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Abstract. Let / denote a continuous map of a compact interval to itself, P(f) the
set of periodic points of f and A(/) the set of o>-limit points of/ Sarkovskii has
shown that A(/) is closed, and hence P ( / )^A( / ) , and Nitecki has shown that if
/ is piecewise monotone, then A(/) = P(f). We prove that if x e A(/) -P(f), then
the set of w-limit points of x is an infinite minimal set. This result provides the
inspiration for the construction of a map / for which A(/) ̂  P(f).

1. Introduction
Let / denote a continuous map of a compact interval / to itself, P{f) the set of
periodic points of/ and A(f) = (Jxel W(JC), where w(x) denotes the set of co-limit
points of x A. N. Sarkovskii [SI] has shown that A(/) is closed, and hence that
P( / ) sA( / ) . Additional results concerning co-limit sets for maps of the interval
have been obtained by Sarkovskii and H. K. Kenzegulov [SK].

In this paper, we consider the following problem: Is A(/) = P(f)1
Z. Nitecki [Nl] has shown that if/ is piecewise monotone, then A(/) c P(f), so

that in this case A(/) = P(f).
We attack the problem by assuming that A(/) ̂  P{f) and seeing what follows.

We obtain the following result.
THEOREM. IfxeA(f)-P(f), then <o(x) is an infinite minimal set.

This theorem and more specific results obtained in the course of its proof provide
the inspiration for the construction of an example where A(/) # P(f). In this
example, there is a point x e A(/) - P(f) such that/ | w(x) is topologically conjugate
to the group translation known as the 'adding machine.'

This example, incidentally, has the following properties:
(1) P(f) consists of exactly one periodic orbit of period 2" (n = 0,1,2, . . . ) .
(2) / | O(/) is not one-to-one, where fi(/) denotes the set of non-wandering points

of/
Thus the assertion of Sarkovskii [S2, theorem B], that if all periodic points have
period a power of two, then/|ft(/) is a homeomorphism, is false.

In the example above, the restriction o f / t o w(x) is topologically conjugate to
a group translation. We give a second example to show that this need not always
be the case. In fact, this example shows that / | to (x) need not be one-to-one when
xeA(f)-P(f).
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336 L. Block and E. M. Coven

Finally, we give a third example to show that the theorem does not hold when
A(/) is replaced by Q.(f), i.e. if x e f l ( / ) - P ( / ) , then co(x) need not be a minimal
set. This example also yields an easy construction of a map / having a point
x e il(f) — P(f) with an infinite orbit. An example of this phenomenon was first
constructed by the second author and Nitecki [CN].

This work was done while the first author was J. H. Van Vleck Visiting Professor
of Mathematics at Wesleyan University.

2. The theorem and its proof
We begin with some notation. Recall that/denotes a continuous map of a compact
interval / to itself.

Let x e I. Let orb (x) denote the orbit of x. By an /?-neighbourhood of x we will
mean an interval [x, x+e] where e>0, and by an L-neighbourhood of x we will
mean an interval [x - e, x] where e > 0. If p is a fixed point of/ and S is R or L,
we let W"(p,f S) denote the set of y€ I such that for any 5-neighbourhood V of
p, yefk(V) for some positive integer k.

LEMMA 1. If x e A(/) and x has a finite orbit, then x e P(f).

Proof. Since A(/) = A(/n) and P{f) = P(fn), we may assume that/(x) is a fixed
point p of / We may also assume that x ̂  p, otherwise there is nothing to prove.
Finally, without loss of generality, we may assume that x<p. Let ye I with xe (o(y).

Case 1. There is a strictly increasing sequence (n,) of positive integers such that the
sequence (f"'(y)) is strictly decreasing and approaches x.

Let i be a positive integer. Then/"+1(j>) <f"'(y), and hence/"<+'~"(/"'(>>)) <f"-(y).
Since /"i+1~"'(x) = /?>x, this implies that there is a periodic point in (x,f>(y)). It
follows that xeP(f).

Case 2. There is a strictly increasing sequence (n,) of positive integers such that the
sequence (f'(y)) is strictly increasing and approaches x.

There is a side 5 of p such that a subsequence of (/"1+1(y)) approaches p from
this side. It follows that xe W"(p,fS) and thus, since W(p,fS) is connected,
that [x,p]<zW"(p,fS).

We claim that some element of the orbit of y is in W(p,f S). Since the claim
follows immediately if 5 = L, we will assume in proving the claim that S = R. Also,
if either x or p is an interior point of W"(p,f R), then the claim follows. Thus to
prove the claim, we may assume that W"(p,f R) = [x, p].

Since / is uniformly continuous, there is a 5 > 0 such that if z, and z2 are points
in / with |z!-z2|< 5, then \f(z1)-f(z2)\<p-x. Let ve I with p<v<p + 8. Since
vi W(p,f,R), there is a y>0 such that viU^=of"([p,P + y])- Now, for some
positive integer j , f)(y)e(p,p + y). On the other hand, for some integer m>j,
fm(y)<x. This implies that for some integer k with j<k< m, fk(y)e (x,p). This
establishes the claim.

Since W(p,f S) is invariant under/ it follows from the claim that x is in the
interior of W(p,f S). Let K be an L-neighbourhood of x with K c Wu(p,f S).
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Then f(K) contains an S-neighbourhood of p, and hence fj(K)^K for some
positive integer / Thus x e P(f). •

We now adopt some notation and make a standing hypothesis for the next three
lemmas. Let / denote a component of I - P(f), c the left endpoint of J, and d the
right endpoint of J. We also assume that there is a point zeJ and a positive integer
m such that/"1 (2) eJ and fm(z)> z.

LEMMA 2 ([C], [X]). Ify e J andf"{y) e J for some positive integer n, thenf"(y) > y.

Proof. Let g =/m, and observe that the interval [z, g(z)] contains no periodic points
of g. It follows easily by induction that gk(z)>z for every positive integer k. In
particular, fm"(z)> z. If f(y)<y, then a similar argument would show that
fm"(y)<y. Then fmn would have a fixed point between y and z, a contradiction.
Thus /"(}')>>'. •

LEMMA 3 ([C]). Ifxe (c, d) is non-wandering and has an infinite orbit, then the sets
H, f(H), f2{H),... are pairwise disjoint, where H — [x, d\

Proof If the sets fk(H) are not pairwise disjoint, then E = U*°=o/fc(£O has finitely
many components. Since x has an infinite orbit, this implies that fN(x) is in the
interior of E for some positive integer JV. Since x is non-wandering, there are
sequences of points xk-»x and positive integers nfc-»°o with/"k(xfc) = x [CN, lemma
2.6]. Now, for k sufficiently large, nk> N andfN(xk) e E. Thus x =f"k~N(fN(xk)) =
f(y) for some yeH and some positive integer/ Hence f(v) < v and f(v) e J for
some v e (x, d). This contradicts lemma 2. •

LEMMA 4. If x e (c, d) n A(/), f/ien d e w(x).

Proo/ Let zf denote the greatest lower bound of {y e orb (x): y > x}. It follows from
the standing hypothesis that this set is non-empty. By lemma 3, zf > d and d is not
an element of orb (x). Thus to prove the lemma, it suffices to show that zf = d. We
will assume that zf > d and obtain a contradiction.

There is a periodic point p e [d, zf]. Let n be the period of p, and let g =/". Note
that since A(/) = A(g) and P(f) = P(g), x e A(g) and / is a component of / - P(g).
It follows from lemma 2 and the fact that x e A(g) that the standing hypothesis
holds for g.

For ye I, let orb' (y) denote the orbit of y under g and co'(y) the set of w-limit
points of y under g. Let zg denote the greatest lower bound of {y e orb' (x): >> > x}.
Then zg > zx.

Let W(x, g) denote the set of ye I such that for every neighbourhood V of x,
yegk(V) for some positive integer k. Then / ( W ( x , g))c W"{x, g) and by
lemma 2, (c, x) n W(x, g) = 0 . Now x e a/(}0 for some ye I. Again by lemma 2,
orb' (y) n (x, d) = 0 . Thus [x, zg] c W"(x, g).

Let A be the component of W"(x, g) which contains x. Then A is an interval
with left endpoint x, peA, and g(A)cA. Hence there is a positive integer _/< 2
such that g^(x) is in the interior of A. Let K be a neighbourhood of gj(x) with
Kc A, and let V be a neighbourhood of x with V s / , g(V)n V = 0 , and gJ( V)c K.
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For any v e V and any positive integer k, gk(v) >x. It follows from this and lemma
3 that xi <o'(y), which is a contradiction. •

THEOREM. If X e A(/) - P( / ) , then a>(x) is an infinite minimal set.

Proof. Let / be the component of / - P(f) which contains x, and let c and d denote
the left and right endpoints of /. By [CN, lemma 2.7], x is not an endpoint of the
ambient interval / ; hence xs (c, d).

Since xe A(/), there is a point zeJ and a positive integer m such that /m(z)e J.
Without loss of generality we may assume that fm(z)> z. By lemma 1, x has an
infinite orbit, and by lemma 4, dew(x). It follows from lemma 3 that d has an
infinite orbit and that a>(x) = a){d). Since (o(x) is a closed invariant set, it follows
that (o(x) = orb (d). Thus to prove the theorem, it suffices to show that orb (d) is a
minimal set.

A classical result of G. D. Birkhoff [B, p. 199] states that orb (d) is a minimal
set if and only if d is almost periodic, i.e. for every neighbourhood V of d, the orbit
of d returns to V with bounded gaps. We complete the proof by proving the stronger
statement:

(*) For every e>0, there is a positive integer n such that f" (d) e (d, d + e) for
every positive integer].

Let £>0. For some ye(c,d), xeco(y). It follows from lemmas 2 and 3 that
orb (y) n [x, d] = 0 . Since d e a>(x), fM(y) e(d,d + e) for some positive integer M.
Also, since xea)(y), fK(y)e (c, x) for some integer K> M.

Since fK+'{y) e (c, x) for some positive integer i, it follows from lemmas 2 and 3
that/'([/*(>>), x]) contains an interval [d, d + y~\, where y > 0 and d+y<fM(y).
There is a periodic point pe(d,d + y). Let « be the period of p.

Let j be any positive integer. We must show that f"(d) e(d, d + e).
First, suppose that f"(d) > d + e. Then some power of/ maps [d, p] to an interval

containing fM(y). Hence some (other) power of/ maps [/K(>'),x] to an interval
containing fK(y). This contradicts lemma 2.

Finally, suppose that fn{d)<d. By lemmas 2 and 3 and the continuity of the
powers of/ f"(d) s c. Hence /""([d, p]) 2 [c,/>], and again some power of/ maps
[fK(y),x] to'an interval containing fK(y), a contradiction.

This proves (*) and hence the theorem. •

3. Examples
Example 1. We construct a continuous map / of the interval with a point x e
A ( / ) - P ( / ) . According to the theorem, a>(x) must be an infinite minimal set. In
this example, the restriction o f / t o w(x) is topologically conjugate to the 'adding
machine', i.e. translation by +1 on the group of 2-adic integers. We briefly review
the construction of the adding machine and its realization on the interval.

The 2-adic integers A is the topological group (based on the Cantor set) consisting
of all formal expressions £°l0 a,2' where a, is 0 or 1. We may think of the non-negative
integers as a subset of A by associating with each non-negative integer its base 2
expansion. Addition in A is the extension of the usual addition on the non-negative
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integers to A, i.e. with carrying. The adding machine is the map p:A-» A denned
by p(a) = a +1. It is well-known that A is a minimal set.

We may identify A with the Cantor middle third set C by identifying ^T=o a-2'
with the real number £°lo2a,-3"'~\ Notice that

We define a map/on the set on the right as follows. Let/map [0, j], [|, |], [|, §f],...
by translation onto [|, 1], [§, j], [if, | ] , . . . and let /(I) = 0. It can be easily verified
that f{C) = C and that f\ C is topologically conjugate to the adding machine.

z
FIGURE 1

We remark that to this point our construction is the same as that used by J. P.
Delahaye [D] to construct a map of the interval having exactly one periodic orbit
of period 2" (n =0,1, 2 , . . . ) and no other periodic orbits. Notice that no matter
how we extend / to a map of an interval /2 [0 ,1 ] , f\C will be topologically
conjugate to the adding machine and w(0) will be C.

We will extend / to the interval [-1,2] in such a way that:
(1) -§€A(/ ) -P(7) .
(2) /(-§) =/(0), and hence «(-§) = C.

To extend / to the interval [-1,2], it suffices to define / on the intervals [-1,0],
[1,2] and /, = &§], J2 = [!,§], /, = [!§, 1?],. . . .

First, we let f(x) = l—x on the interval [1, 2]. Then / maps [1, 2] linearly onto
[-1,0], reversing order. Let to = 2, xo = f (the unique point in [1,2] satisfying
f(x0) = - | ) and s0 = (f)x0 + (|) t0 = li.
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Next, we define / inductively on the intervals /„ = [/„, rn]. / will have exactly one
turning point in each /„, the midpoint tn = l-l/2 • 3"~\ and will be linear on [/„, („]
and [(„,/•„]. Since / is already defined on /„ and rn, it suffices to define / o n tn.

Let f(ti) = s0, and (having extended / to [/ls r,]) let x, be the unique point in
[/,, ti] satisfying Z(*i) = Xo- Let s, = (f)x1 + (j)r1. We repeat the procedure on I2.
Let /(t2) = s,, let x 2 e [ / 2 , t2] satisfy/(x2) = x,, and let s2 = Q)x2 + (l)t2.

For the inductive step, we use the auxiliary intervals [l'n, t'n] = [l/3", 1/2 • 3""1]
(n = 2,3, . . . ) • Note that f"'~l is already defined on [Vn,t'n]-in fact [l'n,t'n],
/(t/'n, t'n]), •••, f"~l~2(.U'n, t'n]) all lie in [0, i] u [f, | ] u • • • - and that Z2""'"1 maps
[/'„, t'n] by translation onto [/„, /„].

Assuming that /((„), xn, and sn have already been defined, let x'n and 5^ be the
unique points in [l'n, t'n] such (hatf2"~'~1{x'n) = xn andf2"~'~\s'n) = sn. Let/(tn + 1) =
s'n, let xn+J be the unique point in [/n+i,(n+i] satisfying f(xn+l) = x'n, and let

The construction is depicted in figure 2.

/
(translation)

p
(translation)

1 r
(translation)

FIGURE 2
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The last step in the construction is to define / on the interval [-1,0]. Let / have
the constant value f on the interval [-§, 0] and let / ( - I ) be the unique point in
[5, j]'^f~1(l)- (In case anyone cares, / ( - l ) = fi) Finally, let / be linear on the
interval [ -1 , - | ] .

The graph of/ is displayed in figure 3.

FIGURE 3

We will verify that - f e A ( / ) - P ( / ) . Consider the Cantor middle third set
constructed on the interval / = [-l , -§]. By a deleted interval in / we will mean a
component of the complement of this set in /. We make the following observations.

(1) If K is a deleted interval in / of length 1/3", then K c ( -1 , - § - l/3n+1).
(2) If x e / is not in a deleted interval, then fk(x) > 0 for every positive integer k.
(3) If x 6 K, for K as in (1), t h e n / ' c ( x ) > - f - l / 3 n + 2 for every positive integer k.

Note that (1) is obvious and that (2) follows immediately from the fact that/2 maps
/ linearly onto the interval [§, 5]. (3) also follows from the construction of/ although
not quite immediately. For example, suppose that xe K, where K is the deleted
middle third of /, i.e. K = (-f, - | ) . Then f(x) e (^, £), the deleted middle third of
[|, 5], and hence f(x) e (if, if). From this interval different orbits may take different
paths to return to /. However, any such path must pass through It, and the only
way a point can move from a deleted interval in [0,1] of length 1/3" to one of
larger length is to pass through /„ and then through (l'n-u s'n-,]. Thus, in order for
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x to return to /, we must have for some positive integer k

fk+2(x)e(ls2]

and finally
fk+s(x)e [-§-£, 0).

By following the orbit of (-§, -5) as above, we see that
f«l 8 2\ _ f%( 8 7\ /• 2 1 2\ 1 2 2 2\

/ (-9,-3)27 (-9,-9) 2 (-3-IT,-3) 2 (-3-243.-3)-

In the same way we obtain
(4) For every integer i > 2, there is a positive integer n, such that

PROPOSITION, -f e A(/) - P(f).

Proof. It follows from (1), (2), and (3) that [-1,0] n P(f) = 0 , and hence -\t P(f).
To see that -§e A(/), notice that by (4) there are closed intervals Kt and positive

integers n, (i = 1,2, 3,. . .) such that f"'(Kj) o Kj+1 for each positive integer i and
nr=i K, = {-§}. Let J, = K,, h = {x e J.-.f'ix) e K2}, J3 = {xe J2: r>+n*(x) e X3}, etc.
There is a point y e f l ^ i -A,, and - fe w(>'). •

The reader can verify that / has exactly one periodic orbit of period 2" (n =
0,1,2,. . .) and no other periodic orbits. (Each interval /„ contains a repelling
periodic orbit of period 2" '.) Since /(-§) =/(0) and both points are non-wandering,
this map provides a counterexample to the assertion of Sarkovskii [S2, theorem B]
that if the only periods of periodic points are powers of two, then f\il(f) is a
homeomorphism.

In example 1, «(-§) is a topological group and / acts on it by translation. In
particular, / is one-to-one on w(-f). This need not be the case. In the next example,
we construct (following Nitecki [N2, 4.18]) a map/ ' with a point x'e A(f')-P(f')
such that/' |tt(x') is not one-to-one.

Example 2. We modify the map / of example 1 by replacing every point in a
backward orbit by an interval.

First, pick a point zeC (for example, z = \) such that every R-neighbourhood
of z and every /.-neighbourhood of z contains points of C other than z. Next, let
[0', 1'] be a copy of [0,1], and let C 'c [0', 1'] be a perfect set whose components
are in one-to-one order-preserving correspondence with those of C, such that for
each integer fc>0, the component corresponding to the unique point in f~k(z)n C
is a non-degenerate closed interval J'k, and all other components are points.

Let/' be the continuous map of C" to C" defined as follows.
(1) I f x e C and x*U?=0/"*(*). t h e n / ' ( * ' ) = (/(*))'•
(2) For each integer fc> 1, / ' maps J'k linearly onto J'k-^, preserving order.
(3) / ' collapses Jo to the point (/(z))'.
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Next, extend / ' to the intervals [0', (})'], [(§)', (!)'],... so that / ' is linear on each
deleted interval of C which lies in any of these intervals. Notice that if M' denotes
the set of boundary points of C , i.e. the points in C" not interior to any of the J'k,
then M' is a minimal set and/ ' is not one-to-one on M'. (/' identifies the endpoints
of J'o.)

Finally, extend / ' to [(-!) ' , 2'] in the same way that / was extended to [-1, 2].
Then (-lYeA(f)-P(f) and «((-§)') = M\

Our third and final example shows that the theorem does not hold if we replace
Mf)-P(f) by ft(/)-P(/). We construct a map g : [ - l , l ] -»[- l , 1] with a point
xeil(g)-P(g) such that co(x) is not a minimal set.

Example 3. Let g(x) = 3x on the interval [0, f] and g(x) = 3x-2 on the interval
[ i 1]. If C again denotes the Cantor middle third set, then g(C) = C and g|C is
topologically conjugate in a natural way to the full one-sided shift of two symbols.
In particular, for some y e C, o){y) = C. (Any yeC whose ternary expansion contains
every finite string of zeros and twos will do.)

Pick such a point y and extend g to [-1,1] as follows. Let g( - l ) = 0, g(x) = y
for xe [-5, -£], and let g be linear on the intervals [-1, - | ] , [-£ 0], and [|, 5]. The
graph of g is shown in figure 4.

FIGURE 4

It is easy to check that -\& fl(g) - P(g) and that m{-\) = <o(y) = C, and hence that
CD(-\) is not a minimal set.

Notice that g is a particularly simple, in fact piecewise linear, example of a map
of the interval with a point in ft - P which has an infinite orbit. A more complicated
example was constructed in [CN, § 4].
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