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Surfactant dynamics: hidden variables
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Surfactants – molecules and particles that preferentially adsorb to fluid interfaces
– play a ubiquitous role in the fluids of industry, of nature and of life. Since
most surfactants cannot be seen directly, their behaviour must be inferred from
their impact on observed flows, like the buoyant rise of a bubble, or the thickness
of a coating film. In so doing, however, a difficulty arises: physically distinct
surfactant processes can affect measurable flows in qualitatively identical ways,
raising the spectre of confusion or even misinterpretation. This Perspective describes,
in one coherent piece, both the equilibrium properties and dynamic processes
of surfactants, to better enable the fluid mechanics community to understand,
interpret and design surfactant/fluid systems. Specifically, we treat the equilibrium
thermodynamics of surfactants at interfaces, including surface pressure, isotherms
of soluble and insoluble surfactants and surface dilatational moduli (Gibbs and
Marangoni). We describe surfactant dynamics in fluid systems, including surfactant
transport and interfacial stress boundary conditions, the competition between
surface diffusion, advection and adsorption/desorption, Marangoni stresses and
flows and surface-excess rheology. We discuss paradigmatic problems from fluid
mechanics that are impacted by surfactants, including translating drops and bubbles,
surfactant adsorption to clean and oscillating interfaces; capillary wave damping,
thin-film dynamics, foam drainage and the dynamics of particles and probes
at surfactant-laden interfaces. Finally, we discuss the additional richness and
complexity that frequently arise in ‘real’ surfactants, including phase transitions,
phase coexistence and polycrystalline phases within surfactant monolayers, and their
impact on non-Newtonian surface rheology.
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1. Introduction

Interfaces between fluids appear throughout science, technology, industry and
nature. Bubbles are generated by crashing waves in the ocean, by agitation in
washing machines, during froth flotation in the mining and energy industries and
when super-saturated, dissolved gasses nucleate and grow bubbles in sodas, geysers,
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canned whipped cream and during fermentations. Droplets of one liquid may be
emulsified in a second immiscible liquid – as found in foods, consumer products,
pharmaceuticals, oil production and processing. Sea surfaces may be smooth and
glassy, or riddled with capillary waves.

Almost without exception, ‘surface-active’ molecules and/or particles – collectively
called ‘surfactants’ – control the initiation, dynamics and behaviour of these and
other processes. The fluid mechanics community knows quite well that surfactants
reduce the interfacial tension of liquid surfaces, thus lowering the energetic cost of
blowing bubbles or inflating lungs. By extension, surfactant gradients are well known
to exert ‘Marangoni’ stresses on fluid interfaces, often driving or influencing the flow
of the fluids that form them.

Surfactants also impact a variety of scientific and industrial processes through
a number of processes and mechanisms that are not so clear. A simple example
highlights the difficulties that arise: the buoyant rise of a small bubble through a
Newtonian liquid (figure 1). A bubble of radius R with a perfectly clean surface rises
according to the classic Stokes drag calculation, imposing a no-shear stress boundary
condition, to give

Uc
=

F
4πηR

, (1.1)

where F is the drag and η is the shear viscosity of the fluid. In many cases, however,
bubbles rise with velocities much closer to

Us
=

F
6πηR

, (1.2)

as one would expect for a rigid particle. What is the reason?
A vague acknowledgment that surfactants exist does not help much. In fact, a

number of phenomena may be responsible for the slower rise. Boussinesq (1913)
originally surmised that the fluid/gas interface might itself have some surface-excess
viscosity, dissipating energy as it deforms (figure 1b). A more modern understanding
holds that such surface viscosities are established by the surfactants adsorbed to the
interface. Even without surface rheology, bulk viscous stresses advect surfactant to
the rear of the bubble as it rises (figure 1e), establishing a concentration gradient
that drives a counter-acting Marangoni stress (figure 1f ). The strength of this
gradient depends on how the surfactant responds (Levich 1962) to being driven
out of equilibrium. Insoluble surfactants diffusively fight to equalize their surface
concentration (figure 1g). Soluble surfactants adsorb and desorb from the interface
to maintain an equilibrium (figure 1h). If this equilibration process occurs slowly,
gradients (and Marangoni stresses) are strong; conversely, rapid equilibration causes
only weak gradients.

It is hard to imagine a simpler experiment than this – measuring the rise velocity
of a nearly spherical bubble in a liquid, say as a function of bubble radius. If the
measured velocity matches Uc from (1.1), one can conclude that the drop is clean. If,
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FIGURE 1. (a) ‘Hidden’ surfactant variables modify the interfacial flow of a rising
bubble such that it might behave like a clean drop, a rigid particle or somewhere in
between. The associated surfactant transport processes are not often easy to differentiate,
and systems may exhibit one or a non-trivial combination of several processes. (b–d) For
instance, an interfacial or surface excess viscosity can resist the surface flow. The
solid lines depict surface flow, and dashed red arrows indicate tangential (viscous)
stresses resisting deformation. (e–g) Alternatively, surfactants swept to the rear of the
bubble build a concentration gradient and generate a counter-acting Marangoni stress
(dashed red arrows) that resists surface convection (blue arrows). These Marangoni forces
may be weakened by surface diffusion against the gradient. (h–j) If the surfactant is
soluble, adsorption/desorption from the bulk can drive the surface concentration back to
equilibrium over a finite time. This process might be controlled by (i) diffusive transport in
the bulk across bulk concentration gradients over a time scale τd, or by ( j) the finite-rate
kinetics over a finite time scale τk.

on the other hand, the measured velocity is slower than Uc, the discrepancy might
be caused by (a) inherent surface viscosity; (b) surface viscosity due to a surfactant;
(c) flow-induced Marangoni stresses from an insoluble surfactant; (d) flow-induced
Marangoni stresses from a soluble surfactant, the magnitude of which might be
determined by (i) adsorption/desorption rate kinetics; or (ii) surfactant diffusion
across the bubble; (iii) convection–diffusion transport of surfactant across the
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bubble. However sensible figure 1(a) may seem, the x-axis is often difficult to
unambiguously determine.

This difficulty – of identifying mechanisms by which surfactants act – arises much
more broadly, in systems and processes that are much more complicated. Surfactants
influence film thicknesses in coating flows (Quéré 1999; Shen et al. 2002; Scheid
et al. 2010), the dispersion of surface waves (Levich 1962; Lucassen & Hansen
1966), the dynamics and thicknesses of spreading films (Troian, Herbolzheimer &
Safran 1990; Darhuber & Troian 2005) and the lifetime of foams and emulsions
(Langevin 2000; Cohen-Addad, Höhler & Pitois 2013). Mechanisms by which these
effects arise can be complicated and varied. For example, surfactants may provide
additional energetic barriers to droplet and bubble coalescence: surfactants on either
side of a liquid film may repel each other sterically or electrostatically, and thus
retard or arrest the thinning of the film (Bibette et al. 1992; Stancik, Kouhkan
& Fuller 2004). Alternatively, or additionally, dynamic mechanisms may also act:
surfactants advected by thinning films establish gradients, and thus Marangoni
stresses, that oppose the film drainage (Leal 2004). Monolayers of surfactant may
introduce an excess surface viscosity, elasticity or visco-elasticity that retards
or alters film thinning (Langevin 2000). Even more subtle, surfactant exchange
between the bulk and the interface can mimic surface-excess (dilatational) viscosity,
masking the physical origin of the dissipation (Levich 1962; Lucassen & van den
Tempel 1972).

Despite the controlling influence that surfactants exert over many fluid systems,
the surfactants themselves are effectively invisible in most experiments, and to most
techniques. Interpreting such experiments becomes challenging at best, given that
physically distinct surfactant processes impact measurements in identical ways. In
many ways, surfactants behave like ‘hidden variables’ that cannot be measured
directly, yet influence fluid flows so profoundly that they must be determined in
order to understand even gross, qualitative fluid phenomena. Surfactant distributions
are thus typically inferred from observable fluid phenomena – e.g. measured fluid
velocity fields, free surface dynamics or Laplace pressure measurements. Connecting
measurements and observations with the underlying surfactant fields, however,
requires some model for the dynamics and mechanics of surfactant transport.

The fact that physically distinct surfactant processes can impact measurable
properties in the same way – while the surfactants themselves elude detection – has
caused significant confusion. For example, the origin and even existence of surface
rheology has long been controversial (Scriven & Sternling 1960), with justifiable
reason: if Marangoni stresses can explain an experimental observation, what is the
need to invoke surface rheology? Why should a rightly sceptical scientist invoke
some nebulous phenomenon, when established processes can explain measurements?
At the same time, plausible mechanisms should not be dismissed out of hand: after
all, however familiar a process may be, it might actually not be the one responsible
for an observation.
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Understanding these surfactant systems – and ultimately predicting and designing
them – requires that these mechanisms and processes be differentiated unambiguously.
This might be accomplished by specifically designing experiments to excite
one process but not others: forcing a surfactant-laden interface to deform in a
purely shear fashion – i.e. with zero compression or dilation – should not trigger
Marangoni stresses, but would be sensitive to surface shear rheology. In systems
with compression, it may not be easy or even possible to separate stresses cause
by surface dilatational viscosity – an intrinsic material property – from an effective
surface viscoelasticity due to surfactant adsorption and desorption, surface and bulk
diffusion, aggregation or phase transitions, Marangoni flows, or some combination
of these processes. Knowing how these processes scale with e.g. system geometry,
fluid velocity, surfactant concentrations and properties, however, might suggest
complementary experiments to tease apart these influences.

The objective of this Perspective, then, is to enumerate and elucidate the multitude
of transport processes involved in the formation, flow and rheological response of
surfactant-laden interfaces, and therefore to better understand, interpret, predict and
design surfactant/fluid flows and materials. By presenting these diverse phenomena
in one comprehensive piece, described using the same language and within the same
context, we hope to to empower the fluid mechanics and soft condensed matter
physics communities to discern and differentiate between the various dynamics
surfactants might cause. We also hope to connect the fluid mechanics community to
the physical chemistry literature on surfactants, which is more steeped in equilibrium
thermodynamics than typical fluid mechanicians have at their fingertips. To this end,
this perspective highlights paradigmatic examples chosen for their paedagogic value
in weaving a coherent and compelling picture of surfactant dynamics, rather than a
comprehensive treatment of this vast literature.

In what follows, we treat surfactants from the physical–chemical standpoint,
hopefully giving the fluid mechanician enough basis to connect with the surfactant
literature. We will start with equilibrium arguments about surface tension and surface
pressure, including the equilibrium properties of soluble and insoluble surfactants
(§ 2). We then move on to dynamic processes – which tend to be more familiar
to the fluid mechanician – and discuss the various ways in which surfactant is
transported (§ 3). We will touch on surface rheology, which is relatively unfamiliar
to both communities. Then, in § 4, we show how even these most basic treatments
give rise to remarkable richness in a series of paradigmatic problems: (§ 4.1) the
buoyant translation of bubbles and drops; (§ 4.2) the oscillatory compression of
soluble monolayers; (§ 4.3) surface wave dynamics; (§ 4.4) coating flows; (§ 4.5)
foam drainage; and (§ 4.6) particle motion within surfactant-laden interfaces.
These problems are chosen both for their ubiquity and importance, as well as the
non-trivial and rich phenomena that appear even for the simplest assumptions for
the processes described in § 3. Finally, in § 5, we present a variety of complexities
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that arise even in common surfactant systems – beyond the ‘simplest’ treatments
in §§ 2–4 – with the goal of highlighting areas where standard assumptions may
not capture experimental observations, and to encourage new directions for research
and innovation.

2. Interfaces at equilibrium

2.1. Surface tension and its origins

Surface tension originates from the imbalance in mutually attractive forces felt
by molecules near an interface. A liquid molecule in the bulk of a fluid is
surrounded by neighbours of the same kind, all exerting attractive intermolecular
forces. Molecules that are surrounded experience no net force, due to the symmetric
distribution of their neighbours. A force is required to pull one molecule out of the
bulk liquid, however, one must supply enough free energy to break the N ‘bonds’,
each of strength 1U.

A molecule near an immiscible fluid–fluid interface, however, feels a net force
towards the fluid phase with higher intermolecular attractions. These interfacial
molecules are in an energetically unfavourable state, and creation of additional
interfacial area is expensive. A fluid system, therefore, minimizes interfacial area.
The surface tension γ of a fluid–fluid interface is then the energy associated with
creating excess area, which depends on the strength of intermolecular forces in
both bulk phases. For example, a clean air–water interface has γ ≈ 0.072 J m−2, or
equivalently, 72 mN m−1.

The surface tension of a liquid can be estimated with the simple thought
experiment depicted in figure 2. Each molecule in the bulk liquid has attractive
interactions with N neighbours. Cleaving the bulk into two, and therefore creating
two interfaces, requires N/2 bonds, each of energy 1U, to be supplied for every
interfacial molecule. Given Γs molecules per unit area, cleaving these bonds requires
an energy per unit area, γ , given by

γ ∼N1UΓs. (2.1)

Of course, molecules at the interface might relax and re-arrange, changing the
energetics of interfacial molecules, but we neglect these small changes. The
interaction energy N1U must be O(kBT) in order for the bulk to be a liquid:
if the interaction energy were much stronger than thermal energy (N1U � kBT),
molecules would lock in place as a solid or glass, whereas if it were much weaker
(N1U � kBT), the molecules would fly apart to form a gas. Ignoring numerical
prefactors, this suggests a surface tension

γ ∼ kBTΓs. (2.2)

However crude, this approximation gives reasonable estimates: assuming water
molecules to have an approximate radius rw∼0.2 nm (based on the bulk density and
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N neighbours

s̋ molecules per unit area

£ N/2 ‘bonds’ broken

FIGURE 2. A liquid molecule in the bulk of a fluid experiences no net force due to
a (time-averaged) symmetric distribution of neighbours. Creating an interface, however,
requires breaking intermolecular ‘bonds’ on the interface and is energetically expensive.

molecular mass of water) suggests water molecules occupy the interface with density
Γs ∼ 9 nm−2. Using kBT ∼ 4 pN nm at room temperature gives γ ∼ 40 mN m−1,
which is within a factor of two of the measured value 72 mN m−1. More generally,
most liquids with approximately Angstrom radii thus have surface tensions in the
tens of mN m−1.

Surface tension can be alternatively interpreted in terms of the mechanical work
done in stretching an interface. If the application of a force F within the plane of the
interface changes its area by dA, the net change in energy is a sum of mechanical
work done and the surface energy associated with surface tension

dU =−F dx+ γ dA. (2.3)

At mechanical equilibrium, dU = 0, and writing dA= ` dx where ` is the width of
the interfacial layer, we find γ =F/`. In other words, surface tension gives the force
per unit length to create interfacial area.

Finally, γ can be thought of as a surface stress, pulling isotropically within the
plane of the interface, and is therefore analogous to a negative three-dimensional
(3-D) pressure. We will soon extend this analogy with 3-D pressure, as surfactants
exert a ‘surface pressure’, Π , against the surface tension γ of the clean interface.

Unlike bulk 3-D fluids, however, surfaces are two-dimensional and can be curved,
which modifies the static stress required to create additional area. For example,
increasing the volume of a bubble of gas A suspended at equilibrium in liquid B
increases the surface area of the bubble, and therefore its interfacial energy. If the
bubble radius increases from R to R+ dR, the net free energy change is

dU =−pA dVA − pB dVB + γAB dA, (2.4)
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where γAB is the surface tension of the A–B interface, pA and pB are the pressures
inside and outside the bubble, respectively, dVA=−dVB=4πR2 dR and dA=8πR dR.
Imposing dU= 0 to satisfy mechanical equilibrium reveals the well-known Laplace
pressure jump across the bubble surface:

1p= pA − pB =
2γAB

R
. (2.5)

The larger the interfacial curvature or surface tension, the greater is the bulk fluid
pressure required to maintain the system in equilibrium: smaller bubbles have a
higher internal pressure. More generally, the Laplace pressure is given by the Young–
Laplace equation (Leal 2007)

1p= γAB∇s · n, (2.6)

where n is the normal to the interface, pointing away from the fluid A, ∇s = (I −
nn) · ∇ is the surface gradient operator, and ∇s · n is the mean curvature of the
surface.

2.2. ‘Dirty’ interfaces: surfactants of different classes

Many surfactants are ‘amphiphilic’ – having both hydrophilic and hydrophobic
parts – and adsorb to surfaces to minimize energetically unfavourable interactions.
For instance, amphiphilic molecules adsorb to a water–air interface with their
hydrophobic tails directed out of the water phase (figure 3). Adsorption to a surface
comes at a cost, however: the bulk fluid offers a wider range of translational and
rotational micro-states and therefore, a larger entropy per surfactant molecule. At
equilibrium, the balance between adsorbed surfactants, with surface concentration Γ ,
and dissolved surfactants, with bulk concentration C, reflects a balance between the
(favourable) enthalpy change and the (unfavourable) entropy loss that occurs during
adsorption. With increasing bulk concentration, the balance between the energetic
expense of hydrophobic groups remaining within the bulk and the entropic loss of
moving to the interface tilts in favour of adsorption (figure 3b,c) and a monolayer
of increasing surface concentration Γ forms at the interface.

The affinity of surfactant molecules towards interfaces creates a surface ‘excess’
concentration, Γ . In other words, Γ is the number of molecules per unit interfacial
area in excess of a hypothetical reference state, in which the adjoining bulk phases
maintain their constant concentrations (figure 3c) up until the surface. The position
of the surface itself is arbitrary, and is typically chosen such that the surface-excess
concentration of the solvent is zero.

It is conceptually simple to appreciate the surface-active nature of molecules with
physically distinct hydrophilic and hydrophobic portions, as depicted in figure 3(a).
Such clearly differentiated portions, however, are not necessary for surface activity.
The basic surfactant argument holds just as well for chemically homogeneous
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Hydrophobic
tail

Hydrophilic
head

Air

Water

z

C

Csurfactant

Cwater

(a) (b) (c)

FIGURE 3. (a) Schematic representation of an amphiphilic molecule. (b,c) Surfactant
molecules adsorb to the interface to an extent determined by the competition between
(loss of) entropy and energetically favourable interactions during adsorption. Also shown
in (c) are the concentration profiles of surfactant (solid line) and water (dashed line)
molecules. The ‘excess’ surface concentration is in grey, which represents the amount of
surfactant in excess of a hypothetical state where the concentration of dissolved surfactant
is constant up until the surface.

molecules or particles that possess an intermediate wettability with respect to the
fluids on either side of the interface (Binks 2002).

Any species (molecular or particulate) that has a positive surface excess is – by
definition – a surfactant. And so – what are the options? How much do they reduce
surface tension? What time scales emerge? The equilibrium properties of different
classes of surfactants can differ substantially, as shown in figure 4. All cases depict
a spherical liquid drop of surface area Ai whose shape is deformed and held at
a final surface area Af , for an increase of 1A. The clean, surfactant-free drop
(figure 4a) serves as a base case: the extra surface area 1A created by deforming at
the interface comes at the cost of the ‘clean’ surface tension γ0 of the liquid/liquid
interface, requiring an additional energy 1U = γ01A.

Many surfactants are soluble, meaning that the surface excess concentration Γ of
adsorbed surfactant equilibrates with the dissolved concentration C according to an
isotherm (table 1). When a drop is initially coated with soluble surfactant at surface
coverage Γeq and then deformed to create extra area 1A, the interfacial concentration
Γ drops below its equilibrium with the bulk concentration C. Bulk surfactant is then
driven to adsorb to the interface, until the equilibrium surface coverage (Γf =Γeq) is
restored (figure 4b). At steady state, the surface tension of the drop is thus equal to
the initial, equilibrium value γeq(C), which is lower than the clean surface tension
γ0. The energetic cost of this deformation is thus reduced to 1U = γeq1A.

Some surfactants are insoluble in the bulk solution, meaning that there are no
surfactants dissolved in the ‘reservoir’, and the number N of surfactants on an
interface remains constant. Deforming a drop coated with insoluble surfactants
(figure 4c) decreases the surface concentration to Γf = ΓiA/(A + 1A), which
typically increases the surface tension according to an equilibrium isotherm γ (Γ )

(§ 2.3). The change in surface energy is then 1U =
∫
γ (Γ ) dA.
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© = ©eff(˝ )

ÎU =   ©eff(˝ ) dA

ÎU =   ©(˝ ) dA

Surface-attached
particles with inter-
particle interactions

Surface-attached
non-interacting
(dilute) particles

Insoluble surfactant

Soluble surfactant

Clean drop

© £ ©0

ÎU = ©0 ÎA

Nf = Ni

Nf > Ni

˝f < ˝i

˝i = Ni/Ai ˝f = ˝i = ˝eq

ÎU = ©eq ÎA

ÎU = ©0 ÎA

Ai Af > Ai © = ©0(a)

(b)

(c)

(d)

(e)

FIGURE 4. Examples of change in surface energy upon deformation of a drop with
surface-active molecules or particles.

Small particles with intermediate wettability can also act like surfactants –
forming the basis for so-called ‘Pickering’ emulsions (Binks 2002). Nanoparticles
often adsorb extremely strongly to fluid interfaces – with millions or billions of
kBT in binding energy. However strong this binding energy may be, deforming a
particle-laden drop creates ‘clean’ interface, at a cost given by the clean liquid
surface tension γ0 (figure 4d). Therefore, particles do not affect the surface tension
in any appreciable way if they do not interact with each other. Mutually repulsive
interfacial particles, for example, relax and separate when the drop is deformed
(figure 4e). Clean fluid interface is created at a cost γ0, but reducing interparticle
repulsion ‘returns’ some energy per area Πint(Γ ), giving a net surface tension
γeff (Γ ) = γ0 −Πint(Γ ), and the energetic cost of deformation takes the same form
as for an insoluble surfactant.

Figure 4 gives some sense for the diverse ways that surfactants behave when one
waits ‘long enough’. In what follows (§§ 2.3–3), we address questions raised by this
figure. What differentiates soluble surfactants from insoluble ones? What determines
the surface tension γ (Γ ) or γ (C)? How long is ‘long enough’, and what happens
‘in between’?
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2.3. Insoluble surfactants: Langmuir monolayers

A lot of salt can be dissolved in water – but not an infinite amount. Above some
solubility limit Csol, additional salt does not dissolve, but remains in solid form
and sediments. Substances with extremely low solubility in a liquid – like wax
in water – are said to be ‘insoluble’, meaning that the concentration of dissolved
molecules is immeasurably small. Likewise, surfactants can be insoluble when the
precipitated (aggregated) form is energetically so much more favourable than the
dissolved form. Surfactants may gain entropy by dissolving, but this comes at the
cost of disrupting attractive interactions between surfactants, and also entropic loss
of solvent molecules. Crudely speaking, the larger the hydrophobic component, the
lower the solubility of a surfactant in water. Phospholipids represent one class of
surfactants that is frequently insoluble in water owing to the two (hydrophobic)
hydrocarbon tails attached to each hydrophilic headgroup. The insolubility of
phospholipids is essential for important biological functions: biological membranes
typically consist of phospholipid bilayers – two ‘sheets’ of phospholipids, oppositely
oriented, so that the hydrophilic heads face the water, and hydrophobic tails are
buried internally.

Monolayers formed by insoluble surfactants are called Langmuir monolayers,
and can be prepared and controlled by literally spreading a known number N of
surfactant molecules onto a fluid surface of area A, to give a surface concentration

Γ =
N
A
. (2.7)

Langmuir troughs allow this surface concentration Γ of insoluble surfactants to be
controlled using mobile barriers to change the area A available to the N surfactants
on the monolayer.

Any fluid mechanician should expect that spreading some number N of insoluble
surfactants onto a fluid interface of area A will lower its surface tension. Real
questions lie just beyond this qualitative, ‘binary’ expectation. How much does the
surface tension change? Why do different surfactants behave differently, both in
static and dynamic situations?

The simplest Langmuir monolayer consists of ‘ideal’ surfactants that are so dilute
that they behave as point-like and non-interacting. The free energy required to
assemble such ideal monolayers reflects the contribution from mixing entropy alone

F ideal
s =Nµ0

s + kBT
[

N ln
(

N
Γ0A

)
−N

]
, (2.8)

where µ0
s is the free energy per surfactant (chemical potential) of a reference

monolayer of surfactant concentration Γ0. Equation (2.8) represents the 2-D analogue
of an (3-D) ideal gas.
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Just like the pressure of a 3-D material is defined by the energy required to
compress it isothermally,

P=−
∂F
∂V

∣∣∣∣
T,N

, (2.9)

the surface pressure Π exerted by a species bound to a surface is determined by the
energy required to compress it isothermally, in two dimensions

Π =−
∂Fs

∂A

∣∣∣∣
T,N

. (2.10)

The surface pressure of an ideal Langmuir monolayer (2.8) can then be computed
using (2.10) to give

Πideal = kBTΓ , (2.11)

as should be expected for an ideal, 2-D gas.
Despite its clear analogy to 3-D pressure, and its clear thermodynamic status, the

surface pressure Π is largely unfamiliar to the fluid mechanics community. It can,
however, be simply connected to more familiar terrain. Namely, the surface tension
γ0 of clean fluid interfaces pulls on interfaces, acting to reduce interfacial area.
At the same time, the surface pressure Π of adsorbed surfactant pushes outward
on interfaces, acting to increase interfacial area. The net effect is what a fluid
mechanician would simply call the surface tension γ (Γ ):

γ (Γ )= γ0 −Π(Γ ). (2.12)

In other words, the surface pressure Π(Γ ) exerted by a surfactant monolayer
represents the reduction in surface tension caused by the surfactant.

Although intuitive and straightforward, the ideal gas model, (2.8) and (2.11),
is almost never appropriate in describing real surfactants. This can be seen by
evaluating (2.11) to determine the surface concentration Γ1 required for an ideal
gas surfactant to reduce surface tension by a nominal amount, e.g. Π1∼ 1 mN m−1,
which is just over 1 % of the surface tension of clean water

Γ ideal
1 =

Π1

kBT
≈

1 mN m−1

4 pN nm
≈

1 surfactant
4 nm2

. (2.13)

Ideal gas surfactants must be packed to surface concentrations of at least one
per few square nanometres to exert even a small surface pressure, but must
nonetheless obey the ideal gas conditions. First, each surfactant must behave as
‘point-like’, meaning that its molecular radius must be significantly smaller than
2 nm. This restriction effectively renders the ideal gas description invalid for
proteins, nanoparticles and colloids. Second, intermolecular interactions must be
negligible over ∼nm length scales – also a rarity, given the strength of van der
Waals interactions between hydrophobic tails, interfacial electrostatic dipoles and
electrostatic repulsions between headgroups at nm length scales.
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If surfactant monolayers cannot be described by ideal gas behaviour, then how
can one describe them? In many cases, Π versus Γ isotherms are simply measured.
However, ‘simple’ violations of the point-like and non-interacting assumptions in the
ideal gas model can be accommodated analogous to treatments of 3-D gasses.

For example, the Langmuir isotherm accounts for finite surfactant size A0≡ 1/Γ∞
by effectively allowing them to occupy sites on a lattice. Assuming N surfactants
to occupy a fraction of N∞ = Γ∞A such sites, the free energy of the interface is
(Diamant & Andelman 1996; Kralchevsky, Danov & Denkov 2008)

FL
s =Nµ0

s + kBT
[

N ln
(

N
Γ∞A

)
+ (Γ∞A−N) ln

(
Γ∞A−N
Γ∞A

)]
, (2.14)

where µ0
s is the chemical potential at half-maximum packing (Γ∞/2). As with the

ideal gas, (2.14) omits all interactions between surfactants, but instead accounts only
for the free energy of mixing of both the occupied and unoccupied sites.

Computing surface pressure using (2.10) for the lattice gas (2.14) gives the so-
called Langmuir isotherm,

ΠL
= kBTΓ∞ ln

(
1

1− Γ /Γ∞

)
. (2.15)

At low surfactant concentrations Γ � Γ∞, ΠL reduces to Π ideal. As surfactant
concentration Γ approaches Γ∞, however, the surface pressure diverges.

Rather than constraining surfactants to a lattice, surfactants with finite size might
simply reduce the area available for surfactants to explore. Placing N surfactants,
each of area A0 ≡ 1/Γ∞, onto a surface of area A leaves an unoccupied area A′ =
A−N/Γ∞. Replacing A in the ideal gas expression F ideal

s with A′,

FV
s =Nµ0

s + kBT
[

N ln
(

N
Γ∞A−N

)
−N

]
, (2.16)

gives the Volmer isotherm,

ΠV
=

kBTΓ
1− Γ /Γ∞

. (2.17)

Like the Langmuir isotherm, the Volmer pressure recovers the ideal gas pressure as
Γ � Γ∞, and diverges as Γ → Γ∞, but in a different way than ΠL.

One might think it would be straightforward to distinguish between the Langmuir
and Volmer forms for the divergence, but interactions between surfactants become
significant and alter this form considerably.

The simplest way to include interactions between surfactants is perturbatively,
i.e. adding a term to either the Langmuir (2.14) or Volmer (2.16) expressions

1F int
s =−N

β

2
Γ (2.18)
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FIGURE 5. The (a) Γ (C) and (b) Π(Γ ) relations corresponding to Frumkin adsorption
from an ideal subphase. Intermolecular interactions are attractive when β̃ = βΓ∞/kBT > 0
(blue lines), and repulsive when β̃ < 0 (red lines). Here β̃ = 0 (grey solid lines) recovers
Langmuir adsorption. The black line in each panel is the 2-D ideal gas limit (the Henry
isotherm).

that reduces the free energy to assemble a monolayer of mutually attractive
surfactants (when β > 0), or vice versa for repulsive interactions. For example,
adding (2.18) to the Volmer free energy FV

s gives the van der Waals monolayer,

F vdW
s =Nµ0

s + kBT
[

N ln
(

N
Γ∞A−N

)
−N

]
− β

N2

2A
, (2.19)

with surface pressure

Π vdW
=

kBTΓ
1− Γ /Γ∞

− β
Γ 2

2
. (2.20)

Equation (2.20) is the precise two-dimensional analogue of the 3-D van der
Waals equation of state. Similarly, adding the interaction term (2.18) to the
Langmuir surface free energy FL

s (2.14) gives the Frumkin isotherm (see table 1).
Kralchevsky et al. (2008) provide a detailed thermodynamic derivation of each of
these commonly used models, the results of which are summarized in table 1 and
illustrated in figure 5.

2.3.1. Compressibility: Gibbs (E) and Marangoni (E0) moduli
The surface compressional (or dilatational) modulus,

E=−A
∂Π

∂A
, (2.21)

measures the resistance of the surface to compression, completely analogous to 3-D
materials. For insoluble surfactants, the number of surfactants in a monolayer does
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not change during compression, meaning A can be replaced with N/Γ in (2.21) to
give the insoluble dilatational modulus

E0 = Γ
∂Π

∂Γ

∣∣∣∣
N

. (2.22)

The nomenclature of (2.21) and (2.22) varies across the surfactant literature, with
the names of Gibbs, Marangoni, Gibbs–Marangoni or simply dilatational modulus
used for both E and E0. For the purposes of this review, we will consistently call
E the Gibbs modulus and E0 the Marangoni modulus.

The Marangoni modulus E0 measures the work done in squeezing surfactant
molecules together, and generally increases with surfactant concentration. For
example, ideal gas monolayers have Marangoni modulus

Eideal
0 = kBTΓ , (2.23)

with expressions for other isotherms given in table 1. Notably, the Marangoni
modulus for the van der Waals isotherm,

EvdW
0 =

kBTΓ
(1− Γ /Γ∞)2

− βΓ 2, (2.24)

becomes negative for a range of Γ whenever βΓ∞/kBT > 27/4. Just like in three
dimensions, a monolayer with negative compressibility is mechanically unstable, and
undergoes phase separation to a two-phase coexistence between a high-Γ condensed
phase, and a low-Γ expanded phase.

In what follows (§§ 2.4.2 and 3.2), we will find that monolayers (soluble or
insoluble) do not always react instantaneously following compression – finite time
scales are required for phase transitions to occur, for surfactants to adsorb or desorb
to equilibrate with the surrounding bulk fluid, or for surfactant gradients in the
surroundings to diffusively relax. In this regard, the Marangoni modulus E0 reflects
an intrinsic material property, whereas the Gibbs modulus E describes the dynamic
response of a macroscopic interface, which additionally depends on the shape, size
and time scales of the forcing.

2.3.2. The chemical potential
In preparation for the upcoming transition to soluble surfactants, we discuss one

final thermodynamic property of Langmuir monolayers. The chemical potential
represents the free energy cost of adding one additional molecule to the monolayer,
holding temperature and area constant

µs(Γ )=
∂Fs

∂N

∣∣∣∣
T,A

. (2.25)
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The chemical potential of a monolayer of ideal surfactants – as described by (2.8)
– is

µideal
s (N)=µ0

s + kBT ln
(

N
Γ0A

)
, (2.26)

or, equivalently,

µideal
s (Γ )=µ0

s + kBT ln
(
Γ

Γ0

)
, (2.27)

where µ0
s is a reference chemical potential, valid at a particular concentration Γ0. In

what follows, we will frequently use the Langmuir (lattice) isotherm as a model; its
chemical potential is

µL
s (Γ )=µ

0
s + kBT ln

(
Γ

Γ∞ − Γ

)
, (2.28)

where µ0
s is the chemical potential at Γ = Γ∞/2.

2.4. Soluble surfactants: Gibbs monolayers

We now turn to soluble surfactants, which can dissolve into the liquid below
the interface. Monolayers of soluble surfactants – called Gibbs monolayers –
represent an equilibrium between surfactants adsorbed at the interface (with surface
concentration Γ ) and those dissolved in the bulk (with concentration C).

Detailed balance must hold for adsorbed and dissolved surfactants to be in
equilibrium: as many surfactants must adsorb to a surface as desorb in any given
time. For this to happen spontaneously, the two states must be equivalent from a
free energy standpoint. Adding one surfactant to the monolayer costs energy – the
chemical potential µs(Γ ) of the adsorbed surfactant. This free energy cost must be
identical to the free energy liberated by removing that surfactant from the subphase
– represented by the chemical potential µb(C) of the surfactant in the bulk. In short,
equilibrium between dissolved and adsorbed surfactant requires

µs(Γ )=µb(C), (2.29)

which defines the equilibrium isotherm Γ (C).
For example, surfactants that are sufficiently dilute in solution have ‘ideal’

chemical potential

µb =µ
0
b + kBT ln

(
C
C0

)
, (2.30)

where µ0
b is the chemical potential at a reference concentration C0.

If adsorbed surfactants also form an ideal gas monolayer, with µs given by (2.27),
then equating chemical potentials (2.29) reveals a linear relation between adsorbed
and bulk concentrations

Γ ideal
=

(
Γ0

C0

)
exp

(
µ0

b −µ
0
s

kBT

)
C, (2.31)
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or

Γ ideal
=K idealC, (2.32)

which is called the Henry isotherm (table 1). Here

K ideal
=

(
Γ0

C0

)
exp

(
µ0

b −µ
0
s

kBT

)
(2.33)

is an equilibrium constant for adsorption. The adsorption free energy 1µ0
ads =

µ0
b − µ0

s indicates the drop in free energy when a surfactant (at reference
concentrations) adsorbs to the interface. As expected from statistical mechanics, the
equilibrium constant K grows exponentially with 1µ0

ads. Different choices of either
reference concentration (Γ0 or C0), both of which are chosen arbitrarily, would
change the corresponding reference chemical potentials (µ0

s or µ0
b, respectively),

giving the same adsorption constant K.
Given Γ (C) for a Gibbs monolayer of soluble surfactant, other monolayer

properties like Π(C) and E0(C) can be determined following the thermodynamic
arguments for the insoluble surfactants given above. Surface pressure Π is still
defined from the surface free energy via (2.10), so that the Gibbs monolayer
defined by (2.32) has

Π ideal
= kBTK idealC, (2.34)

with K ideal defined by (2.33). The Marangoni modulus, defined by (2.22), is also
Eideal

0 = kBTK idealC.
More complex isotherms arise for more complex monolayers or solutions. For

example, soluble surfactants that adsorb to Langmuir (lattice) monolayers have
surface chemical potentials of the Langmuir form (2.28), and equilibrate with an
ideal bulk solution of surfactant (2.30) to give

Γ L

Γ∞
=

KLC
1+KLC

, (2.35)

where

KL
=

(
1

C0

)
exp

(
µ0

b −µ
0
s

kBT

)
(2.36)

is the equilibrium constant for Langmuir adsorption, with units of [concentration]−1.
The surface pressure for the Langmuir isotherm then follows by inserting Γ L from
(2.35) into ΠL(Γ ) from (2.15) to give

ΠL(C)= kBTΓ∞ log(1+KLC). (2.37)

The desorption constant, KL
D = (KL)−1, represents a characteristic subphase

concentration, at which the interface is half-saturated. The Langmuir adsorption
isotherm (2.35) reduces to the ideal gas isotherm (2.34) for concentrations
significantly below KL

D (i.e. C� 1/KL). Similar to insoluble monolayers, adding an
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interaction term to the surface chemical potential of the Langmuir form gives the
Frumkin isotherm. Other models of monolayers that equilibrate with ideal surfactant
solutions are reviewed by Kralchevsky et al. (2008), summarized in table 1 and
illustrated in figure 5. All but the (purely empirical) Freundlich isotherm reduce to
ideal gas monolayers at sufficiently low C.

Alternatively, surfactants dissolved in solution may show non-ideal behaviour.
The most common example is micellization: above a critical micelle concentration
(CMC), some surfactants spontaneously aggregate to form micelles. Spherical
micelles are most common, but cylinders (‘wormlike micelles’), lamellae and
vesicles can also form, depending on molecular morphology and intermolecular
forces (Myers 2006; Israelachvili 2011). The energetics, kinetics, and morphology
of micelles is a broad and well-studied topic that is beyond the scope of this review.
We will merely point out that at equilibrium and above the CMC, the chemical
potential of surfactant monomers, µb(C), must equal the chemical potential of
surfactant molecules in micelles, µmic(C), both of which in turn must equal
the chemical potential µs(Γ ) of adsorbed surfactant molecules. In other words,
micellization provides an energetic alternative to further interfacial adsorption: once
conditions favour micelle formation, adding further surfactant to solution tends
to form additional micelles, rather than increase interfacial concentration. Indeed,
identifying the bulk concentration at which the surface tension, and ostensibly the
surface concentration, becomes approximately constant is a common method for
measuring the CMC.

2.4.1. Gibbs isotherm
It is frequently difficult to measure the surface concentration Γ of soluble

surfactants; more common is to measure surface pressure Π (or, equivalently,
surface tension γ ) as a function of subphase concentration C. In such cases, the
Gibbs adsorption isotherm allows Γ to be derived from measured Π(C) relations
(Martínez-Balbuena et al. 2017). The Gibbs relation connects changes in surface
pressure Π to changes in the chemical potential µs of adsorbed surfactants at
concentration Γ , via (Adamson 1990; Myers 2006; Kralchevsky et al. 2008)

dΠ =−dγ = Γ dµs. (2.38)

The chemical potential of adsorbed surfactants µs is difficult to determine directly
since Γ is unknown for soluble surfactants. However, when bulk and adsorbed
surfactants are equilibrated, µs must be equal to µb for the dissolved surfactants.
In cases where the surfactant solution is dilute enough to behave as ideal, µb(C) is
given by (2.30), in which case

dµ= dµs = kBT d ln C. (2.39)
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The Gibbs relation (2.38) then gives

Γ (C)=
1

kBT
∂Π

∂ ln C

∣∣∣∣
T

. (2.40)

In other words, the adsorbed surfactant concentration Γ can be determined
from measurements of surface pressure Π as a function of dissolved surfactant
concentration C, so long as the system has equilibrated, and the concentration is
well below the CMC (Martínez-Balbuena et al. 2017).

2.4.2. Compressibility: E and E0 for soluble surfactants
The distinction between the Gibbs and Marangoni moduli, E and E0, defined by

(2.21) and (2.22) respectively, becomes significant for soluble monolayers. Recall
that E tracks surface pressure changes when the monolayer area A is changed,
whereas E0 additionally holds the number N of adsorbed surfactant molecules
fixed – meaning Γ changes when A does. Compressing monolayers of soluble
surfactants raises the chemical potential µs of the adsorbed surfactants, without
changing the concentration or chemical potential µb(C) of the dissolved surfactant.
A thermodynamic force drives adsorbed surfactants to desorb, until Γ returns to
the value predicted by (2.29). Once equilibrium is re-established, Γ returns to its
initial value, so that

Esoluble(t→∞)=−A
∂Π

∂A

∣∣∣∣
t→∞

= 0. (2.41)

How quickly the interface re-equilibrates cannot be determined from thermodynamic
properties alone, as discussed in § 3.2.

Soluble surfactant monolayers do have a non-zero Marangoni modulus E0,
however. After all, Γ (and therefore Π ) must increase during a rapid compression
of a Gibbs monolayer, before the surfactants have had the chance to desorb. The
Gibbs adsorption equation (2.40), however, offers a route to E0 for soluble surfactant
monolayers from measured Π(C) isotherms

E0 = Γ
∂Π

∂Γ
= Γ

∂Π

∂ ln C
∂ ln C
∂Γ

. (2.42)

Substituting Γ and ∂Γ /∂ ln C using (2.40) gives

E0 =
(Π ′)2

Π ′′
, or

1
E0
=−

(
1
Π ′

)′
, (2.43a,b)

where primes denote differentiation with respect to ln C.
While the Gibbs modulus E describes the monolayer’s mechanical response to

macroscopic compression or expansion (dA), the Marangoni modulus E0 reflects
sensitivity to intrinsic molecular concentrations Γ , and will play an important role
in establishing an effective surface dilatational viscosity for surfactant monolayers,
as shown in § 4.2.
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2.4.3. Soluble isotherms via dynamic equilibrium
Equilibrium between surfactants adsorbed at an interface and dissolved in the

subphase can also be determined by explicitly balancing adsorption and desorption
fluxes. This approach holds particular value to the fluid mechanics community, as
it connects the equilibrium arguments and measurements made above to Marangoni
stresses and dynamical processes in surfactant systems.

The simplest expressions for adsorption and desorption fluxes – which one should
expect to hold for ideal mixtures in both the monolayer and in the bulk – is to
take the adsorption flux, ja, to be proportional to the bulk concentration C, and the
desorption flux jd to be proportional to the adsorbed concentration Γ :

ja = kaC, (2.44)

jd = kdΓ . (2.45)

These fluxes balance at equilibrium, ja = jd, giving

Γ ideal
=

ka

kd
C≡K idealC, (2.46)

reproducing the Henry isotherm (2.32). Previously, the adsorption constant K ideal

was shown to depend upon the free energy of adsorption 1µ=µ0
b −µ

0
s via (2.33).

Equation (2.46) additionally relates K ideal to the ratio of adsorptive to desorptive
rate constants ka/kd. Each individual rate constant ka and kd cannot be determined
from an equilibrium quantity like K; however, the ratio of the two is set by
thermodynamics.

Other isotherms require different adsorption and/or desorption rate kinetics. For
example, the Langmuir isotherm (2.35) is formed when dissolved surfactants adsorb
to vacant lattice sites (Levich 1962; Adamson 1990; Kralchevsky et al. 2008),
modifying the adsorption flux (2.44) to

j L
a = kaC(Γ∞ − Γ ). (2.47)

At equilibrium, jL
a = jd, so that

kaC
kd
=

Γ L

Γ∞ − Γ L
, (2.48)

recovering (2.35) with K = ka/kd. Adsorption and desorption fluxes for other
common isotherms are listed in table 2.

This dynamic equilibrium approach forms a natural transition into § 3, which
addresses the dynamic response of surfactant-laden interfaces when they are driven
out of equilibrium. Specifically, we will describe how fluid flow transports surfactant
molecules in the bulk and on the interface, and how the tendency of surfactant
molecules to re-equilibrate in turn impacts interfacial fluid dynamics.
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Isotherm Adsorption flux, ja Desorption flux, jd

Henry kaC kdΓ

Freundlich kaKm−1Cm kdΓ

Langmuir kaC(Γ∞ − Γ ) kdΓ

Volmer kaC(Γ∞ − Γ ) kdΓ exp
[

Γ

Γ∞ − Γ

]
Frumkin kaC(Γ∞ − Γ ) kdΓ exp

[
−
βΓ

kBT

]
van der Waals kaC(Γ∞ − Γ ) kdΓ exp

[
Γ

Γ∞ − Γ
−
βΓ

kBT

]
TABLE 2. Example adsorption and desorption fluxes for the isotherms detailed in table 1.
Because only the ratio of ja and jd is constrained by equilibrium thermodynamics, each pair
( ja and jd) in this table may be multiplied by any function of C and Γ without changing
its equilibrium isotherm. Different surfactants with identical isotherms may respond very
differently under dynamic conditions.

3. Dynamic properties

So far, we have assumed that interfacial deformations have been ‘slow enough’, or
that we have waited long enough, that the surfactants have remained in quasi-steady
equilibrium, instantaneously redistributing and/or adsorbing and desorbing to equili-
brate with the bulk liquid beneath them. However, these processes take time. Various
dynamic surfactant processes arise in systems driven out of equilibrium, modifying
the behaviour of even the simplest systems. Figure 1, for example, highlights the
dynamic surfactant processes that impact a rising gas bubble. Convective flow
along the fluid interface sweeps surfactants to the rear as the bubble rises. The
resulting concentration gradients generate Marangoni stresses that act to oppose the
motion that created them. Surface diffusion smooths out non-uniform distributions of
surface concentration, as does surfactant exchange with the bulk, thereby reducing
the strength of Marangoni flows. Additionally, surface excess rheological stresses
might arise as insoluble surfactant monolayers are sheared or compressed.

Interpreting, predicting and engineering these surfactant systems then necessitates
a thorough understanding of the interplay between physically distinct transport
processes. Our objective in this section is to provide an introduction to the physics
and the mathematical machinery that govern the out-of-equilibrium behaviour of
surfactant systems. We will start with the governing equations of surfactant transport
(§ 3.1), discuss the competition between diffusion and adsorption/desorption kinetics
in surfactant exchange between bulk and adsorbed states (§ 3.2), outline the origins
of Marangoni stresses and characterize its strength relative to other processes (§ 3.3)
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and finally describe the fluid mechanics of systems with a non-zero surface excess
viscosities (§ 3.4).

3.1. Governing equations

Our discussion thus far has centred on the equilibrium properties of surfactants.
Of particular interest to the fluid dynamics community, on the other hand, is
the coupling between the surfactants and the fluids surrounding the interface.
Conservation equations for the mass and momentum of the bulk fluid are well
known,

ρ
Dv

Dt
=−∇p+ η∇2v, (3.1a)

∇ · v = 0, (3.1b)

with ρ the fluid density, η the shear viscosity, v the fluid velocity and p the pressure.
At first glance, boundary conditions seem to be fairly straightforward. The

kinematic boundary condition relates the fluid velocity normal to an interface to the
deformation velocity of that interface (Leal 2007): a fluid interface located at rs(t)
is defined by

Φ(rs, t)= 0, (3.2)

with unit normal

n=
∇Φ

|∇Φ|

∣∣∣∣
rs

, (3.3)

and requires

n · v(rs)=−
1
|∇Φ|

∂Φ

∂t

∣∣∣∣
rs

. (3.4)

Likewise, the fluid velocity at the interface, u, generally obeys the no-slip
condition

u(rs)= v(rs). (3.5)

In general, the stress boundary condition is more complicated. Conservation of
momentum at the interface gives (Slattery, Sagis & Oh 2007)

ρs
Du
Dt
= n · [[σ ]] +∇s · σs, (3.6)

where ρs is the surface mass density, [[σ ]]= σupper− σlower is the hydrodynamic stress
jump across the interface with n pointing into the ‘upper’ fluid and ∇s= (I −nn) ·∇
is the surface gradient operator. The surface stress tensor is

σs = γ I s + τrheol, (3.7)

where γ is the local surface tension, I s = I − nn is the surface identity tensor and
we have included surface rheological stresses τrheol in anticipation, but defer detailed
discussion to § 3.4.
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Neglecting fluid and surfactant inertia, the interfacial stress balance (3.6) becomes

− n · [[σ ]] =∇s γ − γ (∇s · n)n+∇s · τrheol. (3.8)

The tangential component of (3.8) reveals that imbalances between viscous shear
stress can be driven by (or balance) both Marangoni stresses (§ 3.3) and surface
rheological stresses (§ 3.4). The normal component of (3.8) reduces to the Young–
Laplace equation (2.6) in a static system (σ = −p I) if surface rheological stresses
are absent.

The interfacial stress boundary condition (3.8) depends on the surface tension γ
(or surface pressure Π ), which in turn depends on adsorbed surfactant concentration
Γ (rs, t) via some isotherm, as described in § 2.3. Still, the concentration profile of
adsorbed surfactant Γ changes in space and time, and must therefore be determined.
To do so requires addressing dynamic questions of surfactant transport: convective
and diffusive transport along the interface, adsorption and desorption of surfactant
between the interface and the bulk solution(s).

Adsorbed surfactant evolves according to a conservation equation

∂Γ

∂t
=−∇s · ( jD + uΓ )+ jn, (3.9)

where jD represents the diffusive flux along the interface, and uΓ represents the
surface advective flux. The final term jn accounts for the local ‘production’ or
‘consumption’ of adsorbed surfactant, typically driven by adsorptive and desorptive
exchange between the bulk solution and the interface. If more surfactant adsorbs to
a spot on the interface than desorbs from that spot, then Γ grows (and jn > 0) at
that spot.

A common form of this equation, as formally derived by Aris (1962) and Stone
(1990), assumes constant surface diffusivity Ds, and reads

∂Γ

∂t
+∇s · (Γ us)+ Γ (∇s · n)(u · n)=Ds∇

2
s Γ + jn, (3.10)

where us is the in-plane surface velocity

us = (I − nn) · v(rs)= (I − nn) · u. (3.11)

In what follows, we will discuss subtleties and assumptions built into this expression,
as well as generalizations.

3.1.1. Surface advection
The surface advective flux can be decomposed into components normal to the

interface, and components along the interface

uΓ = n(n · u)Γ + (I − nn) · uΓ , (3.12)
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and therefore has surface divergence

∇s · (uΓ )= Γ (∇s · n)(u · n)+∇s · (usΓ ), (3.13)

as in (3.10). The first term captures the compression or dilation of surfactant that
occurs when curved interfaces (∇s · n 6= 0) themselves deform (due to non-zero
normal interfacial velocities), and the second term captures the compression or
dilation arising from non-uniform convective flux within the plane of the interface.

3.1.2. Surface diffusion
The standard expression for the diffusive flux of adsorbed surfactant along a

surface, used to derive (3.10), has a Fickian form,

j Fick
D =−Ds∇s Γ , (3.14)

A diffusive flux of this form, however, is built on assumptions that are rarely
accurate in systems of practical interest.

A brief derivation of the diffusive flux highlights conditions under which the
Fickian form holds. Because the chemical potential µ(Γ , T) represents the free
energy ‘cost’ of an adsorbed surfactant at concentration Γ and temperature T ,
any spatial gradients in µ point toward more ‘costly’ locations for surfactants to
be placed. A chemical potential gradient thus represents a thermodynamic force
(f s = −∇s µ) on an adsorbed surfactant, which drives it to migrate along the
interface, with relative velocity

V − us =−bs∇s µ=−
Ds

kBT
∇s µ, (3.15)

where bs is the hydrodynamic mobility of the surfactant along the surface, and is
related to its self-diffusivity by the Stokes–Einstein relation (Saffman & Delbrück
1975; Furst & Squires 2017)

Ds = kBTbs. (3.16)

Each surfactant molecule moves with velocity (3.15) along the surface, so that a
single-component monolayer of surface concentration Γ establishes a flux

jD =−
Ds

kBT
Γ∇s µ=−

(
Ds

kBT
Γ
∂µ

∂Γ

)
∇s Γ (3.17)

relative to the interface. In multi-component monolayers, the chemical potential
of each species depends on the surface concentration of every other component,
and the term in brackets in (3.17) is replaced by a generalized Maxwell–Stefan
diffusivity tensor (Krishna 1990). In what follows, we restrict our discussion to
single-component monolayers.
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The Fickian form (3.14) holds only for the ideal gas monolayer, for which µ=
µideal

s (Γ ) from (2.27), and therefore

∂µideal
s

∂Γ
=

kBT
Γ
, (3.18)

so that the diffusive flux (3.17) reduces to Fick’s law (3.14). As discussed in § 2.3,
however, it is rare for any surfactant that reduces surface tension in any appreciable
way to behave as an ideal gas. The Fickian form, then, rarely holds as explicitly
derived. Of course, one can define an effective diffusivity

Deff
s (Γ )=

Ds

kBT
Γ
∂µ

∂Γ
, (3.19)

which differs from the true self-diffusivity of each surfactant molecule. If gradients
are small enough that Deff

s is approximately constant, then the Fickian form would
be appropriate, albeit with a modified diffusivity.

The effective surface diffusivity Deff
s can be shown using (2.22) and (2.23) to

exceed the Fickian self-diffusivity by the Marangoni modulus E0(Γ ) relative to an
ideal gas monolayer

jD =−Ds
E0(Γ )

kBTΓ
∇s Γ ≡−Ds

E0(Γ )

Eideal
0
∇s Γ . (3.20)

The diffusive flux expressions for the Langmuir and Volmer isotherms (table 1), for
example, become

jL
D =−

Ds

1− Γ /Γ∞
∇s Γ and jV

D =−
Ds

(1− Γ /Γ∞)2
∇s Γ . (3.21a,b)

Curiously, the diffusive flux of adsorbed surfactant within single-component
monolayers can be expressed in terms of surface pressure gradients alone. The
Gibbs adsorption relation (2.38) directly implies

Γ∇s µ=∇s Π, (3.22)

which can be substituted for Γ∇s µ in (3.17) to give a diffusive flux

jD =−bs∇s Π, (3.23)

which appears to be independent of the surface concentration Γ ! Although this
result seems counter-intuitive at first, it can be understood physically as follows.
The surface pressure gradient gives the force per unit area exerted on the surfactant
monolayer, which is divided among Γ molecules per unit area. The greater the
concentration Γ of adsorbed surfactant, the weaker the force on each (Fs∼∇Π/Γ ),
and the slower each migrates: V ∼ bs(∇s Π/Γ ). Ultimately, the concentration Γ

cancels out of the flux ΓV in (3.23).
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C

˝

n

√

us

Jcon√ ¡ us˝

us

�̋  ¡ -˝ (R�/R)

C0

Cs
ja jd

jdiff

Ld

Jdiff ¡ Ds (™˝/™x)

�̋ ¡ jn( ja, jd, jdiff)

(a) (b) (c)

(d) (e)

FIGURE 6. (a) Geometry of a typical surfactant-laden interface. (b–e) Mass transport
processes on the interface: (b) convection due to imposed (or Marangoni) velocity us;
(c) diffusion due to a surface concentration gradient; (d) surface concentration evolution
due to curvature modification; and (e) adsorption/desorption from the sublayer, showing
the depletion length Ld.

3.2. Adsorption/desorption

The final term in the surfactant conservation equation, jn, accounts for exchange
of molecules between the bulk and the interface. At equilibrium, adsorption and
desorption fluxes balance each other (§ 2.4.3). For an interface out of equilibrium,
the difference between ja and jd represents a kinetic flux of surfactant entering or
leaving the interface

jkin = ja(Γ ,Cs)− jd(Γ ,Cs), (3.24)

where

Cs =C(rs, t) (3.25)

is the surfactant concentration in the bulk fluid, evaluated at the interface (figure 6e).
Table 2 gives ja and jd corresponding to the common isotherms described in § 2.3
and table 1.

Departures from a constant equilibrium concentration C0 also drive surfactant
transport in the bulk, governed by the convection–diffusion equation

∂C
∂t
=D∇2C− v · ∇C. (3.26)

Concentration gradients in the bulk may drive a diffusive flux of surfactants onto or
off the interface, via

jdiff =Dn · ∇C|rs, (3.27)

where n is normal to the interface and points into the bulk fluid containing the
surfactant. Surfactant conservation requires this diffusive flux (3.27) to balance the
kinetic flux of adsorption/desorption to the interface (3.24), both of which equal the
source term in the surface conservation equation (3.10):

jn = jkin = jdiff . (3.28)
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˝

˝

†k

Cs = C0

C0

Cs

Ld

†d

Diffusion
limited

†s £ †d ≫ †k

Kinetically
limited

†s £ †k ≫ †d

˝0

˝0

˝0 - ∂˝

ø†s ≪ 1

ø†s ≫ 1

‘Fast’ adsorption

‘Slow’ adsorption

ø

(a)

(b)

(c)

(d)

(e)

FIGURE 7. (a) A surfactant-covered bubble oscillating in a liquid containing dissolved
surfactant. (b) If surfactant exchange is negligibly slow, the number of adsorbed molecules
is unchanged (or the surface concentration changes by δΓ ). (c) By contrast, rapid
surfactant exchange equilibrates the surface so that Γ (t) ≈ Γ0 and δΓ ≈ 0. Surfactant
exchange can be (d) diffusion controlled or (e) kinetically controlled if either process is
rate limiting.

If either adsorption kinetics or diffusion is so slow as to act as the rate-limiting
step, then the surfactant exchange flux jn may be approximated by that process
alone. In diffusion-limited adsorption, for example, the time scale τk associated with
adsorption kinetics is negligibly short compared to the time scale τd for diffusion
from the bulk. In that limit, the concentrations Γ (rs, t) and C(rs, t) of adsorbed and
bulk surfactant are assumed to equilibrate instantaneously, so that jkin is ignored
and diffusion-limited adsorption is governed by (3.26)–(3.27) alone. By contrast,
adsorption is kinetically limited when τd� τk, in which case diffusion smooths bulk
concentration gradients instantly, so that Cs(t) ≈ C0 and adsorption is governed by
(3.24) alone.

In what follows, we examine dynamic adsorption in a model system that is
particularly illustrative and relatively straightforward: surfactant dynamics on the
interface of an oscillating gas bubble (Lucassen & van den Tempel 1972; Johnson
& Stebe 1994; Ravera, Loglio & Kovalchuk 2010; Kotula & Anna 2016). Beyond
its paedagogic value, pulsing bubbles form the basis for a powerful experimental
technique to characterize complex fluid interfaces.

3.2.1. Adsorption/desorption to an oscillating bubble
Here we adapt the work of Johnson & Stebe (1994), who considered oscillations

of a bubble with rest radius R0 and equilibrium surface concentration Γ0 in a
liquid containing dissolved surfactant at concentration C0 (figure 7). The bubble
radius changes in response to a controlled oscillation of gas volume or pressure.
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Assuming departures from equilibrium to be small, the radius, surface concentration
and bulk concentration are perturbed via

R(t)= R0 + δReiωt, Γ (t)= Γ0 + δΓ eiωt, C(r, t)=C0 + δC(r)eiωt. (3.29a−c)

The surfactant conservation equation (3.10) for purely radial oscillations becomes

∂Γ

∂t
+

2urΓ

R
= jn, (3.30)

where ur = dR/dt is the radial velocity at the interface. Perturbing (3.30) via (3.29)
gives [

iωδΓ + iωδR
2Γ0

R0

]
eiωt
= jn. (3.31)

In systems where the surfactant is insoluble (for which jn= 0), the change in surface
concentration is

δΓinsol =−
2Γ0

R0
δR. (3.32)

We define Cs and δCs as the bulk concentration and the amplitude of its oscillatory
perturbation at the interface

Cs(t)=C(R, t), and δCs = δC(R). (3.33a,b)

Because the convective term in the bulk transport equation (3.26) is quadratic in
perturbed quantities, the bulk concentration C obeys the diffusion equation to leading
order, with solution

C(r, t)=C0 + δCs
R
r

e
√

iω/D(R−r)eiωt, (3.34)

where δCs is as yet unknown. The diffusive flux (3.27) onto the interface,

jdiff =D
∂C
∂r

∣∣∣∣
R(t)

=DδCs

[
−

1
R0
−

√
iω
D

]
eiωt, (3.35)

must equal the kinetic flux jkin (3.24), which is given to leading order by

jkin = (kCδCs − kΓ δΓ ) eiωt. (3.36)

Here

kC(C0, Γ0)=
∂ja

∂C

∣∣∣∣
Γ0,C0

−
∂jd

∂C

∣∣∣∣
Γ0,C0

, (3.37a)

kΓ (C0, Γ0)=
∂ja

∂Γ

∣∣∣∣
Γ0,C0

−
∂jd

∂Γ

∣∣∣∣
Γ0,C0

(3.37b)

are effective rate constants associated with the equilibrium exchange fluxes
(e.g. table 2). The ratio of kC and kΓ has units of length and is defined as the
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depletion depth

Ld =
kC

kΓ
. (3.38)

For example, the (linear) Henry isotherm (table 1) has kC = ka and kΓ = kd, so that
the depletion depth is a constant equal to the equilibrium adsorption constant: Ld =

K ideal.
Equating the diffusive (3.35) and kinetic fluxes (3.36) relates δCs to δΓ :

δCs =
kΓR0

D+ kCR0 +
√

iωR2
0D
δΓ =

Da

1+Da+
√

iWo

δΓ

Ld
, (3.39)

where the mass transfer Womersley number Wo and Damköhler number Da are

Wo=
diffusion time

oscillation period
=
ωR2

0

D
, (3.40a)

Da=
diffusion time

adsorption time
=

kCR0

D
. (3.40b)

Then, using (3.39) in (3.35) or (3.36) to eliminate δCs and determine jn in terms
of δΓ , and substituting into the surface conservation equation (3.31) reveals δΓ to
be

δΓ

δΓinsol
=

[
1− i St

(
1+
√

i Wo

1+
√

i Wo+Da

)]−1

, (3.41)

where the Stanton number St is defined by

St=
oscillation period
desorption time

=
kΓ
ω
. (3.42)

The Damköhler number controls the transition from kinetically limited (Da� 1)
to diffusion-limited (Da� 1) surfactant exchange. In what follows (§§ 3.2.2–3.2.3),
we consider kinetically and diffusion-controlled regimes separately. For later use, we
rewrite the surfactant exchange flux, from (3.35) or (3.36), as

jn = jdiff = jkin =−

[
1+
√

i Wo

1+
√

i Wo+Da

]
kΓ δΓ eiωt. (3.43)

3.2.2. Kinetically limited mass transfer (Da� 1)
Adsorption is kinetically limited (Da� 1) when molecular exchange between the

interface and the subsurface layer is significantly slower than surfactant diffusion
through the bulk. In this limit, the subphase concentration is approximately uniform:
(3.39) gives δCs→ 0 as Da→ 0, implying Cs(t)≈C0 (figure 7e).

Setting Da= 0 in (3.41) gives the perturbed surface concentration

δΓkin

δΓinsol
=

1
1− i St

=
1

1+ St2
+ i

St
1+ St2

. (3.44)
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FIGURE 8. (a) Real (solid line) and imaginary (broken line) components of the perturbed
surface concentration for kinetically limited adsorption (Da→ 0) to an oscillating bubble,
from (3.44). (b) Surface concentration in diffusion-limited mass transfer (Da→∞), from
(3.50). Λd = 0 represents a planar interface following (3.48). The vertical dashed lines
show locations where 2Λdζ

2
d = 1 when Λd & 1, indicating modified diffusion times for

small bubbles via (3.53).

The St → 0 limit corresponds to oscillations so rapid that surfactants do not
have the times to adsorb or desorb, so that the monolayer behaves as if it were
insoluble: δΓkin → δΓinsol. By contrast, the St→∞ limit occurs when surfactants
adsorb/desorb much faster than bubble oscillations. In that case, δΓkin→ 0 and the
interface maintains its equilibrium concentration Γ (t)≈ Γ0.

Time scales for bubble oscillation and adsorption/desorption are comparable
when St ∼ O(1), which defines the characteristic time scale for kinetically limited
adsorption:

τk =
1

kΓ
. (3.45)

For finite τk (or finite St), δΓkin is always smaller than δΓinsol (figure 8a).
Additionally, the surface concentration lags the bubble radius by a phase shift
tan−1(St).

When kinetically limited (Da→ 0), the adsorption flux (3.43) becomes

jn(Da→ 0)=−kΓ δΓ eiωt
=
Γ0 − Γ (t)

τk
. (3.46)

Throughout this work, we will use (3.46) as the kinetically limited sorptive flux for
small departures from equilibrium.

3.2.3. Diffusion-limited mass transfer (Da� 1)
In diffusion-controlled surfactant exchange, adsorption kinetics are so fast that Γ

equilibrates with the subsurface concentration Cs effectively instantaneously, via the
appropriate isotherm Γ (Cs) (figure 7d). In this limit, jkin can be ignored, so that
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jn = jdiff . The depletion depth Ld follows by expanding Γ (Cs) around Γ0(C0), and
taking the Da→∞ limit of (3.39) to give

∂Γ

∂Cs

∣∣∣∣
Γ0,C0

=
δΓ

δCs

∣∣∣∣
Da→∞

= Ld, (3.47)

which we non-dimensionalize by the bubble radius R0 to give

Λd =
Ld

R0
=

Da
St Wo

. (3.48)

The perturbed surface concentration (3.41) in the diffusion-controlled limit
(Da→∞) is then

δΓdiff

δΓinsol
=

ΛdWo

ΛdWo− i− i
√

i Wo
, (3.49)

which can be expressed as

δΓdiff

δΓinsol
=

1+ ζd + iζd(1+ 2Λdζd)

1+ 2ζd + 2ζ 2
d (1+ 2Λdζd + 2Λ2

dζ
2
d )
, (3.50)

where

ζd =
1
Λd

√
1

2Wo
=

1
Ld

√
D
2ω

(3.51)

is a dimensionless ratio of the diffusive oscillatory boundary layer thickness δBL =
√

D/2ω to the depletion depth Ld.
Bubbles with radii much larger than the depletion depth (Λd � 1) behave like

planar interfaces. Indeed, (3.50) recovers the celebrated results of Lucassen & van
den Tempel (1972) in the Λd → 0 limit, which we examine in detail in § 4.2.1.
Adsorbed surfactants on a planar interface (Λd→ 0) act as effectively insoluble if
molecules in the subphase diffuse far less than the depletion depth in one oscillation
(ζd � 1). Conversely, the surface concentration remains close to its equilibrium
value (δΓdiff → 0) if molecules diffusively escape Ld during an oscillation (ζd� 1).
Interfacial oscillations and diffusive mass transfer are comparable when ζd = O(1),
which reveals the characteristic time scale for diffusion-limited mass transfer in the
planar limit (Λd→ 0) to be

τd,p = τd(Λd→ 0)=
L2

d

D
. (3.52)

Diffusive mass transfer is sensitive to interfacial curvature when Λd & 1, as shown
in figure 8(b). The perturbed surface concentration δΓdiff still vanishes if diffusion
is fast (ζd � 1) and approaches the insoluble limit if diffusion is slow (ζd � 1).
However, the transition occurs around Λdζ

2
d =O(1), where

2Λdζ
2
d =

D/LdR0

ω
∼

oscillation period
diffusion time across

√
LdR0

, (3.53)
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which reveals the characteristic time scale of diffusive-controlled surfactant exchange
for small bubbles (Λd & 1)

τd,s = τd(Λd & 1)=
LdR0

D
=
τd,p

Λd
. (3.54)

Indeed, experiments and simulations show a smooth transition from τd,p to τd,s with
decreasing bubble radius (Alvarez, Walker & Anna 2010a,b).

Finally, the diffusion-limited surfactant exchange flux follows from the Da→∞
limit of (3.43). For small bubbles (R2

0� D/ω, or Wo � 1), the net adsorption flux
is

jn(Da→∞)≈−
kΓ
Da
δΓ eiωt

=−
D

LdR0
δΓ eiωt

=
Γ0 − Γ (t)
τd,s

, (3.55)

which has the same form as (3.46), but with the diffusion-controlled time scale τd,s

in place of the kinetically controlled time scale τk. For the same reasons, δΓdiff

(Λd� 1) from (3.50) is identical to δΓkin from (3.44) with 2Λdζ
2
d in place of St.

In other words, diffusion-limited mass transfer to small bubbles ‘looks like’ it is
kinetically limited, albeit with a characteristic time scale τd,s that depends on the
bubble radius via (3.54).

To summarize, the characteristic sorption time τs is

τs =


τk = 1/kΓ , Da� 1,

τd,p = L2
d/D, Da� 1 and R0� Ld,

τd,s = LdR0/D, Da� 1 and R0 . Ld.

(3.56)

In systems with dynamic interfaces, the mechanical response of a surface to
deformation depends not only on the equilibrium properties of the surfactant
(such as E0, § 2.3.1), but also on the adsorbed concentration profile Γ (rs, t) at
any particular position and time. In § 4.2, we will again use the oscillating gas
bubble example to quantify the apparent viscoelasticity of soluble monolayers, and
its dependence on surfactant properties such as kΓ , kC, D and E0.

3.2.4. Adsorption to a clean interface
So far, we have discussed surfactant transport on interfaces that are perturbed

only slightly from equilibrium. Ward & Tordai (1946) pursued a complementary
problem: the diffusion-limited mass transfer to an initially clean planar interface.
More recently, Jin, Balasubramaniam & Stebe (2004) and Alvarez et al. (2010a,b)
established the critical role of interfacial curvature on surfactant transport. In what
follows, we explore their calculations of surfactant exchange to an initially clean
static bubble, in both diffusion- and kinetically limited regimes.

The system is the same as in § 3.2.1, except that the bubble interface is stationary,
R(t) = R0, and is initially clean: Γ (0) = 0. Surfactant is dissolved in the bulk at
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concentration C0, and the subsurface concentration is C(R, t) = Cs(t). The surface
conservation equation (3.10) with the diffusive flux jdiff from the bulk is

∂Γ

∂t
=D

∂C
∂r

∣∣∣∣
r=R

, (3.57)

where C(R, t) follows from the solution of the bulk diffusion equation. Laplace
transforming (3.57), denoted by tildes, gives

sΓ̃ =D
∂C̃
∂r

∣∣∣∣∣
r=R

, (3.58)

where s is the Laplace transform variable. Laplace transforming the bulk diffusion
equation gives

sC̃−C0 =D∇2C̃, (3.59)

with solution

C̃(r, s)=
C0

s
+

C1

r
e−r
√

s/D, (3.60)

where C1 is as yet unknown. Evaluating (3.58) with (3.60), then eliminating C1 in
(3.60) in favour of Cs gives

Γ̃ (s)=
√

D

[
C0

s3/2
−

C̃s(s)
√

s

]
+

D
R

[
C0

s2
−

C̃s(s)
s

]
. (3.61)

Finally, inverting the Laplace transform of (3.61) gives

Γ (t)=

√
D
π

[
2C0
√

t−
∫ t

0

Cs(t′)
√

t− t′
dt′
]
+

D
R

[
C0t−

∫ t

0
Cs(t′) dt′

]
. (3.62)

The first term on the right-hand side reflects the solution of Ward & Tordai (1946)
for adsorption onto a clean planar interface, whereas the last two terms reflect
interfacial curvature (Jin et al. 2004; Alvarez et al. 2010a).

The generalized Ward–Tordai result (3.62) is an implicit integral relation between
Γ (t) and the yet undetermined subsurface concentration Cs(t). Solving for the
surface concentration requires another relationship between Γ (t) and Cs(t), which
follows from the kinetic flux condition (3.24). However, inverting this relation is
not straightforward except for the simplest kinetic flux expressions, and is typically
solved numerically (Jin et al. 2004; Alvarez et al. 2010a). For example, the 2-D
ideal gas assumption (table 2) gives

∂Γ

∂t
= kaCs − kdΓ , (3.63)

with Laplace transform

sΓ̃ = kaC̃s − kdΓ̃ . (3.64)
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In principle, eliminating C̃s between (3.64) and (3.61), and inverse Laplace
transforming Γ̃ (s) gives an explicit expression for Γ (t). In fact, Hansen (1961)
employs this strategy to examine adsorption to a planar interface (R→∞).

Even for the simplest kinetic flux (3.63), however, adsorption to a spherical
interface is intractable at arbitrary Damköhler number. Instead, we highlight the
kinetically controlled (Da� 1) and diffusion-controlled (Da� 1) limits individually,
by ignoring jdiff and jkin, respectively. These limits are easier to calculate, and are
illustrative in light of the discussion around oscillating bubbles in the previous
section. For later use, we note that the equilibrium surface concentration following
(3.63) is

Γeq = LdC0, (3.65)

with depletion depth

Ld =
ka

kd
=K ideal. (3.66)

When surfactant transport is kinetically limited, diffusion in the bulk is assumed
to be instantaneous, so that Cs(t) = C0. Laplace transforming (3.63) with Cs = C0

and using (3.65) gives

Γ̃kin(s)
Γeq

=
kd

s(s+ kd)
, (3.67)

with inverse
Γkin(t)
Γeq
= 1− e−kd t, (3.68)

which recovers the kinetically limited sorption time τk= 1/kd (3.45). At short times,
Γkin grows linearly with time, whereas Γkin approaches Γeq exponentially for t �
τk (figure 9a). As with adsorption to an oscillating bubble, kinetically limited mass
transfer is independent of bubble size.

By contrast, contact equilibrium is assumed between Γ (t) and Cs(t) when
adsorption is diffusion controlled, so that

Γdiff (t)= LdCs(t). (3.69)

Using the Laplace transform of (3.69) to eliminate C̃s in (3.61) gives

Γ̃diff (s)
Γeq

=
s1/2
+
√

D/R2

s3/2 + s
√

D/R2 + s2
√

L2
d/D

. (3.70)

Inverting (3.70) is laborious but straightforward, and yields

Γdiff (t)
Γeq

= 1+
1

β − α

[
αeα

2t erfc(α
√

t)− βeβ
2t erfc(β

√
t)
]
, (3.71)
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FIGURE 9. (a) Kinetically controlled adsorption (3.68) to an initially clean spherical
surface. (b) Diffusion-controlled adsorption (3.71) to a spherical surface. Adsorption occurs
over a faster time scale τd,s in smaller bubbles (Λd = Ld/R & 1), and approaches
equilibrium exponentially, rather than as 1/

√
t in the case of large bubbles (Λd→ 0).

where

α =

√
D

2Ld

(
1+

√
1− 4Λd

)
, β =

√
D

2Ld

(
1−

√
1− 4Λd

)
, (3.72a,b)

and Λd = Ld/R (3.48).
The large- and small-bubble limits of (3.70) are particularly illustrative. Bubbles

with radii much larger than the depletion depth (Λd→ 0) have

Γdiff (t)
Γeq

∣∣∣∣
Λd→0

= 1− eDt/L2
d erfc(

√
Dt/Ld), (3.73)

recovering the result of Hansen (1961) for a planar interface. Indeed, the character-
istic diffusion time in (3.73) is τd,p = L2

d/D, like in diffusion-limited adsorption
to large oscillating bubbles (3.52). Γdiff approaches Γeq algebraically at long times
(figure 9b), much more slowly than the exponential approach during kinetically
controlled adsorption (3.68).

When the bubble is much smaller than the depletion depth (Λd � 1), however,
surface concentration approaches equilibrium exponentially, via

Γdiff (t)
Γeq

∣∣∣∣
Λd�1

= 1− e−Dt/LdR. (3.74)

The characteristic diffusion time τd,s = LdR/D that emerges is the same (3.54)
that controls small, oscillatory bubbles. As with oscillating bubbles, diffusion-
limited adsorption to small bubbles (R � Ld) has the same form as kinetically
limited adsorption (3.68), except with τd,s replacing τk. As shown in figure 9(b),
diffusion-limited adsorption is faster for smaller bubbles, and Γdiff approaches Γeq

exponentially rather than algebraically over long times.
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Finally, convection in the bulk fluid further enhances the rate of diffusive
adsorption by ‘screening’ the characteristic diffusion length by the thickness of the
diffusion boundary layer δBL. Alvarez et al. (2012) demonstrated that the diffusion
time is indeed τ conv

d,p ∝ δ
2
BL for large bubbles, and τ conv

d,s ∝ δBL for smaller bubbles. This
scaling suggests strategies to further speed up diffusive surfactant transport using
flow, as the boundary layer thickness decreases with increasing bulk convection,
thereby increasing the range of measurable kinetic-limited adsorption (Alvarez et al.
2012).

3.3. Marangoni flows

Marangoni flows are driven by excess surface stresses due to gradients in surface
tension. Scriven & Sternling (1960) provide a historical perspective, beginning
with Plateau’s oscillating needle experiments on fluid interfaces, and subsequent
explanations by Marangoni and Gibbs. Non-uniform surface tension may arise
on surfactant monolayers due to surface convection of adsorbed surfactants or
inhomogeneous adsorption from the bulk. Surface tension gradients can also be
established by externally inducing gradients in properties that affect γ . For instance,
interfaces of droplets suspended in a fluid with background gradients in temperature,
surfactant concentration or electrostatic potential exhibit Marangoni flows, leading
to, respectively, thermo-, soluto- or electro-capillary motion (Squires & Quake 2005).
For simplicity, we assume throughout this article that gradients in temperature or
electrical charge do not arise on fluid interfaces, such that Marangoni flows are
driven by surfactant transport alone.

3.3.1. Surface concentration gradients and hydrodynamic coupling
Recall from § 3.1.2 that spatial gradients in the surface chemical potential µs

point to energetically unfavourable locations to place adsorbed surfactants. A
thermodynamic force f s=−∇µs drives surfactants down the gradient with a velocity
given by the molecule’s hydrodynamic mobility (3.15). However, a molecule moves
not only because it is forced, but also because its neighbours are forced, and drive
fluid flows that entrain the molecule. Readers familiar with suspension dynamics
will recognize hydrodynamic coupling in a 3-D fluid with background velocity V∞

Vi −V∞(ri)=
Fi

6πηRi
+

∑
j6=i

G(ri − rj) ·Fj, (3.75)

where the tensor G(ri − rj) gives the velocity at ri in response to a force Fj on a
particle centred at rj (Happel & Brenner 1965; Guazzelli & Morris 2012). In many
cases (e.g. sedimentation), the hydrodynamic coupling sum may overwhelm the ‘self-
mobility’ term.
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The precise analogue occurs at surfactant interfaces: the velocity of a surfactant
molecule at ri is a combination of the background velocity us, the ‘self’-mobility
and the hydrodynamic coupling, so that (3.15) is modified to include

Vi − us(ri)=−
Ds

kBT
∇s µ(ri)−

∑
j6=i

G(ri − rj) · Γ (rj)∇s µ(rj), (3.76)

where the final term reflects the surface velocity at ri, established by all neighbouring
surfactant molecules – with concentration Γ , each forced by −∇s µ. The Green’s
function G(ri − rj) in this case gives the fluid velocity on the interface at ri,
driven by a force at rj on the fluid interface. The precise form of the Green’s
function depends on the geometry of the interface, the subphase depth, etc. (§ 3.4.2)
The added velocity due to hydrodynamic interactions, however, corresponds to a
boundary integral solution (Pozrikidis 1992) to the Stokes equations, where the fluid
interface is driven by a specified traction:

f M ≡ n · σ |interface =−Γ∇s µ, (3.77)

which, using the Gibbs adsorption relation (3.22), becomes

f M =−∇s Π =∇s γ . (3.78)

The hydrodynamic coupling (3.76) between surfactant molecules is precisely equal
to the net convective velocity driven by surface tension gradients. In other words,
hydrodynamic coupling between surfactants is equivalent to the Marangoni flow
driven on the interface by the surfactant monolayer.

Surface pressure gradients can drive or balance viscous shear stress following
(3.78). Figure 10 illustrates two examples of the conjugate effects that usually go
by the name of Marangoni, both of which involve surfactant gradients. Gradients
in surface pressure may arise due to non-uniform surface concentrations Γ (rs), or
due to surface convective transport usΓ that establishes a concentration gradient.
Depositing surfactant on an initially clean interface (figure 10a) introduces a surface
concentration gradient ∇s Γ , and therefore a surface pressure gradient that exerts a
traction

f M = η
∂v

∂z

∣∣∣∣
z=0

=−∇s Π =−
∂Π

∂Γ
∇s Γ . (3.79)

Flows are therefore driven down surface pressure (or surface concentration)
gradients.

The functional form of Π(Γ ) depends on the particular surfactant isotherm (§ 2.4).
It is common practice to assume an ideal gas monolayer, for which the Marangoni
traction is

f ideal
M =−kBT∇s Γ . (3.80)

As discussed in § 2.3, however, the ideal gas assumption rarely holds in practice, and
more accurate models or measured values of ∂Π/∂Γ would be more appropriate.
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x
x xz

˝, Ô ˝, Ô

(a) (b)

FIGURE 10. Two conjugate effects commonly termed ‘Marangoni’ effects: (a) A local
increase in surfactant concentration, shown here by the addition of a surfactant-rich drop,
establishes a surface concentration gradient (and, therefore, a surface pressure gradient)
that drives an outward surface flow (red arrows). (b) Surface compression due to flow (in
this case, towards an interfacial barrier) establishes a surface tension gradient due to non-
uniform surface concentration. This introduces a reverse Marangoni flow that ‘immobilizes’
the surface.

For example, the Langmuir and Volmer isotherms give tractions

f L
M =−

kBT
1− Γ /Γ∞

∇s Γ and f V
M =−

kBT
(1− Γ /Γ∞)2

∇s Γ , (3.81a,b)

both of which recover the ideal gas limit when Γ � Γ∞.
The second example, shown in figure 10(b), resembles the so-called ‘Reynolds

ridge’ (Scott 1982) and involves flows that compress (or dilate) a surfactant-laden
fluid interface against a floating barrier. Such a flow creates surface concentration
gradients that act against the interfacial compression (or dilatation). Marangoni
stresses therefore act like surface-excess elasticity (Langevin 2014), working to
lessen surface compression or dilatation. In what follows, we quantify the degree
to which reverse Marangoni flows resist inhomogeneous surface compression.

3.3.2. Marangoni numbers and surface incompressibility
Surfactant monolayers are far more compressible than 3-D fluids. Compressing

an insoluble surfactant increases the surface concentration Γ and thus the surface
pressure Π . Additionally, many surfactants exhibit phase transitions (Kaganer,
Möhwald & Dutta 1999) and surface-pressure-dependent surface viscosity (Kurtz,
Lange & Fuller 2006; Kim et al. 2011) even under facile compression, as discussed
in § 5. However, inhomogeneous compression of a surfactant monolayer drives
reverse Marangoni flows that resist such deformations.

For example, a disk of radius R translating at velocity U within a planar
surfactant-laden interface compresses the monolayer ahead of the disk, and dilates
the monolayer in its rear (figure 11). The surfactant conservation equation for
insoluble surfactants (3.10) at steady state, in the absence of surface diffusion, gives

892 P1-41

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

17
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.170


H. Manikantan and T. M. Squires

Ô £ const.

Ô Ô

Soluble surfactant Insoluble surfactant
(a) (b) (c) (d)

FIGURE 11. Illustration of surfactant-induced incompressibility. (a) Motion of a probe
establishes a surface concentration gradient, shown in top and side views. In a soluble
monolayer with instantaneous adsorption/desorption, surface concentration gradients are
rapidly eliminated. (b) In this limit, 1Π ≈ 0 and reverse Marangoni flows are absent.
The surface flow has a non-zero divergence ahead and behind the disk. Bulk fluid flow
is indicated by the dashed arrows and is indistinguishable from that corresponding to
a stress-free clean interface. (c) By contrast, if the surfactant is insoluble, a surface
concentration gradient is sustained, and (d) the surface pressure difference 1Π generates a
reverse Marangoni flow that resists interfacial compression/dilatation. The modified surface
flow is divergence free, which changes the bulk flow by constraining it to flow in planes
parallel to the interface (see discussion).

the surface divergence

∇s · us =−
1
Γ

us · ∇s Γ =−
1
E0

us · ∇s Π, (3.82)

where E0 is the Marangoni modulus (2.22). Balancing the surface pressure gradient
∇s Π in (3.82) with traction on the subphase via the Marangoni boundary condition
(3.79) gives

∇s · us =
η

E0
us ·

∂v

∂z

∣∣∣∣
z=0

. (3.83)

Non-dimensionalizing gives a dimensionless surface divergence

∇̃s · ũs =
1

Ma
ũs ·

∂ ṽ

∂ z̃

∣∣∣∣
z̃=0

, (3.84)

where the Marangoni number

Ma=
E0

ηU
(3.85)

balances surface compressibility E0/R against viscous traction ηU/R.
In the large Marangoni number limit (Ma � 1), surfactant molecules resist

compression so strongly that the surface flow is effectively divergence free. In other
words, the surface is 2-D incompressible when the time scale to establish reverse
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Marangoni flows

τm =
ηR
E0

(3.86)

is much faster than the surface convection time scale τflow = R/U, so that
Ma= τflow/τm� 1. Surface pressure then acts as a Lagrange multiplier to maintain
surface incompressibility, much like bulk pressure in a 3-D fluid (figure 11). In
unidirectional surface flows, such as in figure 10(b), surface incompressibility
requires us to be constant. Marangoni flows then ‘immobilize’ the interface,
effectively modifying the interfacial boundary condition from a free surface
(∂v/∂z= 0) when Ma� 1 to a rigid surface (us = v(0)= const.) when Ma� 1.

Insoluble surfactants are almost always surface incompressible around translating
disks or particles. The Marangoni modulus of incredibly dilute monolayers
with Γ ∼ 1/(100 nm2) in the ideal gas limit is Eideal

0 = kBTΓ ∼ 0.04 mN m−1.
Even for such dilute monolayers with immeasurably small surface pressures
(Π ∼ 40 µN m−1), a disk or particle must translate faster than 4 cm s−1 before
Ma . 1 and the interface compresses. The Marangoni modulus of real surfactants
is much larger than Eideal

0 (table 1), with typical values of E0 & 1 mN m−1 (Arriaga
et al. 2010; Kotula & Anna 2016), so that insoluble monolayers are effectively
surface incompressible unless U & 1 m s−1.

Even the slightest amount of insoluble surfactant, therefore, fundamentally changes
the interfacial boundary condition on the bulk fluid flow. Stone & Masoud (2015)
illustrated the change in subphase flow by considering the continuity equation for
the bulk fluid at the interface,

∇ · v|z=0 =∇s · v|z=0 +
∂w
∂z
= 0, (3.87)

where w is the z-component of subphase fluid velocity v. At the interface, the
tangential velocity is v = us, and thus surface incompressibility implies ∂w/∂z= 0.
The vertical velocity w vanishes at z = 0 for an interface that does not deform
out of plane, and along with ∂w/∂z = 0 requires that w be zero throughout the
subphase. Surface incompressibility therefore constrains subphase fluid to flow in
planes parallel to the interface (figure 11d). Such flows set up stronger velocity
gradients, dissipating more energy than in surfactant-free systems, where flow in
the bulk is three-dimensional (figure 11b).

Insoluble surfactants therefore substantially modify subphase flow relative to
surfactant-free systems, increasing the translational resistance of particles within
monolayers. For example, the drag on a circular disk translating in an incompressible
monolayer exceeds the drag in a clean interface by a factor of 3/2 (§ 4.6). In some
cases, this increase in translational resistance has been misattributed to surface
rheology, going back to Plateau’s experiments with oscillating needles on interfaces
(Scriven & Sternling 1960), while in fact it arises due to Marangoni flows. Indeed,
surface incompressibility increases the hydrodynamic drag on translating probes
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even for a completely inviscid surfactant, causing significant confusion in the
measurement and interpretation of surface rheology of insoluble surfactants (Sickert
& Rondelez (2003), Fischer (2004a), and § 3.4).

Soluble surfactants, on the other hand, may desorb (or adsorb) as the interface is
compressed (or dilated) to restore equilibrium coverage (figure 11a). The strength
of the Marangoni stress then depends on the balance between surface advective
and surfactant exchange fluxes. For small perturbations δΓ in surface concentration
around an equilibrium value Γ0, the surfactant balance (3.10) becomes

Γ0∇s · us = jn =−
δΓ

τs
, (3.88)

where τs is the longer among kinetic and diffusive surfactant exchange times (3.56).
Using (3.88) in the Marangoni boundary condition (3.79) gives

η
∂v

∂z

∣∣∣∣
z=0

=−
∂Π

∂Γ
∇s(δΓ )= E0τs∇s(∇s · us), (3.89)

where E0 is the Marangoni modulus (2.22). Significantly, any finite adsorption time
scale τs gives rise to a viscous-like force with apparent dilatational surface viscosity
E0τs in (3.89) – a feature we will explore in detail in § 3.4.3. Non-dimensionalizing
(3.89) gives

∇̃s(∇̃s · ũs)=
1

MaK

∂ ṽ

∂ z̃

∣∣∣∣
z̃=0

, (3.90)

where

MaK =
E0τs

ηR
=
τs

τm
(3.91)

is a modified Marangoni number, that now compares the time scale τm = ηR/E0

to establish Marangoni flow with the time τs for the surface to equilibrate via
adsorption/desorption.

If a soluble monolayer equilibrates before Marangoni flows can be established
(MaK� 1), then the surface behaves as if it is compressible. Equation (3.90)
recovers the stress-free boundary condition as MaK → 0, and fluid flows behave
approximately as though the interface were clean (figure 11b). In this limit, Γ and
Π are largely unperturbed from the surfactant’s equilibrium isotherm. By contrast, if
Marangoni flows are established before surfactants adsorb and desorb to equilibrate
with the subphase concentration (MaK� 1), then the surface divergence is

∇̃s · ũs ≈ const.= ε̇, (3.92)

where ε̇ is a uniform compression or dilatation rate. In fact, interfaces with fixed
area require ε̇ = 0, and the interface acts as incompressible.

Finally, Marangoni flows may also be weakened by other surface processes,
leading to alternative definitions of the Marangoni number. Table 3 summarizes
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Definition Description Representative examples

Ma=
E0

ηU
Interfacial elasticity versus subphase
viscous stress: measure of how
much the subphase flow compresses
the interface

Stebe, Lin & Maldarelli (1991)
Seiwert, Dollet & Cantat (2014)

MaD =
E0L
ηDs

Relaxation of concentration gradients
due to Marangoni convection versus
due to surface diffusion

Durand & Langevin (2002)
Elfring et al. (2016)

MaK =
E0τs

ηL
Relaxation of concentration gradients
due to Marangoni convection versus
due to adsorption/desorption

Elfring et al. (2016)

MaS =
E0L
ηsU

Interfacial elasticity versus
surface-viscous stress (characterized
by ηs or κs)

Verwijlen et al. (2012)

Maγ =
E0

γ
Marangoni versus capillary stress:
relevant in applications with
interfacial curvature like drop
coalescence and fibre coating

Dai & Leal (2008)
Quéré (1999)

TABLE 3. Common definitions of the Marangoni number, and their physical meaning.
Temperature-dependent Marangoni effects are not considered here, and we list only the
effects of composition dependence.

common definitions of Marangoni numbers, obtained by comparing the Marangoni
time scale τm against competing system-specific surfactant processes. In each
case, a large Marangoni number implies that the surfactant monolayer resists
inhomogeneous surface compression or dilatation, and the interface can be
approximated as 2-D incompressible. When Marangoni flows are weak, a fully
compressible description becomes necessary (Barentin et al. 1999; Elfring, Leal &
Squires 2016).

3.4. Surface rheology

Thus far, we have focused on surface processes such as adsorption/desorption,
Marangoni flows and surface diffusion, which redistribute surfactants on the
interface, and relax surface stresses in doing so. Additionally, however, some
surfactants are known to exhibit surface rheology, exerting additional stresses when
the surfactant layer deforms against itself.

The origin, existence and interpretation of surface rheology have been debated
since the mid-19th century by the likes of Gibbs, Plateau, Marangoni and
Rayleigh (Scriven & Sternling 1960). Part of the controversy arises because
even relatively simple flows excite multiple surfactant processes, or drive mixed
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surface deformations. For example, translating probes deform the surface via
compression and dilatation in addition to shear, driving a combination of surface-
viscous and Marangoni stresses. Surfactant-induced 2-D incompressibility fundamen-
tally changes the subphase flow from the stress-free surface arising in the absence
of surfactant, and changes the translational drag of probes substantially, even for
completely inviscid surfactant monolayers (Fischer 2004a, and § 3.3.2). Experimental
geometries specifically designed to drive purely shear deformations, like rotating
disks (Choi et al. 2011) or translating needles (Brooks et al. 1999), however, probe
surface shear rheology unambiguously.

More subtle difficulties arise when surface viscosity is indirectly inferred
from observable phenomena such as the settling velocity of surfactant-covered
drops, or the drainage time of thin films. For example, recall from § 3.3.2 that
Marangoni flows with finite-time adsorption introduces a surface-viscous-like
force in the interfacial stress balance (3.89). In such systems, can this apparent
surface dissipation alone account for all observed dynamics, or might the surfactant
monolayer possess an ‘intrinsic’ surface dilatational viscosity? How does one
differentiate between an ‘intrinsic’ and ‘apparent’ surface viscosity if both are
present? In many cases, it might not be easy or even possible to deconvolve the
origins of surface dissipation, leading to thousandfold discrepancies in surface
viscosities interpreted from decades of experiments (Stevenson 2005).

In this section, we will explore the simplest of surface rheological models –
monolayers that behave like 2-D Newtonian fluids. We use this model to (a) interpret
experiments that confirm and characterize ‘intrinsic’ surface shear viscosities,
(b) illustrate the relative contributions of subphase and interfacial viscous resistance
to flow and (c) highlight difficulties in determining ‘intrinsic’ surface dilatational
viscosities from experiments. The 2-D Newtonian model will also set the stage for
treating surface rheology in the paradigmatic problems outlined in § 4. The richer
and more complex surface rheological responses that arise more commonly are
described in § 5.

3.4.1. The Boussinesq–Scriven model
Boussinesq (1913) was the first to explicitly account for a viscous-like resistance

to surface dilatation, using it to explain the anomalous settling velocity of drops
(§ 4.1). Scriven (1960) generalized Boussinesq’s model by treating the interfacial
layer as a 2-D Newtonian fluid with intrinsic surface shear (ηs) and surface
dilatational (κs) viscosities, both with dimensions of 3-D viscosity × length, so
that the extra rheological stress τrheo in (3.8) is Newtonian

τrheo = [(κs − ηs)∇s · u )]I s + ηs[∇s u · I s + I s · (∇s u)T], (3.93)
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where I s = I − nn is the surface identity tensor. Using (3.93) in the surface stress
balance (3.8) for a planar liquid–air interface gives

η
∂v

∂z

∣∣∣∣
z=0

=−∇s Π + ηs∇
2
s us + κs∇s(∇s · us), (3.94)

which is the 2-D analogue of the Stokes equation for compressible fluids, with
viscous traction from the subphase entering as a body force. More generally,
out-of-plane deformations and 2-D viscous flow along curved interfaces introduce
additional forces that have no analogue in 3-D Newtonian fluids (Scriven 1960;
Aris 1962; Edwards, Brenner & Wasan 1991; Slattery et al. 2007).

The Boussinesq–Scriven model simplifies in many typical surfactant systems.
As discussed in § 3.3.2, insoluble surfactants almost always behave as surface
incompressible, in which case (3.94) reduces to the incompressible 2-D Stokes
equation, forced by viscous traction from the subphase

∇s Π = ηs∇
2
s us − η

∂v

∂z

∣∣∣∣
z=0

, ∇s · us = 0. (3.95)

Surface pressure then acts to enforce 2-D incompressibility, analogous to bulk
pressure in a 3-D incompressible fluid.

Solving such problems is generally difficult, because two- and three-dimensional
Stokes flows must be solved separately, but coupled via boundary conditions
enforcing surface incompressibility and subphase traction. In systems where the
subphase is very shallow, however, this coupling simplifies significantly, because
the lubrication approximation relates the subphase velocity gradient to interfacial
velocity and the subphase depth H,

∂v

∂z

∣∣∣∣
z=0

=
us

H
, (3.96)

in which case the subphase flow need not be solved explicitly (Evans & Sackmann
1988). The lubrication approximation is particularly useful for compressible
monolayers, where eliminating u permits analytical solutions (Barentin et al. 1999;
Elfring et al. 2016).

3.4.2. Two-dimensional versus three-dimensional hydrodynamics and the Boussinesq
number

Momentum propagation through a viscous interfacial layer fundamentally modifies
familiar 3-D fluid dynamics, even when no other surfactant process is excited. For
example, pure shear deformations like the swirling flow driven by rotating a circular
disk at an interface (figure 12) do not generate surface concentration gradients,
and thus do not give rise to Marangoni stresses. The planar Boussinesq–Scriven

892 P1-47

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

17
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.170


H. Manikantan and T. M. Squires

˙

˙s

R
r

Ø

101100

100

10-1

10-2

-1

-2

r/R

u s
/Ø

R

(a) (b)

FIGURE 12. (a) A disk of radius R rotating at a constant angular velocity Ω within
a monolayer of surface shear viscosity ηs. (b) Surface velocity us follows (3.100) when
subphase dominant (Bq� 1, blue squares) and (3.101) when interface dominant (Bq� 1,
green circles); adapted from Zell et al. (2014).

equation (3.94) then becomes

η
∂v

∂z

∣∣∣∣
z=0

= ηs∇
2
s us, (3.97)

which couples to the Stokes equations for u in the subphase. Flow is driven by the
rotation of a disk of radius R at constant angular velocity Ω: us(r 6R)=Ωrθ̂ . Non-
dimensionalizing (3.97) gives

∂ ṽ

∂ z̃

∣∣∣∣
z̃=0

= Bq∇̃2
s ũs, (3.98)

where the Boussinesq number,

Bq=
ηs

ηR
, (3.99)

compares surface and subphase viscous stresses.
Subphase-dominant flows (Bq� 1) in pure shear recover the stress-free condition

at the interface. Solving the Stokes equations in the subphase with a stress-free
interface driven by a rotating disk gives (Goodrich 1969)

us(Bq= 0)=
2ΩR

π

[
r
R

sin−1

(
R
r

)
−

(
1−

R2

r2

)1/2
]

θ̂
r�R
−−→

4Ω
3π

R3

r2
θ̂ . (3.100)

The velocity field due to rotation decays as 1/r2 in the absence of surface excess
rheological stresses, as expected in Stokes flow (Guazzelli & Morris 2012).

By contrast, (3.98) implies that ∇2
s us ≈ 0 when the flow is interface dominant

(Bq� 1), and

us(Bq→∞)=
ΩR2

r
θ̂ . (3.101)

A viscous interfacial layer propagates momentum more extensively within the
interface, resulting in a slower decay (∼1/r) of the surface velocity field relative
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to (3.100), as shown in figure 12(b). The torque required to sustain constant rotation
transitions from ∼R3 for an inviscid interface (Bq = 0) to ∼R2 for a viscous
monolayer (Bq→∞; see § 4.6). This striking difference arises in systems where
no other surfactant transport process – e.g. Marangoni flow, adsorption/desorption,
surface dilatation – is active. Measurements of the rotational torque and flow field
around a rotating disk can thus unambiguously and quantitatively detect surface
shear viscosity (Choi et al. 2011; Zell et al. 2014).

The translation of a particle embedded within a monolayer is more complex, as
it deforms the surface via compression, dilation and extension, in addition to shear.
Even in the seemingly simpler case of insoluble (and, therefore, 2-D incompressible
from § 3.3.2) monolayers, translation introduces subtleties due to momentum transfer
between a surface-shear-viscous interface and the underlying 3-D fluid.

Saffman & Delbrück (1975) noticed this transition from 2-D to 3-D hydrodynamics
in their seminal work on particle diffusion in biological membranes. The
incompressible Boussinesq–Scriven equation (3.95) decouples from the subphase
in the interface-dominant (Bq→∞) limit. However, there is no solution for steady
translation of a cylinder in 2-D creeping flow (Leal 2007, the ‘Stokes paradox’).
Saffman (1976) recognized that subphase viscous stresses (∼ηU`SD) eventually
catch up with surface-viscous stresses (∼ηsU) beyond a distance

`SD =
ηs

η
, (3.102)

ultimately regularizing the divergence inherent to 2-D Stokes flow. Surface viscous
stresses dominate within the Saffman–Delbrück length `SD, and viscous traction from
the subphase prevail beyond `SD.

The cross-over from 2-D to 3-D hydrodynamics is evident in the flow driven by
a tangential point force on the interface (Lubensky & Goldstein 1996; Levine &
MacKintosh 2002; Fischer 2004b; Oppenheimer & Diamant 2009). Velocity fields
driven by arbitrarily shaped particles moving on an interface can be constructed
using appropriate boundary integrals of the point-force solution (§ 4.6).

An incompressible Newtonian monolayer along the x–y plane acted upon by an
in-plane point force F at x0 is governed by

∇s Π = ηs∇
2
s us − η

∂v

∂z

∣∣∣∣
z=0

+Fδ(r), ∇s · us = 0, (3.103a,b)

where r= x− x0. The two-dimensional Fourier transform,

φ(x)=
∫
φ̂(k)eik·r dk, (3.104)

is defined so that k · êz = 0, and transforms (3.103) to give

ikΠ̂ =−ηsk2ûs − η
∂ v̂

∂z

∣∣∣∣
z=0

+F, k · ûs = 0. (3.105a,b)
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The (3-D) hydrodynamic pressure field p associated with flow on an incompressible
surface is a constant everywhere (Stone & Ajdari 1998), such that momentum
balance for Stokes flow in the bulk reduces to Laplace’s equation: ∇2v = 0. If the
subphase extends to a finite depth H such that v(−H)= 0, then

v̂(k)=
(

sinh(kz)
tanh(kH)

+ cosh(kz)
)

ûs(k). (3.106)

Using (3.106) in (3.105) and eliminating Π̂ by premultiplying by I − kk/k2 gives

ûs(k)= Ĝ(k) ·F=
[

k2I − kk
k4ηs + k3η coth(kH)

]
·F. (3.107)

The Green’s function Ĝ(k) depends on the ratio kηs/η, which is the Boussinesq
number (3.99) for a length scale λ = 2π/k. In real space, the second-order tensor
G(r) is the surface analogue of the Oseen tensor in classical hydrodynamics.
However, inverting Ĝ is not straightforward except in specific limits. We will focus
on the deep subphase limit (H→∞), where the inverse transform gives (Lubensky
& Goldstein 1996; Fischer 2004b; Levine & MacKintosh 2002)

us(x)=
1

4ηs

[
µ‖(r)

rr
r2
+µ⊥(r)

(
I −

rr
r2

)]
·F, (3.108)

where r= |r|. The mobility coefficients µ‖ and µ⊥ are

µ‖(r)=
H1(d)

d
−

2
πd2
−

Y0(d)+ Y2(d)
2

, (3.109a)

µ⊥(r)=H0(d)−
H1(d)

d
+

2
πd2
−

Y0(d)− Y2(d)
2

, (3.109b)

where Hν and Yν are, respectively, Struve functions and Bessel functions of the
second kind of order ν, and

d=
rη
ηs
=

r
`SD

, (3.110)

is distance scaled by the Saffman–Delbrück length `SD (3.102). Alternatively, non-
dimensionalizing r by the probe size R makes d in (3.110) equivalent to

d=
r̃

Bq
, (3.111)

where Bq= ηs/ηR is the Boussinesq number (3.99).
Momentum transport is interface-dominated over length scales smaller than `SD

(d� 1 or Bq� 1), and the mobility coefficients (3.109) become

µ‖(r� `SD)≈
1
π

(
−log

(
d
2

)
+

1
2
− γE

)
, (3.112a)

µ⊥(r� `SD)≈
1
π

(
−log

(
d
2

)
−

1
2
− γE

)
. (3.112b)
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Surfactant dynamics

To within an additive constant, the interfacial velocity driven by a point force in the
Bq→∞ (or d→ 0) limit is then

us(x, Bq→∞)=
1

4πηs

[
−log(r)I +

rr
r2

]
·F, (3.113)

which is, indeed, the 2-D Stokeslet.
The logarithmic divergence in (3.113) as r→∞ reflects the Stokes paradox, which

is here resolved by viscous traction from the subphase. Subphase viscous stresses
become dominant over length scales larger than `SD (d� 1 or Bq� 1), in which
case

µ‖(r� `SD)≈
2

πd
−

2
πd2

, (3.114a)

µ⊥(r� `SD)≈
2

πd2
. (3.114b)

The surface velocity profile becomes

us(x, Bq→ 0)=
1

2πη

rr
r3
·F (3.115)

in the surface-inviscid limit (Bq→ 0). Notably, (3.115) is not a 2-D slice of the flow
due to a 3-D Stokeslet – surface incompressibility (§ 3.3.2) modifies fluid streamlines
to ensure that the resultant velocity profile is surface-divergence free (figure 11).

Prasad, Koehler & Weeks (2006) experimentally mapped out surface velocities
on surface-viscous protein monolayers via passive (colloid-tracking) two-particle
microrheology. The displacement correlations between two points on the interface
along and perpendicular to the line joining their centres are proportional to
mobility coefficients µ‖ and µ⊥, respectively. Experiments over a wide range
of surface viscosities (from O(1) nN s m−1 to O(1) µN s m−1) clearly show
this transition from a logarithmic decay in the interface-dominated regime to
µ‖ ∼ 1/r and µ⊥ ∼ 1/r2 when subphase stresses dominate (figure 13). Surface
streamlines following (3.108) also transition distinctly between subphase-dominant
and interface-dominant flows (figure 14).

3.4.3. Intrinsic and apparent surface viscosity
As discussed in § 3.3, surface flows that compress or dilate the interface establish

surfactant concentration gradients, generating Marangoni stresses. Surfactant
exchange with the subphase returns the system to equilibrium. For small departures
from equilibrium, the Marangoni stress due to a soluble surfactant (3.89) is

−∇s Π = E0τs∇s(∇s · us), (3.116)

where E0 is the Marangoni modulus (2.22), and τs is the characteristic sorption time
(3.56). Using (3.116) in the Boussinesq–Scriven equation (3.94) gives

− n · [[σ ]] = ηs∇
2
s us + (E0τs + κs)∇s(∇s · us). (3.117)
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¡-log(r)

d = r˙/˙s

µ
‖, 

µ
⊥

FIGURE 13. Mobility coefficients in the radial (µ‖) and azimuthal (µ⊥) directions (in
arbitrary units) extracted from two-particle microrheology. In the surface-dominated regime
(Bq� 1 or d� 1), both coefficients decay logarithmically with distance, following (3.112).
In subphase-dominated cases (Bq� 1 or d� 1), the coefficients decay as 1/r and 1/r2.
The symbols correspond to two-particle displacement correlations along the line of centres
(filled symbols) and perpendicular to it (empty symbols), and the solid lines are fits to
(3.109). The shapes of the symbols correspond to different surface viscosities. Adapted
from Prasad et al. (2006).
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FIGURE 14. Streamlines of surface velocity as a result of a point force applied at the
origin, following (3.108). Length is in units of R such that Bq= ηs/ηR.

As noted previously in § 3.3.2, adsorption/desorption introduces an apparent
dilatational surface viscosity κads

s = E0τs. Equation (3.117) highlights the pitfalls
of inferring a ‘true’ dilatational surface viscosity of a soluble surfactant. Any
measurement that is sensitive to surface-viscous dissipation due to pure compression/
dilatation would at best report κs + E0τs. An intrinsic dilatational surface viscosity
κs, should it exist, can only be established with complementary measurements of
E0 and τs.
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Furthermore, (3.117) reveals the coupling between surface shear and dilatation in
one-dimensional (1-D) stretching or compression, as occurs in plate coating or thin-
film drainage (§ 4.4). The 1-D version of (3.117) corresponding to deformation along
the x-direction is

η
∂vx

∂z

∣∣∣∣
z=0

= (E0τs + ηs + κs)
∂2us

∂x2
. (3.118)

Surface-viscous dissipation in 1-D derives from a combination of surface shear
viscosity, surface dilatational viscosity and the apparent viscous-like term E0τs.
Surface shear viscosity inferred from such systems, therefore, is also prone to
mischaracterization when E0τs 6= 0. This rate- and system-dependent viscous-like
contribution arising from adsorption/desorption is responsible, at least in part, for
widely dissimilar values (spread over four orders of magnitude) reported for the
surface viscosity of the same soluble surfactant (Stevenson 2005; Zell et al. 2014).

Non-dimensionalizing (3.118) gives

∂ṽx

∂ z̃

∣∣∣∣
z=0

=Ψ
∂2ũs

∂ x̃2
, (3.119)

wherein Ψ reflects a general ‘degree of immobilization’ in 1-D systems:

Ψ =
(E0τs + ηs + κs)

ηL
=MaK + Bqη + Bqκ . (3.120)

Here, Bqη,κ are Boussinesq numbers defined separately for the intrinsic surface
shear and surface dilatational viscosities. Written this way, the exchange Marangoni
number MaK = E0τs/ηL (table 3) can be interpreted as a modified Boussinesq
number defined with the apparent surface dilatational viscosity, κads

s =E0τs, in place
of an intrinsic surface viscosity.

The immobilization parameter Ψ controls the transition from a stress-free interface
(Ψ → 0) to a no-slip surface (Ψ → ∞) in 1-D compression/dilatation. In the
following sections, we will see this combination appear in the contexts of settling
drops, coating flows, and foams. In each of these applications, a macroscopically
measurable quantity (such as the velocity of a settling drop) depends on Ψ in a
manner that does not differentiate between ηs, κs and E0τs.

4. Surfactant dynamics in paradigmatic problems

Having discussed surfactant properties and their role in modifying fluid flows, we
now turn to quantifying the effect of dynamic surfactant properties and processes
on a series of paradigmatic problems. In particular, we will explore the motion of
surfactant-covered drops and bubbles (§ 4.1), oscillatory compression of interfaces
(§ 4.2), damping of surface waves (§ 4.3), coating and drainage of thin films (§ 4.4),
flow through foams (§ 4.5) and particles and probes on surfactant-laden interfaces
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(§ 4.6). In each case, our objective is to identify the distinct ways in which the
surfactant dynamics impacts measurable properties, such as the buoyant rising
velocity of a bubble, the thickness of fluid entrained in dip coating or the drag on a
probe translating on an interface. When possible, we quantify how each effect scales
with system properties, geometries and material parameters. In so doing, we aim to
connect common threads that underlie these very different systems. Perhaps more
importantly, we will highlight situations where it is difficult, or even impossible,
to tease apart these processes in a typical experiment. Complementary experiments
might be required to unambiguously identify the ‘hidden’ surfactant and/or transport
variable responsible for the observed dynamics.

4.1. Motion of surfactant-covered drops and bubbles

We will start with the ‘simple’ example that initially motivated this entire perspective
– the motion of surfactant-covered drops and bubbles (figure 1). Distinct surfactant
processes manifest in often indistinguishable ways, even in such a mundane flow.
In this section, we will quantitatively examine the impact of surfactant variables
– specifically, surface-viscous dissipation, Marangoni stresses as impacted by
adsorption/desorption and surface diffusion – in modifying the motion of a drop or
bubble at low Reynolds numbers (figure 15).

The translation of a rigid sphere in a viscous fluid is a classic low-Reynolds-
number problem. The terminal velocity of a rigid sphere of density ρ ′ and radius
R settling due to its own weight (or rising due to buoyancy) through a liquid with
viscosity η and density ρ is

Urigid =
2
9
(ρ ′ − ρ)gR2

η
, (4.1)

where g is the gravitational acceleration. A clean drop (or bubble) with viscosity
η′ of the same size settling (or rising) through the same liquid instead follows the
Hadamard–Rybczynski formula (Levich 1962; Happel & Brenner 1965)

UHR =
2
3
(ρ ′ − ρ)gR2

η

η+ η′

2η+ 3η′
=Urigid

λ+ 1
λ+ 2/3

, (4.2)

where

λ=
η′

η
(4.3)

is the viscosity ratio. Equation (4.2) recovers the Stokes formula (4.1) when λ� 1.
By contrast, UHR = (3/2)Urigid when λ� 1, such as an air bubble rising through a
viscous fluid.

The picture changes when surfactants populate the interface between the two
fluids. The interfacial boundary condition is then controlled by the interplay
between convection, kinetics of adsorption/desorption, diffusion both in the bulk
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(a) (b) (c) (d)
˙
®

g

U
˙�

®�

FIGURE 15. (a) A drop settling in a viscous fluid with terminal velocity U, and
(b) streamlines corresponding to the Hadamard–Rybczynski solution for a clean interface.
(c) The uniform retardation regime: with adsorption–desorption or diffusion over finite
time scales, a surface concentration gradient is established and a reverse Marangoni flow
immobilizes the surface. (d) The remobilization regime: molecules freely desorb at the
downstream pole and adsorb at the upstream pole if τs is small and bulk concentration is
above CMC. The resulting near-uniform surface concentration suppresses Marangoni flows
and remobilizes the interface.

and on the interface and surface-viscous stresses (figure 1). Early experiments
revealed discrepancies with the Hadamard–Rybczynski formula, and were attributed
to impurities that modify the surface tension. In particular, Bond & Newton (1928)
established that drops with radius under a critical value settle like rigid spheres,
whereas larger drops followed (4.2). They suggested that internal circulation occurs
only when the driving force (i.e. gravity) is much larger than the surface tension
force, giving the critical radius R2

� γ /(ρ ′ − ρ)g. The well-known Bond(–Newton)
number derives directly from this study. However, as we show in what follows, later
studies have established that this change in the settling velocity can be attributed to
dynamic surfactant processes, rather than the equilibrium surface tension.

4.1.1. Surface immobilization due to surface viscosity
One of the first quantitative attempts to address the inconsistency between (4.2)

and measurements came from Boussinesq (1913), who hypothesized that a thin
interfacial layer provides its own ‘surface viscous’ resistance. In writing the
tangential surface stress balance, Boussinesq neglected surface tension gradients
and instead introduced a surface viscosity

n · [[σ ]] · t= κst · ∇s(∇s · us). (4.4)

Here, n and t are the normal and tangent, respectively, to the drop surface, [[σ ]]
is the stress jump across the interface and κs is an interfacial dilatational viscosity.
Solving the boundary-value problem with (4.4) as the boundary condition, the
terminal settling velocity of a drop is (Boussinesq 1913; Levich 1962; Agrawal &
Wasan 1979)

U =Urigid
3η+ 3η′ + 2ϑ
2η+ 3η′ + 2ϑ

, (4.5)
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where

ϑ =
κs

R
(4.6)

is a retardation coefficient due to surface dilatational viscosity. Thus, surface
viscosity has an effect analogous to increasing the effective viscosity of the drop
from η′ to η′ + 2ϑ/3.

The retardation coefficient ϑ has units of bulk shear viscosity, and can be
argued based on excess energy dissipation. The energy dissipated in the drop via
conventional shear viscosity scales like

P∼ η′ε̇2R3, (4.7)

where ε̇ is the strain rate within the fluid; the dissipation per unit volume then
becomes

Φ ∼ η′ε̇2. (4.8)

By extension, the retardation coefficient ϑ scales like the surface-excess energy Ps

dissipated by the surfactant, normalized by the volume of the drop

Φs ∼
Ps

R3
∼ ϑε̇2. (4.9)

The Boussinesq number quantifies the relative strength of surface and bulk viscous
stresses

Bqκ =
ϑ

η
=
κs

ηR
, (4.10)

and the drop settling speed (4.5) can be rewritten as

U =Urigid
λ+ 1+ 2Bqκ/3
λ+ 2/3+ 2Bqκ/3

. (4.11)

Surface viscosity is negligible when Bqκ � 1, whereas the interface is effectively
immobilized and the drop behaves like a rigid sphere when surface-viscous
stresses dominate (Bqκ � 1). Because Bqκ decreases as R increases, Boussinesq’s
calculation reveals that bulk viscous stresses dominate over surface-viscous stresses
for sufficiently large drops. For fixed λ and κs, therefore, the Hadamard–Rybczynski
prediction improves with an increase in drop size.

4.1.2. Marangoni stress and adsorption/desorption
The Boussinesq correction due to surface viscosity does not explicitly account

for the Marangoni flow associated with surface tension gradients. Levich (1962)
accounted for convection, adsorption/desorption and diffusion in both the surface
and the bulk. When drops or bubbles translate, the interfacial fluid motion advects
adsorbed molecules to the rear (figure 15c), thereby establishing a gradient
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in Γ . This sets up reverse Marangoni flows, and the tangential stress balance
at the interface becomes

n · [[σ ]] · t=−t · ∇s γ . (4.12)

The strength of Marangoni stresses depends on the speed with which gradients are
established, compared with how quickly various processes can cause them to relax.
For small departures from equilibrium surface coverage, the terminal velocity takes
the same form as (4.5), but with a retardation coefficient ϑ that depends on the
dominant surfactant transport process (Levich 1962; Agrawal & Wasan 1979). In
what follows, we outline the cases of adsorption and surface diffusion as the rate-
limiting steps to illustrate the relative strength of Marangoni flows in immobilizing
the interface.

The adsorption/desorption of soluble surfactants contributes an apparent dilatational
surface viscosity (§ 3.4.3),

κapp,ads
s = E0τs, (4.13)

where E0=Γ0|∂γ /∂Γ | is the Marangoni modulus and τs is the sorption time (3.56).
The retardation coefficient in this case is identical to (4.6) but with κapp,ads

s in place
of an intrinsic dilatational surface viscosity κs (Levich 1962)

ϑK =
E0τs

R
. (4.14)

The drop settles at a velocity

U =Urigid
λ+ 1+ 2MaK/3
λ+ 2/3+ 2MaK/3

, (4.15)

where the strength of Marangoni-induced retardation relative to bulk viscous drag
defines the exchange Marangoni number (table 3)

MaK =
ϑK

η
=

E0τs

ηR
. (4.16)

Marangoni flows immobilize the interface (U→Urigid) when surfactant exchange
with the bulk fluid is slow (τs� τm = ηR/E0), so that MaK� 1. For the same fluid
and surfactant properties, smaller drops (with R� E0τs/η) settle like rigid spheres,
whereas larger drops follow the Hadamard–Rybczynski prediction.

As discussed in § 3.2, the time scale τs depends on bulk diffusion gradients if
exchange kinetics at the interface are sufficiently fast (τs ≈ τd, τk ≈ 0). Additionally,
if the bulk concentration C is above the critical micelle concentration (CMC),
micelles act as surfactant reservoirs that dissociate to maintain a constant monomer
concentration. As bulk concentration gradients vanish, τs ≈ τd → 0, and surface
concentration gradients also disappear (figure 15d). Micelles thus act to diminish
reverse Marangoni flows and reduce adsorption/desorption-based retardation by
‘remobilizing’ the interface (Stebe & Maldarelli 1994).
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4.1.3. Marangoni stress and surface diffusion
Diffusion of surfactant molecules on the interface can also relax surface

concentration gradients, particularly when the surfactant is insoluble. Surface
diffusion acts against gradients in Γ established by surfactant advection, and the
resultant profile γ (Γ ) dictates the strength of the Marangoni reverse flow. Solving
for a dilute system that is slightly perturbed from equilibrium, Levich (1962)
obtained (4.5) again, but now with the retardation coefficient

ϑsd =
RE0

Ds
, (4.17)

where Ds is the surface diffusivity of the surfactant.
This retardation coefficient captures the work dissipated as surfactant molecules

are forced along the interface by chemical potential gradients. The rate of work done
by a surfactant molecule of mobility bs forced to translate along the interface at
velocity U is U2/bs∼ ε̇

2R2/bs, and the surface-excess power Ps dissipated by ∼Γ R2

surfactants is

Ps ∼
Γ ε̇2R4

bs
. (4.18)

Following (4.9), the retardation coefficient ϑsd is then related to the dissipation Φ

per unit volume of the drop,

Φ ∼
Ps

R3
∼

(
RΓ
bs

)
ε̇2
∼ ϑsdε̇

2. (4.19)

The term within the brackets is the 3-D-viscosity-like coefficient ϑsd associated
with dissipation in this process. In the dilute limit, the Marangoni modulus E0 and
surface concentration Γ are related via Γ = E0/kBT , and the surface mobility and
diffusivity are related via the Stokes–Einstein relation Ds = kBTbs. Substituting Γ

and b in (4.19) recovers Levich’s form (4.17) for the retardation coefficient ϑsd.
The surface diffusion of insoluble surfactants thus modifies the droplet settling

velocity to

U =Urigid
λ+ 1+ 2MaD/3
λ+ 2/3+ 2MaD/3

, (4.20)

where the Marangoni number MaD (table 3) is

MaD =
ϑsd

η
=

RE0

ηDs
. (4.21)

The interface is immobilized by reverse Marangoni flow (U → Urigid) when the
surface diffusive time scale R2/Ds is much longer than the Marangoni time scale
ηR/E0 (or MaD � 1). By contrast, the surface is mobile if MaD � 1, in which
case surface diffusion relaxes surface concentration gradients quickly enough that
Marangoni flows do not develop.
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It is tempting to express ϑsd from (4.17) in terms of an apparent surface viscosity,
following (4.6), giving

κapp,sd
s =

R2E0

Ds
= E0τd, (4.22)

where τd = R2/Ds is the surface diffusive time scale. In this case, however,
the apparent surface viscosity κapp,sd

s depends on the size of the drop, and
therefore clearly does not represent an intrinsic material property. By extension,
the R2 dependence of κapp,sd

s differs from both intrinsic surface viscosity κs and
as well as the apparent κapp

s due to other dynamic surfactant processes like
adsorption/desorption (4.13), suggesting experimental strategies to differentiate
between the possible mechanisms.

4.1.4. Inferring retardation mechanisms from measurements
The three different mechanisms of surface stress relaxation considered here –

surface viscosity, Marangoni reverse flow with adsorption/desorption, and Marangoni
reverse flow with surface diffusion – all lead to drop settling velocities of the form

U =Urigid
λ+ 1+ 2Ψ/3
λ+ 2/3+ 2Ψ/3

. (4.23)

The immobilization parameter Ψ (§ 3.4.3) acts in way that resembles an increase in
the shear viscosity of the drop. The drop settles like a rigid sphere when Ψ →∞,
and like a clean drop when Ψ → 0. Equation (4.23) qualitatively maps out the
illustrative plot in figure 1, where Ψ is determined by the ‘hidden’ surfactant
variable(s). More general immobilization parameters Ψ = Ψ (Ma, Pe, Da, Bqκ) arise
when surfactant transport in the bulk becomes comparable to surface processes
(Levich 1962; Agrawal & Wasan 1979), but the form of (4.23) remains unchanged.
Here, the Péclet number Pe=UR/D compares advection and diffusion in the bulk,
and the Damköhler number Da= kCR/D compares adsorption to bulk diffusion.

Experimentally measuring drop settling velocity U alone cannot reveal exactly
what the surfactant does to the interface. Equation (4.23) links a measured velocity
to the parameter Ψ , which could be Bqκ , some form of Ma, a function of Pe and
Da or some non-trivial combination. How can we, if at all, demarcate the specific
process responsible for slowing the drop?

Since one can at best measure the lumped parameter Ψ , one approach is to
exploit the scaling of Ψ with experimentally controllable quantities such as the
bubble radius or surfactant concentration. If Ψ , interpreted from measurements
via (4.23), increases linearly with drop size, then Marangoni flow with surface
diffusion would be consistent as the dominant mechanism (Ψ =MaD). Alternatively,
if experiments suggest Ψ ∝ 1/R, surface viscosity (Ψ = Bqκ), adsorption-based
retardation (Ψ = MaK) or both would be consistent. However, one might expect
these two mechanisms to scale differently with bulk surfactant concentration C:
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an intrinsic surface viscosity κs likely increases with C or stays constant, whereas
κapp,ads

s likely decreases with C, since adsorptive equilibration speeds up as more
surfactant is added to the bulk.

4.2. Oscillatory compression of soluble monolayers

The oscillatory compression of surfactant monolayers – whether in Langmuir troughs
or in pulsing bubbles – provides an important method to characterize interfaces and
the impact of surfactant processes on surface mechanics (Lucassen & van den
Tempel 1972; Johnson & Stebe 1994; Arriaga et al. 2010; Ravera et al. 2010;
Kotula & Anna 2016). The mechanical response of a dynamic interface as it is
compressed depends not only on the equilibrium properties (via the isotherm) but
also on the surface concentration profile Γ (rs, t) at any particular position and
time. By extension, the Gibbs modulus E of soluble surfactants depends on the
relative time scales of interfacial compression/dilatation and re-equilibration of Γ .
For example, during a compression so rapid that surfactants do not have time to
desorb, the surface concentration must increase as Γ ∼ 1/A, so that

Esoluble(t→ 0)=−A
∂Π

∂A

∣∣∣∣
t→0

≈ Γ
∂Π

∂Γ

∣∣∣∣
t→0

= E0. (4.24)

In other words, the Gibbs modulus E is equal to the Marangoni modulus
E0 in the rapid deformation limit. By contrast, over long enough time scales,
adsorption/desorption returns Γ (and therefore Π ) to its equilibrium level, so that

Esoluble(t→∞)=−A
∂Π

∂A

∣∣∣∣
Π≈const.

≈ 0 (4.25)

for slow (or quasi-static) compression.
In general, the Gibbs modulus measured during the oscillatory compression of

a soluble monolayer ranges between 0 and E0. Moreover, Γ (t) may oscillate with
some phase lag relative to the oscillating surface area A, as discussed in § 3.2.1. Just
like in shear rheology, out-of-phase responses reflect dissipative processes, meaning
that the dynamic Gibbs modulus captures the apparent surface elasticity and the
apparent surface dilatational viscosity, both of which depend on frequency. In what
follows, we will revisit classic studies that quantified the apparent rate-dependent
surface viscoelasticity originating from surfactant exchange between interface and
subphase during oscillatory compression.

4.2.1. Apparent oscillatory surface rheology
Lucassen & van den Tempel (1972) computed the surface pressure Π(t) on a

planar surfactant monolayer whose area A(t) is forced to oscillate, and connected the
monolayer response to a rate-dependent surface viscoelasticity. Figure 16 depicts the
model system, consisting of a soluble monolayer at z= 0 subjected to an oscillatory
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FIGURE 16. (a) Response of a surfactant monolayer to a dilatational deformation that is
fast or slow relative to rate of replenishment by adsorption from the bulk. The monolayer
is effectively insoluble as ζd→ 0, and the elastic modulus is highest (=E0) in this limit.
Conversely, perturbations of surface concentration from equilibrium are rapidly eliminated
by adsorption and the surface elasticity is weak when ζd � 1. (b) The dynamic Gibbs
modulus E and apparent dilatational surface viscosity κads

s from (4.34).

dilatational deformation at frequency ω (e.g. by moving barriers in a Langmuir
trough), while surfactants adsorb/desorb over a time scale τs.

As discussed in § 3.2, the molecular exchange of surfactant between the surface
and the subphase can be diffusion- or kinetically limited. Lucassen & van den
Tempel (1972) focused on the diffusion-limited regime (Da � 1), for which
the sorption time scale τs ≈ τd ∼ L2

d/D. The equilibrium surface area, surface
concentration and bulk concentration fields are perturbed via

A(t)= A0 + δAeiωt, (4.26a)

Γ (t)= Γ0 + δΓ eiωt, (4.26b)

C(z, t)=C0 + δCei(ωt+kz), (4.26c)

where the disturbance is homogeneous along the interface, and surfactant is
dissolved in the bulk fluid below the interface (z < 0). The bulk concentration
C satisfies the diffusion equation (3.26), with solution

k= (1− i)
√
ω

2D
. (4.27)

Both real and imaginary components of δΓ resist interfacial dilatation, and a
convenient measure of the net resistance is the complex dilatational modulus

E∗ =−
dΠ

d ln A
=−

dΠ
d ln Γ

d ln Γ
d ln A

=−E0
d ln Γ
d ln A

, (4.28)

where E0 = dΠ/d ln Γ is the Marangoni modulus (§ 2.4.2). We will assume
that Π(t) is in phase with and uniquely determined by Γ (t), so that E0 is
independent of ω. Note, however, that Γ and A may not vary precisely in phase:
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even monolayers of insoluble surfactant monolayers may relax to equilibrium over
surprisingly long times, as discussed in § 5. Surfactant transport thus affects E∗

via the dynamic behaviour of Γ (A) in (4.28). The real part of E∗ is the dynamic
Gibbs modulus, whereas the imaginary or out-of-phase component captures the
viscous-like dissipation associated with surfactant exchange.

Surfactant conservation at the interface with diffusion-limited adsorption (§ 3.2)
requires

1
A
∂(Γ A)
∂t
= jdiff =−D

∂C
∂z

∣∣∣∣
z=0

. (4.29)

Contact equilibrium is assumed between the surface concentration Γ (t) and the bulk
concentration Cs(t)=C(0, t) when diffusion controlled, so that

1
A
∂(Γ A)
∂t
=

(
1+

∂ ln A
∂ ln Γ

)
∂Γ

∂t
=

(
1+

∂ ln A
∂ ln Γ

)
Lp
∂C
∂t

∣∣∣∣
z=0

, (4.30)

where Lp = ∂Γ /∂Cs is the depletion depth (3.47). Using (4.30) in (4.29) gives

∂ ln Γ
∂ ln A

=−

(
1+

D
Ld

∂C/∂z|z=0

∂C/∂t|z=0

)−1

. (4.31)

Substituting perturbed variables (4.26) in (4.31) then gives the complex modulus
(4.28):

E∗ =
E0

1+ ζd − iζd
, (4.32)

where

ζd =
1
Ld

√
D
2ω

(4.33)

is a dimensionless ratio of the diffusive boundary layer thickness δBL =
√

D/2ω to
the depletion depth Lp = ∂Γ /∂Cs, first introduced as (3.51) in § 3.2.

The apparent surface-elastic and surface-viscous moduli are the real and imaginary
parts of E∗, respectively

E=Re[E∗] = E0
1+ ζd

1+ 2ζd + 2ζ 2
d
, (4.34a)

κads
s =

Im[E∗]
ω
=

E0

ω

ζd

1+ 2ζd + 2ζ 2
d
. (4.34b)

During ‘fast’ oscillations (ζd � 1), surfactant molecules do not diffusively escape
the depletion depth before the barrier reverses direction, so the interface behaves
as insoluble, with E → E0. By contrast, during ‘slow’ oscillations (ζd � 1), the
oscillatory boundary layer is thicker than the depletion depth (δBL�Lp). In this limit,
dissolved molecules diffuse across the depletion depth during each oscillation and
restore the sublayer concentration to C0 before the barrier reverses. Molecules then
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adsorb/desorb much more quickly than the interface is compressed and dilatated, so
that Γ (t) ≈ Γ0 and the Gibbs modulus vanishes. The apparent dilatational surface
viscosity κads

s is highest when ζd =O(1), i.e. when τω ∼ τd.
More generally, the complex dilatational modulus E∗ depends on the Damköhler

number Da (3.40). We will generalize E∗ for finite Da and non-planar interfaces in
the next section, but simply note that the qualitative trends of E∗ resemble those in
figure 16(b), regardless of system geometry: |E∗|→E0 for slow adsorption/desorption
(or rapid deformation), and |E|→ 0 for slow deformations.

4.2.2. Oscillating bubble tensiometry
Oscillating bubbles make excellent experimental probes of dilatational surface

rheology (Ravera et al. 2010; Kotula & Anna 2016). Indeed, § 3.2.1 illustrated
kinetically and diffusion-limited surfactant exchange via oscillating bubbles. Here,
we will follow Johnson & Stebe (1994) in examining the surface stresses that arise
in oscillating bubbles, how they depend on adsorption/desorption, surface rheology
and the subphase viscosity.

Alvarez et al. (2010a) developed a microbubble microtensiometer, which
simultaneously measures the radius and gas pressure of O(100 µm) bubbles. For
a static bubble with equilibrated surface coverage, the surface tension (or surface
pressure) is then determined via the Young–Laplace equation (2.6). Indeed, the
equilibrium isotherm of insoluble monolayers can be mapped out by quasi-static
compression of a spherical bubble (Kotula & Anna 2016).

To quantify the impact of surfactant adsorption/desorption, mass transport and
surface rheology on dynamic bubbles, we return to the work of Johnson & Stebe
(1994), first introduced in § 3.2.1, involving an oscillating air bubble of radius R(t),
with dynamic surface concentration Γ (t), in a liquid containing dissolved surfactant
at concentration C(t). Fluid pressure and radial velocity in both gas and liquid
phases are perturbed as before (3.29), via

vr(r, t)= δvr(r)eiωt, p(r, t)= p0 + δp(r)eiωt. (4.35a,b)

Solving the unsteady Stokes equations gives

δv(r)=
iωR2

0

r2
δR, (4.36a)

δp(r)=−
ρω2R2

0

r
δR, (4.36b)

in the liquid phase.
Assuming the gas viscosity to be negligible, the gas pressure is uniform

throughout the bubble (pg = pg(R)) and is determined by the stress balance at
the interface (3.8). Assuming also that the adsorbed surfactant forms a Newtonian
monolayer and simplifying the Boussinesq–Scriven stress tensor (3.93) for radial
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deformation gives (Scriven 1960):

pg − pl(R)+ 2η
∂vr

∂r

∣∣∣∣
r=R

=
2γ
R
+

4κsvr(R)
R2

. (4.37)

The perturbed surface tension is

γ = γ (Γ0)+
∂γ

∂Γ

∣∣∣∣
Γ0

δΓ eiωt
= γ0 −

E0

Γ0
δΓ eiωt, (4.38)

so that the leading-order interfacial stress balance (4.37) is the Young–Laplace
equation

pg,0 − pl,0(R0)=
2γ0

R0
. (4.39)

At O(δR), however, the pressure jump at the interface has contributions due to
Young–Laplace from the radial change, the resistance to dilatation due to changes
in adsorbed surfactant concentration (and therefore Π ), the viscous resistance from
the bulk liquid and dilatational surface viscous resistance

δpg − δpl(R)=
[
−

2γ0

R2
0
+

4E0

R2
0

δΓ

δΓinsol
+

4iωη
R0
+

4iωκs

R2
0

]
δR, (4.40)

where

δΓinsol =−2Γ0
δR
R0

(4.41)

is the surface concentration change in the insoluble limit (3.32). Recall from § 3.2.1
that δΓ in (4.40) is complex, with components both in and out of phase with δR.

Non-dimensionalizing length and pressure in (4.40) using R0 and the Laplace
pressure 2γ0/R0 respectively gives

δp̃g − δp̃l(R)= χδR̃, (4.42)

where

χ =−1+ 2Maγ
Re[δΓ ]
δΓinsol

+ 2iCa
(

1+ Bqκ +Ma
Im[δΓ ]
δΓinsol

)
(4.43)

and the capillary, Marangoni and Boussinesq numbers are

Ca=
ηR0ω

γ0
, Ma=

E0

ηR0ω
, Maγ =Ma×Ca=

E0

γ
, Bqκ =

κs

ηR0
. (4.44a−d)

Evaluating (4.42)–(4.44) requires the solution for δΓ /δΓinsol, described in § 3.2.1 and
given by (3.41) and reproduced here

δΓ

δΓinsol
=

[
1− i St

(
1+
√

iWo

1+
√

iWo+Da

)]−1

, (4.45)
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where the Stanton, Womersley and Damköhler numbers are

St=
kΓ
ω
, Wo=

ωR2
0

D
, and Da=

kCR0

D
. (4.46a−c)

Surfactant-free bubbles lack surface-viscous and surface-elastic stresses (Ma =
Bqκ = 0). The interfacial stress balance (4.42) then recovers the linear limit of the
classic Rayleigh–Plesset equation (Marmottant et al. 2005)

δ̃pg − δ̃pl(R)
˜δR

∣∣∣∣∣
clean

=−1+ 2iCa. (4.47)

The normal stress jump balances the perturbed Laplace pressure due to change in
radius and the viscous stress from the liquid phase.

Bubbles with insoluble surfactants have surface concentrations that change in
phase with the oscillations, giving Re[δΓ ] = δΓinsol and Im[δΓ ] = 0, so that (4.42)
becomes

δ̃pg − δ̃pl(R)
˜δR

∣∣∣∣∣
insol

=−1+ 2Maγ + 2iCa+ 2iBqκCa. (4.48)

The pressure jump across the interface then balances additional surface stresses:
the terms proportional to Maγ and BqκCa quantify the elastic and intrinsic
surface-viscous resistance to interfacial dilatation/compression, respectively.

Surface-elastic resistance to bubble expansion decreases for soluble surfactants,
however, since adsorption/desorption diminishes perturbations to surface concentra-
tion, and Re[δΓ ] < δΓinsol. Solubility also introduces an out-of-phase component
of surface concentration, so that Im[δΓ ] 6= 0, giving rise to an additional surface-
viscous-like stress as in § 4.2.1.

The dynamic Gibbs modulus E and the apparent dilatational surface viscosity κads
s

are the real and imaginary parts of the complex modulus E∗ (§ 4.2.1). For small
oscillatory perturbations around a spherical bubble, (4.28) gives

E∗

E0
=−

d ln Γ
d ln A

=−
R0

2Γ0

δΓ

δR
=

δΓ

δΓinsol
, (4.49)

so that using (4.45) for δΓ gives

E∗

E0
=

[
1− i St

(
1+
√

i Wo

1+
√

i Wo+Da

)]−1

. (4.50)

Surfactant exchange between the interface and subphase is kinetically limited
when the bulk diffusion time τd is much smaller than the kinetic time τk (see
§ 3.2.1). In the kinetically limited (Da= τd/τk→ 0) case, (4.50) becomes

E∗kin

E0
=

1
1− iSt

=
1

1+ St2
+ i

St
1+ St2

. (4.51)
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The monolayer is effectively insoluble, and the Gibbs modulus E approaches the
Marangoni modulus E0, in the limit that adsorption kinetics are so slow that Γ (t)
does not change appreciably before the oscillatory cycle reverses (or St→ 0). By
contrast, Γ (t) is approximately constant if adsorption/desorption is fast relative
to bubble oscillations (St→∞), so that the monolayer provides no resistance to
compression/dilatation. Bubble size does not affect E∗kin when transport is kinetically
limited: the oscillatory mechanical response of a soluble planar monolayer (§ 4.2.1)
also follows (4.51) in the kinetically limited regime Da→ 0.

Alternatively, adsorption is diffusion limited when τd� τk (or Da�1), and surface
concentration rapidly equilibrates with the subsurface concentration Cs(t) = C(R, t)
via an isotherm Γ (Cs). In the diffusion-controlled limit (Da→∞), (4.50) becomes

E∗diff

E0
=

ΛdWo

ΛdWo− i− i
√

i Wo
, (4.52)

where Λd = (∂Γ /∂Cs)/R0 is the dimensionless depletion depth (3.47). The
monolayer behaves as if it were insoluble, so that E∗diff → E0 when diffusive
transport is so slow that surfactants desorbed during bubble compression do not
diffuse away before they readsorb during bubble expansion (Wo→∞). By contrast,
Γ (t) remains nearly in equilibrium if the bubble oscillates much more slowly than
required for diffusion (Wo→ 0), in which limit the monolayer offers no resistance.

The real and imaginary parts of (4.52) correspond to the excess elastic and
dissipative terms in (4.42). Separating these contributions and simplifying gives

E∗diff

E0
=

1+ ζd

1+ 2ζd + 2ζ 2
d (1+ 2Λdζd + 2Λ2

dζ
2
d )
+ i

ζd(1+ 2Λdζd)

1+ 2ζd + 2ζ 2
d (1+ 2Λdζd + 2Λdζ

2
d )
,

(4.53)
where

ζd =
1
Ld

√
D
2ω

(4.54)

is the ratio of the diffusive oscillatory boundary layer thickness to the depletion
depth (3.51),

Ld =
∂Γ

∂Cs
. (4.55)

Bubbles with radii significantly larger than the depletion depth (Λd = Ld/R � 1)
recover the classic results of Lucassen & van den Tempel (1972) for oscillatory
compression of planar interfaces, presented in § 4.2.1.

In the examples so far, the subphase was assumed to be infinitely deep so that
the bulk fluid always contained enough surfactant to adsorb on to the interface
given enough time. However, the bulk fluid may be entirely depleted of surfactant
if the subphase is shallow, as may occur in thin films, coating flows, foams and
concentrated emulsions. The film thickness h then ‘cuts off’ the depletion depth Ld,
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and the film is said to be confined (Quéré 1999; Delacotte et al. 2012). Surface
concentration perturbations are not diminished by adsorption/desorption if h� Ld,
and the effective dilatational modulus is maximal (equal to the Marangoni modulus
E0) for confined flows.

4.3. Damping of capillary waves

The calming effect of oil poured on the surface of water has been known among
seafarers since the times of the ancient Greeks. Benjamin Franklin gave one of the
earliest systematic accounts, claiming that a mere teaspoonful of oil was capable
of rendering a half-acre pond ‘as smooth as a looking-glass’ (Franklin, Brownrigg
& Farish 1774). His own hypothesis was that the film of oil prevented wind from
‘catching’ the water, in turn preventing friction by gliding on the surface and
damping wave formation. However, wave damping occurs far too quickly to result
from a reduction in wind input alone.

Instead, surfactants dissipate wave energy and therefore play the dominant role
in wave damping (Levich 1962; Lucassen & Hansen 1966; Alpers & Hühnerfuss
1989). In what follows, we will first outline wave motion on a clean interface, and
later contrast it with waves on surfactant-laden interfaces. The surfaces of clean
fluids are dilated or compressed at the nodes of surface waves, and surface rheology
or Marangoni stresses resist such a deformation. Large surface elasticity or surface
viscosity makes the interface act as effectively incompressible, suppressing the
propagation of surface waves.

4.3.1. Waves on a clean liquid surface
The vertical displacement ζ of a surface due to plane waves of wavelength λ

propagating along the x direction (figure 17) can be written

ζ (x, t)= ζ0ei(kx−ωt), (4.56)

where k= 2π/λ and ω are, respectively, the wavenumber and frequency. For small
wave amplitudes, the nonlinear term in the Navier–Stokes equation is negligible
(Levich 1962; Probstein 1994) and the hydrodynamic governing equations are the
unsteady Stokes equations.

Waves are driven by the balance between fluid inertia and the restoring forces of
gravity and/or surface tension. The excess hydrostatic pressure due to the disturbance
is

pg = ρgζ , (4.57)

and the excess capillary pressure, following the Young–Laplace equation and
assuming small curvatures, is

pc =−γ
∂2ζ

∂x2
= γ k2ζ . (4.58)
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x

z

y

c = ø/k

¬ = 2π/k

Ω(x, t) Ω0

FIGURE 17. A planar wave of amplitude ζ0, length λ and frequency ω.

The ratio of hydrostatic and capillary pressures is the Bond number,

Bo=
pg

pc
=
ρg
γ k2

. (4.59)

Short wavelengths (Bo� 1) correspond to capillary waves (λ.O(1 cm) for water),
whereas large wavelengths (Bo� 1) correspond to gravity waves.

Inviscid flows are simplest, as they are irrotational in this configuration, and can
therefore be described by a velocity potential

v =∇φ, and ∇
2φ = 0. (4.60a,b)

Linearity and continuity require

φ(x, z, t)= Aekzei(kx−ωt), (4.61)

so that the linearized inviscid Navier–Stokes equation gives

∂φ

∂t

∣∣∣∣
z=0

=−

(
g+

γ k2

ρ

)
ζ , (4.62)

approximating the interface to be at z = 0, with O(ζ 2) corrections. Imposing the
kinematic condition Dζ/Dt= vz at the interface then gives

ω0 =

(
gk+

γ k3

ρ

)1/2

=

√
γ k3

ρ
(1+ Bo)1/2, (4.63)

where Bo is the Bond number (4.59). From the dispersion relation (4.63), the wave
velocity is given by

c=
ω0

k
, (4.64)

with a minimum cmin ≈ 20 cm s−1 for water.
Waves described by (4.63) neither grow nor decay when the fluid is inviscid

and the interface is clean. However, waves decay in fluids with finite viscosity.
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Surfactant dynamics

The relative strength of wave damping is captured by the ratio of viscous stresses
to inertial stresses,

m=
νk2

ω0
=

2πν

cλ
, (4.65)

where ν = η/ρ is the kinematic viscosity. Based on the minimum phase velocity in
water, m<1 for wavelengths larger than λ&0.1 mm (Levich 1962). Viscous stresses
are therefore typically weak relative to inertia, and it is safe to assume that the wave
frequency departs only slightly from its inviscid value ω0, so that

ζ (x, t)= ζ0ei(kx−ω0t)+βt, (4.66)

where |β| � ω0 gives a weak viscous damping. The negative real part of β is the
decay rate, and its imaginary part gives a small correction to the wave frequency
due to fluid viscosity.

The non-irrotational nature of viscous flows necessitates a streamfunction ψ in
addition to the potential function φ. Solving for the velocity, pressure and β based
on φ and ψ is tedious – see Levich (1962) for details – here we simply present the
resultant damping rate,

βclean =Re[β] =−2mω0 =−2νk2. (4.67)

The damping time scale β−1
clean can be interpreted as the time taken for vorticity

generated by shear stresses to diffuse a depth comparable to the wavelength λ.
In what follows, we examine how surfactants modify the damping rate β. Levich

(1962) shows the effect of surfactants to be significant only when λ . 10 cm,
and therefore affect capillary waves more prominently than gravity waves. We
will therefore restrict our attention to capillary waves (Bo � 1) in the following
sections, and approximate ω0 ≈

√
γ k3/ρ. As Franklin et al. (1774) noted over two

centuries ago, large waves on a stormy sea are unaffected, whereas smaller ripples
are smoothed out resulting in ‘glassy’ surfaces.

4.3.2. Marangoni damping due to insoluble and surface inviscid surfactants
Surfactants strengthen wave damping through two main mechanisms – Marangoni

stresses and surface rheology – and we start with the former. The simplest case is a
surface-inviscid monolayer, for which ηs= κs= 0. Additionally, surface concentration
gradients do not relax by adsorption/desorption in insoluble monolayers, in which
case E is equal to the Marangoni modulus E0 (§ 2.4.2). Surface diffusion may also
weaken the Marangoni effect by smoothing out gradients in Γ , but we will neglect
diffusion by assuming the time to diffuse the wavelength λ2/Ds is much longer than
the oscillation period ω0.

The surface concentration is perturbed away from its equilibrium value Γ0 via

Γ (x, t)= Γ0 + δΓ ei(kx−ω0t)+βt, (4.68)
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where δΓ � Γ0. As with the vertical displacement ζ (x, t) (4.66), we assume that
subphase viscous effects are weak, so that the frequency is well approximated by its
inviscid value ω0, and that the damping rate |β| � ω0. For small surface velocities,
the surfactant conservation equation (3.10) gives

δΓ ei(kx−ω0t)+βt
=

Γ0

−iω0 + β

∂vx

∂x
(4.69)

to leading order, so that the normal and tangential stress boundary conditions (3.8)
for a surface-inviscid monolayer are

−p+ 2η
∂vz

∂z
= γ (Γ0)

∂2ζ

∂x2
, (4.70a)

η

(
∂vx

∂z
+
∂vz

∂x

)
=−

E0

Γ0

∂Γ

∂x
=

E0

iω0 − β

∂2vx

∂x2
. (4.70b)

The capillary force in (4.70a) drives the wave, whereas the Marangoni stress in
(4.70b) resists it. We therefore anticipate the damping rate β to depend on the
relative magnitudes of γ (Γ0) and E0(Γ0).

Solving the unsteady Stokes equations with boundary conditions (4.70) gives the
fluid velocity and the damping rate β. The calculation is tedious, but analytically
tractable, in the limits of weak viscosity (m= νk2/ω0� 1) and small damping rate
(|β| �ω0), giving (Levich 1962; Alpers & Hühnerfuss 1989)

Re[β]
ω0
≈−

1

2
√

2

Ma2
γ

√
m− 4Maγm3/2

+ 4
√

2m2

Ma2
γ +m−Maγ

√
2m

. (4.71)

Here, the modified Marangoni number Maγ (table 3) quantifies the competition
between interfacial area creation due to capillary forces and resistance to interfacial
stretching due to Marangoni forces

Maγ =
E0(Γ0)

γ (Γ0)
=

E0

ηc
×
ηc
γ
=Ma×Ca. (4.72)

Reverse Marangoni flows immobilize the interface when Maγ � 1 or E0� γ , in
which case the interface behaves like an incompressible sheet with

βstiff =Re[β(Maγ →∞)] =−
1

2
√

2
ω0
√

m=−
1

2
√

2

√
ω0νk2. (4.73)

By contrast, weak E0 gives Maγ � 1 and recovers the clean interface limit βclean

(4.67). The ratio of the damping coefficient in the two limits is

βstiff

βclean
=

1

4
√

2m
=

1
8
√

π

(
cλ
ν

)1/2

. (4.74)

Because wave speeds are greater than cmin ≈ 0.2 m s−1 on water–air interfaces,
βstiff > βclean for waves with millimetre (or larger) wavelength. Typical capillary
waves therefore decay more rapidly when surfactants are present.
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FIGURE 18. Capillary wave damping rate β (4.71) as a function of the Marangoni number
Maγ =E0/γ and the normalized fluid viscosity m= νk2/ω0. The damping rate asymptotes
to βclean=−2mω0 when Marangoni flows are weak (Maγ�1) and to βstiff =−(ω0/2)

√
m/2

when the interface is immobilized (Maγ � 1). Waves decay faster in a more viscous fluid
(larger m) for all Maγ .

Notably, the damping coefficient depends non-monotonically on Maγ (figure 18),
with a maximum value βmax ≈ 2βstiff that occurs at an intermediate Marangoni
number, as reported in both experiments and simulations (Davies & Vose 1965;
Alpers & Hühnerfuss 1989). Lucassen (1968) ascribes this maximum to a
resonance-like mechanism between transverse capillary waves and longitudinal
Marangoni waves. Damping is maximum when the wavelengths of these transverse
and longitudinal waves are equal.

Probstein (1994) notes that βstiff can be estimated by treating the interface as an
incompressible plate. The damping coefficient in general takes the form β ∼−νk/d,
where d is viscous gradient length scale in the bulk. Without surfactants, the
dissipation extends to a depth d ∼ k−1, and β = βclean ∼ −νk2 in agreement with
(4.67). When surfactants immobilize the surface via Marangoni flows, the viscous
boundary layer under the surface is akin to that of an incompressible plate oscillating
at frequency ω. This is Stokes’ second problem, revealing a viscous boundary layer
that extends to a depth d∼ (ν/ω)1/2, with damping rate βstiff ∼−(νω)

1/2k.
The enhanced damping mechanism is illustrated in figure 19. Fluid elements

on and near a surfactant-free interface travel in circular trajectories. Surfactants
drive Marangoni flows that act to immobilize the interface, distorting these
circular trajectories. The change from near-vertical motion at the interface to
circular trajectories in the subphase increases velocity gradients and viscous
dissipation. Notably, damping still occurs due to bulk viscous dissipation: surface
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(a) (b)

FIGURE 19. (a) Circular motion of interfacial fluid particles on the clean surface of a
wave moving to the right. The solid blue arrows along the interface depict compression
and expansion of the surface. (b) Surfactants distort circular trajectories via Marangoni
flows (red dashed arrows) that oppose the compression and expansion of the interface. The
trajectories of fluid elements are then distorted, becoming straight lines in the Maγ →∞
limit.

incompressibility due to reverse Marangoni flow modifies the bulk velocity field in
a manner that amplifies viscous dissipation in the bulk (§ 3.3.2).

4.3.3. Damping due to soluble and/or surface viscous surfactants
The surface flow generated by the motion of a wave creates alternating regions of

dilatation and compression (figure 19). Any putative surface-viscous stresses would
resist such a deformation. Note also that surface shear and surface dilatational
viscosities appear inseparably in the Boussinesq–Scriven equation (3.118) for 1-D
deformations, as occurs in plane waves. In other words, a monolayer with finite
surface shear viscosity ηs resists one-dimensional stretching and compression, even
if the surface dilatational viscosity κs is negligible.

Recall from the oscillatory dynamics of surfactant-covered bubbles (§ 4.2.2)
that additional viscous stresses arise due to excess surface rheology as well
as adsorption/desorption. The tangential stress balance (3.94) for a Newtonian
monolayer undergoing 1-D deformation is

η

(
∂vx

∂z
+
∂vz

∂x

)
=−

E0

Γ0

∂Γ

∂x
+ (ηs + κs)

∂2vx

∂x2
, (4.75)

where changes in Γ now drive adsorption/desorption fluxes. In what follows, we
will assume diffusion-limited adsorption (§ 3.2); kinetically limited systems follow
similar trends. Solving the bulk diffusion equation and substituting in (4.75) while
assuming small perturbations as in (4.68) gives

η

(
∂vx

∂z
+
∂vz

∂x

)
=

Eeff

iω0 − β

∂2vx

∂x2
, (4.76)

which is similar to the insoluble tangential stress balance (4.70b) except with a
complex effective modulus

Eeff = E∗ + (iω0 − β)(ηs + κs), (4.77)

where E∗(ω) is the complex modulus for uniform oscillatory deformation (4.34).
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The real part of the effective dilatational modulus Eeff (4.77) quantifies the
strength of reverse Marangoni flows. Rapid adsorption eliminates Marangoni forces,
giving Re[Eeff ] ≈ 0 (assuming |β| � ω0). By contrast, reverse Marangoni flows are
strongest for negligibly slow adsorption, whereupon Re[Eeff ] ≈ E0 (4.34). Solubility
effectively reduces the dynamic Gibbs modulus E=Re[E∗] (figure 16) and therefore
decreases the damping rate β(E). Indeed, Franklin et al. (1774) and Levich (1962)
note that sailors report that waves are damped more with animal and vegetable
oils (with insoluble fatty acids) than with soluble mineral oils. The imaginary part
of Eeff (4.77) quantifies surface-viscous resistance to wave motion. In addition to
ηs and κs, Im[Eeff ] contains a contribution κads

s = Im[E∗] (4.34), which becomes
significant when ω0 is comparable to the sorption time.

The full calculation of β is complicated, and we do not pursue it here. However,
the similarity between (4.76) and (4.70b) suggests that the damping rate β depends
on the ratio of Eeff and γ . An effective immobilization parameter,

Ψ ∗ =
Eeff

γ
≈Maγ

Re[E∗]
E0
+ iCa

(
Bqη + Bqκ +Ma

Im[E∗]
E0

)
(4.78)

takes the place of Maγ = E0/γ in (4.71), since β � ω0, where Ma and Maγ are
defined in table 3, and

Ca=
ηc
γ
, Bqη =

ηsk
η
, Bqκ =

κsk
η
. (4.79a−c)

Equation (4.78) is the analogue of (4.43) for the mechanical response of oscillating
bubbles.

The damping rate is a non-trivial function of Maγ , Bqη or Bqκ in general, with
limiting values of βclean (4.67) when |Ψ ∗| → 0 and βstiff (4.73) when |Ψ ∗| → ∞.
The rate of damping therefore does not distinguish between the specific surfactant
processes responsible for the damping. Measurements of a partially immobilized
interface can at best be used to determine the lumped immobilization parameter Ψ ∗.

4.4. Thin films: surfactant dynamics affects thickness of coating

Thin fluid films are central to engineering and biophysical flows, most of which
involve surfactants. Every blink or breath involves the dynamics of a tear film or
the alveolar fluid film, and every stroke of a paintbrush leaves a thin liquid film
that eventually dries. Industrial machinery is often coated with thin films of lubricant,
and fibres, parts and products are coated by thin liquid films that are flowed over
the objects. As with §§ 4.1–4.3, the effects of surface viscosity and Marangoni flows
cannot always be neatly differentiated in many of these applications. In this section,
we will quantify surfactant-covered thin film flows and highlight how the observable
quantity (e.g. film thickness) relates to one or many ‘hidden’ surfactant variables.
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x
z

√2¶c

h0 = hLLD h0 = åhLLD

VVV
us(z)

h(z)

(a) (b) (c) (d)

¶d

FIGURE 20. (a) A static meniscus form next to a stationary wall and the liquid level rises
to a height

√
2`c. (b) When the wall is drawn upward, a film of liquid of asymptotic

thickness h0 is entrained, and a dynamic meniscus connects the coating with the liquid
reservoir. When the surface is clean, the LLD scaling gives h0 ∼ Ca2/3`c. (c) When
surfactants occupy the liquid–air interface, Marangoni effects (and/or surface viscosity, see
discussion) resist surface dilatation, drawing more fluid along with the moving plate. The
coating is thicker by the factor α. (d) If the entrained film is thick enough, or if bulk
concentration is large enough, surface concentration gradients are suppressed by adsorption
of surfactant molecules to the interface, weakening the Marangoni effect.

4.4.1. Plate coating: the Landau–Levich–Derjaguin problem
Dip coating is perhaps the easiest way to deposit a thin liquid film on an object:

dip the object in a liquid reservoir, then pull it out. The thickness h of the entrained
liquid layer depends on the velocity V of the substrate, and the density, viscosity
and surface tension of the liquid being drawn out (figure 20) as given by the classic
Landau–Levich–Derjaguin (LLD) law,

hLLD

`c
≈ 0.946 Ca2/3, (4.80)

where

`c =

√
γ

ρg
(4.81)

is the capillary length (Landau & Levich 1942; Quéré 1999), and Ca= ηV/γ is the
capillary number.

The LLD scaling follows from dividing the film into three regions: a film of
uniform thickness coating the plate far above the reservoir, a static or undisturbed
meniscus (figure 20a), and an intermediate dynamic meniscus of length `d that
smoothly matches the interfacial curvature between the uniform coating and the
static meniscus (figure 20b). Neglecting fluid inertia, the viscous stress in a dynamic
meniscus of thickness h scales with ηV/h2, and balances the capillary stress, which
is the gradient of the Laplace pressure (γ /`c) along the dynamic meniscus of length
`d

ηV
h2
∼

γ

`c`d
. (4.82)
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Near the liquid reservoir, the curvature of the dynamic meniscus must smoothly
match to the static meniscus, which is set by the capillary length `c, giving

1
`c
∼

h
`2

d
. (4.83)

Combining (4.82) and (4.83) to eliminate `d gives the Ca2/3 scaling in the LLD law.
The fluid being drawn out of the bath is rarely pure in most applications, and

it has long been known that surfactants enhance the thickness h0 of the film.
Reverse Marangoni stresses and possibly surface rheological stresses immobilize the
interface, dragging excess liquid along with the surface. In the following sections,
we will outline recent studies that adapt the LLD approach to accommodate various
surfactant processes, which first requires a description of the fluid dynamics of the
entrained film.

For simplicity, we assume that the balance between viscous and capillary stresses
dominate the dynamic meniscus. In particular, both inertia and gravity are weak,
such that ρV2/h0 � ηV/h2

0 and ρg� ηV/h2
0, where V is the withdrawal velocity

and h0 is the film thickness. Under these assumptions, fluid does not drain to
leading order: the film asymptotes to a uniform upward flow far from the reservoir.
For sufficiently thin films (h0 � `c), lubrication theory holds within the dynamic
meniscus

η
∂2u
∂x2
=
∂p
∂z
,

∂p
∂x
= 0. (4.84a,b)

Near the plate, the slope and curvature of the liquid surface h(z) is small, and the
Young–Laplace equation (2.6) gives the capillary pressure

pc ≈−γ
d2h
dz2

. (4.85)

However, ∂p/∂x = 0 within the lubrication layer, and therefore bulk fluid pressure
p is constant across the film, and equal to the local capillary pressure pc(z).
Substituting p(z)= pc(z) in (4.84) and solving with boundary conditions u(x= 0)=V
and u(x= h)= us gives

u(x, z)=−
γ

2η
d3h
dz3

(x2
− xh)+ (us − V)

x
h
+ V. (4.86)

Note that the surface velocity us(z) and film thickness h(z) are yet unknown.
Since gravitational drainage is negligible, h(z) follows from mass conservation

(
∫ h

0 u dx= Vh0), to give

γ

η

∂3h
∂z3
=

12Vh0

h3
−

6V + 6us

h2
. (4.87)
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The surface velocity us(z) is then determined by the interfacial stress condition.
For a surfactant-free film, imposing η∂u/∂x|x=h= 0 in (4.86) and substituting (4.87)
gives

us

V
=

3
2

h0

h
−

1
2
. (4.88)

Notably, a stagnation point appears at h(z)= 3h0, meaning that the surface velocity
is directed along the plate motion for only a section of the dynamic meniscus.
Surfactants modify this stagnation point, enabling more fluid to be drawn.

Substituting (4.88) in (4.87) gives the LLD equation

γ

η
h′′′ =

3V
h3
(h0 − h), (4.89)

where primes represent derivatives in z. In dimensionless variables, (4.89) becomes

h̃3h̃′′′ = 1− h̃, (4.90)

where h̃= h/h0 and z̃= z/`d, and the dynamic meniscus length is

`d =
h0

(3 Ca)1/3
. (4.91)

Far from the reservoir, h̃(∞)→ 1, h̃′(∞)→ 0 and h̃′′(∞)→ 0.
Landau & Levich (1942) realized that h̃′′ must asymptotically match the curvature

of the static meniscus near the reservoir. Using the Young–Laplace law and assuming
zero contact angle, the static meniscus has height

√
2`c and curvature

√
2/`c. In

dimensionless terms, this inner boundary condition on (4.90) becomes

h̃′′ =

√
2h0

`c

(
γ

3ηV

)2/3

≈ 0.64, (4.92)

where the constant is found by numerically integrating (4.90). Rearranging (4.92) for
the residual thickness h0 then gives the classic LLD law (4.80).

In anticipation of the immobilizing effect of surfactants, we calculate the extreme
case of complete surface immobilization. An incompressible surface has us=V , and
(4.87) becomes

γ

η
h′′′ =

12V
h3
(h0 − h), (4.93)

Comparing (4.93) with (4.89) reveals this limit to be identical to the standard LLD
problem, but with a modified dynamic meniscus length

`immob
d =

h0

(12 Ca)1/3
. (4.94)

In other words, the dimensionless problem and the matching proceeds exactly like
for LLD, but with a capillary number that four times larger, thereby modifying this
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1 2 3 4 5 6 7 8 9 10

1.0

0.5
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-0.5
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V
u →-V/2 u →-V/2

u →V

u →V

u →V

h0 = 42/3hLLD

h0 = hLLD

å = 1

å = 42/3

Surface
immobilization

h/h0

u s
/V

z →∞ z →-∞

FIGURE 21. Surface velocity of the entrained film. The surface flow has a stagnation point
for a clean interface (α = 1) beyond which the fluid flow is in the direction opposite to
that of the plate. With increasing α, the surface is immobilised until a maximal value of
α = 42/3, when the interface is surface incompressible and is drawn at the same velocity
as the plate everywhere.

LLD scaling to
himmob

0

`c
≈ 0.946 (4Ca)2/3 = 42/3 hLLD

`c
. (4.95)

An incompressible interface entrains more fluid as the plate is withdrawn, increasing
the film thickness up to 42/3 more than a fully mobile interface (figure 21). In what
follows, we will treat specific surfactant processes based on illustrative works in
dip coating (Park 1991; Quéré 1999; Shen et al. 2002; Scheid et al. 2010), each
of which reveals a similar transition between the clean and immobilized limits.

4.4.2. Insoluble and surface-inviscid surfactant
Surfactants give rise to Marangoni and surface-viscous forces that resist interfacial

stretching. The Boussinesq–Scriven equation (3.94) modifies the interfacial stress
balance to

∂γ

∂z
+ (ηs + κs)

∂2us

∂z2
= η

∂u
∂x

∣∣∣∣
x=h

= η

(
−

6Vh0

h2
+

2V + 4us

h

)
, (4.96)

where u(x, z) follows from (4.86) and (4.87). We will first consider insoluble
surfactants that are surface inviscid, so that ηs= κs= 0. Surface fluid flows establish
gradients in Γ , which exert reverse Marangoni stresses. Without surfactant exchange,
surface diffusion is the only mechanism to relax gradients in γ (Γ ). Perturbing the
surface concentration via Γ (z) = Γ0 + δΓ (z), the steady-state surface conservation
equation (3.10) becomes

Γ0
∂us

∂z
=Ds

∂2(δΓ )

∂z2
. (4.97)
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Integrating (4.97) and imposing ∂Γ /∂z(z→∞)→ 0 and us(z→∞)→ V gives

∂(δΓ )

∂z
=
Γ0

Ds
(us − V). (4.98)

The Marangoni stress is then given by

∂γ

∂z
=−

E0

Γ0

∂δΓ

∂z
=−

E0

Ds
(us − V). (4.99)

Substituting into the interfacial stress balance (4.96) with ηs = κs = 0 and
non-dimensionalizing gives

MaD(1− ũs)=−
6

h̃2
+

2+ 4ũs

h̃
, (4.100)

where the surface diffusive Marangoni number (table 3) is:

MaD =
E0h0

Dsη
=

E0

ηV
×

Vh0

Ds
=Ma× Pes. (4.101)

When MaD � 1, the interface is immobilized relative to the moving plate, and
(4.100) gives ũs → 1, or us → V . This surface immobilization occurs when the
Marangoni modulus is large or surface diffusivity is weak. By contrast, weak
Marangoni flows or strong surface diffusion (MaD�1) recovers the us corresponding
to clean surfaces (4.88).

The film thickness equation (4.87) for an inviscid, insoluble surfactant, using
(4.100) for us, is

h̃3h̃′′′ = (1− h̃)

(
1+

3h̃MaD

4+ h̃MaD

)
. (4.102)

As MaD→ 0, (4.102) is identical to the classic LLD equation for a clean interface
(4.90). For strong immobilization as MaD → ∞, the right-hand side increases
fourfold, amplifying the apparent capillary number fourfold, and increasing the film
thickness by 42/3 (Park 1991; Quéré 1999).

4.4.3. Soluble and/or surface-viscous surfactant
Adsorption/desorption weakens the Marangoni effect, and reduces the thickening

factor α = h/hLLD (Ou Ramdane & Quéré 1997). However, as with oscillating
bubbles (§ 4.2.2) and wave damping (§ 4.3), the distinct effects of adsorption/
desorption and intrinsic surface viscosities are not easy to tease apart. The role
of surface viscosity in dip coating has only recently gained attention (Scheid
et al. 2010; Delacotte et al. 2012; Seiwert et al. 2014) in systems with negligible
Marangoni forces; e.g. when rapid adsorption/desorption eliminates surface tension
gradients.
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Assuming surface diffusion to be negligible, gradients in γ (Γ ) are governed by
the balance of flow and adsorption (§ 3.2)

Γ0
∂us

∂z
=−

δΓ

τs
. (4.103)

Taking perturbations δΓ from equilibrium Γ0 to be small gives a Marangoni stress

∂γ

∂z
=−

E0

Γ0

∂(δΓ )

∂z
= E0τs

∂2us

∂z2
. (4.104)

Substituting (4.103) in the interfacial stress condition (4.96) gives(
E0τs + ηs + κs

η

)
∂2us

∂z2
=−

6Vh0

h2
+

2V + 4us

h
. (4.105)

Non-dimensionalizing over h0, V and `d = (3 Ca)−1/3h0 for h(z), us(z) and z gives

Ψ̃
∂2ũs

∂z2
=−

6

h̃2
+

2+ 4ũs

h̃
, (4.106)

where

Ψ̃ =
(3Ca)2/3Ψ`c

h0
, (4.107)

and Ψ is the surface-immobilization parameter, described in § 3.4.3

Ψ =
E0τs + ηs + κs

η`c
=MaK + Bqη + Bqκ . (4.108)

If E0, τs, ηs and κs are known separately, (4.106) can be solved numerically along
with the film thickness equation (4.87) for arbitrary values of Ψ (Scheid et al.
2010). The limits of large and small Ψ are easy to interpret: the surface is fully
mobile as Ψ → 0, recovering the classic LLD solution. By contrast, the interface is
immobilized as Ψ →∞, in which case us ≈ V everywhere. The same factor of 4
found in the MaD→∞ limit of (4.102) appears in the LLD equation, and the film
thickness increases by 42/3.

Measured film thickness depends on the lumped parameter Ψ and does not
distinguish between three distinct phenomena – surface shear viscosity, surface
dilatational viscosity and apparent dilational viscosity due to adsorption/desorption
(§ 3.4.3). More information, e.g. from complementary experiments, would be
required to deconvolve the impact of each.

It may also be possible to suppress one surfactant process to isolate the effect
of another in specific systems. For example, intrinsic surface viscosity becomes the
dominant immobilizing component when Bq & MaK . The Marangoni contribution to
immobilization is weakest when adsorption/desorption is fast: gradients in Γ are
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small if τs� τflow, so that

MaK =
E0

ηV
×

Vτs

`c
=Ma×

τs

τflow
� 1. (4.109)

This condition, however, does not account for finite subphase depth and the
availability of surfactant molecules in the thin film. Effective surfactant exchange
requires the film to be thicker than the depletion depth Ld = ∂Γ /∂Cs (§ 3.2), so as
to not be ‘confined’ (Quéré 1999; Delacotte et al. 2012) by the lack of sufficient
dissolved molecules. Suppressing Marangoni flows therefore requires large surfactant
concentrations (so Ld is small), large withdrawing velocities (so h0 is large) and
elimination of energetic barriers to adsorption (so τs is small). Following this
strategy, Delacotte et al. (2012) measured enhanced film thickness in unconfined
films despite rapid adsorption, suggesting that surface viscosity does indeed play a
role in immobilizing interfaces. However, the two surface viscosities ηs and κs still
remain indistinguishable in 1-D surface deformations.

Finally, the presence of micelles at high bulk surfactant concentrations influences
thickness of the coating in non-trivial ways. Above the CMC, micelles dissociate
to maintain a reservoir of free monomers, thereby eliminating diffusion limitation
to adsorption. Bulk concentrations above the CMC thus lead to a thinner coating,
as Marangoni flows are suppressed and the interface is ‘remobilized’ (Stebe &
Maldarelli 1994, see also § 4.1.2). However, micelles may dissociate at time scales
comparable to or slower than the bulk diffusion time at very high concentrations,
thereby depleting the bulk of free monomers and enhancing the Marangoni effect,
which again leads to a thicker entrained film (Shen et al. 2002).

4.4.4. Thin-film drainage
Gravitational drainage is negligible in the LLD problem, and fluid flow is driven

entirely by capillary pressure. For illustration and completion, we will briefly
examine one case where gravity drives thin-film flow. Approximating the flow in
a thin film draining down a vertical wall using lubrication theory, the velocity
u(x, z, t) obeys

η
∂2u
∂x2
=−ρg, (4.110)

where z is positive downward, and x is perpendicular to gravity. Solving with a no-
slip wall at x= 0 and a (yet unknown) surface velocity us(z, t), the fluid velocity is

u(x, z, t)=−
ρg
2η
(x2
− hx)+

xus

h
. (4.111)

Conservation of mass requires

∂h
∂t
+
∂Q
∂z
= 0, (4.112)
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where Q(z, t) =
∫ h

0 u(x, z, t) dx is the vertical flux. Substituting (4.111) in (4.112)
gives the film thickness equation

ht +
ρg
4η

h2h′ +
(hus)

′

2
= 0, (4.113)

where primes represent z derivatives, and the subscript t denotes time derivatives.
A clean fluid interface is stress free, and enforcing this at x= h in (4.111) gives

us =
ρgh2

2η
. (4.114)

Substituting (4.114) in (4.113) gives the evolution equation for a clean fluid film
draining under gravity,

ht +
ρg
η

h2h′ = 0. (4.115)

By contrast, surfactant processes resist interfacial deformation, which modifies us.
Rather than explicitly treating surface rheology and transport, we will consider the
extreme case when the surface is immobilized due to some combination of reverse
Marangoni flow and surface-viscous resistance. Setting us = 0 in (4.113) gives

ht +
ρg
4η

h2h′ = 0. (4.116)

Notably, the same factor of 4 between the stress-free interface and the immobile
interface appears here, as in the LLD problems (4.95).

To solve the appropriate film equation, we use R as a system-specific length scale
(such as length of the plate) in the flow direction. Non-dimensionalizing over R, h0

and ηR/(ρgh2
0) for z, h and t, respectively, gives

h̃t +
1
β

h̃2h̃′ = 0, (4.117)

where β = 1 for a clean surface (4.115) and β = 4 for an immobile surface (4.116).
The film thickness obeys a similarity solution, h = F(ζ ), where ζ =

√
z̃/t̃, and F

obeys

F′F2
− βζ 2F′ = 0, (4.118)

with solution F(ζ )=
√
βζ . The dimensional film thickness is then

h(z, t)=

√
βηz
ρgt

. (4.119)

The clean interface limit (β = 1) recovers the classic Jeffreys solution (Jeffreys
1930). More generally, the h∼ t−1/2 scaling persists even with surfactant. Drainage
takes longer with surfactant, however, and the film is β1/2 or twice as thick when
the surface is completely immobile. Surface viscosity, Marangoni flows or some
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non-trivial combination acts to retard surface flow, thereby slowing film drainage.
This effect is responsible in part for the long lives of soapy bubbles and foams
(§ 4.5), and the increased coalescence time of surfactant-covered bubbles.

Bhamla et al. (2014) developed an experimental platform that mimics drainage
dynamics of tear films. A hemispherical dome is raised from a reservoir of
liquid containing a particular surfactant, and the drainage is measured. Insoluble
(Dipalmitoylphosphatidylcholine, DPPC) monolayers do indeed retard drainage.
Measurements and numerical simulations captured the transition between the
expected Reynolds’ thinning law for clean fluids (4.115) and drainage with a
surface-immobilized surface (4.116) (Bhamla et al. 2014). Working with the same
system, Hermans et al. (2015) later identified that Marangoni effects and dilatational
viscosity cannot be deconvoluted in this process. In other words, the surface is
immobilized as a function of Ψ ≈ Bq + Ma. Surface immobilization is controlled
not by Ma or Bqη or Bqκ alone, but by a combination of the three that is not easy
to separate except in specific geometries, or with independent measurements of
surfactant properties.

4.5. Foams: surfactant properties impact macroscopic flows

Foams are examples of complex multiphase materials, with ubiquitous applications
in the kitchen (e.g. whipped cream), in cleaning (e.g. soap suds), in packaging
(e.g. Styrofoam) and superlight construction materials (e.g. metal foams). Most
relevant to our discussion are aqueous foams, which are stabilized against rupture
by adsorbed surfactant molecules. The type and rheology of the surfactant influences
its stability and its macroscopic flow (Buzza, Lu & Cates 1995; Cohen-Addad et al.
2013). Here we focus on foam drainage, the gravity-driven flow of liquid within an
aqueous foam.

The geometry of soap foams is intricate, but can be described by few basic rules
of energy minimization, as first laid out by the Belgian scientist Joseph Plateau in
the 19th century (at a time when he was already blind). The liquid content in a
foam resides mostly in a network of channels (‘Plateau borders’) connected to each
other at nodes, where four channels meet in a tetrahedral configuration (figure 22).
The principal geometric parameters are the typical length L of a channel, and the
transverse radius of curvature r, which is also the characteristic channel width. The
volume of fluid in each channel is O(r2L), whereas each node contains a volume
O(r3). The macroscopic foam occupies a volume of O(L3), so that the volume
fraction of the liquid phase is

ε = δε

( r
L

)2
+ δ′ε

( r
L

)3
, (4.120)

where δε and δ′ε are constants. When ε� 1, the foam is said to be ‘dry’, and then
r≈ δ−1/2

ε Lε1/2.
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V
V V

r

(a) (b) (c)

FIGURE 22. (a) Geometry of a node at the intersection of four Plateau borders. (b) Flow
along a longitudinal section of a channel is plug-like when Bq� 1. Viscous dissipation
occurs primarily at the nodes (not shown) in this case. (c) Poiseuille flow for Bq� 1,
corresponding to large interfacial stresses and subsequent surface immobilization.

Surfactants modify fluid flow within these channels and nodes, systematically
altering macroscopic foam drainage. In what follows, we will review and illustrate
past works (Verbist, Weaire & Kraynik 1996; Koehler, Hilgenfeldt & Stone 2000;
Durand & Langevin 2002) first using a surfactant transport model that accounts for
flow within channels and nodes, and then using a macroscopic model that lumps all
surfactant processes into course-grained coefficients. Together, the two models paint
a qualitative picture of how surfactant processes impact measurable macroscopic
foam properties.

4.5.1. Physico-chemical model
We simplify the geometry by considering only a planar projection of a vertical

liquid channel (figure 22) of width 2h(z). The non-trivial shape of the channel
and its orientation relative to gravity will modify the following analysis, but only
by numerical prefactors (Koehler et al. 2000; Durand & Langevin 2002). As with
coating flows, we exploit the fact that r� L, and use lubrication theory for the bulk
fluid flow:

η
∂2u
∂x2
=
∂P
∂z
, (4.121)

where P(z)=p(z)−ρgz. Integrating (4.121) and imposing boundary conditions u(x=
±h)= us gives

u(x, z)=
x2
− h2

2η
∂P
∂z
+ us, (4.122)

where the surface velocity us is yet unknown and will be determined by the surface
stress balance. The fluid pressure, p, relative to the gas pressure in the bubbles obeys

892 P1-83

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

17
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.170


H. Manikantan and T. M. Squires

the Young–Laplace equation, giving

∂P
∂z
≈
γ

h2

∂h
∂z
− ρg, (4.123)

where the total curvature is assumed to be 1/h(z).
Conservation of mass within the channel requires

∂h
∂t
+
∂

∂z

[∫ h

−h
u(x, z) dx

]
= 0, (4.124)

and substituting u(x, z) from (4.122) gives the drainage equation for each channel

∂h
∂t
+
∂

∂z

[
−

h3

3η
∂P
∂z
+ 2ush

]
= 0. (4.125)

The surface velocity us in (4.125) is dictated by the interfacial stress balance (3.94)

−
E0

Γ0

∂Γ

∂z
+ (ηs + κs)

∂2us

∂z2
= h

∂P
∂z
. (4.126)

Reverse Marangoni stresses are driven by gradients in Γ , as described by the
balance between surface convection and diffusion, or adsorption/desorption, as
pursued in previous sections.

We will choose one illustrative case that is analytically tractable. If the surfactant
is surface inviscid (ηs = 0, κs = 0) and insoluble (τ−1

s = 0), gradients in Γ can
only relax via surface diffusion. Durand & Langevin (2002) solved the surfactant
conservation equation for Γ , using (4.126) to obtain

us =−
Ds

E0
h
∂P
∂z
, (4.127)

which when substituted in (4.125) along with (4.123) gives the drainage equation

∂h
∂t
+
∂

∂z

[
1

3η

(
ρgh3
− γ h

∂h
∂z

)
+

2Ds

E
(ρgh2

− γ
∂h
∂z
)

]
= 0. (4.128)

Analogous drainage equations can be derived for more general 3-D networks and
written in terms of the cross-sectional area A ∝ h2 of the channel. A measurable
quantity is the volume fraction ε(z, t) of liquid in the foam, which relates to
the channel cross-sectional area A(z, t) via ε ∼ (AL)/L3. A generalized 3-D foam
drainage equation emerges,

∂ε

∂t
+
∂

∂z

[
δ1

L2

η

(
ρgε2
− δ0

γ

L
∂ε3/2

∂z

)
+ δ2

DsL
E0

(
ρgε3/2

− δ0
γ

L
∂ε

∂z

)]
= 0, (4.129)

where δ0, δ1 and δ2 are numerical constants that depend on the particular
geometry of the Plateau borders (Koehler et al. 2000; Durand & Langevin 2002).
Non-dimensionalizing length and time in (4.129) over δ0γ /ρgL and δ0γ η/δ1ρ

2g2L3
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gives
∂ε

∂ t̃
+
∂

∂ z̃

[
ε2
−
∂ε3/2

∂ z̃
+

δ2

δ1MaD

(
ε3/2
−
∂ε

∂ z̃

)]
= 0, (4.130)

where the surface diffusive Marangoni number is MaD = E0L/ηDs, as in table 3.
Marangoni reverse flows are strongest when surface diffusion is weak, and

MaD� 1, in which case (4.130) becomes

∂ε

∂ t̃
+
∂ε2

∂ z̃
−
∂2ε3/2

∂ z̃2
= 0. (4.131)

In this rigid-interface limit, the channels are essentially no-slip walls, and bulk fluid
flow within the channels is Poiseuille-like. This model was first given by Verbist
et al. (1996), who derived it from a macroscopic perspective as we illustrate in the
next section. The dominant resistance to foam drainage in the rigid-interface limit
arises from bulk viscous dissipation.

By contrast, strong surface diffusion quickly eliminates surface concentration
gradients when MaD � 1, thereby weakening Marangoni reverse flows. Rescaling
the characteristic time in (4.130) by δ1MaD/δ2 in this limit gives

∂ε

∂ t̃
+
∂ε3/2

∂ z̃
−
∂2ε

∂ z̃2
= 0. (4.132)

This mobile-interface drainage equation represents channels with plug-like bulk flow:
the surface is completely stress free or ‘remobilized’ in this limit. The resistance to
fluid flow arises from dissipation at the channel surfaces. In the following sections,
we will explore the measurable macroscopic signatures of these two limits.

4.5.2. Macroscopic model
The analysis thus far ignored the nodes that connect Plateau borders within the

foam network. Mixing, merging and bending of streamlines at nodes occur over
length scales r � L, and therefore increase viscous dissipation. The detailed flow
in the nodes (Cohen-Addad et al. 2013) is beyond the scope of our discussion, and
we will instead outline a course-grained model (Koehler et al. 2000) that treats the
foam as a porous macroscopic material.

Mass conservation in the foam network requires

∂ε

∂t
+
∂(εv)

∂z
= 0, (4.133)

where the mean velocity v obeys Darcy’s law

∂P
∂z
+
ηv

k(ε)
= 0. (4.134)

All details of the network and dissipation within the foam are lumped into a
permeability k(ε) in (4.134). The foam is driven by both capillary and hydrostatic
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pressures

P(z)= pgas −
γ

r
− ρgz≈ pgas −

γ δ1/2
ε

Lε1/2
− ρgz, (4.135)

where the radius of curvature is assumed to be small (r � L), and the foam is
assumed to be dry (ε � 1) so that r ≈ δ−1/2

ε Lε1/2 from (4.120). Using (4.135) in
(4.134) gives

ρg+
γ δ1/2

ε

L
∂ε−1/2

∂z
=
ηv

k(ε)
, (4.136)

which can be solved for v in terms of the permeability k(ε). Mass conservation
(4.133) then becomes

∂ε

∂t
+
∂

∂z

[
ρg
η

k(ε)ε −
γ δ1/2

ε

ηL
k(ε)

∂ε1/2

∂z

]
= 0, (4.137)

which is the generalized macroscopic foam drainage model.
The permeability k(ε), in general, depends on the geometry and boundary

conditions for the flow within the foam network (Koehler et al. 2000). When
Marangoni and/or surface-viscous effects immobilize the interface, bulk flow within
the channels is Poiseuille-like. The permeability k(ε) then comes from balancing the
fluid pressure gradient ηV/r2 with that driving the Darcy flow ηV/k(ε), implying

k(ε)∝ r2
∝ L2ε. (4.138)

Using k(ε)∼L2ε in (4.137) gives the (dimensional) rigid-interface drainage equation,
(4.131).

By contrast, if surface stresses are negligible and interfaces are mobile, flow in the
channels is plug-like. The dominant viscous resistance then comes from the merging
flows at nodes, which occupy a fraction of O(r/L) of the total fluid volume. When
the resistance to Darcy flow, ηV/k(ε), arises from the volume-averaged viscous
resistance at nodes, (ηV/r2)(r/L), the foam permeability becomes

k(ε)∝ rL∝ L2ε1/2. (4.139)

Substituting k(ε) ∼ L2ε1/2 in (4.137) gives the node-dominated foam drainage
equation (Koehler et al. 2000), which is identical to the mobile-interface drainage
equation (4.132). However, the resistance to fluid drainage in this limit arises due
to bulk viscous dissipation at the nodes, rather than surface stresses. In other words,
flow in channels can be plug-like even when channel-dominated if the driving
pressure gradient balances surface stresses via (4.126).

More generally, we expect surfactant processes to impact flow in foams via a
lumped immobilization parameter

Ψ =
E0τ + ηs + κs

ηL
, (4.140)
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where τ is the time scale of the dominant surfactant process that relaxes Marangoni
stresses. If the channel walls are not immobilized, the surface ‘slips’ as the foam
drains. Surface stresses associated with such a deformation scale like (E0τ + ηs +

κs)V/L2, which translates to a force per unit volume of the fluid of (E0τ + ηs +

κs)V/rL2. Equating this force to the macroscopic driving force density ηV/k(ε) gives
permeability

k(ε, Ψ )∝
ηL2r

Eτ + ηs + κs
∝

L2ε1/2

Ψ
. (4.141)

The permeability of channels increases with decreasing degree of immobilization:
a ‘slippier’ interface makes flow more plug-like. Substituting k(ε) ∼ L2ε1/2/Ψ in
(4.137) and setting Ψ =MaD gives the dimensional analogue of the mobile-interface
drainage equation (4.132).

4.5.3. Foam drainage: predictions versus observations
Forced foam drainage experiments introduce fluid from the top at flow rate Q into

a dry foam, and track the velocity v of a wet front as it moves downwards through
the foam. The front moves at a velocity

v ∝Qα, (4.142)

where the exponent α is typically between 1/3 and 1/2 (Verbist et al. 1996; Koehler
et al. 2000; Durand & Langevin 2002). Surfactant processes impact this exponent in
a measurable way.

The drainage equation in both channel- and node-dominated limits can be solved
by modelling the wetted front as a soliton wave

ε(z, t)= f (s)= f (z− vt), (4.143)

which travels downward at a constant front velocity v. The foam is assumed to be
dry far ahead of the moving front, and uniformly wetted far behind the front

f (s→∞)= 0, and f ′(s→−∞)= 0. (4.144a,b)

Verbist et al. (1996) and Koehler et al. (2000) describe this solution in detail
for (4.131) and (4.132), respectively. Fortunately, the exponent α can be deduced
without solving for the front profile. In the channel-dominated or rigid-interface
limit, transforming (4.131) using s= z− vt, and integrating once gives

− vf + f 2
− ( f 3/2)′ = 0. (4.145)

Using the s→−∞ condition (4.144) in (4.145) then gives

f (s→−∞)= ε(z→−∞)→ v. (4.146)

For a foam of cross-section area A, a macroscopic volume vA1t is wetted behind
the moving front by a volume Q1t of fluid supplied at the top. The wetted volume
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fraction is then

ε =
Q
vA
. (4.147)

For the wetted region far behind the front, (4.146) gives

Q
vA
→ v ⇒ v ∝Q1/2, i.e. α = 1/2. (4.148)

This scaling would be expected in a foam drainage experiment when the channel
surfaces are immobilized, and the foam is essentially a network of connected tubes
with Poiseuille flow through each channel.

By contrast, transforming and integrating (4.132) for the mobile-interface or node-
dominated regime gives

− vf + f 3/2
− f ′ = 0. (4.149)

The boundary condition as s→−∞ (4.144) gives

f (s→−∞)= ε(z→−∞)→ v2. (4.150)

Then, in the wetted region far behind the moving front,

ε =
Q
vA
→ v2

⇒ v ∝Q1/3, i.e. α = 1/3. (4.151)

The transition from Poiseuille-like flow in immobilized channels to plug-like flow
in mobile channels manifests as a change in the exponent α in (4.142) from 1/2 to
1/3.

Surfactants change the character of drainage based on the extent of surface
immobilization. Durand, Martinoty & Langevin (1999) measured the exponent
α to transition between the two types of flow upon modifying surface rheology.
The foam literature historically quantifies this transition in terms of the ‘Kraynik
criterion’ (Koehler et al. 2000; Durand & Langevin 2002) based on the surface
shear viscosity

MK =
rη
ηs
=

1
Bq
. (4.152)

Large MK (or small Bq) corresponds to mobile channel surfaces, and small MK (or
large Bq) justifies the assumption of rigid channel walls.

However, ηs, κs and E0τs play indistinguishable roles in 1-D compression/dilatation
of interfaces, as noted in § 3.4.3. What was previously attributed to dissipation
due to a surface shear viscosity might arise from an intrinsic surface dilatational
viscosity, or due to Marangoni stresses with finite-time adsorption/desorption, or
some combination (Buzza et al. 1995). More generally, therefore, the transition from
one drainage regime to the other should depend on the degree of immobilization Ψ .
When Ψ � 1, the surface is immobilized, flow within the channels is Poiseuille-like,
and the drainage exponent α is closer to 1/2. By contrast, channel surfaces are
mobile when Ψ � 1, flow within the Plateau borders are plug-like, and α ≈ 1/3.
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4.6. Particles and probes on surfactant-laden interfaces

Early descriptions of particle motion within viscous interfaces were motivated by the
dynamics of membrane-bound proteins. Saffman & Delbrück (1975) approximated
the phospholipid membrane as a thin fluid layer of thickness h and 3-D viscosity
ηm atop a subphase of viscosity η (figure 12). A modern interpretation of this
system would introduce a surface shear viscosity ηs = ηmh. Saffman (1976)
solved this problem asymptotically in the interface-dominated (Bq� 1) limit. The
leading-order 2-D problem has no steady solution for the translation of a cylinder
– the well-known Stokes paradox. This far-field singularity must be regularized
by some additional force – Saffman & Delbrück (1975) examined fluid inertia,
finite system size and viscous coupling with subphase liquid. Saffman (1976), and
later Hughes, Pailthorpe & White (1981), showed that subphase viscous resistance
resolves the paradox in many practical systems. In addition to predicting membrane
protein diffusivity, these relations help deduce surface rheology from the measured
mobility of surface-attached probes (Prasad et al. 2006; Fuller & Vermant 2012;
Zell et al. 2014), and form the basis for interfacial microrheology.

4.6.1. Translation and rotation of cylinders
A surface-attached particle translating within an insoluble surfactant monolayer

disturbs the surface concentration distribution, potentially setting up reverse
Marangoni flows. Assuming weak surfactant diffusivity (MaD � 1, table 3), these
reverse flows modify the fluid streamlines to that of a surface incompressible flow
(§ 3.3.2). Using the Green’s function derived in § 3.4.2, the surface velocity field
around a moving particle embedded within the monolayer can be written as a
boundary integral,

us(r)=
∫

S
G(r− r′) · f (r′) dS, (4.153)

where S is the area occupied by the particle, and r′ ∈ S. The force density f (r′) is
chosen such that us satisfies the boundary conditions at the probe surfaces (Fischer
2004b). The drag force on the particle is then

Fdrag =

∫
S

f (r) dS. (4.154)

Alternatively, flow fields can be obtained directly when the system geometry
simplifies the Boussinesq–Scriven equations. For example, both the surface velocity
us and bulk velocity u can be obtained directly for a cylindrical probe (Hughes
et al. 1981; Barentin et al. 1999) by projecting the governing equations into
Fourier–Bessel functions. Then, the drag force can be written as the sum of viscous
contributions from the subphase and the monolayer

Fdrag =

∫
S

êz · σ dS+
∫
∂S

êr · σs d`, (4.155)
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where σ and σs are stress tensors corresponding to the bulk and the interface,
respectively. In the following, we will outline key results from Hughes et al. (1981)
to illustrate key differences between interface- and bulk-dominated systems.

The classic Saffman–Delbrück problem consists of a disk of radius R translating
or rotating on a planar insoluble interface of surface viscosity ηs atop an infinitely
deep subphase fluid with viscosity η. The drag F against translation at a constant
velocity U when the interfacial viscous stresses dominate (Bq� 1) is (Hughes et al.
1981)

F(Bq� 1)=−
4πηsU

ln(2Bq)− γE + 4/(πBq)− ln(2Bq)/(2Bq2)
, (4.156)

where γE is Euler’s constant and the Boussinesq number is Bq = ηs/ηR = `SD/R.
The Saffman–Delbrück length `SD=ηs/η (3.102) establishes a ‘cutoff’ beyond which
subphase drag dominates over momentum transfer on the interface.

By contrast, when the drag force is dominated by the subphase (Bq� 1), the drag
on a disk in an insoluble monolayer is

F(Bq� 1)=−8ηRU. (4.157)

This result may at first glance seem surprising, as the drag within an inviscid
interface is greater than the drag on a probe translating within a clean interface
(Happel & Brenner 1965),

Fclean =−
16
3
ηRU. (4.158)

In other words, the simple addition of a surfactant – even with zero surface viscosity
– increases the drag on a disk by a factor of 3/2, owing to the effective surface
incompressibility boundary condition imposed by the surfactant (§ 3.3.2) in the limit
Ma� 1.

Reverse Marangoni flows modify surface streamlines, which in turn force the bulk
fluid to flow in planes parallel to the interface (figure 11). The excess drag in (4.157)
arises due to bulk viscous dissipation associated with this modified flow, and not
due to surface rheology (Fischer 2004a). Only drag forces much larger than (4.157)
should be attributed to surface rheology.

The Saffman–Delbrück problem assumes an infinitely deep subphase, and may
not be valid for a finite subphase of depth H. The general solution for arbitrary
depth obtained numerically by Stone & Ajdari (1998) is shown in figure 23. In the
shallow subphase limit (H � R), Evans & Sackmann (1988) used the lubrication
approximation (3.96) to obtain

F(H� R)=−
2πηR2

H
K2(1/Bq1)

K0(1/Bq1)
U, (4.159)
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FIGURE 23. A cylindrical disk translating within an insoluble surfactant monolayer atop
a bulk fluid layer of finite depth H. Also shown is the resistance coefficient |F|/4πηR|U|
as a function of both sublayer thickness and Boussinesq number. The grey dash-dot lines
are the numerical calculations of Stone & Ajdari (1998) at specified Bq, and the solid
lines are asymptotic values for small and large H/R. The bottom-most solid lines represent
the Bq→ 0 limit (table 4). The dashed asymptotes correspond to a clean interface, from
(4.158) and (4.162), and highlights the fact that even an inviscid surfactant increases drag
on a translating probe as compared to a surfactant-free surface.

where Kn are modified Bessel functions, and Bq1 is a Boussinesq number modified
to account for finite depth

Bq2
1 = Bq

H
R
=
ηsH
ηR2

. (4.160)

When the drag force is dominated by the subphase (Bq� 1), (4.159) gives

F(H� R, Bq→ 0)=−
2πηR2

H
U. (4.161)

For comparison, the drag on a probe on a clean interface with a shallow subphase
is (Barentin et al. 1999)

Fclean(H� R)=−
8πηR2

5H
U. (4.162)

Even surface-inviscid surfactants thus increase drag on the disk in the shallow
subphase limit by 25 % due to surface incompressibility (§ 3.3.2).

All the above discussion was restricted to insoluble and incompressible monolayers.
Surface pressure gradients set up by moving probes can be relaxed by adsorption/
desorption when the surfactant is soluble. Marangoni flows are set up over the time
scale τm = ηR/E0 (3.86), and the mobility relations discussed thus far hold only if
sorption is slow (τs� τm) so that MaK→∞.

For finite MaK , the interface still generates Marangoni flows, but the surface flow
is compressible. The drag on a probe translating within such an interface has not
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Deep subphase Shallow subphase
(H� R) (H� R)

Clean interface
4

3π

2
5

R
H

Incompressible, inviscid monolayer Ma� 1 and
Bq= 0

2
π

1
2

R
H

Incompressible, viscous monolayer Ma� 1 and
Bq→∞

Bq
log(2Bq)− γE

Bq
log(2
√

BqH/R)− γE

Compressible, inviscid monolayer Ma→ 0 and
Bq→ 0

4
3π

2
5

R
H

Compressible, viscous monolayer Ma→ 0,
Bq→∞, and κs� ηs

—
Bq/2

log(
√

2BqH/R)− γE

Compressible, viscous monolayer Ma→ 0,
Bq→∞, and κs� ηs

—
Bq

log(2
√

BqH/R)− γE

TABLE 4. Summary of asymptotic limits, when available, of the resistance coefficient
|F|/4πηR|U| for the translation of a cylindrical disk.

been computed except in asymptotic limits (Elfring et al. 2016). In what follows, we
only highlight the limiting case of MaK → 0, whereupon Marangoni flows entirely
vanish due to rapid surfactant exchange. Any drag in excess of that on a clean
interface then arises due to surface-viscous stresses. Following Barentin et al. (1999),
the drag on a disk translating within a monolayer with constant surface pressure
(MaK→ 0) atop a thin subphase (H� R) is

Fcompr =−
8πηR2

H
K2(1/Bq1)K2(1/Bq2)

K2(1/Bq1)K0(1/Bq2)+ 4K0(1/Bq1)K2(1/Bq1)
U, (4.163)

where

Bq2
2 = Bq2

1
(1+ κs/ηs)

4
= Bq

H
R
(1+ κs/ηs)

4
(4.164)

is yet another modified Boussinesq number that accounts for a surface dilatational
viscosity κs.

The surface-inviscid (Bq → 0) limit of (4.163) recovers the drag on a clean
interface (4.162). In this limit, the surface stress tensor σs vanishes as ∇s Π → 0
and ηs, κs→ 0, and the only resistance comes from the bulk fluid flow constrained
by a stress-free boundary condition. Another interesting limit is Bq2 →∞ along
with κs � ηs, so that the surface strongly resists dilatational deformation and the
drag is then identical to that of an incompressible monolayer. Table 4 summarizes
the interface-/subphase-dominant limits as a function of Bq and H/R.
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Surfactant dynamics

Rotating circular probes, by contrast, do not perturb surface concentrations and
therefore do not establish Marangoni flows or adsorption/desorption fluxes. Rotating
disks excite pure shear deformations and the resistance to rotation arises from
viscous stresses alone, regardless of the solubility and the Marangoni elasticity
of the monolayer. For the same reason, rotating microbuttons (Zell et al. 2014)
make excellent probes for unambiguous measurements of ηs in interface-dominated
systems. The torque on a disk rotating within a monolayer at angular velocity Ω is

T(Bq� 1)=−4πηsR2Ω (4.165)

when interface-dominated, and is

T(Bq� 1)=− 16
3 ηR3Ω (4.166)

when subphase-dominated. The latter recovers the clean interface limit (Happel &
Brenner 1965), highlighting a crucial difference between translational and rotational
motion on interfaces. No Marangoni flows are set up by pure shear, and the
rotational resistance in surface-shear-inviscid monolayers is identical to that in a
clean interface.

4.6.2. Elongated particles
Drag coefficients can be evaluated in the same manner for elongated particles

(Fischer 2004b), flexible particles (Levine, Liverpool & MacKintosh 2004) or
particles that extend into the subphase (Stone & Masoud 2015). We will briefly
mention the results for elongated rod-like particles in insoluble (and incompressible)
monolayers, due to their applicability in devices like the interfacial stress rheometer
(Verwijlen et al. 2011).

Consider a rod of length L and width d, where d� L and d� `SD = ηs/η. The
traction on the surface of the rod can then be approximated as a line distribution
of point forces, which can be integrated following (4.154). For comparison,
translational drag in directions perpendicular and parallel to the long axis of the
rod differ by a factor of 2 in 3-D bulk fluids

F3D
⊥
= 2F3D

‖
≈−

4πηLU
ln(aL/d)

, (4.167)

where a is a constant. The drag on a rod translating on a clean liquid–gas interface
is then Fclean ≈F3D/2.

The drag on a rod translating in an incompressible, interface-dominant monolayer
is (Levine et al. 2004; Fischer 2004b)

F‖,⊥(Bq� 1)=−
4πηsU

ln(8Bq)− γE ± 1/2
, (4.168)

where Bq = `SD/L = ηs/ηL and the + (or −) applies to motion in a direction
parallel (or perpendicular) to the long axis of the rod. Unlike 3-D fluids, F⊥ ≈ F‖
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FIGURE 24. (a) A rod translating perpendicular to its long axis on a clean interface,
shown in top and side views. The surface velocity field has a non-zero divergence
ahead and behind the rod, and the bulk velocity field is three-dimensional. (b) Insoluble
surfactants drive reverse Marangoni flows that render monolayers incompressible (see
§ 3.3.2 and figure 11), setting up surface and bulk flows on length scales comparable to
the rod length. Surface incompressibility thus imparts a larger drag than a clean interface
even when the surfactant is surface inviscid (Bq→ 0), and impacts F⊥ more strongly
than F‖. (c) Translational resistance coefficient of long rods in incompressible monolayers
(Levine et al. 2004) with asymptotic scalings in dashed lines following (4.168), (4.169)
and (4.170).

for translating rods when Bq� 1. The drag on the particle depends only weakly
on its shape and orientation when L� `SD. In fact, (4.168) closely resembles the
leading-order force on a circular disk (4.156), despite significant shape differences.

By contrast, the drag for subphase-dominant systems (particularly, when d �
`SD� L),

F‖(Bq� 1)=−
πηLU

ln(0.48/Bq)
, (4.169)

resembles the drag on a rod moving in a bulk fluid (4.167), but with an effective
width of `SD instead of d. The bulk fluid under the rod does not ‘see’ the smaller
length scale d, and provides bulk viscous resistance to an ‘effective’ rod of width
comparable to the 2-D-to-3-D cross-over length scale `SD. The most striking
difference with 3-D fluids, however, occurs in perpendicular translation when
Bq� 1:

F⊥(Bq� 1)=−πηLU. (4.170)

The drag on a rod moving broadside-on becomes much larger than F‖, owing to
surface incompressibility. On a clean interface (or on a compressible monolayer
with instantaneous adsorption/desorption), Π remains approximately uniform, and
the surface flow has a non-zero divergence ahead and behind the rod (figure 24a).
Insoluble surfactants that impose surface incompressibility (§ 3.3.2) then perturb
velocities over the largest dimension of the rod (figure 24b), giving rise to the
linear dependence on L.
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5. Additional complexities with real-world surfactants

We have thus far treated surfactant monolayers in a way that is natural to most
fluid mechanicians – as featureless continuum materials, isotropic and homogeneous.
While some multi-component monolayers do form homogeneous mixtures – as do
miscible liquids and dissolving solutes in 3-D liquids – some surfactant species
may associate with each other, or phase separate to form heterogeneous monolayers
more akin to emulsions or dispersions. Even single-component monolayers often
exhibit non-trivial morphologies, for example, forming condensed phases with
liquid crystalline order that coexist with disordered phases. Monolayers in phase
coexistence typically consist of ‘grains’ of one phase dispersed in another, acting
like dilute dispersions at low surface pressure, then forming grainy, poly-crystalline
phases or jammed suspensions (like compressed emulsions or suspensions) upon
further compression, depending on the details and dynamics of compression and
domain relaxation.

In what follows, we briefly describe some aspects that give surfactant monolayers
additional richness and complexity. Section 5.1 describes the unexpectedly rich
phase behaviour and morphologies that arise in even simple surfactant monolayers,
and how those can be understood in terms of the characteristics of the surfactants
themselves. Section 5.2 then addresses how monolayer heterogeneities and
anisotropies impact the surface rheology and therefore the fluid dynamics of such
systems. In many cases, these surface rheologies can be understood by analogy with
three-dimensional non-Newtonian fluids: suspensions and emulsions with effective
viscosities, surface viscoelasticity, surface shear thinning and surface yield stresses.
New phenomena arise in surface rheology as well, as described in § 5.3: surface
rheology very often depends exponentially on surface pressure, which leads to
qualitative differences in flow phenomena that would not be expected by a fluid
mechanician accustomed to thinking about incompressible, constant-viscosity liquids.

5.1. Phase behaviour of surfactant monolayers

In describing Π–Γ isotherms in § 2 and table 1, we introduced the simplest of phase
transitions: surfactants that experience intermolecular attractions (β > 0) undergo a
phase transformation from a gaseous (G) phase at very low surface concentration Γ
to a disordered liquid phase (‘liquid expanded’, or LE), frequently with G/LE phase
coexistence over a range of Γ , shown in figure 25(d). Compression to higher Γ
often reveals phase behaviours (figure 25) that are significantly richer than the simple
gas–liquid transition described by the van der Waals or Frumkin isotherms, forming
a host of additional condensed phases with various translational and orientational
ordering (Knobler & Desai 1992; Kaganer et al. 1999).

Perhaps the simplest, ‘canonical’ surfactants are saturated fatty alcohols or acids,
shown in figure 25(a), which consist of a linear alkyl chain as a hydrophobic tail,
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FIGURE 25. (a) Fatty acids consist of a (hydrophilic) carboxylic acid headgroup and a
(hydrophobic) hydrocarbon tail. The longer the hydrocarbon tail, the lower its solubility in
water and the stronger the van der Waals attractions with adjacent fatty acids. Saturated
hydrocarbon tails pack well with each other, whereas unsaturated tails (e.g. oleic acid, with
a double bond at the ninth carbon) are ‘kinked’ and frustrate packing. (b) Generalized
isotherm of an insoluble monolayer of saturated fatty acids, adapted from Kaganer et al.
(1999). Monolayers form a gaseous phase at extremely low concentration (inset), which
condenses to form a disordered, liquid expanded (LE) phase when compressed. At higher
surface concentrations, a phase transition occurs from the LE phase to one of various
liquid condensed (LC) phases with different liquid crystalline order, and even further phase
transitions at higher concentrations (here to an untilted, condensed phase). (c) Cartoon
showing transition between a disordered, low-density phase (e.g. LE or gaseous) to
phase coexistence with a higher-density phase (e.g. LE/LC or gas/LE). (d) Fluorescence
micrograph showing gas/LE phase coexistence of the phospholipid DPPC (courtesy of
Dr I. Williams). (e) Polarized micrograph of LE–LC phase coexistence between methyl
eicosanoate(C20). Within the LC domain, the six different brightness levels correspond to
six distinct orientations of the packed tails, which in turn reveal the hexagonal headgroup
lattice (from Knobler & Desai (1992)).

and a small polar group (e.g. alcohol or carboxylic acid) as the hydrophilic head.
Figure 25(b) depicts a generic isotherm for Langmuir monolayers of saturated
fatty acids or alcohols. When a disordered liquid (LE) is compressed past a
particular concentration Γ∗ (or below an area per molecule A∗ = 1/Γ∗), ‘liquid
condensed’ (LC) domains with liquid crystalline ordering nucleate and grow within
the continuous, disordered LE phase. Within each LC domain, the hydrophilic
headgroups form a hexagonal lattice, and the hydrophobic tails tilt towards
neighbouring tails to maximize attractive van der Waals interactions (figure 25e).
The difference between surfactant concentrations (ΓC and ΓE) in the LC and LE
phases imparts different electrostatic dipole densities to the two phases, giving
rise to dipole-dipole repulsions between LC domains that effectively stabilize the
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(a) (b) (c)

FIGURE 26. (a) Tilted DPPC tail groups within an LC domain form discrete patches,
within which tails are oriented in the same direction. The tilt orientation jumps by
60◦ from patch to patch, to accommodate the frustration between the tendency of tilt
orientation to precess and the tendency of the hexagonal headgroup lattice to maintain its
order. (b) Bright lines indicate boundaries between patches of aligned tilt, across which
tailgroup orientation abruptly changes. These high-energy lines exert a line tension internal
to the drop, effectively ‘pulling’ in invaginations at the domain boundary. (a,b) Reproduced
from Dreier, Brewer & Simonsen (2012). (c) New tilt grain boundary lines form and grow
in LC DPPC domain arms that had been stretched significantly. From Kim et al. (2018).

dispersion against coalescence (McConnell 1991). Increasing Γ (or decreasing A)
grows LC grains at the expense of LE, and ultimately forms a fully LC phase. The
LE–LC ‘condensation’ process reflects a balance between favourable interactions
between tilted tails, and unfavourable entropic losses: headgroups lose translational
entropy by forming lattices, whereas tails lose orientational entropy by tilting. In
this balance, lengthening the alkyl tail of a surfactant increases the van der Waals
‘benefit’ to condensation, with relatively small entropic penalties. Consequently,
the melting temperature of the LC phase increases with hydrocarbon tail length,
typically by 5–10 K per carbon (Bibo & Peterson 1990).

When facing a fully LC phase, the fluid mechanician might breathe a sigh of
relief, in the hopes that LC monolayers act like familiar homogeneous liquids. That
fluid mechanician should prepare for disappointment, however. Such LC phases are
generally polycrystalline, consisting of compressed LC grains (e.g. figure 27b), each
of which has a headgroup lattice that is oriented differently from its neighbours;
moreover, tail groups generally tilt in one of six energetically equivalent directions
relative to the lattice (figures 25e and 26a,b). Even grains whose headgroup lattices
were aligned would only coalesce if their tail tilts were also aligned. The complexity
continues: upon further compression, LC monolayers may go through other phase
transitions, to any of a veritable menagerie of liquid crystalline phases.

Double bonds within the alkyl tail change the phase behaviour rather dramatically.
For example, oleic acid is chemically nearly identical to stearic acid, but with one
double bond that ‘kinks’ the tail in a way that frustrates packing with neighbouring
tails and therefore weakens van der Waals attractions (figure 25a). Unsaturated tails
therefore discourage or even prevent liquid condensed phases from forming. In fact,
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(a) (c) (d)

(b)

(e) (f) (g)

50 µm

π = 13

FIGURE 27. (a,b) The phospholipid Dipalmitoylphostphatidylcholine (DPPC) in (a) LC/LE
coexistence and (b) polycrystalline, fully LC phase, from Kim et al. (2018). Natural
DPPC forms LC domains that wind in a counter-clockwise fashion, owing to the
chiral attachment of the two hydrocarbon tails. (c) The chirality of domains within an
LC DPPC monolayer depends on the ratio of right- to left-handed DPPC molecules
(from Kim et al. (2018)). (d) Palmitic acid co-crystallizes with DPPC to form stiff
inclusions, here dispersed by a disordered phase of the unsaturated lipid POPG (from
Ding, Warriner & Zasadzinski (2002)). (e) Cholesterol is ‘line active’ for DPPC,
promoting the growth of thinner LC grains that wind more tightly (from Kim et al.
(2013)). ( f ) DPPC/hexadecanol/cholesterol mixtures form eerily beautiful grains in LC/LE
coexistence, consisting of a DPPC/HD co-crystallized core, surrounded by wispy, spiralling
DPPC/cholesterol arms (from Sachan et al. (2017)). ( f ) An LC-DPPC monolayer that is
steadily deformed by a rotating microfabricated ‘button’, reveals a surface yield stress: the
monolayer flows within the high-stress region near the button, but is stationary outside a
yield radius (from Kim et al. (2018)).

2-D surfactant ‘dispersions’ can be designed by spreading a mixture of saturated and
unsaturated fatty acids or alcohols: upon compression, saturated lipids condense to
form LC grains, but unsaturated lipids remain in a continuous LE phase (figure 27e,
from Ding et al. (2002)).

Phospholipids – the primary surfactants that form the membranes of cells,
vesicles and organelles – show even more complex phase behaviour than fatty
acids. This complexity arises in part because phospholipids have two hydrocarbon
tails; additionally, these tails attach to the headgroup in a chiral fashion. As with
fatty acids, headgroups condense to form hexagonal lattices, and (saturated) tails
tilt (some towards nearest neighbours, others towards next nearest neighbours). The
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chiral attachment of each pair of tails, however, promotes a gradual precession of
tail tilt direction, causing LC domains to ‘wind’ with a particular handedness (see,
e.g. the counter-clockwise spiral arms in LC domains of the common phospholipid
DPPC in figure 27a).

Frustration arises between the packing preferences of the heads and the tails,
however, since the tail tilt orientation can only precess by straining the headgroup
lattice. Since each LC domain represents a single crystal of hexagonally packed
headgroups, this frustration becomes untenable once LC domains grow large enough.
LC DPPC domains ultimately resolve this tension between ordered headgroup
lattices and winding tailgroup tilt orientation by forming tilt mosaics (figure 26).
Within each ‘patch’ of the mosaic, tail groups tilt in one of 6 directions relative
to the HCP lattice, and precess gradually (Dreier et al. 2012). Tilt orientation
changes discontinuously from one patch of the mosaic to the next, however, across
tilt–grain boundary lines where tilt orientations are disordered and thus energetically
more costly. These high-energy defects exert additional ‘line tensions’ within the
domain. Stretching these LC domains significantly disrupts the balance in frustration
between the headgroup lattice and tail tilt precession, and can trigger the nucleation
and growth of new tilt grain defects (figure 26c) that stabilize the stretched LC
arms against shape relaxation, akin to plastic deformations in solids.

LC DPPC domain shapes thus reflect a variety of competing forces (Mohwald
1990; McConnell 1991; Dreier et al. 2012): dipole–dipole repulsions within each
domain tend to favour elongation of each domain, whereas the line tension
introduced by the higher energetic state of surfactants at the LC/LE boundary
acts to reduce the perimeter to area ratio. Tilt orientation precession promotes the
chiral winding of spiral arms, which competes with the headgroup lattice trying
to maintain its preferred crystalline order. Frustration between tilt precession and
headgroup lattice ordering is resolved by high-energy tilt grain boundaries that
exert their own line tension within each domain, ‘pulling inwards’ at various points
along the domain boundary, causing the concave ‘kinks’ and invaginations along
the domain boundary.

Figure 27 highlights a small sliver of the wild menagerie of morphologies formed
by condensed mixtures of DPPC and other insoluble surfactants. The chirality of LC
DPPC domains is apparent in both LC/LE coexistence (figure 27a) and in the fully
condensed, polycrystalline LC phase (figure 27a), growing with the ratio of left- to
right-handed DPPC in the mixture (figure 27c), as studied by Kim et al. (2018).

Saturated fatty acids or alcohols may co-crystallize with LC phospholipids, since
their small headgroups enable them to insert into the headgroup lattice without
deforming it significantly, while reaping the benefits of tail–tail packing. Such
co-crystallization tends to stiffen these domains. Just like fatty acids and alcohols,
unsaturated phospholipids generally don’t form LC phases, and so can be used to
control the area fraction of LC/LE dispersions (figure 27d, from Ding et al. (2002)).
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By contrast, cholesterols have small headgroups but big ring ‘tails’ that act to
promote defects within LC grains. Moreover, just as surfactants lower surface energy
when they adsorb to 2-D interfaces between 3-D liquids, ‘line-actant’ molecules
adsorb to 1-D boundaries of 2-D surfactant domains to lower line energy (Trabelsi
et al. 2008). Cholesterol is a line actant for LC-DPPC (Kim et al. 2013) and
promotes thinner LC spiral arms that wind more tightly (figure 27e). Mixing all
three components (phospholipid, fatty alcohol and cholesterol) forms LC grains that
are as complex as they are beautiful: stiff ‘cores’ of DPPC–hexadecanol form first,
followed by wispy spirals of DPPC–cholesterol mixtures (figure 27f, from Sachan
et al. (2017)).

These examples serve only to give a very cursory sense of the incredibly rich
variety of monolayers, phases and domains that form in even seemingly simple
systems with one or two small-molecule surfactants. Additional complexities arise
when solutes in the subphase interact with surfactants in the monolayer. Multivalent
ions may electrostatically bridge multiple ionic surfactants: for example, calcium
ions (Ca2+) adsorb to two stearic acid molecules, stiffening monolayers (Ghaskadvi,
Carr & Dennin 1999) and even growing multilayer films of calcium distearate (de
Ruiter et al. 2011). However exotic and beautiful this process may appear to the
curious scientist, those who shower with ‘hard’ water call it soap scum.

5.2. Rheological implications of surface heterogeneities

Because surfactant monolayers are frequently heterogeneous (e.g. figure 27),
determining their rheological properties and predicting their mechanical response
to flows and stresses can be challenging. A detailed discussion of the complex
structure and non-Newtonian rheology of surfactant monolayers is beyond the
scope of this work, and recent reviews provide a more exhaustive survey of the
state of the field (Fuller & Vermant 2012; Langevin 2014; Jaensson & Vermant
2018). Instead, in what follows, we merely outline aspects of 2-D heterogeneous
monolayers that qualitatively resemble familiar 3-D systems, and where intuition
and physical concepts from classical fluid dynamics can be borrowed to describe
and design these 2-D systems.

5.2.1. Line tension: liquid crystalline domains as 2-D drops
Recall from § 2.1 that molecules on the interface between 3-D fluids are in

an energetically unfavourable state, giving rise to surface tension (figure 2). The
2-D analogue occurs on the ‘interface’ between surfactant phases – LC domain
boundaries are higher energy and give rise to a line tension λ, or energy per unit
perimeter. The attractive interaction energy between molecules in the condensed
phase must be O(kBT). Condensation involves moving molecules from the disordered
phase to LC and therefore requires an energy ∼kBT per molecule. Molecules pack
with a line density of about one per nanometre, giving λ∼ kBT/nm∼ pN.
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Just like surface tension acts to restore the equilibrium shapes of deformed, 3-D
emulsion drops or bubbles, the LC line tension acts to force deformed LC domains
to relax back to their equilibrium shapes, at a rate that is limited by the surface
viscosity of the LC phase when Bq� 1 (or by subphase viscosity when Bq� 1).
Indeed, λ can be identified by measuring the relaxation dynamics of stretched
LC ‘droplets’ (Mann et al. 1995; Trabelsi et al. 2008). When interface dominant
(Bq�1), balancing the line tension force (∼λ) with the surface viscous force (∼ηsṘ,
with R the characteristic domain length scale) gives a characteristic relaxation
time

Tc(Bq� 1)∼
ηsR
λ
. (5.1)

By contrast, the bulk fluid offers the dominant viscous resistance (∼ηRṘ) when
subphase dominant (Bq� 1), giving

Tc(Bq� 1)∼
ηR2

λ
. (5.2)

Extending the analogy, fully LC phases act like compressed emulsions – like
two-dimensional mayonnaise. Interlocking domains impart a yield stress to fully
LC monolayers, enabling them to sustain elastic stresses over system-spanning
length scales. The dynamics of LC domains is then described by a surface capillary
number,

Cas =
ηsV
λ
, (5.3)

which for domains of some size R, sheared at rate γ̇ or frequency ω, becomes

Cas =
ηsRω
λ

, or Cas =
ηsRγ̇
λ

. (5.4a,b)

Surface capillary stresses dominate at low frequencies, acting to restore domain
shapes and imparting a solid-like response. By contrast, viscous stresses dominate
at high frequencies, as the LC phase resists deformation within each grain. From
the cross-over frequency ωc, the line tension can be identified (Choi et al. 2011).

The healing of deformed LC monolayers, however, is qualitatively different from
traditional yield-stress materials. Unlike 3-D drops, elongated domains do not ‘pinch
off’ due to capillary forces. The classic Rayleigh–Plateau instability is suppressed
by the absence of out-of-plane curvature of LC domains. Even thread-like domains
are therefore stable for long times (Trabelsi et al. 2008). Deformed LC phases heal
via line-tension-driven relaxation of highly stretched domains back to more compact
equilibrium shapes. Additional viscous losses may be incurred in sliding domains
against each other, or in irreversible topological rearrangements. The net effect is a
viscoelastic recovery – one that can take hours (Choi et al. 2011).
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5.2.2. Two-dimensional ‘suspensions’ of condensed domains: effective surface
viscosities

Liquid condensed phases are typically much stiffer rheologically than LE phases.
Langmuir monolayers in LE–LC phase coexistence can thus be treated as a
suspension of ‘stiff’ 2-D particles dispersed in a continuous ‘liquid’. In fact, Ding
et al. (2002) measured the effective surface shear viscosity of DPPC–palmitic acid
mixtures over a wide range of LE–LC coexistence, finding a power-law divergence

ηeff
s ∼

1
(1− A/Ac)n

, (5.5)

as the domain area A approached some critical area Ac. Analogous behaviour had
been known and shown in 3-D suspensions (Brady 1993; Stickel & Powell 2005).

In system where domains are effectively rigid inclusions suspended in an
incompressible, continuous phase that is surface viscous enough to be interface
dominant (Bq � 1), the subphase may be ignored and the monolayer rheology
corresponds to the Einstein viscosity correction in two dimensions. This classic
problem in low-Reynolds-number hydrodynamics (Brady 1983) gives the effective
shear viscosity of a 2-D suspension with a domain area fraction φ� 1 to be

ηeff
s (Bq� 1)= ηc

s(1+ 2φ), (5.6)

where ηc
s is the surface shear viscosity of the continuous phase.

Additionally, surfactant monolayers are far more compressible than 3-D fluids, and
the flow of a compressible 2-D ‘fluid’ around incompressible domains dissipates
excess surface-viscous stresses. The ‘Einstein correction’ to the 2-D dilatational
viscosity is (Khair 2006)

κeff
s (Bq� 1)=

κc
s + φη

c
s

1− φ
, (5.7)

where κc
s is the dilatational surface viscosity of the continuous phase. Notably, κeff

s

depends on the surface shear viscosity of the continuous phase, ηc
s . Even if κc

s is
immeasurably small, rigid inclusions modify surface flows in a manner that imparts
an effective dilatational viscosity κeff

s ≈ φη
c
s to the monolayer.

Stiff inclusions suspended in an inviscid monolayer, e.g. a dispersion of repulsive
colloidal microparticles on a clean fluid interface, might also impart an effective
surface shear viscosity (Buttinoni et al. 2015). The colloids do not deform, and the
suspending fluid interface is clean and therefore offers no surface-viscous resistance.
Viscous dissipation in the subphase fluid due to the relative motion of colloids
against interparticle potentials appears as a ‘surface viscosity’ of the 2-D colloidal
layer.
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5.2.3. Apparent surface dilatational rheology during phase coexistence
Section 4.2.1 described how dynamic adsorption and desorption of soluble

surfactants as an interface is compressed relaxes surface stresses, thereby diminishing
the dilatational modulus E and imparting an apparent surface viscosity κapp

s ∼ E0τs.
Similar processes can arise within monolayers at phase coexistence, where
exchange between condensed and expanded phases plays a role analogous to
adsorption/desorption. To illustrate, we treat the kinetics of exchange between
phases with a simple adsorption-like model, using ΓC and ΓE to represent the
surface concentration in the condensed and expanded phases, respectively. The total
number of molecules is conserved between the two phases,

1
AE

d(ΓEAE)

dt
=−jp, (5.8a)

1
AC

d(ΓCAC)

dt
= jp, (5.8b)

where jp is the net line flux (across domain boundaries) as a result of molecules
hopping between phases, and AE and AC are the areas of the expanded and
condensed phase, respectively.

Rheologically, we assume that the condensed domains act like rigid inclusions, so
that all compressibility (and fluidity) of the heterogeneous monolayer originates in
the expanded phase. Under weak sinusoidal surface dilatation at frequency ω, the
surface concentration and area of the expanded phase are perturbed via

AE(t)= A0
E + δAEeiωt, (5.9a)

ΓE(t)= Γ 0
E + δΓEeiωt. (5.9b)

The condensed phase concentration ΓC(t) is assumed to remain a constant Γ 0
C .

Although the exchange flux jp could be diffusion- or kinetically limited, we will
assume a simple kinetically limited condensation process, with the flux from either
phase proportional to the local concentration:

jE→C = kE→CΓE, jC→E = kC→EΓC = j0
C, (5.10a,b)

so that jE→C = jC→E at equilibrium. When perturbed via (5.9), the net flux into (or
out of) the condensed phase is

jp = jE→C − jC→E = kpδΓEeiωt, (5.11)

where kp = j0
C/Γ

0
E . Perturbations in surface concentration thus relax over a time

scale k−1
p .
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FIGURE 28. (a) Response of a monolayer with coexisting phases to uniform compression:
when ω � kp, domains grow much faster than the rate of compression, and the LE
phase offers no elastic resistance. By contrast, when ω � kp, the rate of compression
exceeds the rate of molecules changing phases, and the LE phase offers a net resistance
to compression. (b) Measurements of Arriaga et al. (2010) showing elastic and viscous
moduli from oscillatory measurements in LE and in coexistence. The solid lines are fit
to a Maxwell viscoelastic fluid with characteristic relaxation time τ = k−1

p ≈ 140 s, and
the dashed lines are slopes from equilibrium (ω→ 0) isotherms. (c) Effective elastic and
viscous moduli following (5.16).

Substituting (5.9) and (5.11) in the conservation equation (5.8a) gives

d ln ΓE

d ln AE
=−

1
1− iζp

, (5.12)

where

ζp =
kp

ω
(5.13)

is the ratio of phase change rate to oscillation rate.
When ζp�1, condensed domains incorporate excess molecules from the expanded

phase much faster than Γ oscillates, so that the monolayer evolves quasistatically.
Conversely, when ζp� 1, compression oscillates so rapidly that little condensation
can occur (figure 28).

Because the condensed phase domains are assumed incompressible, the
compressibility modulus originates from the expanded phase, giving

E∗ = E∗ = Eapp
+ iωκapp

s =−
dΠ

d ln A
=−ELE

0
d ln ΓE

d ln AE
, (5.14)

where

ELE
0 =

dΠ
d ln ΓE

(5.15)
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is the Marangoni modulus of the expanded phase. Substituting (5.12) in (5.14), the
apparent surface dilatational elasticity and viscosity are

Eapp
= ELE

0
1

1+ ζ 2
p

, κapp
s =

ELE
0

ω

ζp

1+ ζ 2
p

. (5.16a,b)

Equation (5.16) has the form of a Maxwell fluid with a characteristic relaxation time
scale τ = k−1

p , analogous to kinetic-limited adsorption of soluble surfactants (4.51).
Domains grow freely in the low-frequency limit (ω � kp or ζp � 1) and the

LE phase offers no resistance to compression (figure 28a). By contrast, a finite
and rate-dependent dilatational modulus emerges during the LE–LC coexistence
when the compression rate and phase change rate are comparable, which derives
from temporary compression of the LE ‘fluid’ before phase change has had a
chance to occur. For surfactants with inherent surface viscosity (§ 3.4), measured
surface dissipation must be interpreted as the appropriate combination of a true
material property and apparent rate-dependent contributions due to phase changes
and adsorption/desorption.

5.3. Non-constant surface viscosity

All discussion of surface rheology thus far has assumed surface shear and
dilatational viscosities to be constant. However convenient this approximation
may be, many factors can impart spatial, temporal and concentration-based
heterogeneities to surface rheological properties. Phase transitions in Langmuir
monolayers are typically accompanied by changes in surface-viscous and elastic
properties. Liquid condensed domains can deform, reorient, jam or slip against each
other in response to hydrodynamic forcing, leading to non-Newtonian behaviour.
This nonlinear behaviour depends on the precise phase behaviour, which in turn
varies based on surfactant type, hydrocarbon chain length, chain orientation and
intermolecular interactions, as described in § 5.1. An exhaustive discussion on the
resulting non-Newtonian behaviour is beyond the scope of this work, and we direct
the reader to Fuller & Vermant (2012) and references within. Here, we will only
provide a flavour of the richness and uniqueness of non-Newtonian surface rheology
by outlining two examples – one with familiar 3-D analogues, and another which
is almost never observed in three dimensions – both of which arise due to phase
transitions in Langmuir monolayers.

5.3.1. Surface-shear thickening and thinning
Gradients in surface pressure drive flows along interfaces, just like bulk pressure

gradients drive (Poiseuille) flows in pipes. For example, increasing the surface
pressure on one end of an interfacial slit ‘pumps’ a monolayer through a 2-D
channel, making a 2-D analogue of a syringe (Schwartz, Knobler & Bruinsma
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us ¢ 1 - y/R

us ¢ 1 - y2/R2

us ¢    1 - y2/R2  √

ÎÔ ≫ Ôc,    Ôc > 0

ÎÔ ≫ |Ôc|,    Ôc < 0

|Ôc| → ∞

Bq ≪ 1

Bq ≫ 1, å = 1

Bq ≫ 1, å ≫ 1

FIGURE 29. (a) A surface pressure gradient across an interfacial channel sets up a
surface (and bulk) flow, much pressure-driven flow in three dimensions. (b) Illustrations
of surface velocity profiles, with α defined in (5.19): us(y) is elliptic when subphase
dominant (Bq � 1) and parabolic when interface dominant (Bq � 1) with Newtonian
surface rheology. However, condensed arachidic acid above Π ∼ 20 mN m−1 surface shear
thickens, resulting in triangular velocity profiles (5.19). The background colour gradient
represents Π(x), which changes linearly across the length of the channel. (c) Surface
pressure distribution in the channel is nonlinear when ηs is a function of Π . When
Π -thinning, surface pressure remains of the order of the driving pressure 1Π for the
majority of the channel and thus pumps a larger surfactant flux, effectively increasing the
permeability of the channel. By contrast, surface pressure drops rapidly at the channel
entrance when Π -thickening, which maintains a relatively small gradient across the rest
of the channel, thereby ‘choking’ the surface flow.

1994; Fuller & Vermant 2012). Indeed, the subphase decouples from the interfacial
stress balance (3.94) when interface-dominant (Bq = ηs/ηR � 1), and the surface
velocity us(y) of an incompressible monolayer obeys the familiar parabolic profile
of Poiseuille flow in two dimensions

us(y, Bq� 1)=−
R2

ηs

dΠ
dx

(
1−

y2

R2

)
, (5.17)

where R the slit half-width (figure 29a).
However, viscous coupling with the subphase modifies the surface flow from

(5.17). When subphase dominant (Bq � 1), the solution to the incompressible
Boussinesq–Scriven equation (3.94) is (Stone 1995)

us(y, Bq� 1)=−
R
η

dΠ
dx

√
1−

y2

R2
. (5.18)
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Subphase-dominant flow (5.18) is insensitive to ηs, and the flow profile is elliptic
rather than parabolic, consistent with direct observation of Langmuir monolayers of
negligible surface shear viscosity (Schwartz et al. 1994).

Increasing the surface shear viscosity – e.g. by compressing the monolayer so that
rheologically stiff domains nucleate – transitions the surface velocity from (5.18)
to (5.17). However, direct observation of the velocity profiles of heterogeneous
arachidic acid monolayers by Kurnaz & Schwartz (1997) reveals a non-Newtonian
viscous response (figure 29b). The velocity profile is shear-rate-dependent at
sufficiently large flow rates, and approximately fits

us ∝ 1−
( y

R

)(1+α)/α
, (5.19)

with α > 1 when surface-shear thickening, and 0 < α < 1 when surface-shear
thinning.

Kurnaz & Schwartz (1997) observed shear thinning in arachidic acid monolayers
at high shear rates (&0.1 s−1) and low surface pressures, but shear thickening at
higher Π . The transition between the two occurs around Π ≈ 20 mN m−1, where
arachidic acid undergoes a tail group tilt–untilt transition (Kaganer et al. 1999).
This phase transition is associated with changes in surface rheology (Kurtz et al.
2006; Zell et al. 2014), suggesting that surfactant phase behaviour is at least in
part responsible for the non-Newtonian dynamics. Other classes of surfactants
show rate-dependent rheology upon phase transition as well; e.g. power-law models
capture experimentally measured surface-shear thinning of DPPC at high surface
pressures (Raghunandan et al. 2018).

5.3.2. The Π -dependent viscosity
Surface viscosities of Langmuir monolayers change appreciably over surface

pressure variations accessible in typical experiments. For instance, the surface shear
viscosity of DPPC grows exponentially when Π is increased from 5 to 15 mN m−1

(Kim et al. 2011, 2013; Fuller & Vermant 2012; Hermans & Vermant 2014), unlike
3-D liquids which show such changes only under truly extreme pressures. The
exponential dependence of surface viscosity on surface pressure can be understood
in terms of the free-area analogue of classical free-volume theories of viscosity
(Kim et al. 2013), and can be written as

ηs(Π)= η
0
s e(Π−Π0)/Πc, (5.20)

where Πc is a characteristic surface pressure change required to appreciably
change ηs, and η0

s is a reference viscosity at reference pressure Π0. DPPC is a
‘Π -thickening’ surfactant with Πc ≈ 8 mN m−1, whereas setting Πc→∞ in (5.20)
retrieves the Newtonian limit of constant ηs.

By contrast, the surface viscosity of some surfactants decreases with increasing
surface pressure. For example, the surface viscosity of eicosanol (Kurtz et al.
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2006; Zell et al. 2014) drops tenfold upon increasing Π from 10 to 20 mN m−1

as it undergoes a tilt–untilt transition (Kaganer et al. 1999). Such ‘Π -thinning’
behaviour can be modelled as in (5.20) by inverting the sign of Πc: for eicosanol,
Πc ∼−3 mN m−1.

The fact that ηs can vary over orders of magnitude in rather mundane flows
gives rise to qualitatively new flow phenomena. For example, flow through a thin
gap (figure 29) amplifies surface pressure variations and therefore accentuate the
Π -dependent nature of ηs. Using lubrication theory, the interface-dominant (Bq� 1)
incompressible Boussinesq–Scriven equation reduces to (Manikantan & Squires
2017b)

∂Π

∂x
= ηs(Π)

∂2us

∂y2
. (5.21)

Fortunately, (5.21) is solvable by separation despite the strong nonlinearity of ηs,
whether using the assumed form (5.20) or a measured η(Π).

The impact of surface-pressure-dependent surface viscosity is best illustrated using
the flux pumped through the channel. For a surface pressure gradient 1Π applied
across a channel of length L� R, the interfacial flux Q is (Manikantan & Squires
2017b)

Q=
2
3
ΠcR3

η0
s L
(1− e−1Π/Πc). (5.22)

The familiar Newtonian flux is recovered when Πc�1Π

Q(1Π�Πc)→QNewt =
2
3
1ΠR3

η0
s L

. (5.23)

Qualitative differences arise when 1Π is comparable to Πc. Indeed, Q approaches
a limiting value when 1Π�Πc for a Π -thickening surfactant (Πc > 0)

Q(1Π�Πc)→Qmax =
2
3
ΠcR3

η0
s L
, (5.24)

which is insensitive to 1Π , with Πc effectively setting the surface pressure scale
beyond which the channel is ‘choked’. When 1Π�Πc, the surface pressure drops
rapidly near the entrance of the channel, where the surface viscosity is extremely
high. The pressure in the rest of the channel remains of the order of Πc, setting the
scale for the maximum flux that may be pumped through the channel.

Similarly, Q grows exponentially with applied surface pressure difference when
1Π� |Πc| for a Π -thinning surfactant (Πc < 0). For large 1Π , therefore,
Π -thinning increases channel ‘permeability’. Indeed, some surfactants (e.g. arachidic
acid) might simultaneously shear thicken and Π -thin, so that the monolayer may
be more permeable through an interfacial slit than is expected for traditional
shear-thickening materials (Kurnaz & Schwartz 1997).
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FIGURE 30. Surface ‘Magnus’ effect. (a) A circular particle forced to rotate while
translating in a Π -thickening surfactant follows a Magnus-like trajectory (b) Surfactant in
front of the translating disk has higher surface viscosity than the surfactant behind the disk,
owing to the higher surface pressure. Consequently, the rotation of the particle causes it
to ‘roll’ upwards, perpendicular to the direction of forcing (Manikantan & Squires 2017a).

While thin gaps naturally give rise to large surface pressures and are easier to
approach analytically, the consequences of Π -dependent ηs are not restricted to
lubrication flows (Manikantan & Squires 2017a). For example, a disk translating
while rotating on an unbounded and otherwise undisturbed Π -thickening/thinning
monolayer experiences a force perpendicular to the direction of motion, analogous
to the 3-D Magnus effect (figure 30), breaking the reversibility expected from Stokes
flows. More generally, Π -dependent surface viscosities result in non-intuitive and
kinematically irreversible trajectories of pairs of particles on the interface, which
could lead to hydrodynamic aggregation, separation, and ‘lane formation’.

6. Conclusion

However long this Perspective may seem, it has at most laid out an intellectual
skeleton for the mechanics and dynamics of surfactants in fluid systems. We have
omitted many complications and subtleties that impact many different fields of
science, industry and life. Still, we hope to have helped bridge the gap between the
fluid mechanics community and the surfactant communities in physical chemistry,
colloid and interface science.

We close this perspective with a philosophical reflection on the admittedly loose
analogy we drew between surfactants in fluid dynamical systems, and the ‘hidden
variables’ that were desperately sought in the early decades of quantum mechanics.
As fluid mechanicians, we do not often stop to appreciate how remarkable the
Navier–Stokes equations have been in capturing flows from nanometres to thousands
of kilometres (fifteen orders of magnitude!) In many cases – particularly in turbulent
flows – the challenges in solving fluid mechanics problems relate to the actual
challenges in the mechanics of solving those problems. More powerful computers,
more efficient algorithms and more insightful approximations are sought to improve
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predictions, elucidate new mechanisms and design new technologies. The basic
equations that need to be solved, however, are generally not in question.

Surfactants, by contrast, introduce something different to the study of fluid
systems. Although surfactants generally do nothing to alter the Navier–Stokes
equations that govern the bulk fluid, they do change the boundary conditions that
constrain them – and in so doing, completely change both the quantitative and
qualitative aspects of the flow. As should be evident from this Perspective, any
particular change in the observed dynamics might be caused by any of a number of
distinct surfactant processes. Moreover, the ‘invisible’ nature of surfactants makes
it difficult to know a priori what the surfactant is actually doing. This lands the
typical fluid mechanician in unfamiliar terrain – of needing to determine what
equations and boundary conditions must be solved in order to understand a fluid
system, and ultimately predict its behaviour. We hope that our Perspective will help
provide a conceptual map for this endeavour.

Finally, we close by noting that surfactants are by no means the only ‘hidden
variables’ in fluid systems. So-called ‘complex fluids’ impact almost every industry
and every aspect of life: shampoos and toothpastes, eggs and espressos, blood
and mucous, paints, vaccines, lubricants and drilling muds. These natural and
‘formulated’ products generally contain a multitude of ingredients – liquids, solutes,
surfactants, colloids and polymers – that impart mesostructures of various length
scales, and affect the dynamic response properties on a variety of time scales.
Still, these materials often appear homogeneous when viewed macroscopically. To
understand, design and model the dynamics of these systems, one must identify
and incorporate the additional concentration and stress fields associated with each
component. And – just like with surfactants – one must often determine the actual
equations that govern these additional components. The challenges are both rich
and rewarding, and offer fertile ground for the curious fluid mechanician.
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