the natural continuous and open map p : |X | → |X |/G. Define the
triple

X/G := (|X |/G, (p∗OX )
G, {| · |x}x∈|X |/G)
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where the valuations | · |x are defined as

| · |x : O|X |/G,x → OX,x
|·|x
→ Γx ∪ {0}

where | · |x is the valuation of any preimage x ∈ p−1(x). Then this defines an
object of V . Indeed (p∗OX )

G is again a sheaf as taking G-invariants is left exact.
Furthermore, for any open subset U ⊂ |X |/G,

(p∗OX )
G(U ) = OX (p−1(U ))G

⊂ OX (p−1(U ))

is closed, therefore complete. One checks that X/G is the categorical quotient of
X in V .

2.3. Quotients of adic spaces. We specialize to the case we are interested in,
which is when X is an analytic adic space over Spa(K ,OK ) for a nonarchimedean
field K , and mostly either a rigid space or a perfectoid space. In this section we
also assume that K is of characteristic zero. Let G be a locally profinite group.
Below we want our actions to be continuous in the following sense.

DEFINITION 2.6 (see [13, Definition 2.1]). Let G be a locally profinite group and
let X be an analytic adic space. An action of G on X is said to be continuous if
there exists a cover of X by affinoid open subspaces Spa(A, A+) ⊂ X invariant
under the action of open subgroups HA ⊂ G such that the action morphism
HA × A→ A is continuous.

LEMMA 2.7. Let X be an analytic adic space and G a finite group with an
action of G on X. Assume that X has a cover by G-stable affinoid open subsets
Spa(A, A+). Then X/G is an analytic adic space. The quotient Spa(A, A+)/G is
affinoid and given by Spa(AG, A+G

).

Proof. This is Theorems 1.1 and 1.2 in [6].

LEMMA 2.8. Let (K ,OK ) be an affinoid perfectoid field. Let G be a finite
group acting on an affinoid perfectoid space X = Spa(R, R+) for some affinoid
perfectoid (K ,OK )-algebra (R, R+). Then X/G is again affinoid perfectoid and
given by Spa(RG, R+G

).

Proof. This is Theorem 1.4 in [6].

LEMMA 2.9. Let X be a rigid space or a perfectoid space over Spa(K ,OK ) and
assume a finite group G acts on X. Assume furthermore that X → X/G is finite
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étale Galois with Galois group G. Then

X × G ∼= X ×X/G X.

Proof. We may assume X = Spa(A, A+) is affinoid. As X → X/G is a finite
étale Galois cover with Galois group G the map

ϕ : A ⊗AG A→
∏
g∈G

A(g)

a ⊗ b 7→ (a(g · b))

is an isomorphism. The image of A+⊗(A+)G A+ is contained in
∏

A+ and as A+ is
integrally closed in A◦, so is the image of the integral closure (A+⊗(A+)G A+)int, in
fact ϕ((A+⊗(A+)G A+)int) =

∏
A+ as surjectivity can be checked componentwise.

2.4. Some auxiliary spaces.

PROPOSITION 2.10. Let (R, R+) be a perfectoid (K ,OK )-algebra. Assume P is
a profinite set. Then

(S = Mapcont(P, R), S+ = Mapcont(P, R+))

is again a perfectoid (K ,OK )-algebra. Let X = Spa(R, R+), then we define

X × P := Spa(S, S+).

If we write P = lim
←−m

Pm for finite sets Pm , then

X × P ≈ lim
←−

X × Pm .

Proof. One easily checks that the pair (S, S+) is perfectoid (K ,OK )-algebra.
Define (Sm, S+m ) := (Map(Pm, R),Map(Pm, R+)). Then

lim
−→

Sm = Maploc.cst(P, R),

and
lim
−→

S+m = Maploc.cst(P, R+).

We have that lim
−→

S+m is dense in S+ in the $ -adic topology. Now

|Spa(S, S+)| ∼= lim
←−
|Spa(Sm, S+m )| ∼= lim

←−
|X | × Pm

∼= |X | × P.
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PROPOSITION 2.11. Keep the notation from above and let Y be a perfectoid
space, then

Hom(Y, X × P) = Hom(Y, X)×Mapcont(|Y |, P).

Proof. This follows from the previous Proposition and Proposition 2.2. Namely
we have

Hom(Y, X × P) = lim
←−

Hom(Y, X × Pm)

= lim
←−
(Hom(Y, X)×Map(|Y |, Pm))

= Hom(Y, X)× lim
←−

Map(|Y |, Pm)

= Hom(Y, X)×Mapcont(|Y |, P).

LEMMA 2.12. We keep the notation from the Proposition 2.10. Consider the
rational subset U = X ( f1/g, . . . , fn/g) for some elements fi , g ∈ R such that
f1, . . . , fn generate R. Then

(X × P)
(

f1

g
, . . . ,

fn

g

)
∼= U × P,

where fi ∈ Mapcont(P, R) (respectively g ∈ Mapcont(P, R)) is the constant map
with value fi ∈ R (respectively g ∈ R).

Proof. It is clear that the underlying topological spaces agree. We show the
corresponding perfectoid algebras are isomorphic by showing that the Huber pair

(S′, S′+) :=
(

Mapcont

(
P, R

(
f1

g
, . . . ,

fn

g

))
,Mapcont

(
P, R+

(
f1

g
, . . . ,

fn

g

)))
satisfies the same universal property as the Huber pair(

S
(

f1

g
, . . . ,

fn

g

)
, S+

(
f1

g
, . . . ,

fn

g

))
.

Clearly we have a map(
S
(

f1

g
, . . . ,

fn

g

)
, S+

(
f1

g
, . . . ,

fn

g

))
→ (S′, S′+).

Now let (A, A+) be perfectoid and assume we have a morphism of Huber pairs

(S, S+)→ (A, A+)
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such that map ϕ : Spa(A, A+) → Spa(S, S+) factors over (X × P)(f1/g, . . . ,
fn/g). Let p : X × P → X denote the projection map (corresponding to the map
(R, R+)→ (S, S+) that sends an element r ∈ R to the constant map with value r ).
Then the morphism

p ◦ ϕ : Y := Spa(A, A+)→ Spa(R, R+)

factors over U . By the universal property of rational subsets we get a
corresponding unique morphism of Huber pairs

ϕU :

(
R
(

f1

g
, . . . ,

fn

g

)
, R+

(
f1

g
, . . . ,

fn

g

))
→ (A, A+).

By the last proposition, ϕ corresponds to a pair

(ϕX , ϕP) ∈ Hom(Y, X)×Mapcont(|Y |, P).

Then (S, S+)→ (A, A+) factors over the unique morphism

(S′, S′+)→ (A, A+)

corresponding to (ϕU , ϕP) ∈ Hom(Y,U )×Mapcont(|Y |, P).

We see that we can glue the construction X× P locally on X , so we can build a
perfectoid space X× P from any perfectoid space X . Even more generally: Given
a perfectoid space X and a locally profinite set Q there is a unique perfectoid
space

X × Q

such that for any perfectoid space Y ,

Hom(Y, X × Q) = Hom(Y, X)×Mapcont(|Y |, Q).

If we write Q =
⊔

i∈I Pi for profinite sets Pi , then

X × Q ∼=
⊔

i

X × P i .

LEMMA 2.13. Let x = Spa(K , K+) with K algebraically closed and K+ ⊆ K
an open and bounded valuation subring. Let P = lim

←−
Pm be a profinite set. Then

for any sheaf F of abelian groups on (x × P)ét

H i
ét(x × P,F) = 0

for all i > 0.
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Proof. By Proposition 2.10 we have

x × P ≈ lim
←−

x × Pm .

Any sheaf F on (x× P)ét can be written as a filtered colimit lim
−→ j∈J

F j of sheaves

F j arising as the pullback of a system of sheaves F j
m on (x× Pm)ét [1, VI, 8.3.13].

The topos (x × P)ét is coherent, so for all i > 0

H i
ét(x × P,F) ∼= lim

−→
H i

ét(x × P,F j).

But by [14, Theorem 2.4.7]

H i
ét(x × P,F j) ∼= lim

−→
H i

ét(x × Pm,F j
m)

and the latter terms are all zero for i > 0 as x × Pm
∼=
⊔

p∈Pm
x is a finite disjoint

union of geometric points.

Now let H ⊂ G be a profinite subgroup of a locally profinite group G and let
X be a perfectoid space equipped with a continuous right action of H . Then H
acts on X × G as follows. Firstly H acts on the topological space |X × G| via

(x, g) · h := (xh, h−1g)

for (x, g) ∈ |X × G| and h ∈ H and on the structure sheaf via

h : OX×G(U × H ′)→ h∗OX×G(U × H ′) = OX×G(U · h−1
× h H ′)

(h · f )(g) = h · f (h−1g)

for any open U × H ′ ⊂ |X × G| with U = Spa(A, A+) affinoid perfectoid and
H ′ an open coset.

Consider the quotient

X ×H G := (X × G)/H ∈ V .

Note that X ×H G comes equipped with a right action of G which is given
by [(x, g′)] · g := [(x, g′g)] for g ∈ G and [(x, g′)] ∈ (|X | × G)/H on the
topological spaces and in the natural way on the structure sheaf, that is, by right
translation of the function.

PROPOSITION 2.14. Using the notation above, there is an isomorphism in V

(X ×H G)/G ∼= X/H.

Proof. There is a natural continuous map of topological spaces f : X ×H G →
X/H given by [(x, g)] 7→ [x]. This is well-defined as for (y, g′) ∈ [(x, g)] there
exists h ∈ H such that y = xh, g′ = h−1g. This map factors through the quotient
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(X ×H G)/G → X/H . One immediately checks it is bijective and open, so f is
a homeomorphism. Consider the commutative diagram

X × G

q1
ww

q

��

p
// X

r

��

X ×H G
q2 // (X ×H G)/G

f
// X/H

Then for U ⊂ |X |/H open, OX/H (U ) = OX (r−1(U ))H . On the other hand

O(X×H G)/G( f −1(U )) = O(X×H G)(q−1
2 ( f −1(U )))G

= (OX×G(( f ◦ q)−1(U ))H )G

= (OX×G(( f ◦ q)−1(U ))G)H

= (OX×G((r−1(U )× G))G)H
= OX (r−1(U ))H .

Compatibility of the valuations on the stalks is clear.

PROPOSITION 2.15. Assume H ⊆ G is open and profinite. Using the notation
above, choose a set of representatives gi , i ∈ I , of H\G. The natural map⊔

gi ,i∈I X(gi )

f

&&

// X × G

��

X ×H G

is an isomorphism.

Proof. Define X H\G
:=
⊔

gi ,i∈I |X |(gi ). There is a continuous map on topological
spaces

f : X H\G
→ |X ×H G|,

sending x ∈ |X |(gi ) to (x, gi). One easily checks that it is bijective and open,
therefore a homeomorphism.

For any i ∈ I , there is a morphism in V ,

ϕi : X → X × G, x 7→ (x, gi).

On a basis it is given as follows: If U = V × HV · gi ⊂ |X × G| open, with
V = Spa(A, A+) affinoid perfectoid and HV -invariant and such that HV×A→ A
is continuous, then the morphism of sheaves ϕ]i evaluates to

OX×G(V × HV gi)→ OX (V ), f 7→ f (gi).
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Note that the map has a section given by sending r ∈ OX (V ) to the function
hgi 7→ h · r . This gives an isomorphism

OX (V )→ OX×G(V × HV gi)
HV .

For U = V×H ′ ⊂ |X×G|with gi /∈ H ′, the corresponding map between sheaves
is the zero map.

We now show that the map f induces an isomorphism of structure sheaves

OX×H G
∼= f∗OX H\G .

Denote by
p : |X | × G → |X ×H G|

the open projection map. Let V ⊂ |X ×H G| be an open subset. We may assume
that V = f (U ) and U ⊂ X(gi ) for some i and that U = Spa(B, B+) is affinoid
open. Then there is HU ⊂ H normal and open such that HU leaves U ⊂ X(gi )

invariant and such that HU × B → B is continuous. We have a decomposition

p−1(V ) =
⊔
finite

Uhk × HU h−1
k gi ,

where H/HU =
⋃

HU hk . Putting everything together we get

OX×H G(V ) = OX×G(p−1(V ))H

=

(∏
OX×G(Uhk × HU h−1

k gi)
)H

= OX×G(U × HU gi)
HU

= OX H\G (U ).

Let Y be a perfectoid space with a continuous right action of a locally profinite
group G. We define an action morphism

α : Y × G → Y, (y, g) 7→ yg

as follows. Let U = Spa(A, A+) be an affinoid perfectoid open subspace of Y ,
and HU ⊂ G an open subgroup leaving U invariant. Choose coset representatives
gi , i ∈ I , for HU\G. Then the natural map⊔

i∈I

(U × HU )gi → U × G

(y, h)gi 7→ (y, hgi)

is an isomorphism. Then

α|(U×HU )gi
: (U × HU )gi → Y
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is defined as the composite gi ◦ αHU , where αHU : (U × HU )gi → U is the map
induced by

A→ Mapcont(HU , A), a 7→ (h 7→ h · a)

and gi : U → Y is the morphism from the action of G on Y .

LEMMA 2.16. Let G be a locally profinite group, H ⊂ G an open subgroup.
Assume f : X → Y is a morphism between perfectoid spaces, that H acts
continuously on X and G on Y and that f is H-equivariant. Then there exists
a unique G-equivariant map

f ′ : X ×H G → Y

such that f is the composite of f ′ and the natural inclusion X = X ×H H ↪→

X ×H G. If f is an open immersion and | f ′| : |X ×H G| → |Y | is an injection,
then f ′ is also an open immersion.

Proof. Consider the morphism ( f, id) : X×G→ Y×G and the action morphism
α : Y × G → Y , (y, g) 7→ yg defined above. The composition is H -equivariant
for the trivial action of H on Y , therefore factors through the quotient X ×H G
which gives the morphism f ′. To show the last claim, it suffices to show that the
restriction f ′ to each copy X(gi ) of X is an open immersion. But gi : Y → Y is an
isomorphism and f ′ : X(gi )→ Y agrees with gi ◦ f .

3. The quotient M∞/B(Q p)

3.1. The Lubin–Tate tower. Let k = Fp and denote by W (k) the Witt vectors
of k. Fix a connected p-divisible group H/k of dimension one and height two.

DEFINITION 3.1. Let NilpW (k) be the category of W (k)-algebras R in which p
is nilpotent. A deformation of H to R ∈ NilpW (k) is a pair (G, ρ) where G is a
p-divisible group over R and

ρ : H ⊗k R/p→ G ⊗R R/p

is a quasi-isogeny. Define the functor

DefH : NilpW (k) → Sets
R 7→ {(G, ρ) : deformation of H}/∼=.

THEOREM 3.2 [10]. The functor DefH is representable by a formal scheme
M/W (k). We have a decomposition

M ∼=
⊔
i∈Z

M(i)
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A quotient of the Lubin–Tate tower 15

according to the height i of the quasi-isogeny and noncanonically

M(i) ∼= Spf(W (k)[[t]]).

Let M0 := Mad
η ×Q̆p

Cp be the (base change to Cp of the) adic generic fibre
of M. For an integer m > 0 let

K (m) := ker(GL2(Zp)→ GL2(Z/pmZ)).

One can introduce level structures to get spaces Mm :=MK (m) and finite étale
Galois covers Mm →M0 with Galois group GL2(Z/pmZ). More generally one
can construct spaces MK for any compact open subgroup K ⊂ GL2(Qp) (see
[10, Section 5.34]). For i ∈ Z and a compact open subgroup K ⊆ GL2(Zp) let

M(i)
K :=MK ×M0 M

(i)
0

so that we have a decomposition

MK
∼=

⊔
i∈Z

M(i)
K .

For two compact open subgroups K ⊂ K ′ of GL2(Qp) such that K is normal
in K ′ there is a finite étale Galois cover

MK →MK ′

with Galois group K ′/K . In particular the spaces (MK )K⊂GL2(Qp) form an inverse
system. In the limit we get a perfectoid space.

THEOREM 3.3 [14, 6.3.4]. There exists a unique (up to unique isomorphism)
perfectoid space M∞ over Cp such that

M∞ ∼ lim
←−

K

MK .

The space M∞ represents the functor from complete affinoid (W (k)[1/p],
W (k))-algebras to Sets which sends (R, R+) to the set of triples (G, ρ, α) where
(G, ρ) ∈M0(R, R+) and

α : Z2
p → T (G)ad

η (R, R+)

is a morphism of Zp-modules such that for all points

x = Spa(K , K+) ∈ Spa(R, R+),
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the induced map
α(x) : Z2

p → T (G)ad
η (K , K+)

is an isomorphism, see [14, Section 6.3]. Here T (G)ad
η denotes the generic fibre

of the Tate module of G. We have a continuous right action of GL2(Qp) on M∞.
The action of GL2(Zp) is easy to describe: An element g ∈ GL2(Zp) acts as

(G, ρ, α) 7→ (G, ρ, α ◦ g).

We have a decomposition into perfectoid spaces

M∞
∼=

⊔
i∈Z

M(i)
∞

at infinite level and for each i ∈ Z the stabilizer StabGL2(Qp)(M(i)
∞
) is given by the

subgroup
G ′ := {g ∈ GL2(Qp)| det(g) ∈ Z∗p}.

As the system (K (m))m>0 is cofinal in the system of compact open subgroups
K ⊂ GL2(Qp) we also have

M(i)
∞
∼ lim
←−

M(i)
m , (3.1)

for any i ∈ Z. We denote by pm the map

pm :M(0)
∞
→M(0)

m

implicit in (3.1).

3.2. The quotient M(0)
∞

/B(Z p). Consider the perfectoid space M(0)
∞

. Let
B ⊂ GL2 the Borel subgroup of upper triangular matrices. The group B(Zp) acts
continuously on M(0)

∞
. In Section 3.4 we prove the following theorem.

THEOREM 3.4. The object M(0)
∞
/B(Zp) ∈ V is a perfectoid space. It comes

equipped with compatible maps

M(0)
∞
/B(Zp)→M(0)

m /B(Z/pmZ)

and satisfies
M(0)
∞
/B(Zp) ∼ lim

←−
m

M(0)
m /B(Z/pmZ).

There is a cover (Ui = Spa(Ri , R+i ))i∈I of M(0)
∞

by B(Zp)-invariant affinoid
perfectoid spaces such that the image φ(Ui) under the projection map

φ :M(0)
∞
→M(0)

∞
/B(Zp)

is affinoid perfectoid and given by Spa(RB(Zp)

i , (R+i )
B(Zp)).
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The strategy to prove the above theorem is the following:

• Using infinite-level modular curves, we first construct a perfectoid space MB

with the property that

MB ∼ lim
←−

M(0)
m /B(Z/pmZ).

By Proposition 2.2 the space MB is then unique up to unique isomorphism.

• In Section 3.5 we then identify MB with M(0)
∞
/B(Zp).

3.3. Background on infinite-level modular curves. The infinite-level
modular curve X ∗Γ (p∞) was constructed as a perfectoid space over Qcycl

p in [11].
In this paper we work with the base change to Cp. Furthermore, Γ0(pm)

denotes the subgroup of GL2(Zp) consisting of matrices that are upper triangular
mod pm , without the determinant condition in [11]. This affects only connected
components as we work over Cp. In what follows, all other notation is as in [11],
but the spaces are always implicitly base changed to Cp.

The perfectoid space X ∗Γ (p∞) comes equipped with a compatible family of maps
qm : X ∗Γ (p∞)→ X ∗Γ (pm ) such that

X ∗Γ (p∞) ∼ lim
←−

X ∗Γ (pm ).

The group GL2(Qp) acts continuously on X ∗Γ (p∞) and there is a surjective
GL2(Qp)-equivariant map, the Hodge–Tate period map

πHT : X ∗Γ (p∞)→ P1
Cp
.

The space P1
Cp

comes equipped with a right action of GL2(Qp), which on Cp-
points is given by

[x0 : x1]

(
a b
c d

)
= [dx0 − bx1 : −cx0 + ax1],

that is, it is the usual left action of
(

a b
c d

)−1

. Furthermore, part of the tower

(X ∗Γ0(pm ))m is perfectoid. More precisely let 0 6 ε < 1/2. Then Scholze constructs
open neighbourhoods

X ∗Γ0(pm )(ε)a ⊂ X ∗Γ0(pm )

of the anticanonical locus. For m large enough these are affinoid spaces. Roughly
speaking X ∗Γ0(pm )(ε)a is the locus, where the subgroup is anticanonical and the
Hasse invariant satisfies |Ha| > |p|p

−mε . By [11, Corollary III.2.19], there exists
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a unique affinoid perfectoid space X ∗Γ0(p∞)(ε)a such that

X ∗Γ0(p∞)(ε)a ≈ lim
←−

X ∗Γ0(pm )(ε)a. (3.2)

This is in fact the first step in showing that X ∗Γ (p∞) is perfectoid. From
Γ0(p∞) one can pass to deeper level structures as follows. Firstly, in [11,
Proposition III.2.33], the fibre product

X ∗Γ1(pm )∩Γ0(p∞)(ε)a := X ∗Γ1(pm ) ×X ∗
Γ0(p

m )
X ∗Γ0(p∞)(ε)a

is shown to be affinoid perfectoid. Passing from Γ1(pm) to full level is easy: The
map

X ∗Γ (pm )(ε)a → X ∗Γ1(pm )(ε)a

is finite étale. Therefore the space

X ∗Γ (pm )∩Γ0(p∞)(ε)a := X ∗Γ (pm )(ε)a ×X ∗
Γ1(p

m )(ε)a
X ∗Γ1(pm )∩Γ0(p∞)(ε)a

= X ∗Γ (pm )(ε)a ×X ∗
Γ0(p

m )(ε)a
X ∗Γ0(p∞)(ε)a

is affinoid perfectoid.
In the limit (see [11, Theorem III.2.36]) we get an affinoid perfectoid space

X ∗Γ (p∞)(ε)a which satisfies

X ∗Γ (p∞)(ε)a ≈ lim
←−

X ∗Γ (pm )(ε)a (3.3)

and in particular
X ∗Γ (p∞)(ε)a ≈ lim

←−
X ∗Γ (pm )∩Γ0(p∞)(ε)a.

PROPOSITION 3.5. The natural map

φ : X ∗Γ (p∞)(ε)a → X ∗Γ0(p∞)(ε)a

is open.

Proof. Using the above relations (3.2) and (3.3) it suffices to show that the map

X ∗Γ (pm )→ X ∗Γ0(pm )

is open. But this map is flat, therefore open.

We have a set-theoretic decomposition

X ∗Γ (p∞) = X ∗ord
Γ (p∞) tX ss

Γ (p∞)

= π−1
HT (P

1(Qp)) t π
−1
HT (Ω

2).

Here Ω2 denotes the Drinfeld upper half plane Ω2
= P1
\P1(Qp).
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The supersingular locus X ss
Γ (p∞) is contained in translates of the affinoid

perfectoid space X ∗Γ (p∞)(ε)a . Concretely, let

γ :=

(
p

p−1

)
∈ GL2(Qp).

Then

X ss
Γ (p∞) ↪→ X ∗Γ (p∞)\π−1

HT ([1 : 0]) =
∞⋃

i=0

X ∗Γ (p∞)(ε)aγ i .

The Lubin–Tate tower sits inside the infinite-level modular curve. More
precisely we have a decomposition of the supersingular locus

X ss
Γ (p∞)

∼=

⊔
j∈J

M(0)
∞

into a finite disjoint union of copies of M(0)
∞

. The embeddings are equivariant for
the GL2(Zp)-action.

We fix once and for all an embedding ι :M(0)
∞
→ X ss

Γ (p∞) as well as compatible
embeddings ιm : M(0)

m → X ss
Γ (pm ) such that for any m > 0 the following

diagram commutes (equivalently: fix a supersingular elliptic curve E/Fp and an
isomorphism E[p∞] ∼= H )

M(0)
∞

pm

��

ι // X ∗Γ (p∞)
qm

��

M(0)
m

ιm // X ∗Γ (pm ).

(3.4)

3.4. Construction of MB . Define the underlying topological space of MB

to be the quotient space |M(0)
∞
/B(Zp)| := |M(0)

∞
|/B(Zp). Then

|M(0)
∞
/B(Zp)| = lim

←−
m

|M(0)
m /B(Z/pmZ)|.

In analogy with [11, Definition III.3.5] we make the following definition

DEFINITION 3.6. (1) A subset V ⊂ |M(0)
∞
/B(Zp)| is affinoid perfectoid if it is

the preimage of some affinoid open

Vm = Spa(Rm, R+m ) ⊂ |M(0)
m /B(Z/pmZ)|

for all sufficiently large m, and if (R∞, R+
∞
) is an affinoid perfectoid

Cp-algebra, where R+
∞

is the p-adic completion of lim
−→m

R+m , and R∞ :=
R+
∞
[p−1
].
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(2) A subset V ⊂ |M(0)
∞
/B(Zp)| is called perfectoid if it can be covered by

affinoid perfectoid subsets.

Once we show that |M(0)
∞
/B(Zp)| is perfectoid in the sense of the previous

definition, we may use the affinoid perfectoid algebras on the affinoid perfectoid
pieces to define a structure sheaf on |M(0)

∞
/B(Zp)| turning it into the perfectoid

space MB that we seek to construct.
In a first step we show that every point x ∈ |M(0)

∞
| has a nice B(Zp)-stable

neighbourhood. For that we recall some explicit B(Zp)-invariant affinoid open
subspaces of Ω2.

Let D1
⊂ P1 be the closed unit disc embedded in P1 via x 7→ [x : 1] in usual

homogeneous coordinates. For an integer n > 1 let z1, . . . , z pn ∈ Zp be a set of
representatives of Zp/pnZp and consider the rational subset Xn ⊂ D1 defined by

Xn(Cp) = {x ∈ D1(Cp) : |x − zi | > p−n for all i = 1, . . . , pn
}

= {x ∈ D1(Cp) : |x − z| > p−n for all z ∈ Zp}.

It is well known that (Xn)n∈N is a cover of Ω2
∩ D1. For any n > 0, the affinoid

open Xn ⊂ P1 is stable under B(Zp). Indeed let g =
(

a b
d

)
∈ B(Zp) and x ∈

Xn(Cp), then
|x − z| > p−n

∀ z ∈ Zp

and therefore

|xg − z| = |(dx − b)/a − z|
= |dx − b − az| = |x − (az + b)/d|
> p−n.

For i > 0 the translate D1γ i is the disk of radius p2i

D1γ i(Cp) = {[x : 1] ∈ P1(Cp) : |x | 6 p2i
}.

The translates Xnγ
i are invariant under the group

γ −i B(Zp)γ
i
=

{(
a b

d

)
∈ B(Qp) : a, d ∈ Z∗p, b ∈ p−2iZp

}
.

Note that B(Zp) ⊂ γ
−i B(Zp)γ

i . Explicitly we have

Xnγ
i(Cp) = {x ∈ D1γ i(Cp) : |x − z| > p2i−n

∀z ∈ Qp ∩ D1γ i(Cp)}.

By [11, Theorem III.3.17(i)], the preimage

π−1
HT (D

1) ⊂ X ∗Γ (p∞)
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under the Hodge–Tate period morphism is affinoid perfectoid. (It coincides with
the subset {[x1 : x2] ∈ P1(Cp) : |x1| 6 |x2|} denoted by F`{2} in [11].)

Furthermore, there exists 0 < ε < 1/2 such that X ∗Γ (p∞)(ε)a ⊂ π−1
HT (D1). Note

this is an inclusion of affinoid perfectoid spaces. We fix such an ε and abbreviate

Y := X ∗Γ (p∞)(ε)a.

PROPOSITION 3.7. Let x ∈ |M(0)
∞
∩ Yγ i

| be a point. Then there exists an open
neighbourhood U of x in M(0)

∞
, such that:

• U is affinoid perfectoid;

• U ⊂ Yγ i is a rational subset;

• U is invariant under γ −i B(Zp)γ
i ;

• U ≈ lim
←−

Um for affinoid open subsets Um ⊂M(0)
m and m large enough.

Proof. We first show the assertion for all x ∈ |M(0)
∞
∩ Y |. So let x ∈ |M(0)

∞
∩ Y |

be arbitrary. Then there exists n ∈ N such that |πHT|(x) ∈ |Xn|. Fix such a n. The
affinoid open Xn ⊂ D1 is a rational subset and therefore π−1

HT (Xn) ⊂ π
−1
HT (D1) is

also a rational subset. Note that π−1
HT (Xn) ⊂ X ss

Γ (p∞), so π−1
HT (Xn) is a disjoint union

of the affinoids V j defined as the intersection of π−1
HT (Xn) and a copy of M(0)

∞
. Let

j be such that x ∈ V j . Still V j is rational in π−1
HT (D1) and so

U := V j ∩ Y

is a rational subset of the affinoid perfectoid space Y . In particular U is affinoid
perfectoid.

As we have seen above, the affinoid opens Xn ⊂ P1 are invariant under B(Zp)

and the Hodge–Tate period map πHT is GL2(Qp)-equivariant, therefore π−1
HT (Xn)

is stable under B(Zp). Each copy of M(0)
∞
⊂ X ss

Γ (p∞) is stable under GL2(Zp) and
Y is also B(Zp)-invariant, which gives that U is invariant under B(Zp).

As U ⊂ Y is rational, it follows from Lemma 2.4 and Equation (3.3) that for
m large enough there exists Um ⊂ X ∗Γ (pm )(ε)a affinoid such that U ≈ lim

←−
Um . As

U ⊂M(0)
∞

, the commutativity of diagram (3.4) implies that Um ⊂M(0)
m .

Now let x ∈ |M(0)
∞
| be arbitrary. Then there exists an integer i > 0 such that

x ∈ |Yγ i
| and an integer n > 0 such that πHT(x) ∈ Xnγ

i . The property of being
affinoid perfectoid is stable under the action of GL2(Qp), therefore

π−1
HT (D

1γ i), π−1
HT (Xnγ

i) and Yγ i
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are all affinoid perfectoid. Define

U := π−1
HT (Xnγ

i) ∩ Yγ i
∩M(0)

∞
.

The same argument as above shows that this is affinoid perfectoid. It is stable
under γ −i B(Zp)γ

i as γ i leaves each copy M(0)
∞
⊂ X ss

Γ (p∞) invariant.
For the final assertion note that the property ‘≈’ for affinoids in X ∗Γ (p∞) is

stable under GL2(Qp) (see [11, page 59]); therefore, U ≈ lim
←−

Um for affinoid
opens Um ⊂ X ∗Γ (pm ) and m large enough, and we argue as above to deduce that
Um ⊂M(0)

m .

DEFINITION 3.8. For i > 0 define Ui to be the collection of affinoid perfectoid
open subsets U ⊂M(0)

∞
such that:

(1) U ⊂ Yγ i is a rational subset and γ −i B(Zp)γ
i -stable;

(2) U ≈ lim
←−m

Um for affinoid open subsets Um ⊂M(0)
m , m large enough.

By the above proposition every point in |M(0)
∞
| has a neighbourhood U ∈ Ui

for some i . We now construct the candidate quotients UB for any U ∈ Ui .

PROPOSITION 3.9. Let U ∈ U0. There exists a perfectoid space UB whose
underlying topological space is homoeomorphic to |U |/B(Zp) and such that

UB ∼ lim
←−

Um/B(Z/pmZ).

Proof. By Proposition 3.5, the natural map

φ : Y = X ∗Γ (p∞)(ε)a → X ∗Γ0(p∞)(ε)a

of affinoid perfectoid spaces is open. Define

UB := φ(U ).

This is a perfectoid space.
Let (V k)k∈I be a cover of UB by rational subsets V k

⊂ X ∗Γ0(p∞)(ε)a . Then
V k
≈ lim
←−

V k
m for affinoid subsets V k

m ⊂ X ∗Γ0(pm )(ε)a . Note

U k
:= φ−1(V k)

is still rational in X ∗Γ (p∞)(ε)a . Recall that at finite level we have a finite étale
morphism

φm : X ∗Γ (pm )(ε)a → X ∗Γ0(pm )(ε)a,
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which is Galois with Galois group B(Z/pmZ). Furthermore, we have a
commutative diagram

X ∗Γ (p∞)(ε)a
φ
//

qm

��

X ∗Γ0(p∞)(ε)a

q0
m

��

X ∗Γ (pm )(ε)a
φm // X ∗Γ0(pm )(ε)a.

(3.5)

Then U k
= q−1

m (φ−1
m (V k

m)) and we get a map U k
m := φ

−1
m (V k

m) → V k
m of affinoid

spaces with U k
m/B(Z/pmZ) ∼= V k

m . In particular V k
≈ lim
←−

U k
m/B(Z/pmZ). This

also implies that on topological spaces we get a homeomorphism

|V k
| ∼= |U k

|/B(Zp) ∼= lim
←−
|U k

m |/B(Z/pmZ).

From the proof of the previous proposition we also see that after passing to
rational subsets we may assume that U as well as UB are both affinoid perfectoid.

PROPOSITION 3.10. Let i > 1 and U ∈ Ui . There exists a perfectoid space UB

with underlying topological space |U |/B(Zp) and such that

UB ∼ lim
←−

m

Um/B(Z/pmZ).

Proof. As U is invariant under γ −i B(Zp)γ
i , the affinoid perfectoid space

W := Uγ −i
⊂ Y

is B(Zp)-invariant. As U ≈ lim
←−

Um for m large enough and as the property ≈ is
stable under the action of GL2(Qp), we have W ≈ lim

←−
Wm for m large enough.

Arguing as above we get a perfectoid space φ(Uγ −i) ∼ lim
←−

Wm/B(Z/pmZ) and
after possibly shrinking U we may assume that φ(Uγ −i) is affinoid perfectoid
and that

φ(Uγ −i) ≈ lim
←−

Wm/B(Z/pmZ).

In particular, for Wm/B(Z/pmZ) = Spa(Sm, S+m ), the limit

(lim
−→

m

S+m )
∧
[p−1
]

is affinoid perfectoid.
Define

Hi := γ
i B(Zp)γ

−i
=

{(
a b

d

)
∈ B(Zp)

∣∣∣∣ b ∈ p2iZp

}
⊂ B(Zp)
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and let
Hi,m ⊂ B(Z/pmZ)

be the image of Hi under the natural reduction map B(Zp)→ B(Z/pmZ).
Consider the tower (Wm/Hi,m)m>2i of affinoid adic spaces

Wm/Hi,m = Spa(Rm, R+m ).

The natural maps
Wm/Hi,m → Wm/B(Z/pmZ)

are finite étale maps and the degree does not change for m large enough as
B(Zp)/Hi → B(Z/pmZ)/Hi,m is a bijection. In fact the diagram

Wm+1/Hi,m+1

��

// Wm+1/B(Z/pm+1Z)

��

Wm/Hi,m
// Wm/B(Z/pmZ)

is cartesian. The pullback

W/Hi := W2i/Hi,2i ×W2i /B(Z/p2iZ) φ(W )→ φ(W )

is finite étale, therefore affinoid perfectoid say W/Hi = Spa(R, R+).
Furthermore, [8, Remark 2.4.3]

W/Hi ≈ lim
←−

Wm/Hi,m

and in particular

R ∼= (lim
−→

R+m )
∧
[p−1
], R+ ∼= (lim

−→
R+m )

∧.

Define
UB := Spa(R, R+).

We verify
UB ≈ lim

←−
m

Um/B(Z/pmZ)

by checking that the towers (Um/B(Z/pmZ))m>4i and (Wm/Hi,m)m>4i are
equivalent, that is, that the systems agree in (M(0)

0 )proét.
For that note that we have the following commutative diagrams

M(0)
∞

��

γ−i
//M(0)

∞

��

M(0)
K (m)

γ−i
//M(0)

γ i K (m)γ−i

M(0)
∞

��

γ i
//M(0)

∞

��

M(0)
K (m)

γ i
//M(0)

γ−i K (m)γ i
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Let m > 2i , then we have inclusions

γ i K (m + 4i)γ −i
⊂ K (m + 2i) ⊂ γ i K (m)γ −i

⊂ K (m − 2i) and
γ −i K (m + 4i)γ i

⊂ K (m + 2i) ⊂ γ −i K (m)γ i
⊂ K (m − 2i).

The open subspace Wm−2i ⊂M(0)
K (m−2i) is the image of Um under the composite

M(0)
K (m)

γ−i

→M(0)
γ i K (m)γ−i →M(0)

K (m−2i),

where the last map is the natural one from the inclusion γ i K (m)γ −i
⊂ K (m−2i).

We get an induced map

f U
W (m, i) : Um/B(Z/pmZ)→ Wm−2i/Hi,m−2i .

Similarly we get a map

f W
U (m − 2i, i) : Wm−2i/Hi,m−2i → Um−4i/B(Z/pm−4iZ).

The composite
f W
U (m − 2i, i) ◦ f U

W (m, i)

is the natural projection Um/B(Z/pmZ)→ Um−4i/B(Z/pm−4iZ). Moreover

f U
W (m − 2i, i) ◦ f W

U (m, i)

agrees with the natural projection map Wm/Hi,m → Wm−4i/Hi,m−4i . Therefore
the pro-étale systems (Um/B(Z/pmZ))m>4i and (Wm/Hi,m)m>4i are isomorphic,
which is what we wanted to show.

To summarize, we have proved the following theorem.

THEOREM 3.11. (1) There exists a unique (up to unique isomorphism)
perfectoid space

MB ∼ lim
←−

M(0)
m /B(Z/pmZ)

and a natural surjective map ϕ :M(0)
∞
→MB such that the diagram

M(0)
∞

��

ϕ
//MB

��

M(0)
m

//M(0)
m /B(Z/pmZ)

commutes.
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(2) There is a cover ULT = (U j) j∈J of M(0)
∞

of affinoid perfectoid spaces
U j
≈ lim
←−

U j
m ∈

⋃
i>0 Ui such that the image of ϕ(U j) under ϕ : M(0)

∞
→

MB is affinoid perfectoid and satisfies

ϕ(U j) ≈ lim
←−

U j
m/B(Z/pmZ).

3.5. The quotient M(0)
∞

/B(Z p). Finally we argue that the structure
sheaf of MB is the expected one, using the proétale site (M(0)

0 )proét. Define
Bm := B(Z/pmZ). First note that

MB ∈ (M(0)
0 )proét

as
M(0)

m /B(Z/pmZ)→M(0)
m−1/B(Z/pm−1Z)

is finite étale surjective and M(0)
m /B(Z/pmZ) is étale over M(0)

0 .

PROPOSITION 3.12. Let U = Spa(R, R+) ∈ ULT with

U ≈ lim
←−

Um = Spa(Rm, R+m ).

Then the natural map of affinoid algebras(
S := S+

[
1
p

]
, S+ :=

(
lim
−→

R+m
Bm
)∧)
→

(
RB(Zp), R+B(Z p)

)
is an isomorphism.

Proof. We have seen that (S = OMB (ϕ(U )), S+ = O+MB
(ϕ(U ))) is an affinoid

perfectoid algebra. Consider the completed structure sheaf ÔM(0)
0

and the integral

completed structure sheaf Ô+
M(0)

0
as defined in [12, Definition 4.1]. These are

sheaves on (M(0)
0 )proét. Now U, ϕ(U ) ∈ (M(0)

0 )proét are both affinoid perfectoid
therefore by [12, Lemma 4.10 (iii)]

S = ÔM(0)
0
(ϕ(U )), S+ = Ô+

M(0)
0
(ϕ(U )).

Furthermore, U → ϕ(U ) is a covering so

S = ÔM(0)
0
(ϕ(U )) = eq(ÔM(0)

0
(U )⇒ ÔM(0)

0
(U ×ϕ(U ) U ))

and analogously for S+. Now ÔM(0)
0
(U ) = R and Ô+

M(0)
0
(U ) = R+, again by [12,

Lemma 4.10 (iii)]. Furthermore,

U ×ϕ(U ) U ≈ lim
←−

m

Um ×Um/B(Z/pmZ) Um
∼= lim
←−

Um × Bm ≈ U × B(Zp),
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where the isomorphism in the middle is implied by Lemma 2.9. Corollary 6.6
of [12] then implies that

ÔM(0)
LT,0
(U ×ϕ(U ) U ) = Mapcont(B(Zp), R)

Ô+
M(0)

LT,0
(U ×ϕ(U ) U ) = Mapcont(B(Zp), R+)

and the two maps in each of the equalizers above are given as r 7→ (g 7→ r) and
r 7→ (g 7→ gr). Therefore S ∼= RB(Zp) and S+ ∼= R+B(Zp).

In particular we get the following corollary, which finishes the proof of
Theorem 3.4.

COROLLARY 3.13. We have an isomorphism in the category V

MB
∼=M(0)

∞
/B(Zp).

In particular, M(0)
∞
/B(Zp) is a perfectoid space.

3.6. The quotient M∞/B(Q p). We now use the above results and the fact
that the Gross–Hopkins period morphism πGH,0 at level zero has local sections to
prove the following theorem.

THEOREM 3.14. The object
M∞/B(Qp)

of V is a perfectoid space.

Proof. Define the subgroup

B ′ := {b ∈ B(Qp) | det(b) ∈ Z∗p} ⊂ B(Qp).

It is the kernel of the map val ◦ det : B(Qp)→ Z and B(Qp) ∼= B ′oZ. We have

M∞
∼=M(0)

∞
× Z ∼=

⊔
i∈Z

M(0)
∞

and
B ′ = StabB(Qp)(M(0)

∞
).

This implies that in V we have an isomorphism

M∞/B(Qp) ∼=M(0)
∞
/B ′,

so it suffices to show that the latter object is a perfectoid space.
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The Gross–Hopkins period map

πGH,0 :M(0)
0 → P1

Cp

has local sections (see [14, Lemma 6.1.4]).
Let U ⊂ M(0)

0 be open affinoid such that πGH,0|U is an isomorphism onto
its image. As before let p0 : M(0)

∞
→ M(0)

0 be the natural map and consider
p−1

0 (U )⊂M(0)
∞

. It has an action of B(Zp). Consider the object p−1
0 (U )×

B(Zp)B ′ ∈
V as defined in Section 2.3. By Lemma 2.16 we get a natural map

ιU : p−1
0 (U )×

B(Zp) B ′→M(0)
∞
.

inV . As the geometric fibres of πGH,0 are isomorphic to G ′/GL2(Zp)∼= B ′/B(Zp)

and πGH,0|U is an isomorphism onto its image, |ιU | is an injection, therefore ιU is
an open embedding (again by Lemma 2.16). But then

(p−1
0 (U )×

B(Zp) B ′)/B ′ ↪→M(0)
∞
/B ′

is also an open embedding.
Using Proposition 2.14 we see that

(p−1
0 (U )×

B(Zp) B ′)/B ′ ∼= p−1
0 (U )/B(Zp)

is a perfectoid space. This finishes the proof as the (p−1
0 (U ) ×

B(Zp) B ′)/B ′ cover
M(0)
∞
/B ′.

The Gross–Hopkins period morphism πGH :M∞ → P1
Cp

factors through the
quotient M∞/B(Qp). We denote the induced map by

πGH :M∞/B(Qp)→ P1
Cp
.

PROPOSITION 3.15. The map πGH :M∞/B(Qp)→ P1
Cp

is quasicompact.

Proof. Again we use that the Gross–Hopkins period map at level zero has local
sections. So we can cover P1

Cp
by affinoid opens U that admit a section to some

affinoid V ⊂M(0)
0 . Now for any such U ,

π−1
GH(U ) ∼= (p

−1
0 (V )×

B(Zp) B ′)/B ′

as B ′/B(Zp) ∼= G ′/GL2(Zp). So it suffices to show that each (p−1
0 (V ) ×

B(Zp)

B ′)/B ′ is quasicompact. By [12, Proposition 3.12], p−1
0 (V ) is quasicompact. But

now
(p−1

0 (V )×
B(Zp) B ′)/B ′ ∼= p−1

0 (V )/B(Zp)

and the latter is quasicompact as p−1
0 (V ) is.
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REMARK 3.16. From Proposition 2.5 we see that the space M∞ is partially
proper, so M∞/B(Qp) is partially proper and by the last proposition it is
quasicompact, therefore M∞/B(Qp) may be called proper.

We finish this section by proving that the fibres of πGH are affinoid perfectoid.
For that we start with the following result on rank one points.

PROPOSITION 3.17. Let x ∈ P1
Cp

be a rank one point. Then there exists an affinoid
open neighbourhood x ∈ U such that the preimage π−1

GH(U ) is affinoid perfectoid.

Proof. Let U ′ ⊂ P1 be an affinoid neighbourhood of x and V ⊂M(0)
0 an affinoid

open such that the map πGH,0|V : V → U ′ is an isomorphism. There exists a cover
of M(0)

0 by increasing open affinoid spaces Spa(Bi , B+i ) such that p−1
0 (Spa(Bi ,

B+i )) is affinoid perfectoid (see [16, Section 2.10]). As V is quasicompact we can
find i ∈ I such that V ⊂ Spa(Bi , B+i ) and we can cover V by open affinoids that
are rational in Spa(Bi , B+i ) so we may assume V ⊂ Spa(Bi , B+i ) is rational, in
particular that p−1

0 (V ) is affinoid perfectoid.
Using the notation of Section 2.4, p−1

0 (V ) ⊂ Yγ i for some i , therefore we can
find a rational subset W ⊂ Yγ i that is contained in p−1

0 (V ) with x ∈ (πGH,0 ◦

p0)(W ) and such that W ∈ ULT. In particular there exists m > 0 and an affinoid
open Wm ⊂ M(0)

m with W = Wm ×M(0)
m
M(0)
∞

. Let xm ∈ Wm be a lift of x and
let H ⊂ B(Z/pmZ) be the stabilizer of xm . By Lemma 3.18 below there exists a
rational subset Vm ⊂ Wm with xm ∈ Vm , Vm · H = Vm and Vm · b ∩ Vm = ∅ for all
1 6= b ∈ H\B(Z/pmZ). The affinoid

Um :=
⊔

b∈H\B(Z/pmZ)

Vm · b

now comes from level zero: Um = p−1
m,0(U0) for U0 := pm,0(Um) and

U := πGH,0(U0)

has the property that πGH,0 : U0 → U is an isomorphism, x ∈ U , p−1
0 (U0) ∈ ULT

and so
π−1

GH(U ) = p−1
0 (U0)/B(Zp)

is affinoid perfectoid.

LEMMA 3.18. Let X be a separated rigid analytic space, G finite group acting
on X, and let x ∈ X be a point of rank 1. Let H := StabG(x). Then there exists
an open affinoid neighbourhood U of x such that:
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• H ·U = U;

• Ug ∩U = ∅ for all 1 6= g ∈ H\G.

Proof. As x is of rank 1, we have

x =
⋂
x∈V

V

where the intersection runs over all affinoid opens V containing x . Likewise
xg =

⋂
V g for any g ∈ G. If g ∈ G is such that x · g 6= x then⋂

(V g ∩ V ) = ∅

but the V g ∩ V are all quasicompact as they are affinoid as X is separated.
This implies that there exists an affinoid open V ⊂ X containing x and s.th.
V g ∩ V = ∅ for all g ∈ H\G. Fix such a V and let U :=

⋂
h∈H V h. This

is affinoid as X is separated and has the properties we want.

DEFINITION 3.19. (1) Let (S, S+) → (R, R+) be a morphism of Huber pairs.
We say (R, R+) is of lightly finite type over (S, S+) if R+ ⊂ R can be
generated by finitely many elements as an open and integrally closed S+-
subalgebra, that is, if there exists a finite subset E ⊂ R+ such that R+ is the
integral closure of S+[E ∪ R◦◦] in R. (This is similar to Huber’s definition
of +weakly finite type, but he furthermore demands that the morphism is of
topologically finite type.)

(2) We say that a morphism f : X → Y of analytic adic spaces is locally of
lightly finite type if for any x ∈ X there exist open affinoid subspaces U, V
of X, Y such that x ∈ U , f (U ) ⊂ V , and the induced morphism

(OY (V ),O+Y (V ))→ (OX (U ),O+X (U ))

is of lightly finite type.

REMARK 3.20. (1) It then follows that for any pair U, V as in part (2) of the
previous definition, the induced morphism U → V is locally of lightly finite
type, as the property passes to rational subsets.

(2) Note furthermore, that any affinoid rigid space X = Spa(R, R◦) over Cp is
of lightly finite type.

(3) The reason for introducing the notion ‘of lightly finite type’ is the next lemma.
In the proof there we arrive at the following situation: we are given a Huber
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ring A and two rings A+ ⊆ (A+)′ of integral elements and we would like
to know that natural morphism ι : Spa(A, (A+)′)→ Spa(A, A+) is an open
immersion. If (A, A+) → (A, (A+)′) is of lightly finite type, then this is
certainly true: ι is an isomorphism onto the rational subset of Spa(A, A+)
defined by | f1|, . . . , | fn| 6 1, where { f1, . . . , fn} ⊂ (A+)′ generates (A+)′

over A in the sense of Definition 3.19(1).

LEMMA 3.21. Assume that X is perfectoid and X → Spa(K , K+) is partially
proper and locally of lightly finite type. Then for any perfectoid (K , K+)-algebra
(S, S+)

X (S, S+) = X (S, S◦).

Proof. Assume we have a morphism f ◦ : Y ◦ := Spa(S, S◦) → X over Spa(K ,
K+). We extend it to a morphism f : Y := Spa(S, S+) → X over Spa(K , K+)
such that the diagram

Spa(S, S+)

f

��

Spa(S, S◦)
* 


j
77

f ◦
// X

commutes. For that we define f as a morphism in V as follows. We first define
a map | f | of underlying topological spaces. So let y ∈ | Spa(S, S+)| be a point.
Then there is a unique morphism py : Spa(k(y), k(y)+) → Y such that y is the
image of the unique closed point in Spa(k(y), k(y)+). Note that

py(Spa(k(y), k(y)◦)) ⊂ Y ◦,

so we get a morphism

f ◦ ◦ py|Spa(k(y),k(y)◦) : Spa(k(y), k(y)◦)→ X.

As X is partially proper over Spa(K , K+), this extends uniquely to a morphism

fy : Spa(k(y), k(y)+)→ X.

Define | f |(y) as the image of fy of the unique closed point in Spa(k(y), k(y)+).
To show that this defines a continuous map let U := Spa(R, R+) ⊂ X be

open affinoid. After possibly shrinking U we may assume that the morphism
U → Spa(K , K+) is of lightly finite type. The preimage ( f ◦)−1(U ) in Y ◦ is open,
so by passing to rational subsets we may assume WLOG that we have a diagram
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over Spa(K , K+)
Y

| f |

  

Y ◦
. �

j
>>

f ◦
// U �
�

// X
where Y ◦ = Spa(S, S◦) and all arrows except | f | are maps of adic spaces. In
particular, we have a morphism

f ◦,] : (R, R+)→ (S, S◦).

Define (S+)′ as the integral closure of S+ ∪ f ◦,](R+) in S. As Spa(R, R+) →
Spa(K , K+) is of lightly finite type, there exists a finite set E ⊂ R+ such that R+

is the integral closure of K+[E∪R◦◦] in R. But now (S+)′ agrees with the integral
closure of S+ ∪ f ◦,](E) in S, in particular, Spa(S, (S+)′) ⊆ Spa(S, S+) = Y is
open. By construction if y ∈ Y such that | f |(y) ∈ U , then y ∈ Spa(S, (S+)′), that
is, | f |−1(U ) = Spa(S, (S+)′) is open in Y .

Constructing the map of structure sheaves is now easy. Note that j∗OY ◦ = OY

and f ◦ gives a morphism OX → f ◦
∗
OY ◦ . But

f ◦
∗
OY ◦
∼= f∗ j∗OY ◦

∼= f∗OY ,

so we get a natural map
f ] : OX → f∗OY .

Finally one checks that the morphism (| f |, f ]) is compatible with the valuations
on the stalks, therefore indeed defines a morphism in V .

LEMMA 3.22. Consider a cartesian diagram

X ◦

��

// X

f
��

Spa(K , K ◦) // Spa(K , K+)

where K is a nonarchimedean field, K+ ⊂ K is an open and bounded valuation
subring, X is a perfectoid space and f is partially proper and locally of lightly
finite type. Assume that X ◦ = Spa(R, R+) is affinoid perfectoid. Then X is affinoid
perfectoid.

Proof. We claim that X = Spa(R, (R+)′), where (R+)′ is the integral closure of
K+ + R◦◦ in R. To see this let (S, S+) be a perfectoid (K , K+)-algebra. Then by
the previous lemma

X (S, S+) = X (S, S◦) = X ◦(S, S◦) = Homcont(R, S).
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On the other hand

(Spa(R, (R+)′))(S, S+) = Homcont(R, S, (R+)′→ S+)

is given by continuous K -algebra homomorphisms R → S that send (R+)′ into
S+. But any continuous K -algebra homomorphism R → S has this property as
the image of the topologically nilpotent elements R◦◦ lands in S◦◦ ⊂ S+, K+ is
mapped to S+ and S+ is integrally closed.

The map M∞/B(Qp) → Spa(Cp,OCp) is locally of lightly finite type as
locally M∞/B(Qp) is profinite étale over a rigid space. Therefore πGH is locally
of lightly finite type as well. We finish this section studying the fibres of πGH.

Let X be a perfectoid space, Y an analytic adic space, f : X → Y a morphism
and y = Spa(K , K+) ∈ Y be a point. Define the fibre f −1(y) as the space

f −1(y) :=
⋂

Uq.c. open:
|U |⊃| f |−1(y)

U

This is naturally a perfectoid space. One can check this locally on Y and reduce to
the situation where X is affinoid perfectoid and Y is affinoid Tate. In this situation
the fibre f −1(y) is affinoid perfectoid as whenever we have a direct limit lim

−→
Ri

of perfectoid algebras (Ri , R+i ) the uniform completion R := (lim
−→

Ri)
∧ is again

perfectoid.
Now let x = Spa(K , K+) be a point of P1

Cp
, and consider the fibre π−1

GH(x),

π−1
GH(x) =

⋂
Uq.c. open:

|U |⊃|πGH|−1(x)

U.

Note that we have an equality of uniform adic spaces

x =
⋂

V q.c. open:
V3x

V

and therefore the diagram

π−1
GH(x)

h

��

f
//M∞/B(Qp)

��

x = Spa(K , K+) // P1
Cp

is cartesian in the category of uniform adic spaces. If U = Spa(S, S+) =
π−1

GH(V ) ⊂ M∞/B(Qp) for an affinoid openV = Spa(R, R+) ⊂ P1
Cp

, then
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f −1(U ) = Spa(T, T+) where T is the uniform completion of S⊗̂R K and
T+ is generated by S+ ∪ K+. Therefore h is locally of lightly finite type (as
πGH is).

We can now show that the fibres of πGH are all affinoid perfectoid.

PROPOSITION 3.23. Let x = Spa(K , K+) be a point of P1
Cp

, then the fibre

π−1
GH(x) =

⋂
U q.c. open:

|U |⊃|πGH|−1(x)

U

is affinoid perfectoid.

Proof. For points of rank one this follows from Proposition 3.17. For points
x = Spa(K , K+) of higher rank the claim follows from the previous lemma and
the fact that

π−1
GH(x0)

��

// π−1
GH(x)

h

��
x0 = Spa(K , K ◦) // x

is cartesian.

4. Cohomological consequences

Let F/Qp be a finite extension, n > 1 an integer and let D be the division
algebra with centre F and invariant 1/n. In [13], Scholze constructs a functorsmooth admissible

Fp-representations
of GLn(F)

 −→ {D∗-equivariant sheaves on (Pn−1)ét}

π 7−→ Fπ

and shows that the cohomology groups

H i
ét(P

n−1
Cp
,Fπ )

come equipped with an action of Gal(F/F), are admissible D∗-representations
and vanish for all i > 2(n − 1). In particular this provides evidence for the
existence of a mod p local Langlands correspondence and a mod p Jacquet–
Langlands correspondence.

Here, we specialize to the case of F = Qp and n = 2 and we abbreviate

S i(π) := H i
ét(P

1
Cp
,Fπ ).
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Let q = pk , for some k > 1. For a pair χ = (χ1, χ2) of characters Q∗p → F∗q we

write Ind(χ) or Ind(χ1, χ2) for the smooth parabolic induction IndGL2(Qp)

B(Qp)
(χ), so

IndGL2(Qp)

B(Qp)
(χ)

:= { f : GL2(Qp)→ Fq | f cont. and f (bx) = χ(b) f (x) ∀b ∈ B(Qp)}.

This smooth admissible representation is irreducible unless χ1 = χ2. When χ1 =

χ2 we have a short exact sequence

0→ χ1 → Ind(χ1, χ1)→ St⊗ χ1 → 0

where St denotes the Steinberg representation, which is irreducible.
In this section we show that for π ∼= Ind(χ1, χ2) with χ1 6= χ2 and for π ∼=

St ⊗ µ any twist of the Steinberg representation the cohomology S i(π) is
concentrated in degree one. The vanishing of S0(π) is easy.

PROPOSITION 4.1. (1) Let χi : Q∗p → F∗q, i = 1, 2 be two distinct smooth
characters. Then

S0(Ind(χ1, χ2)) = 0.

(2) Let π := St ⊗ µ be a twist of the Steinberg representation by a character
µ : Q∗p → F∗q . Then

S0(St⊗ µ) = 0.

Proof. Note that Ind(χ1, χ2)
SL2(Qp) = 0 as well as (St⊗ µ)SL2(Qp) = 0. The claim

now follows from [13, Proposition 4.7], where it is proved in particular that for
any admissible Fp[GL2(Qp)]-module V the natural map

H 0
ét(P

1
Cp
,FV SL2(Qp )) ↪→ H 0

ét(P
1
Cp
,FV )

is an isomorphism.

To show vanishing of cohomology in degree two we use the quotient
constructed above. Again let χi : Q∗p → F∗q , i = 1, 2, be two smooth characters.
Let Fχ be the sheaf on (M∞/B(Qp))ét defined as

Fχ (U ) = Mapcont,B(Qp)
(|U ×M∞/B(Qp) M∞|, χ)

for any étale U → M∞/B(Qp). Here one turns the right action of B(Qp) on
M∞ into a left action and then the subscript B(Qp) denotes the set of all maps
which are equivariant for this action.
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PROPOSITION 4.2. The sheaf Fχ on (M∞/B(Qp))ét is a Fq-local system of rank
one.

Proof. The characters χi are smooth, so there exists an open subgroup K ⊂
B(Qp) such that χ1|K = χ2|K = 1 is trivial. Fix such K ⊂ B(Zp). Then

f :M∞/K →M∞/B(Qp)

is an étale covering and f ∗Fχ is the constant sheaf Fq .

LEMMA 4.3. Let X be a topological space with a left action of a locally profinite
group G such that G × X → X is continuous. Let B ⊆ G be a closed subgroup
such that G/B is compact. Let χ : B→ F∗q be a smooth character and let IndG

B (χ)

be the smooth induction of χ from B to G. Then

Mapcont,G(X, IndG
B (χ)) = Mapcont,B(X, χ).

Proof. This is elementary, we just give the maps and leave it to the reader to check
that they are well-defined and inverse to each other. Define

S : Mapcont,G(X, IndG
B (χ))→ Mapcont,B(X, χ),

φ 7→ S(φ) : x 7→ φ(x)(1),

and

T : Mapcont,B(X, χ)→ Mapcont,G(X, IndG
B (χ)),

ψ 7→ T (ψ)(x) : g 7→ ψ(gx).

Recall the sheaf Fπ is defined as

Fπ (U ) = Mapcont,GL2(Qp)
(|U ×P1

Cp
M∞|, π)

for an étale map U → P1
Cp

. From the above lemma we see that πGH,∗Fχ = Fπ .

PROPOSITION 4.4. Let F be a sheaf on (M∞/B(Qp))ét. Then

H i
ét(M∞/B(Qp),F) ∼= H i

ét(P
1
Cp
, πGH,∗F)

for all i > 0.

Proof. We show that RiπGH,∗F = 0 for all i > 0 by calculating the stalks

(RiπGH,∗F)x

at any geometric point x = Spa(C(x),C(x)+).

https://doi.org/10.1017/fms.2017.15 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2017.15


A quotient of the Lubin–Tate tower 37

By Proposition 3.15 we can apply [4, Lemma 4.4.1] to get an isomorphism

(RiπGH,∗F)x
∼= H i

ét((M∞/B(Qp))x ,F),

where
(M∞/B(Qp))x = (M∞/B(Qp)×P1 Spa(C(x),C(x)+))∧

is the fibre of M∞/B(Qp) over x , which we can identify with the perfectoid
space y × P1(Qp), where y is any lift of x to M∞. The claim now follows from
Lemma 2.13.

LEMMA 4.5. We have an isomorphism of sheaves on (P1
Cp
)ét

(πGH,∗Fχ )⊗O+P1
Cp
/p ∼= πGH,∗(Fχ ⊗O+M∞/B(Qp)

/p).

Proof. There is a natural morphism

(πGH,∗Fχ )⊗O+P1
Cp
/p→ πGH,∗(Fχ ⊗O+M∞/B(Qp)

/p)

so it suffices to check that the stalks at geometric points agree. For that let x =
Spa(K , K+) be a geometric point of P1

Cp
. Then using [4, Lemma 4.4.1] we get

((πGH,∗Fχ )⊗O+P1
Cp
/p)x
∼= (πGH,∗Fχ )x ⊗ (O+P1

Cp
/p)x

∼= H 0
ét((M∞/B(Qp))x ,Fχ |(M∞/B(Qp))x )⊗ K+/p.

As before
(M∞/B(Qp))x

∼= y × P1(Qp),

where y is any lift of x to M∞. Then

H 0
ét(y × P1(Qp),Fχ |y×P1(Qp))

∼= lim
−→

U

H 0
ét(U,Fχ |U )

where the limit runs over all étale neighbourhoods U of y × P1(Qp) in
M∞/B(Qp). We choose an isomorphism Fχ |y×P1(Qp)

∼= Fq . Then

H 0
ét(y × P1(Qp),Fq) ∼= lim

−→
U

H 0
ét(U,Fq)

∼= Mapcont(lim←−π0(U ),Fq)

∼= Mapcont(P1(Qp),Fq)

∼= Maploc.cst.(P1(Qp),Fq).
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To calculate the other side, we use [4, Lemma 4.4.1] again to get

πGH,∗(Fχ ⊗O+M∞/B(Qp)
/p)x

∼= H 0
ét((M∞/B(Qp))x , (Fχ ⊗O+M∞/B(Qp)

/p)|(M∞/B(Qp))x ).

Now

(Fχ ⊗O+M∞/B(Qp)
/p)|(M∞/B(Qp))x

∼= Fχ |(M∞/B(Qp))x ⊗O+M∞/B(Qp)
/p|(M∞/B(Qp))x

∼= Fq ⊗Fp O+(M∞/B(Qp))x
/p

and so the claim follows from

H 0(y × P1(Qp),O+(M∞/B(Qp))x
/p) ∼= Maploc.cst(P1(Qp), K+/p).

THEOREM 4.6. Let χi : Q∗p → F∗q , i = 1, 2, be two smooth characters. Then

S2(Ind(χ)) = 0.

Proof. As S2(Ind(χ)) is an Fp-vector space, it suffices to show that

H 2
ét(P

1
Cp
,Fπ )⊗OCp/p

is almost zero.
We have a chain of almost isomorphisms

H 2
ét(P

1
Cp
,Fπ )⊗OCp/p ∼=a H 2

ét(P
1
Cp
,Fπ ⊗O+P1

Cp
/p) (4.1)

∼= H 2
ét(P

1
Cp
, (πGH,∗Fχ )⊗O+P1

Cp
/p) (4.2)

∼= H 2
ét(P

1
Cp
, πGH,∗(Fχ ⊗O+M∞/B(Qp)

/p)) (4.3)
∼= H 2

ét(M∞/B(Qp),Fχ ⊗O+M∞/B(Qp)
/p), (4.4)

where the first ∼=a is [13, Theorem 3.2], the second and last are implied by
Proposition 4.4, and the third is Lemma 4.5.

Consider the morphism of sites

πGH : (M∞/B(Qp))ét → (P1
Cp
)an.

We claim that

H i
ét(M∞/B(Qp),Fχ ⊗O+/p) ∼=a H i

an(P
1
Cp
, πGH,∗(Fχ ⊗O+/p)).
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Just as in [4, Lemma 4.4.1] one proves that for a point x = Spa(K , K+) of P1
Cp

one has
(RiπGH,∗Fχ ⊗O+/p)x

∼= H i
ét(π

−1
GH(x),Fχ ⊗O+/p).

By Lemma 3.23, π−1
GH(x) ⊂ M∞/B(Qp) is affinoid perfectoid and so by [12,

Lemma 4.12]
H i

ét(π
−1
GH(x),Fχ ⊗O+/p)a

is almost zero for all i > 0, which shows the above claim.
But for any sheaf F , H i

an(P1,F) = 0 for i > 1 (see [9, Proposition 2.5.8]). This
finishes the proof.

Note that in the above theorem we did not assume that the characters are distinct.
As the functor π 7→ Fπ is exact and as S3

= 0 [13, Theorem 3.2] we also get the
following corollary.

COROLLARY 4.7. Let St denote the Steinberg representation, and let µ : Q∗p →
F∗q be a smooth character. Then

S2(St ⊗ µ) = 0.

REMARK 4.8. Finally we discuss S1. Let χi : Q∗p → F∗q, i = 1, 2 be two smooth
characters, such that

χ1 6= χ2, χ2ω, χ2ω
2.

It is expected that for such pairs (χ1, χ2)

S1(Ind(χ1, χ2)) 6= 0

and is even infinite-dimensional. We give some details. By [2, Theorem 2.1] there
is a unique nonsplit extension

0→ Ind(χ1, χ2)→ Π → Ind(χ2ω, χ1ω
−1)→ 0.

Let r : GQp → GL2(Fq) be the Galois representation associated withΠ under the
mod p local Langlands correspondence, that is, the unique nonsplit extension
in Ext1

Gal(Qp,Qp)
(χ2ω, χ1) [2, Definition 2.2]. Note this is an indecomposable

representation and End(r) = {1}.
One can globalize r to an absolutely irreducible Galois representation

ρ : G F → GL2(Fp),
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where F is a totally real field of even degree [F :Q] such that the prime p is totally
split in F and such that ρ is automorphic for the quaternion algebra D0/F which
is split at all finite places and definite at all archimedean places. In particular,

ρ|Gp = r

for any prime p above p. This follows from [5, Corollary A.3], an additional base
change and the fact that a RAESDC automorphic representation of GL2(F) is in
the image of the global Jacquet–Langlands transfer from D0.

Let G be the algebraic group defined by the units in D0. The Galois
representation ρ gives a maximal ideal m of some Hecke algebra and we fix
a tame level U p

⊂ G(Ap
F, f ) such that

πU p [m] 6= 0.

Here πU p denotes the completed cohomology group as in [13, Definition 6.1].
Scholze shows that in this situation the space

S1(πU p [m])

is infinite-dimensional. It is expected that πU p [m] is of finite length and only has
principal series representations as subquotients. In fact πU p [m] should only have
copies of Π in its cosocle [3, Remark 7.8]. Granting this, we get that for at least
one constituent π ofΠ , the space S1(π) is nonzero and even infinite-dimensional.
So the mod p Jacquet–Langlands correspondence behaves differently from the
classical Jacquet–Langlands correspondence.
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