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Abstract
Let 𝐸/Q be an elliptic curve and 𝑝 > 3 be a good ordinary prime for E and assume that 𝐿 (𝐸, 1) = 0 with root
number +1 (so ord𝑠=1𝐿 (𝐸, 𝑠) � 2). A construction of Darmon–Rotger attaches to E and an auxiliary weight 1
cuspidal eigenform g such that 𝐿 (𝐸, ad0 (𝑔), 1) ≠ 0, a Selmer class 𝜅𝑝 ∈ Sel(Q, 𝑉𝑝𝐸), and they conjectured the
equivalence

𝜅𝑝 ≠ 0 ⇐⇒ dimQ𝑝Sel(Q, 𝑉𝑝𝐸) = 2.

In this article, we prove the first cases on Darmon–Rotger’s conjecture when the auxiliary eigenform g has complex
multiplication. In particular, this provides a new construction of nontrivial Selmer classes for elliptic curves of rank 2.
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1. Introduction

Let E be an elliptic curve over Q (hence modular [51, 46, 8]) with associated L-function 𝐿(𝐸, 𝑠). In the
late 1980s, a major advance towards the Birch and Swinnerton-Dyer (BSD) conjecture was the proof,
by Gross–Zagier and Kolyvagin, of the implication

ord𝑠=1𝐿(𝐸, 𝑠) = 1 =⇒ rankZ𝐸 (Q) = 1 and #Ш(𝐸/Q) < ∞. (1.1)

In the proof of (1.1) an imaginary quadratic field 𝐾/Q is chosen such that ord𝑠=1𝐿(𝐸/𝐾, 𝑠) = 1 and
for which a Heegner point 𝑦𝐾 ∈ 𝐸 (Q) can be constructed using the theory of complex multiplication
and a modular parametrisation of E. By the Gross–Zagier formula [21], the nonvanishing of 𝐿 ′(𝐸/𝐾, 1)
implies that 𝑦𝐾 has infinite order and the proof of (1.1) is reduced to the proof of the implication

𝑦𝐾 ∉ 𝐸 (Q)tors =⇒ rankZ𝐸 (Q) = 1 and #Ш(𝐸/Q) < ∞, (1.2)

which is a celebrated theorem by Kolyvagin [31].
A more recent major advance towards BSD arises from the works of Kato [29], Skinner–Urban [45]

and Xin Wan [49] on the Iwasawa main conjectures for elliptic modular forms, which, in particular,
yield a proof of a p-converse to (1.2)

rankZ𝐸 (Q) = 1 and #Ш(𝐸/Q) [𝑝∞] < ∞ =⇒ 𝑦𝐾 ∉ 𝐸 (Q)tors (1.3)

for certain primes p of good ordinary reduction for E, an implication first realised by Skinner [43]. (A
different proof of (1.3) was obtained independently by Wei Zhang [53] as a consequence of his proof
of Kolyvagin’s conjecture.) Together with the Gross–Zagier formula, (1.3) yields a p-converse to the
theorem (1.1) of Gross–Zagier and Kolyvagin.

It is natural to ask about the extension of these results to elliptic curves 𝐸/Q of rank 𝑟 > 1. As a
first step in this direction, in this article we prove certain analogues of (1.2) and (1.3) in rank 2, with 𝑦𝐾
replaced by a generalised Kato class

𝜅𝑝 ∈ Sel(Q, 𝑉𝑝𝐸)

introduced by Darmon–Rotger. Here, Sel(Q, 𝑉𝑝𝐸) ⊆ H1(Q, 𝑉𝑝𝐸) is the p-adic Selmer group fitting
into the exact sequence

0→ 𝐸 (Q) ⊗Z Q𝑝 → Sel(Q, 𝑉𝑝𝐸) → 𝑇𝑝Ш(𝐸/Q) ⊗Z𝑝 Q𝑝 → 0,

where 𝑇𝑝Ш(𝐸/Q) is the p-adic Tate module of the Tate–Shafarevich group Ш(𝐸/Q).

1.1. The Darmon–Rotger conjecture

We begin by briefly recalling the construction of 𝜅𝑝 by Darmon–Rotger [18, 17]. One starts by associating
a global cohomology class

𝜅𝛾, 𝛿 ( 𝑓 , 𝑔, ℎ) ∈ H1 (Q, 𝑉 𝑓 𝑔ℎ),
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where 𝑉 𝑓 𝑔ℎ = 𝑉𝑝 ( 𝑓 ) ⊗ 𝑉𝑝 (𝑔) ⊗ 𝑉𝑝 (ℎ) is the tensor product of the p-adic Galois representations
associated to f, g and h to the data of
◦ a triple of eigenforms ( 𝑓 , 𝑔, ℎ) ∈ 𝑆2 (Γ0 (𝑁 𝑓 )) × 𝑆1 (Γ0(𝑁𝑔), 𝜒) × 𝑆1(Γ0 (𝑁ℎ), 𝜒̄) of weights (2, 1, 1)

and levels prime-to-p with

gcd(𝑁 𝑓 , 𝑁𝑔𝑁ℎ) = 1, (1.4)

◦ a choice of roots 𝛾 ∈ {𝛼𝑔, 𝛽𝑔} and 𝛿 ∈ {𝛼ℎ , 𝛽ℎ} of the Hecke polynomials of g and h at p, assumed
to be regular; that is, 𝛼𝑔 ≠ 𝛽𝑔 and 𝛼ℎ ≠ 𝛽ℎ .
Letting 𝑔♭ and ℎ♭ be the p-stabilisations of g and h with𝑈𝑝-eigenvalue 𝛾 and 𝛿, the class 𝜅𝛾, 𝛿 ( 𝑓 , 𝑔, ℎ)

is defined as the p-adic limit

𝜅𝛾, 𝛿 ( 𝑓 , 𝑔, ℎ) := lim
ℓ→1

𝜅( 𝑓 , 𝒈ℓ , 𝒉ℓ), (1.5)

where (𝒈ℓ , 𝒉ℓ) runs over the classical weight ℓ � 2 specialisations of Hida families 𝒈 and 𝒉 passing
through 𝑔♭ and ℎ♭ in weight 1, and 𝜅( 𝑓 , 𝒉ℓ , 𝒉ℓ) is obtained from the p-adic étale Abel–Jacobi image of
generalised Gross–Kudla–Schoen diagonal cycles [20, 22].
Remark 1.1. Under assumption (1.4), the sign in the functional equation for the triple product L-series
𝐿(𝑠, 𝑓 ⊗𝒈ℓ⊗𝒉ℓ) is−1 for all ℓ � 2; in particular, 𝐿(1, 𝑓 ⊗𝒈ℓ⊗𝒉ℓ) = 0, and by the Gross–Zagier formula
for diagonal cycles (proved in [52] for ℓ = 2) the classes 𝜅( 𝑓 , 𝒈ℓ , 𝒉ℓ) should be nontrivial precisely
when 𝐿 ′(1, 𝑓 ⊗ 𝒈ℓ ⊗ 𝒉ℓ) ≠ 0. On the other hand, the global root number of 𝐿(𝑠, 𝑓 ⊗ 𝑔 ⊗ ℎ) is +1 and
it is precisely this sign change phenomenon between weights ℓ � 2 and ℓ = 1 that makes it possible for
the p-adic limit construction (1.5) to yield interesting cohomology classes in situations of even analytic
rank; in fact, as we recall below, classes that are crystalline at p precisely when ord𝑠=1𝐿(𝑠, 𝑓 ⊗𝑔⊗ℎ) � 2.

Under the hypothesis that 𝑝 > 3 is a prime of good ordinary reduction for f, the explicit reciprocity
law of [18] yields a formula of the form

exp∗𝑝 (𝜅𝛾, 𝛿 ( 𝑓 , 𝑔, ℎ)) = 𝐿(1, 𝑓 ⊗ 𝑔 ⊗ ℎ) · (nonzero constant), (1.6)

where exp∗𝑝 : H1(Q, 𝑉 𝑓 𝑔ℎ) → Q𝑝 is the composition of the restriction map

Loc𝑝 : H1(Q, 𝑉 𝑓 𝑔ℎ) → H1(Q𝑝 , 𝑉 𝑓 𝑔ℎ)

with the dual exponential map of Bloch–Kato [7] paired against a differential associated to ( 𝑓 , 𝑔, ℎ). As
a result, the class 𝜅𝛾, 𝛿 ( 𝑓 , 𝑔, ℎ) is crystalline at p and therefore lands in the Bloch–Kato Selmer group
Sel(Q, 𝑉 𝑓 𝑔ℎ) ⊂ H1 (Q, 𝑉 𝑓 𝑔ℎ), precisely when 𝐿(𝑠, 𝑓 ⊗ 𝑔 ⊗ ℎ) vanishes at 𝑠 = 1. With the different
choices for 𝛾 and 𝛿, one thus obtains four – a priori distinct – classes 𝜅𝛾, 𝛿 ( 𝑓 , 𝑔, ℎ) ∈ Sel(Q, 𝑉 𝑓 𝑔ℎ)
whenever 𝐿(1, 𝑓 ⊗ 𝑔 ⊗ ℎ) = 0, and Darmon–Rotger conjectured (see [17, Conj. 3.2]) that the following
are equivalent:
(a) the classes 𝜅𝛾, 𝛿 ( 𝑓 , 𝑔, ℎ) span a nontrivial subspace of Sel(Q, 𝑉 𝑓 𝑔ℎ),
(b) dimQ𝑝Sel(Q, 𝑉 𝑓 𝑔ℎ) = 2,
assuming for simplicity that the Hecke fields of f, g and h embed into Q𝑝 .

The adjoint rank (2, 0) setting

The construction of 𝜅𝛾, 𝛿 ( 𝑓 , 𝑔, ℎ) yields classes with a bearing on the arithmetic of elliptic curves 𝐸/Q
by taking f to be the newform associated to E and ℎ = 𝑔∗ to be the dual of g, so that the triple tensor
product 𝑉 𝑓 𝑔𝑔∗ decomposes as

𝑉 𝑓 𝑔𝑔∗ � 𝑉𝑝𝐸 ⊕
(
𝑉𝑝𝐸 ⊗ ad0𝑉𝑝 (𝑔)

)
, (1.7)
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where ad0𝑉𝑝 (𝑔) is the 3-dimensional 𝐺Q-representation on the space of trace zero endomorphisms of
𝑉𝑝 (𝑔). Correspondingly, 𝐿(𝑠, 𝑓 ⊗ 𝑔 ⊗ 𝑔∗) factors as

𝐿(𝑠, 𝑓 ⊗ 𝑔 ⊗ 𝑔∗) = 𝐿(𝐸, 𝑠) · 𝐿(𝐸, ad0 (𝑔), 𝑠).

In particular, the above construction yields the four generalised Kato classes

𝜅𝛼𝑔 ,𝛼−1
𝑔
( 𝑓 , 𝑔, 𝑔∗), 𝜅𝛼𝑔 ,𝛽−1

𝑔
( 𝑓 , 𝑔, 𝑔∗), 𝜅𝛽𝑔 ,𝛼−1

𝑔
( 𝑓 , 𝑔, 𝑔∗), 𝜅𝛽𝑔 ,𝛽−1

𝑔
( 𝑓 , 𝑔, 𝑔∗) (1.8)

landing (thanks to the explicit reciprocity law (1.6)) in the Selmer group

Sel(Q, 𝑉 𝑓 𝑔𝑔∗ ) � Sel(Q, 𝑉𝑝𝐸) ⊕ Sel(Q, 𝑉𝑝𝐸 ⊗ ad0𝑉𝑝 (𝑔))

whenever 𝐿(𝐸, 1) = 0. Since one expects 𝐿(𝐸, ad0 (𝑔), 1) ≠ 0⇐⇒ Sel(Q, 𝑉𝑝𝐸 ⊗ ad0𝑉𝑝 (𝑔)) = 0 by the
Bloch–Kato conjecture, the nonvanishing criterion in [17, Conj. 3.2] leads to the following prediction
(see the ‘adjoint rank (2, 0) setting’ discussed in [18, §4.5.3]).

Conjecture 1.2 (Darmon–Rotger). Suppose that 𝐿(𝐸, 𝑠) has sign +1 and vanishes at 𝑠 = 1 and that
𝐿(𝐸, ad0 (𝑔), 1) ≠ 0. Then the following are equivalent:

(i) the four classes in (1.8) span a nontrivial subspace of Sel(Q, 𝑉𝑝𝐸).
(ii) dimQ𝑝Sel(Q, 𝑉𝑝𝐸) = 2.

Remark 1.3. Of course, by the Birch and Swinnerton-Dyer conjecture, condition (ii) in Conjecture 1.2
should be equivalent to the condition ord𝑠=1𝐿(𝐸, 𝑠) = 2.

Remark 1.4. Note that Conjecture 1.2 does not predict that the four classes in (1.8) generate
Sel(Q, 𝑉𝑝𝐸). In fact, a strengthtening of the elliptic Stark conjectures in [16] predicts that in the setting
of Conjecture 1.2 only the classes 𝜅𝛼𝑔 ,𝛼−1

𝑔
( 𝑓 , 𝑔, 𝑔∗) and 𝜅𝛽𝑔 ,𝛽−1

𝑔
( 𝑓 , 𝑔, 𝑔∗) are nonzero and that they are

the same class up to a nonzero algebraic constant. Our results also confirm this prediction (see Remark
1.6 and Subsection 5.7 for further details).

1.2. Statement of the main results

In this article, we prove Conjecture 1.2 in the case when the auxiliary eigenform g has complex
multiplication, assuming #Ш(𝐸/Q) [𝑝∞] < ∞ (in fact, a weaker condition suffices) for one of the
implications.

As before, let 𝐸/Q be an elliptic curve with good ordinary reduction at 𝑝 > 3 and let 𝑓 ∈ 𝑆2 (Γ0(𝑁 𝑓 ))
be the associated newform. Let K be an imaginary quadratic field of discriminant prime of 𝑁 𝑓 in which
(𝑝) = 𝔭𝔭 splits and let 𝜓 be a ray class character of K of conductor prime to 𝑝𝑁 𝑓 valued in a number
field L. The weight 1 theta series 𝑔 = 𝜃𝜓 then satisfies

𝐿(𝐸, ad0 (𝑔), 𝑠) = 𝐿(𝐸𝐾 , 𝑠) · 𝐿(𝐸/𝐾, 𝜒, 𝑠),

where 𝐸𝐾 is the twist of E by the quadratic character associated to K and 𝜒 is the ring class character
given by 𝜓/𝜓𝜏 , for 𝜓𝜏 the composition of 𝜓 with the action of complex conjugation 𝜏. In this case,
𝛼𝑔 = 𝜓(𝔭) and 𝛽𝑔 = 𝜓(𝔭) are the roots of the Hecke polynomial of g and p, which we shall simply
denote by 𝛼 and 𝛽, respectively, and 𝑔∗ is the theta series of 𝜓−1. As in the formulation of the conjectures
in [17], we assume that 𝛼𝑔 ≠ 𝛽𝑔; that is, 𝜒(𝔭) ≠ 1.

Let 𝜌̄𝐸,𝑝 : 𝐺Q → AutF𝑝 (𝐸 [𝑝]) be the mod p representation associated to E and denote by 𝑁−𝑓 the
largest factor of 𝑁 𝑓 divisible only by primes that are inert in K. Finally, let

Loc𝑝 : Sel(Q, 𝑉𝑝𝐸) → H1 (Q𝑝 , 𝑉𝑝𝐸)

be the restriction map at p.
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Theorem A. Suppose that 𝐿(𝐸, 𝑠) has sign +1 and vanishes at 𝑠 = 1 and that the value

𝐿(𝐸, ad0(𝑔), 1) = 𝐿(𝐸𝐾 , 1) · 𝐿(𝐸/𝐾, 𝜒, 1)

is nonzero. Suppose also that

◦ 𝜌̄𝐸,𝑝 is irreducible,
◦ 𝑁−𝑓 is the squarefree of an odd number of primes,
◦ 𝜌̄𝐸,𝑝 is ramified at every prime 𝑞 |𝑁−𝑓 .

Then 𝜅𝛼,𝛽−1 ( 𝑓 , 𝑔, 𝑔∗) = 𝜅𝛽,𝛼−1 ( 𝑓 , 𝑔, 𝑔∗) = 0 and the following hold:

𝜅𝛼,𝛼−1 ( 𝑓 , 𝑔, 𝑔∗) ≠ 0 =⇒ dimQ𝑝Sel(Q, 𝑉𝑝𝐸) = 2 (1.9)

and, conversely,

dimQ𝑝Sel(Q, 𝑉𝑝𝐸) = 2
Sel(Q, 𝑉𝑝𝐸) ≠ ker(Loc𝑝)

}
=⇒ 𝜅𝛼,𝛼−1 ( 𝑓 , 𝑔, 𝑔∗) ≠ 0. (1.10)

In particular, if Sel(Q, 𝑉𝑝) ≠ ker(Loc𝑝), then Conjecture 1.2 holds.

Remark 1.5. The condition Sel(Q, 𝑉𝑝𝐸) ≠ ker(Loc𝑝) should always hold when Sel(Q, 𝑉𝑝𝐸) ≠ 0.
Indeed, if Sel(Q, 𝑉𝑝𝐸) equals ker(Loc𝑝), then 𝐸 (Q) must be finite (since 𝐸 (Q) injects into 𝐸 (Q𝑝)),
so if also Sel(Q, 𝑉𝑝𝐸) ≠ 0, we would conclude that Ш(𝐸/Q) [𝑝∞] is infinite.

Remark 1.6. It also follows from our results that, for 𝑔 = 𝜃𝜓 as above, the classes 𝜅𝛼,𝛼−1 ( 𝑓 , 𝑔, 𝑔∗) and
𝜅𝛽,𝛽−1 ( 𝑓 , 𝑔, 𝑔∗) are the same up to a nonzero algebraic constant and they span the p-adic line

ℒ𝑝 := ker(log𝑝) ⊂ Sel(Q, 𝑉𝑝𝐸),

where log𝑝 : Sel(Q, 𝑉𝑝𝐸) → Q𝑝 is the composition of Loc𝑝 with the formal group logarithm of E.
When #Ш(𝐸/Q) [𝑝∞] < ∞, it is suggestive to view ℒ𝑝 as the line spanned by the image of

𝑃 ∧𝑄 := 𝑃 ⊗ 𝑄 −𝑄 ⊗ 𝑃 ∈
2∧
(𝐸 (Q) ⊗ Q)

under the natural map

Log𝑝 :
2∧
(𝐸 (Q) ⊗ Q) → 𝐸 (Q) ⊗ Q𝑝

induced by log𝑝 . This is consistent with predictions by Darmon–Rotger (see [17, §4.5.3]) and suggests
the view 𝜅𝛼,𝛼−1 ( 𝑓 , 𝑔, 𝑔∗) as a ‘p-adic shadow’ of a rank 2 motivic regulator.

Remark 1.7. Note that the implications (1.9) and (1.10) in Theorem A are rank 2 analogues of the
implications (1.2) and (1.3) by Kolyvagin and Skinner, respectively.

The key new ingredient in the proof of Theorem A is a leading term formula for an anticyclotomic p-
adic L-function Θ 𝑓 /𝐾 ∈ Z𝑝�𝑇� attached to 𝐸/𝐾 in terms of anticyclotomic derived p-adic heights (see
Theorem 5.3). This formula applies in arbitrary order of vanishing of Θ 𝑓 /𝐾 at 𝑇 = 0 and, in particular,
it allows us to deduce the following p-adic analytic criterion for the nonvanishing of generalised Kato
classes.

Theorem B. Under the hypotheses of Theorem A, assume in addition that rankZ𝐸 (Q) > 0. Then the
following implication holds:

ord𝑇 (Θ 𝑓 /𝐾 ) = 2 =⇒ 𝜅𝛼,𝛼−1 ( 𝑓 , 𝑔, 𝑔∗) ≠ 0.

The same result holds with 𝜅𝛼,𝛼−1 ( 𝑓 , 𝑔, 𝑔∗) replaced by 𝜅𝛽,𝛽−1 ( 𝑓 , 𝑔, 𝑔∗).
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Remark 1.8. If 𝜌̄𝐸,𝑝 is irreducible and ramified at some prime 𝑞 ≠ 𝑝 (e.g., if E is semistable and
𝑝 � 11 is good ordinary for E, by [39] and [33]), the nonvanishing results of [9] and [48] assure the
existence of infinitely many imaginary quadratic fields K and ring class characters 𝜒 such that

◦ q is inert in K,
◦ every prime factor of 𝑁 𝑓 /𝑞 splits in K,
◦ 𝐿(𝐸, ad0(𝑔), 1) = 𝐿(𝐸𝐾 , 1) · 𝐿(𝐸/𝐾, 𝜒, 1) ≠ 0.

Thus, Theorem B suggests a general construction of nontrivial p-adic Selmer classes for rational elliptic
curves of rank 2.

Remark 1.9. In the Appendix to this article, we apply Theorem B to numerically verify the nonvanishing
of generalised Kato classes for specific rational elliptic curves of algebraic and analytic rank 2, a task
that was left as ‘an interesting challenge’ by Darmon–Rotger (see [17, p. 31]).

Remark 1.10. Assume that rankZ𝐸 (Q) = 2 and #Ш(𝐸/Q) [𝑝∞] < ∞. A refinement of Conjecture
1.2 predicting the position of 𝜅𝛾, 𝛿 ( 𝑓 , 𝑔, 𝑔∗) relative to the natural rational structure on Sel(Q, 𝑉𝑝𝐸) =
𝐸 (Q) ⊗ Q𝑝 then leads to the expectation

𝜅𝛼,𝛼−1 ( 𝑓 , 𝑔, 𝑔∗) ?∼Q× Log𝑝 (𝑃 ∧𝑄)
?∼Q× 𝜅𝛽,𝛽−1 ( 𝑓 , 𝑔, 𝑔∗), (1.11)

where (𝑃,𝑄) is any basis for 𝐸 (Q) ⊗ Q and ∼Q× denotes equality up to multiplication by a nonzero
algebraic number. Our results confirm the predicted relation 𝜅𝛼,𝛼−1 ( 𝑓 , 𝑔, 𝑔∗) ∼Q× 𝜅𝛽,𝛽−1 ( 𝑓 , 𝑔, 𝑔∗), and
in Theorem 5.5 we show that

𝜅𝛼,𝛼−1 ( 𝑓 , 𝑔, 𝑔∗) ∼Q× 𝐶 ·
1 − 𝑝−1𝛼𝑝

1 − 𝛼−1
𝑝

·
Θ(𝔯)

𝑓 /𝐾

ℎ (𝔯)𝑝 (𝑃,𝑄)
· Log𝑝 (𝑃 ∧𝑄),

where C is a nonzero algebraic number, 𝛼𝑝 is the p-adic unit root of 𝑥2 − 𝑎𝑝 (𝐸)𝑥 + 𝑝 (with 𝑎𝑝 (𝐸) =
𝑝 + 1 − #𝐸 (F𝑝) as usual), Θ(𝔯)

𝑓 /𝐾 is the leading term of Θ 𝑓 /𝐾 at 𝑇 = 0 and ℎ (𝔯)𝑝 is the anticyclotomic
𝔯th derived p-adic height pairing. In particular, this implies that the conjectured algebraicity in (1.11)
follows from a p-adic Birch and Swinnerton-Dyer conjecture refining [4, Conj. 4.3] (see Subsection 5.7).

1.3. Relation to previous work

Prior to this article, the only general results (known to the authors) on the existence on nonzero Selmer
classes for elliptic curves 𝐸/Q of rank 𝑟 > 1 are in forthcoming work of Skinner–Urban (see [47] for a
report). Their methods, which extend those outlined in their ICM address [44] for cuspidal eigenforms
of weight 𝑘 � 4, are completely different from ours.

On the other hand, Darmon–Rotger [18] exhibited, under a certain nonvanishing hypothesis, the
existence of two linearly independent classes in the Selmer groups Sel(Q, 𝑉𝑝𝐸 ⊗ 𝜚) of elliptic curves
𝐸/Q twisted by degree 4 Artin representations 𝜚. The required nonvanishing is that of a special value
ℒ

𝑔𝛼
𝑝 of a certain p-adic L-function. Both their works and ours exploit the construction of generalised

Kato classes introduced in [18], but in the setting we have placed ourselves in, the special value ℒ
𝑔𝛼
𝑝

vanishes. The proofs of our main results are based on anticyclotomic Iwasawa theory and derived p-adic
heights, both of which make no appearance in [18].

2. Triple products and theta elements

In this section we describe the triple product p-adic L-function for Hida families [28] and recall its
relation with the square-root anticyclotomic p-adic L-functions of Bertolini–Darmon [4].
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2.1. Ordinary Λ-adic forms

Fix a prime 𝑝 > 2. Let I be a normal domain finite flat over Λ := O�1 + 𝑝Z𝑝�, where O is the ring
of integers of a finite extension 𝐿/Q𝑝 . We say that a point 𝑥 ∈ Spec I(Q𝑝) is locally algebraic if its
restriction to 1 + 𝑝Z𝑝 is given by 𝑥(𝛾) = 𝛾𝑘𝑥 𝜖𝑥 (𝛾) for some integer 𝑘𝑥 , called the weight of x and some
finite-order character 𝜖𝑥 : 1 + 𝑝Z𝑝 → 𝜇𝑝∞ ; we say that x is arithmetic if it has weight 𝑘𝑥 � 2. Let 𝔛+

I

be the set of arithmetic points.
Fix a positive integer N prime to p and let 𝜒 : (Z/𝑁𝑝Z)× → O× be a Dirichlet character modulo

𝑁𝑝. Let 𝑆𝑜 (𝑁, 𝜒, I) be the space of ordinary I-adic cusp forms of tame level N and branch character 𝜒,
consisting of formal power series

𝒇 (𝑞) =
∞∑
𝑛=1

𝑎𝑛 ( 𝒇 )𝑞𝑛 ∈ I�𝑞�

such that for every 𝑥 ∈ 𝔛+
I

the specialisation 𝒇 𝑥 (𝑞) is the q-expansion of a p-ordinary cusp form 𝒇 𝑥 ∈
𝑆𝑘𝑥 (𝑁𝑝𝑟𝑥+1, 𝜒𝜔2−𝑘𝑥 𝜖𝑥). Here 𝑟𝑥 is such that 𝜖𝑥 (1 + 𝑝) has exact order 𝑝𝑟𝑥 and 𝜔 : (Z/𝑝Z)× → 𝜇𝑝−1
is the Teichmüller character.

We say that 𝒇 ∈ 𝑆𝑜 (𝑁, 𝜒, I) is a primitive Hida family if for every 𝑥 ∈ 𝔛+
I

we have that 𝒇 𝑥 is
an ordinary p-stabilised newform (in the sense of [28, Def. 2.4]) of tame level N. Given a primitive
Hida family 𝒇 ∈ 𝑆𝑜 (𝑁, 𝜒, I) and writing 𝜒 = 𝜒′𝜒𝑝 with 𝜒′ (respectively 𝜒𝑝) a Dirichlet modulo N
(respectively p), there is a primitive Hida family 𝒇 𝜄 ∈ 𝑆𝑜 (𝑁, 𝜒𝑝𝜒

′, I) with Fourier coefficients

𝑎ℓ ( 𝒇 𝜄) =
{
𝜒′(ℓ)𝑎ℓ ( 𝒇 ) if ℓ � 𝑁,
𝑎ℓ ( 𝒇 )−1𝜒𝑝𝜔

2(ℓ)〈ℓ〉Iℓ−1 if ℓ | 𝑁,

having the property that for every 𝑥 ∈ 𝔛+
I

the specialisation 𝒇 𝜄𝑥 is the p-stabilised newform attached to
the character twist 𝒇 𝑥 ⊗ 𝜒′.

By [24] (cf. [50, Thm. 2.2.1]), attached to every primitive Hida family 𝒇 ∈ 𝑆𝑜 (𝑁, 𝜒, I) there is a
continuous I-adic representation 𝜌 𝒇 : 𝐺Q → GL2 (Frac I) which is unramified outside 𝑁𝑝 and such that
for every prime ℓ � 𝑁𝑝,

tr 𝜌 𝒇 (Frobℓ) = 𝑎ℓ ( 𝒇 ), det 𝜌 𝒇 (Frobℓ) = 𝜒𝜔2 (ℓ)〈ℓ〉Iℓ−1,

where 〈ℓ〉I ∈ I× is the image of 〈ℓ〉 := ℓ𝜔−1(ℓ) ∈ 1 + 𝑝Z𝑝 under the natural map

1 + 𝑝Z𝑝 → O�1 + 𝑝Z𝑝�× = Λ× → I×.

In particular, letting 〈𝜀cyc〉I : 𝐺Q → I× be defined by 〈𝜀cyc〉I(𝜎) = 〈𝜀cyc(𝜎)〉I, it follows that 𝜌 𝒇 has
determinant 𝜒−1

I
𝜀−1

cyc, where 𝜒I : 𝐺Q → I× is given by 𝜒I := 𝜎𝜒 〈𝜀cyc〉−2〈𝜀cyc〉I, with 𝜎𝜒 the Galois
character sending Frobℓ ↦→ 𝜒(ℓ)−1. Moreover, by [50, Thm. 2.2.2], the restriction of 𝜌 𝒇 to 𝐺Q𝑝 is
given by

𝜌 𝒇 |𝐺Q𝑝 ∼
(
𝜓 𝒇 ∗
0 𝜓−1

𝒇 𝜒−1
I
𝜀−1

cyc

)
, (2.1)

where 𝜓 𝒇 : 𝐺Q𝑝 → I× is the unramified character with 𝜓 𝒇 (Frob𝑝) = 𝑎𝑝 ( 𝒇 ).
Let 𝑇𝑜 (𝑁, 𝜒, I) be the I-algebra generated by Hecke operators acting on 𝑆0 (𝑁, 𝜒, I), and let 𝜆 𝒇 :

𝑇𝑜 (𝑁, 𝜒, I) → I be the I-algebra homomorphism induced by 𝒇 . Let 𝐶 (𝜆 𝒇 ) be the congruence module
associated with 𝜆 𝒇 (see [25]). Under the following hypothesis:

the residual representation 𝜌̄ 𝒇 is absolutely irreducible and p-distinguished, (CR)

it follows from results of Hida and Wiles that 𝐶 (𝜆 𝒇 ) is isomorphic to I/(𝜂 𝒇 ) for some nonzero 𝜂 𝒇 ∈ I.
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2.2. Triple product p-adic L-function

Let

( 𝒇 , 𝒈, 𝒉) ∈ 𝑆𝑜 (𝑁 𝒇 , 𝜒𝒇 , I𝒇 ) × 𝑆𝑜 (𝑁𝒈 , 𝜒𝒈 , I𝒈) × 𝑆𝑜 (𝑁𝒉 , 𝜒𝒉 , I𝒉)

be a triple of primitive Hida families. Set

R := I𝒇 ⊗̂OI𝒈 ⊗̂OI𝒉 ,

which is a finite extension of the three-variable Iwasawa algebra R0 := Λ⊗̂OΛ⊗̂OΛ, and define the
weight space 𝔛 𝒇

R for the triple ( 𝒇 , 𝒈, 𝒉) in the 𝒇 -dominated unbalanced range by

𝔛 𝒇
R :=

{
(𝑥, 𝑦, 𝑧) ∈ 𝔛+I𝒇 × 𝔛

cls
I𝒈
× 𝔛cls

I𝒉
: 𝑘𝑥 � 𝑘𝑦 + 𝑘𝑧 and 𝑘𝑥 ≡ 𝑘𝑦 + 𝑘𝑧 (mod 2)

}
, (2.2)

where 𝔛cls
I𝒈
⊇ 𝔛+

I𝒈
(and, similarly, 𝔛cls

I𝒉
) is the set of locally algebraic points in Spec I𝒈 (Q𝑝) for which

𝒈𝑥 (𝑞) is the q-expansion of a classical modular form.
For 𝝓 ∈ { 𝒇 , 𝒈, 𝒉} and a positive integer N prime to p and divisible by 𝑁𝝓 , define the space of Λ-adic

test vectors 𝑆𝑜 (𝑁, 𝜒𝝓 , I𝝓) [𝝓] of level N to be the I𝝓-submodule of 𝑆𝑜 (𝑁, 𝜒𝝓 , I𝝓) generated by {𝝓(𝑞𝑑)}
as d ranges over the positive divisors of 𝑁/𝑁𝝓 .

For the next result, set 𝑁 := lcm(𝑁 𝒇 , 𝑁𝒈 , 𝑁𝒉) and consider the following hypothesis:

for some (𝑥, 𝑦, 𝑧) ∈ 𝔛 𝒇
R, we have 𝜀𝑞 ( 𝒇 ◦𝑥 , 𝒈◦𝑦 , 𝒉◦𝑧) = +1 for all 𝑞 |𝑁 , (Σ− = ∅)

where 𝜀𝑞 ( 𝒇 ◦𝑥 , 𝒈◦𝑦 , 𝒉◦𝑧) is the local root number at q of the Kummer self-dual twist of the tensor product
of the p-adic Galois representations attached to the newforms 𝒇 ◦𝑥 , 𝒈◦𝑦 and 𝒉◦𝑧 corresponding to 𝒇 𝑥 , 𝒈𝑦

and 𝒉𝑧 . We shall say that a point (𝑥, 𝑦, 𝑧) ∈ 𝔛 𝒇
R is crystalline if the conductors of 𝒇 ◦𝑥 , 𝒈◦𝑦 and 𝒉◦𝑧 are all

prime-to-p.
Theorem 2.1. Assume that 𝒇 satisfies hypothesis (CR) and that, in addition to hypothesis (Σ− = ∅), the
triple ( 𝒇 , 𝒈, 𝒉) satisfies
(ev) 𝜒𝒇 𝜒𝒈𝜒𝒉 = 𝜔2𝑎 for some 𝑎 ∈ Z,
(sq) gcd(𝑁 𝒇 , 𝑁𝒈 , 𝑁𝒉) is squarefree.

Fix a generator 𝜂 𝒇 of the congruence module of 𝒇 . Then there exist Λ-adic test vectors ( 𝒇̆ , 𝒈̆, 𝒉̆) and an
element ℒ 𝑓

𝑝 ( 𝒇̆ , 𝒈̆, 𝒉̆) ∈ R such that for all crystalline (𝑥, 𝑦, 𝑧) ∈ 𝔛 𝒇
R of weight (𝑘, ℓ, 𝑚), we have

ℒ
𝑓
𝑝 ( 𝒇̆ , 𝒈̆, 𝒉̆) (𝑥, 𝑦, 𝑧)2 = Γ(𝑘, ℓ, 𝑚) · E𝑝 ( 𝒇 𝑥 , 𝒈𝑦 , 𝒉𝑧)2 ·

∏
𝑞 |𝑁

𝜏2
𝑞 ·

𝐿( 𝒇 ◦𝑥 ⊗ 𝒈◦𝑦 ⊗ 𝒉◦𝑧 , 𝑐)

(
√
−1)2𝑘 · Ω2

𝒇 𝑥

,

where
◦ 𝑐 = (𝑘 + ℓ + 𝑚 − 2)/2,
◦ Γ(𝑘, ℓ, 𝑚) = (𝑐 − 1)! · (𝑐 − 𝑚)! · (𝑐 − ℓ)! · (𝑐 + 1 − ℓ − 𝑚)! · 24 (2𝜋)−2𝑘 ,
◦ E𝑝 ( 𝒇 𝑥 , 𝒈𝑦 , 𝒉𝑧) = (1 −

𝛽𝒇 𝑥 𝛼𝒈𝑦 𝛼𝒉𝑧

𝑝𝑐 ) (1 −
𝛽𝒇 𝑥 𝛽𝒈𝑦 𝛼𝒉𝑧

𝑝𝑐 ) (1 −
𝛽𝒇 𝑥 𝛼𝒈𝑦 𝛽𝒉𝑧

𝑝𝑐 ) (1 −
𝛽𝒇 𝑥 𝛽𝒈𝑦 𝛽𝒉𝑧

𝑝𝑐 ),
◦ 𝜏𝑞 is a nonzero constant (equal to either 1 or 1 + 𝑞−1),
◦ Ω𝒇 𝑥 ∈ C× is the canonical period in [28, Def. 3.12] computed with respect to 𝜂 𝒇 ,
and 𝐿( 𝒇 ◦𝑥 ⊗ 𝒈◦𝑦 ⊗ 𝒉◦𝑧 , 𝑐) is the central value of the triple product L-function.

Proof. This is a special case of Theorem A in [28]. The construction of ℒ 𝑓
𝑝 ( 𝒇̆ , 𝒈̆, 𝒉̆) under hypotheses

(CR), (ev) and (sq) is given in [28, §3.6]; the proof of its interpolation property (for all points (𝑥, 𝑦, 𝑧) ∈
𝔛 𝒇
R, rather than just those that are crystalline) assuming hypothesis (Σ− = ∅) is given in [28, §7]. �
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Remark 2.2. The construction of ℒ 𝑓
𝑝 ( 𝒇̆ , 𝒈̆, 𝒉̆) is based on Hida’s p-adic Rankin–Selberg convolution

[23] and applies to any choice of test vectors for ( 𝒇 , 𝒈, 𝒉). In the following, for any test vectors ( 𝒇̆ , 𝒈̆, 𝒉̆)
we use ℒ 𝑓

𝑝 ( 𝒇̆ , 𝒈̆, 𝒉̆) to denote the associated triple product p-adic L-function (but note that in the proof
of our main results the specific choice ( 𝒇̆ , 𝒈̆, 𝒉̆) will be critical).

2.3. Triple tensor product of big Galois representations

Let ( 𝒇 , 𝒈, 𝒉) be a triple of primitive Hida families with 𝜒𝒇 𝜒𝒈𝜒𝒉 = 𝜔2𝑎 for some 𝑎 ∈ Z. For 𝝓 ∈
{ 𝒇 , 𝒈, 𝒉}, let 𝑉𝝓 be the natural lattice in (Frac I𝝓)2 realising the Galois representation 𝜌𝝓 in the étale
cohomology of modular curves (see [34]) and set

V𝒇 𝒈𝒉 := 𝑉𝒇 ⊗̂O𝑉𝒈 ⊗̂O𝑉𝒉 .

This has rank 8 over R, and by hypothesis its determinant can be written as detV𝒇 𝒈𝒉 = X2𝜀cyc for a p-
ramified Galois character X taking the value (−1)𝑎 at complex conjugation. Similar to [27, Def. 2.1.3],
we define the critical twist

V
†
𝒇 𝒈𝒉

:= V𝒇 𝒈𝒉 ⊗ X−1.

More generally, for any multiple N of 𝑁𝝓 , one can define Galois modules 𝑉𝝓 (𝑁) by working in tame
level N; these split noncanonically into a finite direct sum of the I𝝓-adic representations 𝑉𝝓 (see [18,
§1.5.3]), and they define V†

𝒇 𝒈𝒉
(𝑁) for any N divisible by lcm(𝑁 𝒇 , 𝑁𝒈 , 𝑁𝒉).

If f is a classical specialisation of 𝒇 with associated p-adic Galois representation 𝑉 𝑓 , we let V 𝑓 ,𝒈𝒉

be the quotient of V𝒇 𝒈𝒉 given by

V 𝑓 ,𝒈𝒉 := 𝑉 𝑓 ⊗O 𝑉𝒈 ⊗̂I𝑉𝒉

and denote by V†
𝑓 ,𝒈𝒉

the corresponding quotient of V†
𝒇 𝒈𝒉

and by V†
𝑓 ,𝒈𝒉
(𝑁) its level N counterpart.

2.4. Theta elements and factorisation

We recall the factorisation proven in [28, §8]. Let 𝑓 ∈ 𝑆2 (𝑝𝑁 𝑓 ) be a p-stabilised newform of tame
level 𝑁 𝑓 defined over O, let 𝑓 ◦ ∈ 𝑆2 (𝑁 𝑓 ) be the associated newform and let 𝛼𝑝 = 𝛼𝑝 ( 𝑓 ) ∈ O× be the
𝑈𝑝-eigenvalue of f. Let K be an imaginary quadratic field of discriminant 𝐷𝐾 prime to 𝑁 𝑓 . Write

𝑁 𝑓 = 𝑁+𝑁−

with 𝑁+ (respectively 𝑁−) divisible only by primes which are split (respectively inert) in K and choose
an ideal 𝔑+ ⊂ O𝐾 with O𝐾 /𝔑+ � Z/𝑁+Z.

Assume that (𝑝) = 𝔭𝔭 splits in K, with our fixed embedding 𝜄𝑝 : Q ↩→ C𝑝 inducing the prime 𝔭.
Let Γ∞ be the Galois group of the anticyclotomic Z𝑝-extension 𝐾∞/𝐾 and fix a topological generator
𝜸 ∈ Γ∞ and identity O�Γ∞� with the power series ring O�𝑇� via 𝜸 ↦→ 1 + 𝑇 . For any prime-to-p ideal
𝔞 of K, let 𝜎𝔞 be the image of 𝔞 in the Galois group of the ray class field 𝐾 (𝑝∞)/𝐾 of conductor 𝑝∞
under the geometrically normalised reciprocity law map.

Theorem 2.3. Let 𝜒 be a ring class character of K of conductor 𝑐O𝐾 with values in O and assume that

(i) (𝑝𝑁 𝑓 , 𝑐𝐷𝐾 ) = 1,
(ii) 𝑁− is the squarefree product of an odd number of primes,

(iii) if 𝑞 |𝑁− is a prime with 𝑞 ≡ 1(mod 𝑝), then 𝜌̄ 𝑓 is ramified at q.
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Then there exists a unique Θ 𝑓 /𝐾,𝜒 (𝑇) ∈ O�𝑇� such that for every p-power root of unity 𝜁 ,

Θ 𝑓 /𝐾,𝜒 (𝜁 − 1)2 =
𝑝𝑛

𝛼2𝑛
𝑝

· E𝑝 ( 𝑓 , 𝜒, 𝜁)2 ·
𝐿( 𝑓 ◦/𝐾 ⊗ 𝜒𝜖𝜁 , 1)
(2𝜋)2 · Ω 𝑓 ◦ ,𝑁 −

· 𝑢2
𝐾

√
𝐷𝐾 𝜒𝜖𝜁 (𝜎𝔑+ ) · 𝜀𝑝 ,

where

◦ 𝑛 � 0 is such that 𝜁 has exact order 𝑝𝑛,
◦ 𝜖𝜁 : Γ∞ → 𝜇𝑝∞ be the character defined by 𝜖𝜁 (𝜸) = 𝜁 ,

◦ E𝑝 ( 𝑓 , 𝜒, 𝜁) =
{
(1 − 𝛼−1

𝑝 𝜒(𝔭)) (1 − 𝛼𝑝𝜒(𝔭)) if 𝑛 = 0,
1 if 𝑛 > 0,

◦ Ω 𝑓 ◦ ,𝑁 − = 4‖ 𝑓 ◦‖2Γ0 (𝑁 𝑓 ) · 𝜂
−1
𝑓 ,𝑁 − is the Gross period of 𝑓 ◦ (see [28, p. 524]),

◦ 𝜎𝔑+ ∈ Γ∞ is the image of 𝔑+ under the geometrically normalised Artin’s reciprocity map,
◦ 𝑢𝐾 = |O×𝐾 |/2 and 𝜀𝑝 ∈ {±1} is the local root number of 𝑓 ◦ at p.

Proof. See [4] for the first construction and [13, Thm. A] for the stated interpolation property. �

Remark 2.4. From the interpolation property of Theorem 2.3, one can show that the square of
Θ 𝑓 /𝐾,𝜒 (𝑇) is essentially the anticyclomic restriction of the two-variable p-adic L-function constructed
by Perrin-Riou [35].

When 𝜒 is the trivial character, we write Θ 𝑓 /𝐾,𝜒 (𝑇) simply as Θ 𝑓 /𝐾 (𝑇). Suppose now that the p-
stabilised newform f as in Theorem 2.3 is the specialisation of a primitive Hida family 𝒇 ∈ 𝑆𝑜 (𝑁 𝑓 , I)
with branch character 𝜒𝒇 = 1 at an arithmetic point 𝑥1 ∈ 𝔛+

I
of weight 2. Let ℓ � 𝑝𝑁 𝑓 be a prime

split in K and let 𝜒 be a ring class character of K of conductor ℓ𝑚O𝐾 for some 𝑚 > 0. Denoting by
the superscript 𝜏 the action of the nontrivial automorphism of 𝐾/Q, write 𝜒 = 𝜓1−𝜏 with 𝜓 a ray class
character modulo ℓ𝑚O𝐾 . Set 𝐶 = 𝐷𝐾 ℓ

2𝑚 and let

𝒈 = 𝜽𝜓 (𝑆2) ∈ O�𝑆2��𝑞�, 𝒈∗ = 𝜽𝜓−1 (𝑆3) ∈ O�𝑆3��𝑞�

be the primitive CM Hida families of level C constructed in [28, §8.3].
The p-adic L-function ℒ

𝑓
𝑝 ( 𝒇̆ , 𝒈̆, 𝒈̆∗) of Theorem 2.1 attached to the triple ( 𝒇 , 𝒈, 𝒈∗) (taking 𝑎 = −1

in (ev)) is an element in R = I�𝑆2, 𝑆3�; in the following, we let

ℒ
𝑓
𝑝 ( 𝑓 , 𝒈̆ 𝒈̆∗) ∈ O�𝑆�

denote the restriction to the ‘line’ 𝑆 = 𝑆2 = 𝑆3 of the image of ℒ 𝑓
𝑝 ( 𝒇̆ , 𝒈̆, 𝒈̆∗) under the specialisation

map at 𝑥1.
LetK∞ be the Z2

𝑝-extension of K and let 𝐾𝔭∞ denote the 𝔭-ramified Z𝑝-extension inK∞, with Galois
group Γ𝔭∞ = Gal(𝐾𝔭∞/𝐾). Let 𝛾𝔭 ∈ Γ𝔭∞ be a topological generator and for the formal variable T let
Ψ𝑇 : Gal(K∞/𝐾) → O�𝑇�× be the universal character defined by

Ψ𝑇 (𝜎) = (1 + 𝑇)𝑙 (𝜎) , where 𝜎 |𝐾𝔭∞ = 𝛾𝑙 (𝜎)𝔭 . (2.3)

The character Ψ1−𝜏
𝑇 factors through Γ∞ and yields an identification O�Γ∞� � O�𝑇� corresponding

to the topological generator 𝛾1−𝜏
𝔭 ∈ Γ∞. Let 𝑝𝑏 be the order of the p-part of the class number of K.

Hereafter, we shall fix v ∈ Z×𝑝 such that v𝑝𝑏 = 𝜀cyc(𝛾𝑝𝑏

𝔭 ) ∈ 1 + 𝑝Z𝑝 . Let 𝐾 (𝜒, 𝛼𝑝)/𝐾 (respectively
𝐾 (𝜒)/𝐾) be the finite extension obtained by adjoining to K the values of 𝜒 and 𝛼𝑝 (respectively the
values of 𝜒).

Proposition 2.5. Assume that

(i) 𝑁− is the squarefree product of an odd number of primes,
(ii) 𝜌̄ 𝑓 is ramified at every prime 𝑞 |𝑁− with 𝑞 ≡ 1(mod 𝑝).
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Set 𝑇 = v−1 (1 + 𝑆) − 1. Then

ℒ
𝑓
𝑝 ( 𝑓 , 𝒈̆ 𝒈̆∗) = ±w−1 · Θ 𝑓 /𝐾 (𝑇) · 𝐶 𝑓 ,𝜒 ·

√
𝐿alg ( 𝑓 /𝐾 ⊗ 𝜒, 1) ·

𝜂 𝑓 ◦

𝜂 𝑓 ◦ ,𝑁 −
,

where w is a unit in O�𝑇�, 𝐶 𝑓 ,𝜒 ∈ 𝐾 (𝜒, 𝛼𝑝)× and

𝐿alg( 𝑓 /𝐾 ⊗ 𝜒, 1) :=
𝐿( 𝑓 /𝐾 ⊗ 𝜒, 1)
4𝜋2‖ 𝑓 ◦‖2Γ0 (𝑁 𝑓 )

∈ 𝐾 (𝜒).

Proof. This is [28, Prop. 8.1] specialised to 𝑆 = 𝑆2 = 𝑆3, using the interpolation property of Θ 𝑓 /𝐾,𝜒 (𝑇)
at 𝜁 = 1. (Note that the unit w is explicitly described in [28, Prop. 8.1], but we omit it here.) �

Remark 2.6. The factorisation of Proposition 2.5 reflects the decomposition of Galois representations

V
†
𝑓 ,𝒈𝒈∗ =

(
𝑉 𝑓 (1) ⊗ IndQ

𝐾Ψ
1−𝜏
𝑇

)
⊕

(
𝑉 𝑓 (1) ⊗ IndQ

𝐾 𝜒
)
. (2.4)

Note that the first summand in (2.4) is the anticyclotomic deformation of 𝑉 𝑓 (1), while the second is a
fixed character twist of 𝑉 𝑓 (1).

3. Coleman map for relative Lubin–Tate groups

In this section we review Perrin-Riou’s theory [36] of big exponential maps, as extended by Kobayashi
[30] to Z𝑝-extensions arising from torsion points on relative Lubin–Tate formal groups of height 1.
Applied to the localisation of the anticyclotomic Z𝑝-extension of an imaginary quadratic field K in which
p splits, we then deduce, by the results of Section 2 and [18], a Coleman power series construction of
the p-adic L-function Θ 𝑓 /𝐾 of Theorem 2.3. This new construction of Θ 𝑓 /𝐾 will play an important role
in the proof of our main results.

3.1. Preliminaries

Fix a complete algebraic closure C𝑝 of Q𝑝 . Let Qur
𝑝 ⊂ C𝑝 be the maximal unramified extension of Q𝑝

and let Fr ∈ Gal(Qur
𝑝 /Q𝑝) be the absolute Frobenius. Let 𝐹 ⊂ Qur

𝑝 be a finite unramified extension of
Q𝑝 with valuation ring 𝒪 and set

𝑅 = 𝒪�𝑋�.

Let F = Spf 𝑅 be a relative Lubin–Tate formal group of height 1 defined over 𝒪, and for each 𝑛 ∈ Z
set

F(𝑛) := F ×Spec𝒪,Fr−𝑛 Spec𝒪.

The Frobenius morphism 𝜑F ∈ Hom(F,F(−1) ) induces a homomorphism 𝜑F : 𝑅 → 𝑅 defined by

𝜑F( 𝑓 ) := 𝑓 Fr ◦ 𝜑F,

where 𝑓 Fr is the conjugate of f by Fr. Let 𝜓F be the left inverse of 𝜑F satisfying

𝜑F ◦ 𝜓F ( 𝑓 ) = 𝑝−1
∑

𝑥∈F[𝑝]
𝑓 (𝑋 ⊕F 𝑥). (3.1)
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Let 𝐹∞/𝐹 be the Lubin–Tate Z×𝑝-extension of F associated with F – that is, 𝐹∞ =
⋃∞

𝑛=1 𝐹 (F[𝑝𝑛]) –
and for every 𝑛 � −1 let 𝐹𝑛 be the subfield of 𝐹∞ with Gal(𝐹𝑛/𝐹) � (Z/𝑝𝑛+1Z)×. (Hence, 𝐹−1 = 𝐹.)
Letting 𝐺∞ = Gal(𝐹∞/𝐹), there is a canonical decomposition

𝐺∞ � Δ × ΓF
∞,

with Δ the torsion subgroup of 𝐺∞ and ΓF
∞ � Z𝑝 the maximal torsion-free quotient of 𝐺∞.

For every 𝑎 ∈ Z×𝑝 , there is a unique formal power series [𝑎] ∈ 𝑅 such that

[𝑎]Fr ◦ 𝜑F = 𝜑F ◦ [𝑎] and [𝑎] (𝑋) ≡ 𝑎𝑋 (mod 𝑋2).

Letting 𝜀F : 𝐺∞
∼→ Z×𝑝 be the Lubin–Tate character, we let 𝜎 ∈ 𝐺∞ act on 𝑓 ∈ 𝑅 by

𝜎. 𝑓 (𝑋) := 𝑓 ([𝜀F (𝜎)] (𝑋)),

thus making R into an 𝒪�𝐺∞�-module.

Lemma 3.1. 𝑅𝜓F=0 is free of rank 1 over 𝒪�𝐺∞�.

Proof. This is [30, Prop. 5.4]. �

Let V be a crystalline𝐺Q𝑝 -representation defined over a finite extension L of Q𝑝 with ring of integers
O𝐿 . Let D(𝑉) = Dcris,Q𝑝 (𝑉) be the filtered 𝜑-module associated with V and set

𝒟∞(𝑉) := D(𝑉) ⊗Z𝑝 𝑅
𝜓F=0.

Fix an invariant differential 𝜔F ∈ Ω𝑅 and let logF ∈ 𝑅⊗̂Q𝑝 be the logarithm map satisfying

logF(0) = 0 and 𝑑 logF = 𝜔F,

where 𝑑 : 𝑅 → Ω𝑅 is the standard derivation.
Let 𝜖 = (𝜖𝑛) ∈ 𝑇𝑝F = lim←−−F

(𝑛) [𝑝𝑛] be a basis of the Tate module of F, where the limit is with
respect to the transition maps

𝜑Fr−(𝑛+1) : F(𝑛+1) [𝑝𝑛+1] → F(𝑛) [𝑝𝑛] .

One can associate to 𝜖 and 𝜔F a p-adic period 𝑡𝜖 ∈ 𝐵+cris such that

Dcris,𝐹 (𝜀F) = 𝐹𝑡−1
𝜖 and 𝜑𝑡𝜖 = 𝜛𝑡𝜖 , (3.2)

where𝜛 is the uniformiser in F such that 𝜑∗F (𝜔
Fr
F ) = 𝜛 ·𝜔F (see [30, §9.2]). For 𝑗 ∈ Z, the Lubin–Tate

twist 𝑉 〈 𝑗〉 := 𝑉 ⊗𝐿 𝜀 𝑗
F then satisfies

Dcris,𝐹 (𝑉 〈 𝑗〉) = D(𝑉) ⊗Q𝑝 𝐹𝑡
− 𝑗
𝜖 .

There is a derivation d𝜖 : 𝒟∞(𝑉 〈 𝑗〉) = Dcris,𝐹 (𝑉 〈 𝑗〉) ⊗𝒪 𝑅𝜓F=0 → 𝒟∞(𝑉 〈 𝑗 − 1〉) given by

𝑑𝜖 : 𝑓 = 𝜂 ⊗ 𝑔 ↦→ 𝜂𝑡𝜖 ⊗ 𝜕𝑔,

where 𝜕 : 𝑅 → 𝑅 is defined by 𝑑𝑓 = 𝜕 𝑓 · 𝜔F. These give rise to the map

Δ̃ : 𝒟∞(𝑉) →
⊕
𝑗∈Z

Dcris,𝐹 (𝑉 〈− 𝑗〉)
1 − 𝜑 (3.3)

sending 𝑓 ↦→ (𝜕 𝑗 𝑓 (0)𝑡 𝑗𝜖 (mod 1 − 𝜑)) 𝑗 .
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3.2. Perrin-Riou’s big exponential map

For a finite extension K over Q𝑝 , let

exp𝐾,𝑉 : D(𝑉) ⊗Q𝑝 𝐾 → H1 (𝐾,𝑉)

be Bloch–Kato’s exponential map [7, §3]. In this subsection, we recall the main properties of Perrin-
Riou’s map Ω𝑉 ,ℎ interpolating exp𝐾,𝑉 〈 𝑗 〉 over nonnegative 𝑗 ∈ Z.

Let 𝑉∗ := Hom𝐿 (𝑉, 𝐿(1)) be the Kummer dual of V and denote by

[−,−]𝑉 : D(𝑉∗) ⊗ 𝐾 × D(𝑉) ⊗ 𝐾 → 𝐿 ⊗ 𝐾

the K-linear extension of the de Rham pairing

〈 , 〉dR : D(𝑉∗) × D(𝑉) → 𝐿.

Let exp∗𝐾,𝑉 : H1(𝐾,𝑉) → D(𝑉) ⊗ 𝐾 be the Bloch–Kato dual exponential map, which is characterised
uniquely by

Tr𝐾/Q𝑝 ([𝑥, exp∗𝐾,𝑉 (𝑦)]𝑉 ) = 〈exp𝐾,𝑉 ∗ (𝑥), 𝑦〉dR,

for all 𝑥 ∈ D(𝑉∗) ⊗ 𝐾 and 𝑦 ∈ H1 (𝐾,𝑉).
Choose a O𝐿-lattice 𝑇 ⊂ 𝑉 stable under the Galois action and set Ĥ

1
(𝐹∞, 𝑇) = lim←−−𝑛 H1(𝐹𝑛, 𝑇) and

Ĥ
1
(𝐹∞, 𝑉) = Ĥ

1
(𝐹∞, 𝑇) ⊗Z𝑝 Q𝑝 ,

which does not depend on the choice of T. Denote by

Tw 𝑗 : Ĥ
1
(𝐹∞, 𝑉) � Ĥ

1
(𝐹∞, 𝑉 〈 𝑗〉)

the twisting map by 𝜀 𝑗
F. For a nonnegative real number r, put

ℋ𝑟 ,𝐾 (𝑋) =
{ ∑
𝑛�0,𝜏∈Δ

𝑐𝑛,𝜏 · 𝜏 · 𝑋𝑛 ∈ 𝐾 [Δ]�𝑋� | sup
𝑛

��𝑐𝑛,𝜏 �� 𝑝𝑛−𝑟 < ∞ for all 𝜏 ∈ Δ
}
,

where |·| 𝑝 is the normalised valuation of K with |𝑝 | 𝑝 = 𝑝−1. Let 𝜸 be a topological generator of
ΓF
∞ and denote by ℋ𝑟 ,𝐾 (𝐺∞) the ring of elements { 𝑓 (𝜸 − 1) : 𝑓 ∈ ℋ𝑟 ,𝐾 (𝑋)}, so, in particular,

ℋ0,𝐾 (𝐺∞) = O𝐾�𝐺∞� ⊗O𝐾 𝐾 . Put

ℋ∞,𝐾 (𝐺∞) =
⋃
𝑟�0

ℋ𝑟 ,𝐾 (𝐺∞).

Define the map

Ξ𝑛,𝑉 : D(𝑉) ⊗Q𝑝 ℋ∞,𝐹 (𝑋) → D(𝑉) ⊗Q𝑝 𝐹𝑛

by

Ξ𝑛,𝑉 (𝐺) :=

{
𝑝−(𝑛+1)𝜑−(𝑛+1) (𝐺Fr−(𝑛+1) (𝜖𝑛)) if 𝑛 � 0,

(1 − 𝑝−1𝜑−1) (𝐺 (0)) if 𝑛 = −1,
(3.4)

and let Λ̃ = Z𝑝�𝐺∞�.
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Theorem 3.2. Let 𝜖 = (𝜖𝑛) be a basis of 𝑇𝑝F, let ℎ > 0 be such that D(𝑉) = Fil−ℎ D(𝑉) and assume
that H0(𝐹∞, 𝑉) = 0. There exists Λ̃-linear ‘big exponential map’

Ω𝜖
𝑉 ,ℎ : 𝒟∞(𝑉)Δ̃=0 → Ĥ

1(𝐹∞, 𝑇) ⊗Λ̃ ℋ∞,𝐹 (𝐺∞)

such that for every 𝑔 ∈ 𝒟∞(𝑉)Δ̃=0 and 𝑗 � 1 − ℎ satisfies the interpolation property

pr𝐹𝑛 (Tw 𝑗 ◦Ω𝜖
𝑉 ,ℎ (𝑔)) = (−1)ℎ+ 𝑗−1(ℎ + 𝑗 − 1)! · exp𝐹𝑛 ,𝑉 〈 𝑗 〉 (Ξ𝑛,𝑉 〈 𝑗 〉 (d− 𝑗𝜖 𝐺)) ∈ H1 (𝐹𝑛, 𝑉 〈 𝑗〉),

where 𝐺 ∈ D(𝑉) ⊗Q𝑝 ℋℎ,𝐹 (𝑋) is a solution of the equation

(1 − 𝜑 ⊗ 𝜑F)𝐺 = 𝑔.

Moreover, these maps satisfy

Tw 𝑗 ◦Ω𝜖
𝑉 ,ℎ ◦ d 𝑗

𝜖 = Ω𝜖
𝑉 〈 𝑗 〉,ℎ+ 𝑗 ,

and if 𝑗 � −ℎ, then

exp∗𝐹𝑛 ,𝑉 〈 𝑗 〉 (pr𝐹𝑛 (Tw 𝑗 ◦Ω𝜖
𝑉 ,ℎ (𝑔))) =

1
(−ℎ − 𝑗)! · Ξ𝑛,𝑉 〈 𝑗 〉 (d− 𝑗𝜖 𝐺)) ∈ D(𝑉 〈 𝑗〉) ⊗Q𝑝 𝐹𝑛,

and if 𝐷 [𝑠] ⊂ D(𝑉) is a 𝜑-invariant subspace in which all 𝜑-eigenvalues have p-adic valuation at most
s, then Ω𝜖

𝑉 ,ℎ maps (𝐷 [𝑠] ⊗Z𝑝 𝑅
𝜓F=0)Δ̃=0 into Ĥ

1(𝐹∞, 𝑇) ⊗Λ̃ ℋ𝑠+ℎ,𝐹 (𝐺∞).

Proof. For F = Ĝ𝑚, the construction of Ω𝜖
𝑉 ,ℎ and its interpolation property for 𝑗 � 1 − ℎ are due to

Perrin-Riou [36]; the interpolation formula for 𝑗 � −ℎ is due to Colmez [14]. The extension of these
results to Z𝑝-extensions arising from relative Lubin–Tate formal groups of height 1 is given in [30,
Appendix]. �

3.3. The Coleman map

From now on, we assume that

𝒟∞(𝑉)Δ̃=0 = 𝒟∞(𝑉); (3.5)

that is, Δ̃ = 0 (note that by (3.3), this is a condition on the 𝜑-eigenvalues on Dcris,𝐹 (𝑉)), and for
simplicity, for any field extension 𝑀/Q𝑝 we write ℋ𝑀 for ℋ0,𝑀 (𝐺∞). Let

[−,−]𝑉 : D(𝑉∗) ⊗Q𝑝 ℋ𝐹 × D(𝑉) ⊗Q𝑝 ℋ𝐹 → 𝐿 ⊗Q𝑝 ℋ𝐹

be the pairing defined by

[𝜂1 ⊗ 𝜆1, 𝜂2 ⊗ 𝜆2]𝑉 = 〈𝜂1, 𝜂2〉dR ⊗ 𝜆1𝜆
𝜄
2

for all 𝜆1, 𝜆2 ∈ℋ𝐹 .
Recall that 𝐹∞ =

⋃
𝑛 𝐹𝑛, and let 〈−,−〉𝐹𝑛 be the local Tate pairing H1(𝐹𝑛, 𝑇∗) × H1(𝐹𝑛, 𝑇) → O𝐿 .

Letting 𝑥 = (𝑥𝑛)𝑛 and 𝑦 = (𝑦𝑛)𝑛 be sequences in Ĥ
1
(𝐹∞, 𝑇∗) and Ĥ

1
(𝐹∞, 𝑇), define the O𝐿�𝐺∞�-linear

pairing

〈−,−〉𝐹∞ : Ĥ
1
(𝐹∞, 𝑇∗) × Ĥ

1
(𝐹∞, 𝑇) → O𝐿�𝐺∞�
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by letting 〈𝑥, 𝑦〉𝐹∞ be the limit of the elements∑
𝜎∈Gal(𝐹𝑛/𝐹 )

〈𝑥𝜎−1

𝑛 , 𝑦𝑛〉𝐹𝑛 [𝜎] ∈ O𝐿 [Gal(𝐹𝑛/𝐹)],

which are compatible under the natural projection maps O𝐿 [Gal(𝐹𝑛+1/𝐹)] → O𝐿 [Gal(𝐹𝑛/𝐹)]. After
inverting p, this extends to a pairing

〈−,−〉𝐹∞ : Ĥ
1
(𝐹∞, 𝑉∗) × Ĥ

1
(𝐹∞, 𝑉) → 𝐿 ⊗Q𝑝 ℋQ𝑝 . (3.6)

Definition 3.3. Let 𝒆 ∈ 𝑅𝜓F=0 be a 𝒪�𝐺∞�-module generator, and let 𝜖 be a generator of 𝑇𝑝F. The
Coleman map

Col𝜖𝒆 : Ĥ
1
(𝐹∞, 𝑉∗) → D(𝑉∗) ⊗Q𝑝 ℋ𝐹

is the 𝐿 ⊗Q𝑝 ℋ𝐹 -linear map uniquely characterised by

Tr𝐹/Q𝑝 (
[
Col𝜖𝒆 (z), 𝜂

]
𝑉
) = 〈z,Ω𝜖

𝑉 ,ℎ (𝜂 ⊗ 𝒆)〉𝐹∞ (3.7)

for all 𝜂 ∈ D(𝑉).

Let Q be the completion of Qur
𝑝 in C𝑝 , with ring of integers W, and set 𝐹ur

𝑛 = 𝐹𝑛Qur
𝑝 for −1 � 𝑛 � ∞

(so 𝐹ur
−1 = 𝐹ur). Let 𝜎0 ∈ Gal(𝐹ur

∞/Q𝑝) be such that 𝜎0 |Qur
𝑝
= Fr is the absolute Frobenius.

Fix an isomorphism

𝜌 : Ĝ𝑚 � F (3.8)

defined over W and let 𝜌 : W�𝑇� � 𝑅 ⊗𝒪 W be the map defined by 𝜌( 𝑓 ) = 𝑓 ◦ 𝜌−1, so

𝜑F ◦ 𝜌 = 𝜌Fr ◦ 𝜑Ĝ𝑚 .

Fix also a 𝒪�𝐺∞�-generator 𝒆 ∈ 𝑅𝜓F=0 and let ℎ𝒆 ∈ W�𝐺∞� be such that 𝜌(1 + 𝑋) = ℎ𝒆 · 𝒆. Note that
𝒆(0) ∈ 𝒪×. Fix a sequence (𝜁𝑝𝑛 ) of primitive 𝑝𝑛th root of unity giving a generator of 𝑇𝑝Ĝ𝑚 and let
𝜖 = (𝜖𝑛) be the generator of 𝑇𝑝F given by

𝜖𝑛 = 𝜌Fr−(𝑛+1) (𝜁𝑝𝑛+1 − 1) ∈ F(𝑛+1) [𝑝𝑛+1] .

Let 𝑡 ∈ 𝐵+cris be the p-adic period as in Subsection 3.1 associated to the generator (𝜁𝑝𝑛+1 − 1) ∈ 𝑇𝑝Ĝ𝑚

and the invariant differential 𝜔Ĝ𝑚 = 𝑑𝑋
1+𝑋 .

From now on, we suppose that Fil−1 D(𝑉) = D(𝑉) and H0(𝐹∞, 𝑉) = 0, so the big exponential map
Ω𝜖

𝑉 ,1 of Theorem 3.2 is defined. Let 𝜂 ∈ D(𝑉) be such that 𝜑𝜂 = 𝛼𝜂 and suppose that 𝜂 has slope s (i.e.,

|𝛼 | 𝑝 = 𝑝−𝑠). For every z ∈ Ĥ
1
(𝐹∞, 𝑉∗), we define

Col𝜂 (z) :=
[𝐹 :Q𝑝 ]∑

𝑗=1

[
Col𝜖𝒆 (z𝜎

− 𝑗
0 ), 𝜂

]
· ℎ𝒆 · 𝜎 𝑗

0 ∈ℋ𝑠+ℎ,𝐿Q (𝐺∞), (3.9)

where 𝐺∞ = Gal(𝐹∞/Q𝑝) and [−,−] : D(𝑉∗) ⊗ℋQ × D(𝑉) ⊗ℋQ → ℋ𝐿Q is the image of [−,−]𝑉
under the natural map 𝐿 ⊗Q𝑝 ℋQ →ℋ𝐿Q. We put

z− 𝑗 ,𝑛 := pr𝐹𝑛 (Tw− 𝑗 (z)) ∈ H1 (𝐹𝑛, 𝑉∗〈− 𝑗〉)
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and say that a finite-order character 𝜒 of 𝐺∞ has conductor 𝑝𝑛+1 if n is the smallest integer such that 𝜒
factors through Gal(𝐹𝑛/Q𝑝).

Theorem 3.4. Let z ∈ Ĥ
1 (𝐹∞, 𝑉∗) and let 𝜓 be a p-adic character of 𝐺∞ such that 𝜓 = 𝜒𝜀

𝑗
F with 𝜒 a

finite-order character of conductor 𝑝𝑛+1. If 𝑗 < 0, then

Col𝜂 (z) (𝜓) = (−1) 𝑗−1

(− 𝑗 − 1)!

×

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
[
log𝐹,𝑉 ∗ 〈− 𝑗 〉 (z− 𝑗 ,𝑛) ⊗ 𝑡− 𝑗 , (1 − 𝑝 𝑗−1𝜑−1) (1 − 𝑝− 𝑗𝜑)−1𝜂

]
if 𝑛 = −1,

𝑝 (𝑛+1) ( 𝑗−1)𝝉(𝜓)
∑

𝜏∈Gal(𝐹𝑛/Q𝑝)
𝜒−1(𝜏)

[
log𝐹𝑛 ,𝑉 ∗ 〈− 𝑗 〉 (z

𝜏
− 𝑗 ,𝑛) ⊗ 𝑡− 𝑗 , 𝜑−(𝑛+1)𝜂

]
if 𝑛 � 0.

If 𝑗 � 0, then

Col𝜂 (z) (𝜓) = 𝑗!(−1) 𝑗

×

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
[
exp∗

𝐹,𝑉 ∗ 〈− 𝑗 〉 (z− 𝑗 ,𝑛) ⊗ 𝑡
− 𝑗 , (1 − 𝑝 𝑗−1𝜑−1) (1 − 𝑝− 𝑗𝜑)−1𝜂

]
if 𝑛 = −1,

𝑝 (𝑛+1) ( 𝑗−1)𝝉(𝜓)
∑

𝜏∈Gal(𝐹𝑛/Q𝑝)
𝜒−1(𝜏)

[
exp∗

𝐹𝑛 ,𝑉 ∗ 〈− 𝑗 〉 (z
𝜏
− 𝑗 ,𝑛) ⊗ 𝑡− 𝑗 , 𝜑−(𝑛+1)𝜂

]
if 𝑛 � 0.

Here, 𝝉(𝜓) is the Gauss sum defined by

𝝉(𝜓) :=
∑

𝜏∈Gal(𝐹ur
𝑛 /𝐹ur)

𝜓𝜀
− 𝑗
cyc (𝜏𝜎𝑛+1

0 )𝜁 𝜏𝜎
𝑛+1
0

𝑝𝑛+1
.

Proof. This follows from Theorem 3.2 by a direct computation (see [30, Thm. 5.10] and [32, Thm. 4.15]
for a related computation). �

3.4. Diagonal cycles and theta elements

We now apply the local results of the preceding section to the global setting of Section 2. Assume that
f, 𝒈 = 𝜽𝜓 (𝑆) and 𝒈∗ = 𝜽𝜓−1 (𝑆) are as in Subsection 2.4. Keeping the notations from Subsection 2.3, by
[18, §1] (see also [19] and [1]), there exists a class

𝜅( 𝑓 , 𝒈𝒈∗) ∈ H1(Q,V†𝑓 ,𝒈𝒈∗ (𝑁)) (3.10)

constructed from twisted diagonal cycles on the triple product of modular curves of tame level N.
Every triple of test vectors 𝑭̆ = ( 𝑓 , 𝒈̆, 𝒈̆∗) defines a𝐺Q-equivariant projectionV†𝑓 ,𝒈𝒈∗ (𝑁) → V

†
𝑓 ,𝒈𝒈∗

and we put

𝜅( 𝑓 , 𝒈̆ 𝒈̆∗) := pr𝑭̆ (𝜅( 𝑓 , 𝒈𝒈
∗)) ∈ H1(Q,V†𝑓 ,𝒈𝒈∗ ), (3.11)

where pr𝑭̆ : H1(Q,V†𝑓 ,𝒈𝒈∗ (𝑁)) → H1(Q,V†𝑓 ,𝒈𝒈∗ ) is the induced map on cohomology.
Since Ψ1−𝜏

𝑇 gives the universal character of Gal(𝐾∞/𝐾), by the𝐺Q-isomorphism (2.4) and Shapiro’s
lemma we have the identifications

H1(Q,V†𝑓 ,𝒈𝒈∗ ) � H1(Q, 𝑉 𝑓 (1) ⊗ IndQ
𝐾Ψ

1−𝜏
𝑇 ) ⊕ H1 (Q, 𝑉 𝑓 (1) ⊗ IndQ

𝐾 𝜒)

� Ĥ
1
(𝐾∞, 𝑉 𝑓 (1)) ⊕ H1(𝐾,𝑉 𝑓 (1) ⊗ 𝜒).

(3.12)
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In the following, we write

𝜅( 𝑓 , 𝒈̆𝒈∗) = (𝜅∞( 𝑓 , 𝒈̆𝒈∗), 𝜅0 ( 𝑓 , 𝒈̆𝒈∗)) (3.13)

according to this decomposition.
Let g and 𝑔∗ be the weight 1 eigenform 𝜃𝜓 and 𝜃𝜓−1 , respectively, so that the specialisation of (𝒈, 𝒈∗)

at 𝑇 = 0 (or, equivalently, 𝑆 = v − 1) is a p-stabilisation of the pair (𝑔, 𝑔∗).

Lemma 3.5. Assume that 𝐿( 𝑓 ⊗ 𝑔 ⊗ 𝑔∗, 1) = 0 and that 𝐿( 𝑓 /𝐾 ⊗ 𝜒, 1) ≠ 0. Then for every choice of
test vectors 𝑭̆ = ( 𝑓 , 𝒈̆, 𝒈∗), we have 𝜅0 ( 𝑓 , 𝒈̆𝒈∗) = 0.

Proof. Let 𝜿 = 𝜅( 𝑓 , 𝒈̆ 𝒈̆∗) and for every ? ∈ { 𝑓 , 𝒈, 𝒈∗}, let ℱ+𝑉? be the rank 1 subspace of 𝑉? fixed by
the inertia group at p. By (3.12), in order to prove the result, it suffices to show that some specialisation
of 𝜅 has trivial image in H1 (𝐾,𝑉 𝑓 (1) ⊗ 𝜒). Let

𝜅 𝑓 ,𝑔̆𝑔̆∗ := 𝜿 |𝑆=v−1 ∈ H1(Q, 𝑉 𝑓 𝑔𝑔∗ ) = H1(𝐾,𝑉 𝑓 (1)) ⊕ H1(𝐾,𝑉 𝑓 (1) ⊗ 𝜒),

where 𝑉 𝑓 𝑔𝑔∗ := 𝑉 𝑓 (1) ⊗ 𝑉𝑔 ⊗ 𝑉𝑔∗ . By looking at the Hodge–Tate weights, we see that the Bloch–Kato
Selmer group Sel(Q, 𝑉 𝑓 𝑔𝑔∗ ) ⊂ H1(Q, 𝑉 𝑓 𝑔𝑔∗ ) is given by

Sel(Q, 𝑉 𝑓 𝑔𝑔∗ ) = ker
(
H1(Q, 𝑉 𝑓 𝑔𝑔∗ )

𝜕𝑝◦loc𝑝→ H1 (Q𝑝 ,ℱ
−𝑉 𝑓 (1) ⊗ 𝑉𝑔 ⊗ 𝑉𝑔∗ )

)
,

where 𝜕𝑝 is the natural map induced by the projection 𝑉 𝑓 � ℱ−𝑉 𝑓 := 𝑉 𝑓 /ℱ+𝑉 𝑓 (see, e.g., [18,
p. 634]). Thus, it follows that

Sel(Q, 𝑉 𝑓 𝑔𝑔∗ ) = Sel(𝐾,𝑉 𝑓 (1)) ⊕ Sel(𝐾,𝑉 𝑓 (1) ⊗ 𝜒).

The implications 𝐿( 𝑓 ⊗ 𝑔 ⊗ 𝑔∗, 1) = 0 =⇒ 𝜅 𝑓 ,𝑔̆𝑔̆∗ ∈ Sel(Q, 𝑉 𝑓 𝑔𝑔∗ ) and 𝐿( 𝑓 /𝐾 ⊗ 𝜒, 1) ≠ 0 =⇒
Sel(𝐾,𝑉 𝑓 (1) ⊗ 𝜒) = 0, which follow from [18, Thm. C] and [12, Thm. 1], respectively, therefore yield
the result. �

Suppose from now on that 𝑓 ◦ ∈ 𝑆2 (Γ0(𝑁 𝑓 )) is the newform associated to an elliptic curve 𝐸/Q with
good ordinary reduction at p. Thus, 𝑉 𝑓 (1) � 𝑉𝑝𝐸 , and from (3.13) we obtain an Iwasawa cohomology
class

𝜅∞( 𝑓 , 𝒈̆ 𝒈̆∗) ∈ Ĥ
1
(𝐾∞, 𝑉𝑝𝐸).

Set 𝑉 = 𝑉𝑝𝐸 for ease of notation. Note that Fil−1 D(𝑉) = D(𝑉) and, by the Weil pairing, 𝑉∗ � 𝑉 . Let 𝔓
be the prime of Q above p induced by our fixed embedding 𝜄𝑝 (inducing 𝔭 on K), and for any subfield
𝐻 ⊆ Q denote by 𝐻̂ = 𝐻𝔓 the completion of H with respect to 𝔓. Then Gal(𝐾̂∞/Q𝑝) is identified with
the decomposition group of 𝔓 in Γ∞ = Gal(𝐾∞/𝐾).

For any integer m, let 𝐻𝑚 be the ring class field of K of conductor m and put 𝐹 = 𝐻̂𝑐 for a fixed
c prime to p. Let 𝜛 ∈ 𝐾 be a generator of 𝔭 [𝐹 :Q𝑝 ] and let 𝐹∞/𝐹 be the Lubin–Tate Z𝑝-extension
associated with the uniformiser 𝜛/𝜛 ∈ O𝐹 (see [30, §3.1]). As is well-known, we have

𝐹∞ =
∞⋃
𝑛=0

𝐻̂𝑐𝑝𝑛

(see, e.g., [42, Prop. 8.3]). In particular, 𝐹∞ contains 𝐾̂∞.
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Let 𝜔𝐸 be the Néron differential of E, regarded as an element in D(H1
et(𝐸/Q,Q𝑝)) � D(𝑉∗). Let

𝛼𝑝 ∈ Z×𝑝 be the p-adic unit eigenvalue of the Frobenius map 𝜑 acting on D(𝑉) and let 𝜂 ∈ D(𝑉) �
D(H1

et(𝐸/Q,Q𝑝)) ⊗ D(Q𝑝 (1)) be a 𝜑-eigenvector of slope −1 such that

𝜑𝜂 = 𝑝−1𝛼𝑝 · 𝜂 and 〈𝜂, 𝜔𝐸 ⊗ 𝑡−1〉dR = 1. (3.14)

Finally, note that hypothesis (3.5) holds since D(𝑉)𝜑 [𝐹 :Q𝑝 ]=(𝜛/𝜛) 𝑗 = 0 for any 𝑗 ∈ Z, given that the
𝜑-eigenvalues of D(𝑉) are p-Weil numbers, while 𝜛/𝜛 is a 1-Weil number.

The second part of the next result recasts the ‘explicit reciprocity law’ of [18, Thm. 5.3] (see also
[19, Thm. 5.1] and [1, Thm. A]) in terms of the Coleman map of Subsection 3.3.

Theorem 3.6. Assume that 𝐿( 𝑓 ⊗ 𝑔 ⊗ 𝑔∗, 1) = 0 and that 𝐿( 𝑓 /𝐾 ⊗ 𝜒, 1) ≠ 0. Then, for any test vectors
( 𝑓 , 𝒈̆, 𝒈̆∗), we have

Loc𝔭 (𝜅∞( 𝑓 , 𝒈̆ 𝒈̆∗)) = 0

and

Col𝜂 (Loc𝔭 (𝜅∞( 𝑓 , 𝒈̆ 𝒈̆∗))) = ℒ
𝑓
𝑝 ( 𝑓 , 𝒈̆ 𝒈̆∗) · 2𝛼−1

𝑝 (1 − 𝛼−1
𝑝 𝜒(𝔭))−1.

Proof. Let ℱ++V†𝑓 𝒈𝒈∗ be the rank 4 𝐺Q𝑝 -stable submodule of V†𝑓 𝒈𝒈∗ defined by[
ℱ+𝑉 ⊗ℱ+𝑉𝒈 ⊗ 𝑉𝒈∗ +ℱ+𝑉 ⊗ 𝑉𝒈 ⊗ℱ+𝑉𝒈∗ +𝑉 ⊗ℱ+𝑉𝒈 ⊗ℱ+𝑉𝒈∗

]
⊗ X−1.

The class 𝜅( 𝑓 , 𝒈̆ 𝒈̆∗) = (𝜅∞( 𝑓 , 𝒈̆ 𝒈̆∗), 𝜅0 ( 𝑓 , 𝒈̆ 𝒈̆∗)) ∈ H1(Q,V†𝑓 𝒈𝒈∗ ) is known to land in the kernel of the
composite map

H1(Q,V†𝑓 𝒈𝒈∗ )
Loc𝑝−−−−→ H1 (Q𝑝 ,V

†
𝑓 𝒈𝒈∗ ) → H1(Q𝑝 ,V

†
𝑓 𝒈𝒈∗/ℱ

++V†𝑓 𝒈𝒈∗ )

(see, e.g., [19, Prop. 5.8]). Using (2.4), we immediately find that

ℱ++V†𝑓 𝒈𝒈∗ = 𝑉 ⊗ Ψ1−𝜏
𝑇 +ℱ+𝑉 ⊗ (𝜒 + 𝜒−1)

and, therefore, identifying 𝐺Q𝑝 with 𝐺𝐾𝔭 via our fixed embedding Q ↩→ Q𝑝 , we obtain

H1 (Q𝑝 ,ℱ
++V†𝑓 𝒈𝒈∗ ) � H1(𝐾𝔭, 𝑉 ⊗ Ψ1−𝜏

𝑇 ) ⊕ H1 (𝐾𝔭,ℱ
+𝑉 ⊗ 𝜒) ⊕ H1(𝐾𝔭,ℱ

+𝑉 ⊗ 𝜒).

This shows the vanishing of Loc𝔭 (𝜅∞( 𝑓 , 𝒈̆ 𝒈̆∗)), and the second equality in the theorem follows from
Lemma 3.5 and [18, Thm. 5.3]. �

Corollary 3.7. Assume that 𝐿( 𝑓 ⊗ 𝑔 ⊗ 𝑔∗, 1) = 0 and that 𝐿( 𝑓 /𝐾, 𝜒, 1) ≠ 0. Let ( 𝑓 , 𝒈̆, 𝒈̆∗) be the triple
of test vectors from Theorem 2.1. Then Loc𝔭 (𝜅∞( 𝑓 , 𝒈̆ 𝒈̆∗)) = 0, and

Col𝜂 (Loc𝔭 (𝜅∞( 𝑓 , 𝒈̆ 𝒈̆∗))) = ±w−1 · Θ 𝑓 /𝐾 (𝑇) ·
√
𝐿alg( 𝑓 /𝐾 ⊗ 𝜒, 1) ·

2𝐶 𝑓 ,𝜒

𝛼𝑝 (1 − 𝛼−1
𝑝 𝜒(𝔭))

·
𝜂 𝑓 ◦

𝜂 𝑓 ◦ ,𝑁 −
,

where w ∈ O�𝑇�× and 𝐶 𝑓 ,𝜒 ∈ 𝐾 (𝜒, 𝛼𝑝)× are as in Proposition 2.5.

Proof. This is the combination of Theorem 3.6 and the factorisation in Proposition 2.5. �

Remark 3.8. Corollary 3.7 places for the first timeΘ 𝑓 /𝐾 (𝑇)within the landscape of Perrin-Riou’s vision
[37], whereby p-adic L-functions ought to arise as the image of p-adic families of special cohomology
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classes under generalised Coleman power series maps. For a different class of anticyclotomic p-adic
L-functions introduced by Bertolini–Darmon–Prasanna [6], a similar result was obtained by the authors
in [11, 10].

4. Anticyclotomic derived p-adic heights

The main result of this section is Theorem 4.5, giving a formula for the anticyclotomic derived p-adic
heights in terms of the Coleman map introduced before. This generalises a formula of [40] to arbitrary
rank.

4.1. The general theory

Initiated in [3] and further developed in [26], the theory of derived p-adic heights relates the degeneracies
of the p-adic height to the failure of the 𝑝∞-Selmer group of elliptic curves over a Z𝑝-extension to be
semi-simple as an Iwasawa module. Derived p-adic heights seem to have been rarely used for arithmetic
applications in the previous literature,1 but they will play a key role in the proof of our results. In this
section, we briefly recall the results from [26] (with a slight generalisation) that we will need.

Let E be an elliptic curve over Q of conductor N with good ordinary reduction at 𝑝 > 2. For any
number field F, let Sel𝑝𝑟 (𝐸/𝐹) ⊆ H1(𝐹, 𝐸 [𝑝𝑟 ]) be the 𝑝𝑟 -Selmer group of E over F and put

Sel(𝐹,𝑇𝑝𝐸) = lim←−−
𝑟

Sel𝑝𝑟 (𝐸/𝐹)

and Sel(𝐹,𝑉𝑝𝐸) = Sel(𝐹,𝑇𝑝𝐸) ⊗Z𝑝 Q𝑝 . Let K be an imaginary quadratic field of discriminant prime
to 𝑁𝑝 and let 𝐾∞/𝐾 be the anticyclotomic Z𝑝-extension of K. Denote by 𝐾𝑛 the subsection of 𝐾∞ with
[𝐾𝑛 : 𝐾] = 𝑝𝑛 and put

Sel𝑝∞ (𝐸/𝐾∞) = lim−−→
𝑛

Sel𝑝∞ (𝐸/𝐾𝑛).

Finally, let Λ = Z𝑝�Gal(𝐾∞/𝐾)� be the anticyclotomic Iwasawa algebra and denote by 𝐽 ⊆ Λ the
augmentation ideal.

Theorem 4.1. Let 𝑁− be the largest factor of N divisible only by primes that are inert in K, and suppose
that

◦ 𝑁− is squarefree,
◦ 𝐸 [𝑝] is ramified at every prime 𝑞 |𝑁−.

Then there is a filtration

Sel(𝐾,𝑉𝑝𝐸) = 𝑆 (1)𝑝 (𝐸/𝐾) ⊇ 𝑆 (2)𝑝 (𝐸/𝐾) ⊇ · · · ⊇ 𝑆 (𝑖)𝑝 (𝐸/𝐾) ⊇ · · ·

and a sequence of height pairings

ℎ (𝑖)𝑝 : 𝑆 (𝑖)𝑝 (𝐸/𝐾) × 𝑆 (𝑖)𝑝 (𝐸/𝐾) → (𝐽𝑖/𝐽𝑖+1) ⊗Z𝑝 Q𝑝

with the following properties:

(a) 𝑆 (𝑖+1)𝑝 (𝐸/𝐾) is the null-space of ℎ (𝑖)𝑝 .

1Perhaps by influence of cyclotomic Iwasawa theory, a context in which the p-adic height is conjectured to be nondegenerate;
see [41]. In contrast, in the anticyclotomic setting, as noted in [2, p. 76], degeneracies of the p-adic height pairing ‘seem to be the
rule rather than the exception’.
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(b) 𝑆 (∞)𝑝 (𝐸/𝐾) :=
⋂

𝑖�1 𝑆
(𝑖)
𝑝 (𝐸/𝐾) is the subspace of Sel(𝐾,𝑉𝑝𝐸) consisting of universal norms for

𝐾∞/𝐾:

𝑆 (∞)𝑝 (𝐸/𝐾) =
∞⋂
𝑛=1

cor𝐾𝑛/𝐾 (Sel(𝐾𝑛, 𝑉𝑝𝐸)),

where cor𝐾𝑛/𝐾 : Sel(𝐾𝑛, 𝑉𝑝𝐸) → Sel(𝐾,𝑉𝑝𝐸) is the corestriction map.
(c) ℎ (𝑖)𝑝 is symmetric (respectively alternating) for i odd (respectively i even).
(d) ℎ (𝑖)𝑝 (𝑥𝜏 , 𝑦𝜏) = (−1)𝑖ℎ (𝑖)𝑝 (𝑥, 𝑦), where 𝜏 ∈ Gal(𝐾/Q) is complex conjugation.
(e) Let

𝑒𝑖 :=

{
dimQ𝑝 (𝑆

(𝑖)
𝑝 (𝐸/𝐾)/𝑆 (𝑖+1)𝑝 (𝐸/𝐾)) if 𝑖 < ∞,

dimQ𝑝𝑆
(∞)
𝑝 (𝐸/𝐾) if 𝑖 = ∞.

Then there is a Λ-module pseudo-isomorphism

Sel𝑝∞ (𝐸/𝐾∞)∨ ∼
(
(Λ/𝐽)⊕𝑒1 ⊕ · · · ⊕ (Λ/𝐽𝑖)⊕𝑒𝑖 ⊕ · · ·

)
⊕ Λ⊕𝑒∞ ⊕ 𝑀 ′

with 𝑀 ′ a torsion Λ-module with characteristic ideal prime-to-J.

Proof. This follows from Theorem 4.2 and Corollary 4.3 of [26] when 𝑁− = 1. We explain how to
extend the result to squarefree 𝑁− under the above hypothesis on 𝐸 [𝑝].

Following the discussion in [26, §3] and adopting the notations there, we see that it suffices to show
the vanishing of

H1
ur (𝐾𝑣 , S[𝑝𝑘 ]) := ker

(
H1 (𝐾𝑣 , S[𝑝𝑘 ]) → H1 (𝐾ur

𝑣 , S[𝑝𝑘 ])
)

(4.1)

for every prime 𝑣 � 𝑝 inert in K, where S[𝑝𝑘 ] = lim−−→𝑛
Ind𝐾𝑛/𝐾𝐸 [𝑝𝑘 ]. Since such primes v split

completely in 𝐾∞/𝐾 , by Shapiro’s lemma and inflation-restriction we find

H1
ur(𝐾𝑣 , S[𝑝𝑘 ]) � ker

(
H1(𝐾𝑣 , 𝐸 [𝑝𝑘 ]) ⊗ Λ∨ → H1(𝐾ur

𝑣 , 𝐸 [𝑝𝑘 ]) ⊗ Λ∨
)

� H1 (F𝑣 , 𝐸 [𝑝𝑘 ] 𝐼𝑣 ) ⊗ Λ∨

= (𝐸 [𝑝𝑘 ] 𝐼𝑣 /(Fr𝑣 − 1)𝐸 [𝑝𝑘 ] 𝐼𝑣 ) ⊗ Λ∨,

(4.2)

where F𝑣 is the residue field of 𝐾𝑣 , Fr𝑣 is a Frobenius element at v and Λ∨ = HomZ𝑝 (Λ,Q𝑝/Z𝑝).
Since 𝑁− is squarefree, any prime v as above is a prime of multiplicative reduction for E, so by Tate’s

uniformisation we have

𝐸 [𝑝∞] ∼
(
𝜀 ∗
0 1

)
as 𝐺𝐾𝑣 -modules, where 𝜀 is the p-adic cyclotomic character. Since 𝜌̄𝐸,𝑝 is ramified at v, the image of
‘∗’ in the above matrix generates Q𝑝/Z𝑝 . Thus, we see that

𝐸 [𝑝∞] 𝐼𝑣 /(Fr𝑣 − 1)𝐸 [𝑝∞] 𝐼𝑣 = 0,

which by (4.2) implies the vanishing of H1
ur(𝐾𝑣 , S[𝑝𝑘 ]). �

We next recall Howard’s abstract generalisation of Rubin’s height formula for derived p-adic heights.
For every prime v of K above p, let ℱ+𝑣 𝑇𝑝𝐸 be the kernel of the reduction map 𝑇𝑝𝐸 → 𝑇𝑝 𝐸̃ , where 𝐸̃
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is the reduction of E modulo v. Letting 𝑉 = 𝑉𝑝𝐸 , this induces the filtration ℱ+𝑣 𝑉 ⊆ 𝑉 . For every prime
𝑣 |𝑝 of K, write

Ĥ
1
fin(𝐾∞,𝑣 , 𝑉) =

⊕
𝑤 |𝑣

Ĥ
1
(𝐾∞,𝑤 ,ℱ

+
𝑣 𝑉),

where w runs over the places of 𝐾∞ above v. The local pairings in (3.6) induce a semi-local pairing

〈−,−〉𝐾∞,𝑣 : Ĥ
1
(𝐾∞,𝑣 , 𝑉) × Ĥ

1
fin (𝐾∞,𝑣 , 𝑉) → Λ ⊗Z𝑝 Q𝑝

which induces a perfect duality between the Ĥ
1
(𝐾∞,𝑣 , 𝑉)/Ĥ

1
fin (𝐾∞,𝑣 , 𝑉) and Ĥ

1
fin (𝐾∞,𝑣 , 𝑉). Every class

z ∈ Ĥ
1
(𝐾∞, 𝑉) defines a linear map

L𝑝,z =
∑
𝑣 |𝑝
〈Loc𝑣 (z),−〉𝐾∞,𝑣 : Ĥ

1
fin (𝐾∞, 𝑝 , 𝑉) =

⊕
𝑣 |𝑝

Ĥ
1
fin (𝐾∞,𝑣 , 𝑉) → Λ ⊗Z𝑝 Q𝑝 .

Let ord(L𝑝,z) be the largest integer r such that the image of L𝑝,z is contained in 𝐽𝑟 .

Theorem 4.2. Let r be any positive integer with 𝑟 � ord(L𝑝,z). Then 𝑧 = pr𝐾 (z) belongs to 𝑆 (𝑟 )𝑝 (𝐸/𝐾)
and for any 𝑤 ∈ 𝑆 (𝑟 )𝑝 (𝐸/𝐾) we have

ℎ (𝑟 )𝑝 (𝑧, 𝑤) = −L𝑝,z(w𝑝) (mod 𝐽𝑟+1)

where w𝑝 = (w𝑣 )𝑣 |𝑝 ∈ Ĥ1
fin (𝐾∞, 𝑝 , 𝑉) is any semi-local class with pr𝐾𝑣 (w𝑣 ) = Loc𝑣 (𝑤) for all 𝑣 |𝑝.

Proof. This is a reformulation of part (c) of Theorem 2.5 in [26]. Note that the existence of w𝑝 follows
from the definition of 𝑆 (𝑟 )𝑝 (𝐸/𝐾) in [26], and the fact that the image L𝑝,z(w𝑝) ∈ 𝐽𝑟/𝐽𝑟+1 is independent
of the choice of w𝑝 is shown in the proof. �

4.2. Derived p-adic heights and the Coleman map

Now we compute the local expression in Theorem 4.2 for the derived p-adic height pairing in terms of
the Coleman map from Section 3, yielding our higher rank generalisation of Rubin’s formula.

We use the setting and notations introduced after Lemma 3.5. In particular, (𝑝) = 𝔭𝔭 splits in K,
with 𝔭 the prime of K above p induced by our fixed embedding Q ↩→ Q𝑝 . Let 𝐾̂∞ be the closure of the
image of 𝐾∞ in Q𝑝 under this embedding and put

Γ∞ = Gal(𝐾∞/𝐾), Γ̂∞ = Gal(𝐾̂∞/Q𝑝),

so, naturally, Γ̂∞ is a subgroup of Γ∞. Also, we put 𝐹 = 𝐻̂𝑐 for some fixed c prime to p and 𝐹∞ = 𝐻̂𝑐𝑝∞ ,
which is a finite extension of 𝐾̂∞.

Let 𝒆 ∈ 𝑅𝜓F=0 be a generator over 𝒪�𝐺∞� such that 𝒆(0) = 1. Define

w𝜂 = Ω𝜖
𝑉 ,1(𝜂 ⊗ 𝒆) ∈ Ĥ

1
(𝐹∞, 𝑉), (4.3)

where Ω𝜖
𝑉 ,1 in is the big exponential map in Theorem 3.2.

As in Subsection 3.3, we let 𝜎0 ∈ Gal(𝐹ur
∞/Q𝑝) be such that 𝜎0 |Qur

𝑝
= Fr is the absolute Frobenius.
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Proposition 4.3. Let Qcyc
𝑝 be the cyclotomic Z×𝑝-extension of Q𝑝 . Let 𝜎cyc ∈ Gal(𝐹ur

∞/Q𝑝) be the
Frobenius such that 𝜎cyc |Qcyc

𝑝
= 1 and 𝜎cyc |Qur

𝑝
= Fr. For each ẑ ∈ Ĥ1 (𝐾̂∞, 𝑉), we have

〈ẑ, cor𝐹∞/𝐾̂∞ (w
𝜂)〉𝐾̂∞ = pr𝐾̂∞ (Col𝜂 (ẑ))

[𝐹 :Q𝑝 ]∑
𝑖=1

𝜎𝑖
cyc |𝐾̂∞

[𝐹∞ : 𝐾̂∞] · ℎFr𝑖
𝒆

∈ W�Γ̂∞� ⊗ Q𝑝 .

Proof. We first recall that for every 𝑒 ∈ (𝑅⊗𝒪W)𝜓F=0, the big exponential map Ω𝜖
𝑉 ,1 (𝜂⊗𝑒) in Theorem

3.2 is given by

Ω𝜖
𝑉 ,1 (𝜂 ⊗ 𝑒) = (exp𝐹𝑛 ,𝑉 (Ξ𝑛,𝑉 (𝐺𝑒)))𝑛=0,1,2,..., (4.4)

where 𝐺𝑒 ∈ D(𝑉) ⊗ℋ1,Q (𝑋) is a solution of (1 − 𝜑 ⊗ 𝜑F)𝐺𝑒 = 𝜂 ⊗ 𝑒 and Ξ𝑛,𝑉 is as in (3.4). Taking

𝐺𝑒 = 𝐺𝒆 =
∞∑

𝑚=0
(𝜑 ⊗ 𝜑F)𝑚(𝜂 ⊗ 𝒆) =

∞∑
𝑚=0

𝜑𝑚𝜂 ⊗ 𝒆Fr𝑚 ,

we obtain

Ξ𝑛,𝑉 (𝐺𝒆) = 𝑝−(𝑛+1) (𝜑−(𝑛+1) ⊗ 1)𝐺Fr−(𝑛+1)
𝒆 (𝜖𝑛)

=
∞∑

𝑚=0
(𝑝𝜑)−(𝑛+1)𝜑𝑚𝜂 ⊗ 𝒆Fr𝑚−(𝑛+1) (𝜖𝑛−𝑚).

(4.5)

Put 𝑧𝑛 = pr𝐾̂𝑛 (ẑ) and 𝐺̂𝑛 = Gal(𝐾̂𝑛/Q𝑝). From the definition of the Coleman map Col𝜖𝑒 and using in
(4.4) and (4.5), we thus find that[

pr𝐾̂𝑛 (Col𝜖𝒆 (ẑ)), 𝜂
]
𝑉
=

∞∑
𝑚=0

⎡⎢⎢⎢⎢⎣
∑
𝛾∈𝐺̂𝑛

exp∗
𝐾̂𝑛 ,𝑉
(𝑧𝛾

−1𝜎𝑛+1−𝑚0
𝑛 )𝛾,

∑
𝜏∈𝐺̂𝑛

(𝑝𝜑)−(𝑛+1)𝜑𝑚𝜂 ⊗ 𝒆Fr𝑚−(𝑛+1) (𝜖𝑛−𝑚)𝜏𝜎
𝑛+1−𝑚
0 𝜏 |𝐾̂𝑛

⎤⎥⎥⎥⎥⎦𝑉 , (4.6)

where exp∗
𝐾̂𝑛 ,𝑉

is the Bloch–Kato dual exponential map.
On the other hand, it is immediately seen that

pr𝐾̂𝑛 (〈ẑ, cor𝐹∞/𝐾̂∞ (w
𝜂)〉𝐾̂∞) =

1
[𝐹∞ : 𝐾̂∞]

[𝐹 :Q𝑝 ]∑
𝑗=1

pr𝐾̂𝑛 (〈ẑ
𝜎
− 𝑗
0 ,w𝜂〉𝐹∞)𝜎

𝑗
0 |𝐾̂𝑛 ,

and from (4.6) we find that

pr𝐾̂𝑛 (〈ẑ
𝜎
− 𝑗
0 ,w𝜂〉𝐹∞) =

∑
𝛾∈𝐺̂𝑛

〈𝑧𝜎
− 𝑗
0 𝛾−1

𝑛 , exp𝐹𝑛 ,𝑉 (Ξ𝑛,𝑉 (𝐺𝒆)〉𝐹𝑛𝛾 |𝐾̂𝑛

= Tr𝐹𝑛/Q𝑝
&'(
⎡⎢⎢⎢⎢⎣
∑
𝛾∈𝐺̂𝑛

exp∗
𝐾̂𝑛 ,𝑉
(𝑧𝜎

− 𝑗
0 𝛾−1

𝑛 )𝛾 |𝐾̂∞ ,Ξ𝑛,𝑉 (𝐺𝒆)
⎤⎥⎥⎥⎥⎦𝑉 )*+

=
∞∑

𝑚=0

[𝐹 :Q𝑝 ]∑
𝑖=1

⎡⎢⎢⎢⎢⎣
∑
𝛾∈𝐺̂𝑛

exp∗
𝐾̂𝑛 ,𝑉
(𝑧𝛾

−1𝜎
𝑖− 𝑗+𝑛+1−𝑚
0

𝑛 )𝛾,
∑
𝜏∈𝐺̂𝑛

(𝑝𝜑)−(𝑛+1)𝜑𝑚𝜂 ⊗ 𝒆Fr𝑚−(𝑛+1) (𝜖𝑛−𝑚)𝜏𝜎
𝑖+𝑛+1−𝑚
0 𝜏 |𝐾̂𝑛

⎤⎥⎥⎥⎥⎦
=
[𝐹 :Q𝑝 ]∑
𝑖=1

[
pr𝐾̂𝑛 (Col𝜖𝒆 (z𝜎

− 𝑗
0 )𝜎𝑖0 ), 𝜂

]
.
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Taking the limit over n, we thus arrive at

〈ẑ, cor𝐹∞/𝐾̂∞ (w
𝜂)〉𝐾̂∞ =

1
[𝐹∞ : 𝐾̂∞]

[𝐹 :Q𝑝 ]∑
𝑗=1

[𝐹 :Q𝑝 ]∑
𝑖=1

[
pr𝐾̂∞ (Col𝜖𝒆 (ẑ𝜎

− 𝑗
0 )𝜎𝑖0 ), 𝜂

]
𝜎

𝑗
0

=
1

[𝐹∞ : 𝐾̂∞]

[𝐹 :Q𝑝 ]∑
𝑖=1

pr𝐾̂∞ (Col𝜂 (ẑ)𝜎𝑖0 ) · 1

ℎ
𝜎𝑖0
𝒆

,

(4.7)

using (3.9) for the second equality. Finally, writing 𝑔𝜌 = 𝜌(1 + 𝑋) for the isomorphism 𝜌 in (3.8), one
has 𝑔𝜎

−𝑖
0

𝜌 (𝜖𝑖−1) = 𝜁𝑝𝑖 ∈ Qcyc
𝑝 , which immediately implies the relation

pr𝐾̂∞ (Col𝜂 (ẑ)) · 𝜎𝑖
cyc = pr𝐾̂∞ (Col𝜂 (ẑ)𝜎𝑖0 ).

Together with (4.7), this concludes the proof. �

We shall also need the following result.

Lemma 4.4. The projection of w𝜂 to H1 (𝐹,𝑉) is given by

pr𝐹 (w𝜂) = exp𝐹,𝑉

(
1 − 𝑝−1𝜑−1

1 − 𝜑 𝜂

)
.

Proof. Let 𝑔 = 𝜂 ⊗ 𝒆 and let 𝐺 (𝑋) ∈ D(𝑉) ⊗ℋ1,Q (𝑋) such that (1 − 𝜑 ⊗ 𝜑F)𝐺 = 𝑔. Then

𝐺 (𝜖0) = 𝜂 ⊗ 𝒆(𝜖0) − 𝜂 + (1 − 𝜑)−1𝜂

and, by definition,

pr𝐹 (w𝜂) = cor𝐹0/𝐹 (Ξ0,𝑉 (𝐺)), (4.8)

where Ξ0,𝑉 (𝐺) is as in (3.4). Equation (3.1) and the fact that 𝜓F𝒆(𝑋) = 0 imply that∑
𝜁 ∈FFr−1 [𝑝]

𝒆Fr−1 (𝑋 ⊕F 𝜁) = 0,

from which we obtain

Tr𝐹0/𝐹 (𝐺Fr−1 (𝜖0)) =
∑

𝜏∈Gal(𝐹0/𝐹 )
𝜂 ⊗ 𝒆(𝜖 𝜏0 ) − 𝜂 + (1 − 𝜑)

−1𝜂 =
𝑝𝜑 − 1
1 − 𝜑 𝜂.

Together with (4.8), we thus see that

pr𝐹 (w𝜂) = exp𝐹,𝑉 Tr𝐹0/𝐹

(
𝑝−1𝜑−1(𝐺Fr−1 (𝜖0))

)
= exp𝐹,𝑉

(
(1 − 𝑝−1𝜑−1) (1 − 𝜑)−1𝜂

)
,

concluding the proof. �

Recall the identification 𝐾𝔭 = Q𝑝 and let H1
fin(Q𝑝 , 𝑉) ⊂ H1(Q𝑝 , 𝑉) be the subspace given by

H1(Q𝑝 ,ℱ
+
𝔭 𝑉). As is well-known, H1

fin (Q𝑝 , 𝑉) agrees with the Bloch–Kato finite subspace. Let logQ,𝑉 :
H1

fin(Q𝑝 , 𝑉) → D(𝑉) be the Bloch–Kato logarithm map and denote by log𝜔𝐸 ,𝔭 the composition

log𝜔,𝔭 : H1(Q𝑝 , 𝑉)
logQ,𝑉−−−−−→ D(𝑉)

〈−,𝜔𝐸 ⊗𝑡−1 〉dR−−−−−−−−−−−→ Q𝑝 . (4.9)
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For a global class z ∈ Ĥ
1
(𝐾∞, 𝑉), put

Col𝜂 (Loc𝔭 (z)) :=
∑

𝜎∈Γ∞/Γ̂∞

Col𝜂 (Loc𝔓(z𝜎−1))𝜎 ∈ W�Γ∞�, (4.10)

where Loc𝔓 : Ĥ
1
(𝐾∞, 𝑉) → Ĥ

1
(𝐾̂∞, 𝑉) is the restriction map, and let J be the augmentation ideal of

W�Γ∞�.

Theorem 4.5. Let z ∈ Ĥ1(𝐾∞, 𝑉) and denote by 𝔯 be the largest integer r such that

Col𝜂 (Loc𝔭 (z)) ∈ 𝐽𝑟 and Col𝜂 (Loc𝔭 (z)) ∈ 𝐽𝑟 ,

where z = z𝜏 for the complex conjugation 𝜏 ∈ Gal(𝐾/Q). Then for every 0 < 𝑟 � 𝔯, the class 𝑧 = pr𝐾 (z)
belongs to 𝑆 (𝑟 )𝑝 (𝐸/𝐾), and for every 𝑥 ∈ 𝑆 (𝑟 )𝑝 (𝐸/𝐾) we have

ℎ (𝑟 )𝑝 (𝑧, 𝑥) = −
1 − 𝑝−1𝛼𝑝

1 − 𝛼−1
𝑝

·
(
Col𝜂 (Loc𝔭 (z)) · log𝜔,𝔭 (𝑥) + Col𝜂 (Loc𝔭 (z)) · log𝜔,𝔭 (𝑥)

)
(mod 𝐽𝑟+1),

where 𝑥 = 𝑥𝜏 .

Proof. The inclusion 𝑧 ∈ 𝑆 (𝑟 )𝑝 (𝐸/𝐾) follows immediately from Theorem 4.2. Let 𝑥 ∈ 𝑆 (𝑟 )𝑝 (𝐸/𝐾) and
put

w𝔓 := cor𝐹∞/𝐾̂∞ (w
𝜂) ∈ Ĥ

1
fin(𝐾̂∞, 𝑉).

Then, since dimQ𝑝 H1
fin (Q𝑝 , 𝑉) = 1, we can write

Loc𝔭 (𝑥) = 𝑐 · prQ𝑝 (w𝔓)

for some 𝑐 ∈ Q𝑝 . Since prQ𝑝 (w𝔓) = cor𝐹/Q𝑝 (w𝜂), from Lemma 4.4 and (3.14) we see that

〈logQ𝑝 ,𝑉 (prQ𝑝 (w𝔓)), 𝜔𝐸 ⊗ 𝑡−1〉dR = [𝐹 : Q𝑝] ·
1 − 𝛼−1

𝑝

1 − 𝑝−1𝛼𝑝
,

from which we deduce that

𝑐 =
1 − 𝑝−1𝛼𝑝

1 − 𝛼−1
𝑝

· [𝐹 : Q𝑝]−1 · log𝜔𝐸 ,𝔭 (𝑥).

Together with the formula in Theorem 4.2, this gives the equality

ℎ (𝑟 )𝑝 (𝑧, 𝑥) = −
1 − 𝑝−1𝛼𝑝

1 − 𝛼−1
𝑝

· [𝐹 : Q𝑝]−1

× &'(
∑

𝜎∈Γ∞/Γ̂∞

log𝜔𝐸 ,𝔭 (𝑥) · 〈Loc𝔓(z𝜎−1),w𝔓〉𝐾̂∞𝜎 + log𝜔𝐸 ,𝔭 (𝑥) · 〈Loc𝔓(z𝜎−1
),w𝔓〉𝐾̂∞𝜎

)*+
in 𝐽𝑟/𝐽𝑟+1. Since ℎ𝒆 ≡ 1(mod 𝐽), as is immediate from the defining relation 𝜌(1 + 𝑋) = ℎ𝒆 · 𝒆 and the
fact that 𝒆(0) = 1, the result now follows from Proposition 4.3. �

https://doi.org/10.1017/fms.2021.85 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2021.85


Forum of Mathematics, Sigma 25

5. Proof of the main results

We begin by recalling the setting of Theorem A in the Introduction. Let 𝐸/Q be an elliptic curve of
conductor N with good ordinary reduction at the prime 𝑝 > 3 and assume that E has root number +1 and
𝐿(𝐸, 1) = 0 (so, of course, ord𝑠=1𝐿(𝐸, 𝑠) � 2). Let K be an imaginary quadratic field of discriminant
prime to N in which (𝑝) = 𝔭𝔭 splits, with 𝔭 the prime of K above p induced by our fixed embedding
Q ↩→ Q𝑝 . Let 𝜓 be a ray class character of K of conductor prime to 𝑁𝑝 and, as in Conjecture 1.2,
assume that

(a) 𝐿(𝐸𝐾 , 1) · 𝐿(𝐸/𝐾, 𝜒, 1) ≠ 0,
(b) 𝜒(𝔭) ≠ 1,

where 𝜒 = 𝜓/𝜓𝜏 . In addition, we assume that

(c) 𝐸 [𝑝] is irreducible as a 𝐺Q-module,
(d) 𝑁− is the squarefree product of an odd number of primes,
(e) 𝐸 [𝑝] is ramified at every prime 𝑞 |𝑁−,

where 𝑁− is the maximal factor of N divisible only by primes inert in K. Let ( 𝑓 , 𝑔, 𝑔∗) be the triple
consisting of the newform 𝑓 ∈ 𝑆2 (Γ0(𝑁)) associated to E and the weight 1 theta series associated to 𝜓
and 𝜓−1, respectively. Finally, put 𝛼 = 𝜓(𝔭) and 𝛽 = 𝜓(𝔭).

5.1. Generalised Kato classes

By construction, the Hida families

𝒈 = 𝒈𝛼 = 𝜽𝜓 (𝑆), 𝒈∗ = 𝒈∗
𝛼−1 = 𝜽𝜓−1 (𝑆) ∈ O�𝑆��𝑞�

considered in Subsection 2.4 specialise at 𝑆 = v − 1 to 𝑔𝛼 and 𝑔∗
𝛼−1 , the p-stabilisations of g and 𝑔∗

with 𝑈𝑝-eigenvalue 𝛼 and 𝛼−1, respectively. Thus, for every choice of test vectors ( 𝑓 , 𝒈̆𝛼, 𝒈̆
∗
𝛼−1) the

O�𝑆�-adic class 𝜅( 𝑓 , 𝒈̆𝛼 𝒈̆
∗
𝛼−1) in (3.11) specialises to the generalised Kato class

𝜅𝛼,𝛼−1 ( 𝑓 , 𝑔, 𝑔∗) := 𝜅( 𝑓 , 𝒈̆𝛼 𝒈̆
∗
𝛼−1) |𝑆=v−1 ∈ H1(Q, 𝑉 𝑓 𝑔𝑔∗ ),

where 𝑉 𝑓 𝑔𝑔∗ := 𝑉 𝑓 ⊗ 𝑉𝑔 ⊗ 𝑉𝑔∗ .
Varying over the possible combinations of roots of the Hecke polynomial at p for g and 𝑔∗, we thus

obtain the four generalised Kato classes

𝜅𝛼,𝛼−1 ( 𝑓 , 𝑔, 𝑔∗), 𝜅𝛼,𝛽−1 ( 𝑓 , 𝑔, 𝑔∗), 𝜅𝛽,𝛼−1 ( 𝑓 , 𝑔, 𝑔∗), 𝜅𝛽,𝛽−1 ( 𝑓 , 𝑔, 𝑔∗) ∈ H1(Q, 𝑉 𝑓 𝑔𝑔∗ ). (5.1)

Note the 𝐺Q-module decomposition (1.7) yields

H1(Q, 𝑉 𝑓 𝑔𝑔∗ ) � H1 (Q, 𝑉𝑝𝐸) ⊕ H1(Q, 𝑉𝑝𝐸 ⊗ ad0𝑉𝑝 (𝑔))
� H1 (Q, 𝑉𝑝𝐸) ⊕ H1(Q, 𝑉𝑝𝐸

𝐾 ) ⊕ H1(𝐾,𝑉𝑝𝐸 ⊗ 𝜒),

where 𝐸𝐾 is the twist of E by the quadratic character corresponding to K.

Lemma 5.1. The projections to H1 (Q, 𝑉𝑝𝐸) of each of the classes in (5.1) lands in Sel(Q, 𝑉𝑝𝐸).

Proof. Since we are assuming 𝐿(𝐸, 1) = 0 and (a) above, the result follows from the vanishing of
Sel(Q, 𝑉𝑝𝐸

𝐾 ) and Sel(𝐾,𝑉𝑝𝐸 ⊗ 𝜒) by the same argument as in Lemma 3.5. �

5.2. Vanishing of 𝜅𝛼,𝛽−1 ( 𝑓 , 𝑔, 𝑔∗) and 𝜅𝛽,𝛼−1 ( 𝑓 , 𝑔, 𝑔∗)

This part follows easily from the work of Darmon–Rotger [19] and Bertolini–Seveso–Venerucci [1].
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Proposition 5.2. 𝜅𝛼,𝛽−1 ( 𝑓 , 𝑔, 𝑔∗) = 𝜅𝛽,𝛼−1 ( 𝑓 , 𝑔, 𝑔∗) = 0.

Proof. Let

𝒈𝛼 = 𝜽𝜓,𝛼 (𝑆2) ∈ O�𝑆2��𝑞�, 𝒈∗
𝛽−1 = 𝜽𝜓−1 ,𝛽−1 (𝑆3) ∈ O�𝑆3��𝑞�

be CM Hida families as in Subsection 2.4 but passing through the specialisation (𝑔𝛼, 𝑔𝛽−1) rather than
(𝑔𝛼, 𝑔𝛼−1 ). Let

𝜅( 𝑓 , 𝒈𝛼𝒈
∗
𝛽−1) (𝑆2, 𝑆3) ∈ H1(Q,V†

𝑓 𝒈𝛼𝒈
∗
𝛽−1
) (5.2)

be the two-variable restriction of the three-variable cohomology class constructed in [19] and [1] (after
a choice of test vectors 𝒈̆𝛼, 𝒈̆∗

𝛽−1 that we omit from the notation), and consider the further restriction

𝜿 𝜄 := 𝜅( 𝑓 , 𝒈𝛼𝒈
∗
𝛽−1) (v(1 + 𝑇) − 1, v(1 + 𝑇)−1 − 1) ∈ H1 (Q,V†

𝑓 𝒈𝛼 (𝒈∗𝛽−1 ) 𝜄
),

where V†
𝑓 𝒈𝛼 (𝒈∗𝛽−1 ) 𝜄

� (𝑉𝑝𝐸 ⊗ IndQ
𝐾 𝜒) ⊕ (𝑉𝑝𝐸 ⊗ IndQ

𝐾Ψ
1−𝜏
𝑇 ). Thus, 𝜿 𝜄 is the restriction of (5.2) to the

line of weights (ℓ, 2−ℓ) (cf. 𝜅( 𝑓 , 𝒈̆ 𝒈̆∗) in (3.11), where the line (ℓ, ℓ) is considered). Then, by definition,

𝜅𝛼,𝛽−1 ( 𝑓 , 𝑔, 𝑔∗) = 𝜿 𝜄 (v − 1, v − 1).

As in Theorem 3.6, by [19, Prop. 5.8], the restriction Loc𝑝 (𝜿 𝜄) belongs to the natural image of
H1(Q𝑝 ,ℱ

++V†
𝑓 𝒈𝛼 (𝒈∗𝛽−1 ) 𝜄

) in H1(Q𝑝 ,V
†
𝑓 𝒈𝛼 (𝒈∗𝛽−1 ) 𝜄

), where

ℱ++V†
𝑓 𝒈𝛼 (𝒈∗𝛽−1 ) 𝜄

= 𝑉𝑝𝐸 ⊗ 𝜒−1 +ℱ+𝑉𝑝𝐸 ⊗ (Ψ1−𝜏
𝑇 + Ψ1−𝜏

𝑇 ).

Thus, the projection 𝜿 𝜄
∞ of 𝜿 𝜄 to H1 (Q, 𝑉𝑝𝐸 ⊗ IndQ

𝐾Ψ
1−𝜏
𝑇 ) � Ĥ

1
(𝐾∞, 𝑉𝑝𝐸) is crystalline at p and

therefore defines a Selmer class for 𝑉𝑝𝐸 over the 𝐾∞/𝐾 . Since under our hypotheses the space of such
anticyclotomic universal norms is trivial by Cornut–Vatsal [15], we conclude that 𝜿 𝜄

∞ = 0. As in the
proof of Theorem 3.6, it follows that 𝜅𝛼,𝛽−1 ( 𝑓 , 𝑔, 𝑔∗) = 0. The vanishing of 𝜅𝛽,𝛼−1 ( 𝑓 , 𝑔, 𝑔∗) is shown in
the same manner. �

5.3. The leading term formula

Let 𝐽 ⊆ Λ be the augmentation ideal and let

𝔯 = ord𝐽 (Θ 𝑓 /𝐾 ) := sup{𝑠 � 0 | Θ 𝑓 /𝐾 ∈ 𝐽𝑠}.

Since Θ 𝑓 /𝐾 is nonzero by [48], 𝔯 is a well-defined nonnegative integer. Moreover, since 𝐿(𝐸/𝐾, 1) = 0
under our hypotheses, 𝔯 > 0 by the interpolation property. Let

Sel(𝐾,𝑉𝑝𝐸) = 𝑆 (1)𝑝 ⊇ 𝑆 (2)𝑝 ⊇ · · · ⊇ 𝑆 (𝑖)𝑝 ⊇ · · · ⊇ 𝑆 (∞)𝑝 (5.3)

be the filtration in Theorem 4.1, where we have put 𝑆 (𝑖)𝑝 = 𝑆 (𝑖)𝑝 (𝐸/𝐾) for ease of notation, and let

ℎ (𝑖)𝑝 : 𝑆 (𝑖)𝑝 × 𝑆 (𝑖)𝑝 → (𝐽𝑖/𝐽𝑖+1) ⊗Z𝑝 Q𝑝

be the associated derived p-adic height pairings. Since we assume that 𝑁− is the squarefree product of an
odd number of primes, we have 𝑆 (∞)𝑝 = 0 by part (b) of Theorem 4.1 and the work of Cornut–Vatsal [15].
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Theorem 5.3. Let 𝔯 = ord𝐽 (Θ 𝑓 /𝐾 ). Then

𝜅𝛼,𝛼−1 ( 𝑓 , 𝑔, 𝑔∗) ∈ 𝑆 (𝔯)𝑝 , (5.4)

and for every for every 𝑥 ∈ 𝑆 (𝔯)𝑝 we have

ℎ (𝔯)𝑝 (𝜅𝛼,𝛼−1 ( 𝑓 , 𝑔, 𝑔∗), 𝑥) =
1 − 𝑝−1𝛼𝑝

1 − 𝛼−1
𝑝

· Θ 𝑓 /𝐾 · log𝜔𝐸 ,𝔭 (𝑥) · 𝐶 (mod 𝐽𝔯+1), (5.5)

where 𝛼𝑝 is the p-adic unit root of 𝑋2 − 𝑎𝑝 (𝐸)𝑋 + 𝑝 = 0 and C is a nonzero algebraic number with
𝐶2 ∈ 𝐾 (𝜒, 𝛼𝑝)×.

Proof. This is the combination of Corollary 3.7 and Theorem 4.5. �

5.4. Nonvanishing of 𝜅𝛼,𝛼−1 ( 𝑓 , 𝑔, 𝑔∗)

Here we prove the implication (1.10) in Theorem A. Thus, suppose that dimQ𝑝Sel(Q, 𝑉𝑝𝐸) = 2. Since
𝐿(𝐸𝐾 , 1) ≠ 0, we have Sel(Q, 𝑉𝑝𝐸

𝐾 ) = 0 by [31] (or, alternatively, [29]) and therefore

Sel(𝐾,𝑉𝑝𝐸) = Sel(Q, 𝑉𝑝𝐸), (𝑟+, 𝑟−) = (2, 0), (5.6)

where 𝑟± denotes the dimension of the ±-eigenspace of Sel(𝐾,𝑉𝑝𝐸) under the action of the complex
conjugation 𝜏. Since 𝜏 acts as −1 on 𝐽/𝐽2, part (4) of Theorem 4.1 gives

ℎ (𝑖)𝑝 (𝑥𝜏 , 𝑦𝜏) = (−1)𝑟 ℎ (𝑖)𝑝 (𝑥, 𝑦), (5.7)

and hence from (5.6) we see that for i odd, the null-space of ℎ (𝑖)𝑝 (i.e., 𝑆 (𝑖+1)𝑝 ) is either 0 or 2-dimensional,
with the latter case occurring as long as 𝑆 (𝑖)𝑝 ≠ 0. Since, on the other hand, ℎ (𝑖)𝑝 is a nondegenerate
alternating pairing on 𝑆 (𝑖)𝑝 /𝑆 (𝑖+1)𝑝 for even values of i, unless 𝑆 (𝑖)𝑝 = 0, it follows that (5.3) reduces to

Sel(Q, 𝑉𝑝𝐸) = 𝑆 (1)𝑝 = 𝑆 (2)𝑝 = · · · = 𝑆 (𝑟 )𝑝 � 𝑆
(𝑟+1)
𝑝 = · · · = 𝑆 (∞)𝑝 = 0 (5.8)

for some even 𝑟 � 2. By Theorem 4.1, we deduce that there is a Λ-module pseudo-isomorphism

Sel𝑝∞ (𝐸/𝐾∞)∨ ∼ (Λ/𝐽𝑟 )⊕2 ⊕ 𝑀 ′,

where 𝑀 ′ is a torsion Λ-module with characteristic ideal prime-to-J. Therefore, letting L𝑝 ∈ Λ be any
generator of the characteristic ideal of Sel𝑝∞ (𝐸/𝐾∞)∨, we have

ord𝐽 (L𝑝) = 2𝑟.

Finally, the divisibility (Θ2
𝑓 /𝐾 ) ⊇ (L𝑝) arising from [45, §3.6.3] implies that 𝑟 � 𝔯 and hence

𝑆 (𝔯)𝑝 = Sel(Q, 𝑉𝑝𝐸) by (5.8). Since by our hypothesis that Sel(Q, 𝑉𝑝𝐸) ≠ ker(Loc𝑝) we can find
𝑥 ∈ Sel(Q, 𝑉𝑝𝐸) with log𝜔𝐸 ,𝔭 (𝑥) ≠ 0, the nonvanishing of 𝜅𝛼,𝛼−1 ( 𝑓 , 𝑔, 𝑔∗) now follows from the
leading term formula (5.5).

Remark 5.4. The same argument as above with 𝛽 in place of 𝛼 establishes the nonvanishing of
𝜅𝛽,𝛽−1 ( 𝑓 , 𝑔, 𝑔∗) under the given hypotheses.
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5.5. Analogue of Kolyvagin’s theorem for 𝜅𝛼,𝛼−1 ( 𝑓 , 𝑔, 𝑔∗)

Here we prove the implication (1.9) in Theorem A. As in Subsection 5.4, we see that Sel(𝐾,𝑉𝑝𝐸) =
Sel(Q, 𝑉𝑝𝐸) and the nontrivial jumps in (5.3) can only occur at even values of i. Thus, (5.3) reduces to

Sel(Q, 𝑉𝑝𝐸) = 𝑆 (1)𝑝 = · · · = 𝑆 (2𝑟1)
𝑝 � 𝑆 (2𝑟1+1)

𝑝 = · · · = 𝑆 (2𝑟𝑡 )𝑝 � 𝑆 (2𝑟𝑡+1)𝑝 = · · · = 𝑆 (∞)𝑝 = 0 (5.9)

for some 1 � 𝑟1 � · · · � 𝑟𝑡 , and by Theorem 4.1 we have

Sel𝑝∞ (𝐸/𝐾∞)∨ ∼ (Λ/𝐽2𝑟1)𝑑1 ⊕ · · · ⊕ (Λ/𝐽2𝑟𝑡 )⊕𝑑𝑡 ⊕ 𝑀 ′,

where 𝑑𝑖 = dimQ𝑝 (𝑆
(2𝑟𝑖 )
𝑝 /𝑆 (2𝑟𝑖+1)𝑝 ) � 2 and 𝑀 ′ is as in Subsection 5.4. Letting L𝑝 ∈ Λ be a generator

of the characteristic ideal of Sel𝑝∞ (𝐸/𝐾∞)∨, we therefore have

ord𝐽 (L𝑝) = 2(𝑟1𝑑1 + · · · + 𝑟𝑡𝑑𝑡 ), dimQ𝑝Sel(Q, 𝑉𝑝𝐸) = 𝑑1 + · · · + 𝑑𝑡 . (5.10)

Suppose now that 𝜅𝛼,𝛼−1 ( 𝑓 , 𝑔, 𝑔∗) ≠ 0. By (5.4), it follows that 𝑆 (𝔯)𝑝 ≠ 0 and therefore

𝔯 � 2𝑟𝑡 . (5.11)

On the other hand, the divisibility (L𝑝) ⊇ (Θ2
𝑓 /𝐾 ) established in [5] (as refined in [38]) implies that

𝑟1𝑑1 + · · · + 𝑟𝑡𝑑𝑡 � 𝔯; together with (5.11) this yields

2𝑟𝑡 � 𝑟1𝑑1 + · · · + 𝑟𝑡𝑑𝑡 � 2(𝑟1 + · · · + 𝑟𝑡 ),

from which we conclude that 𝑡 = 1, 𝑑1 = 2 and dimQ𝑝Sel(Q, 𝑉𝑝𝐸) = 2.

5.6. Proof of Theorem B

This will follow from essentially the same argument as in Subsection 5.4 but without the need to appeal
to [45].

Let the hypotheses be as in the statement of Theorem B and assume that ord𝑇 (Θ 𝑓 /𝐾 ) = 2. Then
Theorem 5.3 gives the inclusion

𝜅𝛼,𝛼−1 ( 𝑓 , 𝑔, 𝑔∗) ∈ 𝑆 (2)𝑝 .

As in Subsection 5.4, the assumption that 𝐿(𝐸𝐾 , 1) ≠ 0 implies that Sel(𝐾,𝑉𝑝𝐸) = Sel(Q, 𝑉𝑝𝐸). Since
by (5.7) the 𝜏-eigenspaces of Sel(𝐾,𝑉𝑝𝐸) are isotropic under ℎ (1)𝑝 , we see that

𝑆 (2)𝑝 = Sel(𝐾,𝑉𝑝𝐸) = Sel(Q, 𝑉𝑝𝐸).

Finally, since our assumption that 𝐸 (Q) has positive rank implies that Sel(Q, 𝑉𝑝𝐸) ≠ ker(Loc𝑝) (see
Remark 1.5), the nonvanishing of 𝜅𝛼,𝛼−1 ( 𝑓 , 𝑔, 𝑔∗) follows from the leading term formula of Theorem
5.3. The same argument yields the nonvanishing of 𝜅𝛽,𝛽−1 ( 𝑓 , 𝑔, 𝑔∗).

5.7. Application to the strong elliptic Stark conjecture

We keep the setting from the beginning of this section but assume in addition that #Ш(𝐸/Q) [𝑝∞] < ∞.
As explained in [17, §4.5.3], the p-adic regulators appearing in the elliptic Stark conjectures of [16] all

vanish in the setting we have placed ourselves in. As a remedy, in [17] they formulated a strengthening of
those conjectures in terms of certain enhanced regulators; in our setting, they are given (modulo Q×) by

Log𝑝 (𝑃 ∧𝑄) = 𝑃 ⊗ log𝑝 (𝑄) −𝑄 ⊗ log𝑝 (𝑃)
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where (𝑃,𝑄) is any basis of 𝐸 (Q) ⊗Z Q. The strong elliptic Stark conjecture then predicts that the
generalised Kato classes 𝜅𝛼,𝛼−1 ( 𝑓 , 𝑔, 𝑔∗) and 𝜅𝛽,𝛽−1 ( 𝑓 , 𝑔, 𝑔∗) both agree with Log𝑝 (𝑃 ∧ 𝑄) up to a
nonzero algebraic constant.

In the direction of this conjecture, our methods show that 𝜅𝛼,𝛼−1 ( 𝑓 , 𝑔, 𝑔∗) and 𝜅𝛽,𝛽−1 ( 𝑓 , 𝑔, 𝑔∗) span
the same p-adic line as Log𝑝 (𝑃 ∧𝑄) inside the 2-dimensional Sel(Q, 𝑉𝑝𝐸).

To state the application, we identify 𝐽𝔯/𝐽𝔯+1 with Z𝑝 in the usual manner by choosing a topological
generator of Γ∞ and letΘ(𝔯)

𝑓 /𝐾 ∈ Z𝑝 \{0} denote the image ofΘ 𝑓 /𝐾 (mod 𝐽𝔯+1) under this identification.

Theorem 5.5. Let the setting be as in the beginning of Section 5 and let 𝔯 = ord𝐽 (Θ 𝑓 /𝐾 ). Then, as
elements of Sel(Q, 𝑉𝑝𝐸) � 𝐸 (Q) ⊗Z Q𝑝 , we have

𝜅𝛼,𝛼−1 ( 𝑓 , 𝑔, 𝑔∗) = 𝐶 ·
1 − 𝑝−1𝛼𝑝

1 − 𝛼−1
𝑝

·
Θ(𝔯)

𝑓 /𝐾

ℎ (𝔯)𝑝 (𝑃,𝑄)
· Log𝑝 (𝑃 ∧𝑄),

where C is nonzero and such that 𝐶2 ∈ 𝐾 (𝜒, 𝛼𝑝)×. The same result holds of 𝜅𝛽,𝛽−1 ( 𝑓 , 𝑔, 𝑔∗).
Proof. Immediate from the leading term formula of Subsection 5.3 applied to 𝑥 = 𝑃 and Q. �

Remark 5.6. The term ℎ (𝔯)𝑝 (𝑃,𝑄) recovers the derived p-adic regulator 𝑅𝑑𝑒𝑟 introduced in [3]. Thus,
Theorem 5.5 links the conjectural algebraicity of the ratio between 𝜅𝛼,𝛼−1 ( 𝑓 , 𝑔, 𝑔∗) and Log𝑝 (𝑃 ∧𝑄),
as predicted in [17, §4.5.3], to a refinement of the p-adic Birch and Swinnerton-Dyer conjecture in [4,
Conjecture 4.3] formulated in terms of 𝑅𝑑𝑒𝑟 .

6. Appendix. Nonvanishing of 𝜅𝛼,𝛼−1 ( 𝑓 , 𝑔, 𝑔∗): Numerical examples

In this appendix, we exhibit the first examples of elliptic curves E over Q of rank 2 with nonvanishing
generalised Kato classes by numerically verifying the conditions in Theorem B.

Setting

In the examples tabulated below, we take elliptic curves 𝐸/Q with

ord𝑠=1𝐿(𝐸, 𝑠) = 2 = rankZ 𝐸 (Q)

of conductor 𝑁 ∈ {𝑞, 2𝑞}, with q an odd prime and pairs (𝑝,−𝑑) consisting of a prime 𝑝 > 3 and a
squarefree integer −𝑑 < 0 such that
◦ 𝐾 = Q(

√
−𝑑) has class number 1, q is inert in K and 𝐿(𝐸𝐾 , 1) ≠ 0,

◦ p splits in K and 𝐸 [𝑝] is irreducible as a 𝐺Q-module.
Note that such pairs (𝑝,−𝑑) can be easily produced. Indeed, [39, Thm. 1.1] implies that 𝐸 [𝑝] must

ramify at 𝑁− = 𝑞, and the irreducibility of 𝐸 [𝑝] can be verified either by [33] when 𝑝 � 11 or by
checking (from, e.g., Cremona’s tables) that E does not admit any rational m-isogenies for 𝑚 > 3.

For every such triple (𝐸, 𝑝,−𝑑), there is a ring class character 𝜒 of K of ℓ-power conductor for some
prime ℓ � 𝑁𝑝 such that 𝐿(𝐸/𝐾, 𝜒, 1) ≠ 0. (In fact, there are infinitely many such 𝜒, as follows from
[48, Thm. 1.3] and its extension in [13, Thm. D].) Writing 𝜒 = 𝜓/𝜓𝜏 and letting 𝑔 = 𝜃𝜓 and 𝑔∗ = 𝜃𝜓−1 ,
we then have the class

𝜅𝛼,𝛼−1 ( 𝑓 , 𝑔, 𝑔∗) ∈ Sel(Q, 𝑉𝑝𝐸)

as in Subsection 5.2 (see Lemma 5.1). By Theorem B, to verify the nonvanishing of 𝜅𝛼,𝛼−1 ( 𝑓 , 𝑔, 𝑔∗), it
suffices to check that

ord𝑇 (Θ 𝑓 /𝐾 ) = 2. (6.1)
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Verifying order of vanishing 2

Let B be the definite quaternion algebra over Q of discriminant q, let 𝑅 ⊂ 𝐵 be an Eichler order of level
𝑁/𝑞 and let Cl(𝑅) be the class group of R. Let

𝜙 𝑓 : Cl(𝑅) → Z

be the Hecke eigenfunction associated to f by Jacquet–Langlands, normalised so that 𝜙 𝑓 � 0(mod 𝑝).
Fix an isomorphism 𝑖𝑝 : 𝑅 ⊗ Z𝑝 � M2(Z𝑝) and an optimal embedding O𝐾 ↩→ 𝑅 such that K is sent to
a subspace consisting of diagonal matrices, and for 𝑎 ∈ Z×𝑝 and 𝑛 � 0 put

𝑟𝑛 (𝑎) = 𝑖−1
𝑝 (

(
1 𝑎𝑝−𝑛

0 1

)
) ∈ 𝐵×,

where 𝐵 = 𝐵 ⊗Z Ẑ is the adelic completion of B.
Consider the sequence {𝑃𝑎

𝑛 }𝑛�0 of right R-ideals given by 𝑃𝑎
𝑛 := (𝑟𝑛 (𝑎)𝑅) ∩ 𝐵 and define the nth

theta element Θ 𝑓 /𝐾,𝑛 ∈ Z𝑝 [𝑇] by

Θ 𝑓 /𝐾,𝑛 :=
1

𝛼𝑛+1
𝑝

𝑝𝑛−1∑
𝑖=0

∑
𝑎∈𝜇𝑝−1

(
𝛼𝑝 · 𝜙 𝑓 (𝑃𝑎u𝑖

𝑛 ) − 𝜙 𝑓 (𝑃𝑎u𝑖
𝑛+1)

)
(1 + 𝑇)𝑖 ,

where 𝛼𝑝 is the p-adic unit root of 𝑥2 − 𝑎𝑝 (𝐸)𝑥 + 𝑝 and u = 1 + 𝑝.
By the definition of Θ 𝑓 /𝐾 (see, e.g., [4, §2.7]), we have

Θ 𝑓 /𝐾 ≡ Θ 𝑓 /𝐾,𝑛 (mod (1 + 𝑇) 𝑝𝑛 − 1).

Since (𝑝𝑛, (1 + 𝑇) 𝑝𝑛 − 1) ⊂ (𝑝𝑛, 𝑇 𝑝), in the examples listed in the following Tables 1 and 2 we could
verify (6.1) by computing Θ 𝑓 /𝐾,𝑛 mod (𝑝𝑛, 𝑇 𝑝) for 𝑛 = 2 and 3, respectively. The computations were
done using the Brandt module package in SAGE.

Table 1. Examples with ord𝑇 (Θ 𝑓 /𝐾 ) = 2 determined mod (𝑝2 , 𝑇 𝑝) ..

E p −𝑑 Θ 𝑓 /𝐾 mod (𝑝2 , 𝑇 𝑝)

389a1 11 −2 10𝑇 2 + 69𝑇 3 +𝑇 4 + 103𝑇 5 + 106𝑇 6 + 66𝑇 7 + 11𝑇 8 + 55𝑇 9 + 110𝑇 10

433a1 11 −7 88𝑇 2 + 22𝑇 3 + 86𝑇 4 + 7𝑇 5 + 10𝑇 6 + 12𝑇 7 + 29𝑇 8 + 88𝑇 9 + 48𝑇 10

446c1 7 −3 22𝑇 2 + 27𝑇 3 + 3𝑇 4 + 16𝑇 5 + 11𝑇 6

563a1 5 −1 18𝑇 2 + 9𝑇 3 + 5𝑇 4

643a1 5 −1 𝑇 2 + 21𝑇 4

709a1 11 −2 27𝑇 2 + 114𝑇 3 + 3𝑇 4 + 14𝑇 5 + 36𝑇 6 + 15𝑇 7 + 42𝑇 8 + 44𝑇 9 + 91𝑇 10

718b1 5 −19 3𝑇 2 + 20𝑇 3 + 12𝑇 4

794a1 7 −3 47𝑇 2 + 23𝑇 3 + 8𝑇 4 + 24𝑇 5 + 7𝑇 6

997b1 11 −2 71𝑇 2 + 41𝑇 3 + 83𝑇 4 + 19𝑇 5 + 114𝑇 6 + 111𝑇 7 + 101𝑇 8 + 46𝑇 9 + 102𝑇 10

997c1 11 −2 54𝑇 2 + 38𝑇 3 + 36𝑇 4 + 81𝑇 5 + 82𝑇 6 + 18𝑇 7 + 72𝑇 8 + 95𝑇 9 + 4𝑇 10

1034a1 5 −19 22𝑇 2 + 4𝑇 3 + 6𝑇 4

1171a1 5 −1 6𝑇 2 + 6𝑇 3 + 20𝑇 4

1483a1 13 −1 128𝑇 2 + 148𝑇 3 + 127𝑇 4 + 162𝑇 5 + 30𝑇 6 + 149𝑇 7 + 141𝑇 8 + 97𝑇 9 + 49𝑇 10 + 13𝑇 11 + 29𝑇 12

1531a1 5 −1 16𝑇 2 + 7𝑇 3 + 21𝑇 4

1613a1 17 −2 128𝑇 2 + 165𝑇 3 + 224𝑇 4 + 287𝑇 5 + 140𝑇 6 + 211𝑇 7 + 147𝑇 8 + 160𝑇 9 + 59𝑇 10 + 122𝑇 11 + 195𝑇 12 +
43𝑇 13 + 207𝑇 14 + 214𝑇 15 + 285𝑇 16

1627a1 13 −1 101𝑇 2 + 151𝑇 3 + 58𝑇 4 + 104𝑇 5 + 3𝑇 6 + 165𝑇 7 + 128𝑇 8 + 63𝑇 9 + 17𝑇 10 + 55𝑇 11 + 166𝑇 12

1907a1 13 −1 72𝑇 2 + 131𝑇 3 + 32𝑇 4 + 142𝑇 5 + 84𝑇 6 + 104𝑇 7 + 90𝑇 8 + 105𝑇 9 + 38𝑇 10 + 92𝑇 11 + 116𝑇 12

1913a1 7 −3 41𝑇 2 + 16𝑇 3 + 28𝑇 4 + 23𝑇 5 + 14𝑇 6

2027a1 13 −1 54𝑇 2 + 128𝑇 3 + 65𝑇 4 + 93𝑇 5 + 83𝑇 6 + 161𝑇 7 + 113𝑇 8 + 133𝑇 9 + 49𝑇 10 + 151𝑇 11 + 13𝑇 12
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Table 2. Examples with ord𝑇 (Θ 𝑓 /𝐾 ) = 2 determined mod (𝑝3 , 𝑇 𝑝) ..

E p −𝑑 Θ 𝑓 /𝐾 mod (𝑝3 , 𝑇 𝑝)

571b1 5 −1 100𝑇 2 + 100𝑇 3 + 15𝑇 4

1621a1 11 −2 1089𝑇 2 + 807𝑇 4 + 986𝑇 5 + 586𝑇 6 + 1098𝑇 7 + 772𝑇 8 + 228𝑇 9 + 1296𝑇 10
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