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Abstract 

The present analytical design of shrink fits typically results in an uneven stress condition that can lead to 

failure in a variety of manners. With increasing loads and the use of brittle materials, the optimization of the 

stresses in the shrink fit hence becomes increasingly necessary. Currently existing approaches do not solve 

the problem satisfactorily or increase the manufacturing and design effort. This paper therefore considers the 

implementation of an AI-based stress optimization using reinforcement learning, which performs stress 

optimization by geometrically contouring the interstice. 

Keywords: artificial intelligence (AI), engineering design, numerical methods, optimisation, 
structural analysis 

1. Introduction 
Shaft-hub connections (SHCs) are an important machine element (Kollmann, 1984) in many drive 

applications. Cylindrical shrink fits are frequently used due to their simple production, the resulting 

low manufacturing costs and their resistance to shocks and excessive stresses (Leidich, 1983; 

Kollmann, 1984). The transmission of power between hub and shaft takes place via a frictional 

connection which usually is caused by elastic deformation (Leidich, 1983; Kollmann, 1984; Kröger et 

al., 2020). The demands on SHCs to optimize performance, durability and weight are continually 

rising - if this is achieved by significantly increasing the extent to which the properties of the materials 

are utilized, this means higher stresses on the components (Kröger et al., 2020). High pressures within 

the joint and/or brittle materials can then cause failure of the joint. The way to avoid this is to employ 

complex optimization techniques; these require in-depth expert knowledge and time-consuming FEM 

simulations. By using AI, an automated design of the joint leads to a time-optimized and less complex 

optimization for the user. The purpose of this article is to summarize the possibilities, the approach 

taken so far, and the current research results carried out at the research center with regard to AI-

assisted design of shrink fits. 

2. Problem statement and objective 
The design of cylindrical shrink fits as specified in (DIN, 2017) is based on a shrink fit that is radially 

and axially symmetrical, with a shaft and hub of the same length. This leads to the assumption of a plane 

stress condition (psc), i.e. a constant and even distribution of radial and tangential stresses across the 

whole joint, for which the constant pressure profile at the interstice of the connection is shown in (Figure 

1c). With the simplified assumption of a plane stress condition, the design can be performed using 

analytical calculation equations. However, this simplified example of a shaft and hub of identical length 

does usually not correspond to practical reality, which can lead to an overestimated safety coefficient. 

This is because there is inevitably a jump in stiffness at the ends of the hub. This jump cannot be solved 
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analytically and/or numerically in a precise manner and results in an uneven pressure profile within 

the joint (cf. Figure 1d). Peaks or general variations in pressure within the joint can have various 

consequences for the joint. For brittle materials such as cast materials or heavily carburized case-

hardened steels, high stress peaks can cause early spontaneous failure (Blacha, 2009; Glöggler, 2003; 

Hartmann, 1999; Rentzsch et al., 2002). If due to stress variations the pressure within the joint drops 

locally, the slip amplitude under operating loads inevitably increases. In the long term this can lead to 

failure due to fretting corrosion (Leidich, 1983; Gropp et al., 2012; Vidner, 2016). In the event of an 

extreme drop in pressure within the joint, the joint may even slip. Previous research work, such as 

(Blacha, 2009; Krautter et al., 2015; Kröger et al., 2018), has already developed a variety of solutions 

for the optimization of shrink fits. However, these approaches are not yet suitable for general 

application due to their high complexity and lack of general calculation approaches; they often 

represent only approximate iterative solutions, and their application is time-consuming. Therefore, this 

article presents an option for an AI-supported optimization process that especially increases the 

efficiency of R&D-processes. The main research question of this article is how the optimization 

process of the pressure within the joint - or stress optimization in general - of shrink fits can be 

supported using AI. This main research question can be subdivided into more detailed sub-research 

questions: 

Could AI be used to optimize the material utilization and the stress conditions of shrink fits? 

Which algorithm is suitable for this use case? 

Is it possible to reduce the time required for optimization with the help of AI? 

Does an AI supported optimization provide the desired quality of results? 

3. Shrink fits 

3.1. Stress condition on cylindrical shrink fits 

The design of cylindrical shrink fits is specified in (DIN, 2017). They can be designed either linear-

elastic or elastic-plastic. Due to a lack of experimental validation, linear-elastic shrink fits are generally 

preferred in industrial practice (Kröger et al., 2020). With this type of connection, the transmission of 

forces and torques is based on a frictional connection created by a geometric interference between the 

outside diameter of the shaft and the inside diameter of the hub (Kollmann, 1984). The elastic 

deformations that occur when this interference is overcome result in a triaxial stress condition (Leidich, 

1983). In that stress condition there is no proportionality between the radial stress σr and the tangential 

stress σt over the interference U within the overall shrink fit joint. The radial stress σr corresponds to the 

pressure within the joint p in the area of the interstice and decreases towards the outside. The elastic 

expansion of the hub also results in a tangential stress σt (cf. Figure 1a). In the axial direction, the joint is 

mainly stressed by shear stresses τa induced by friction (Figure 1b). (Leidich, 1983) 

 
Figure 1. Principal stresses on shrink fits in transversal a) and longitudinal section b); radial 

stress in the interstice of shrink fits within plane stress conditions c) and triaxial stress state d) 

In the following equations, stresses of the plane stress condition are generally referred to as σpsc. The 

pressure within the joint according to (DIN, 2017) is also referred to as ppsc. For the radial (Equation 1) 

and tangential stress (Equation 2), the general rule according to (Kollmann, 1984) is: 
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At the interstice (Y = DI /2), the radial (Equation 3) or tangential (Equation 4) stress is thus given by: 

𝜎𝑟 = −𝑝𝑝𝑠𝑐 (3) 

𝜎𝑡 = 𝑝𝑝𝑠𝑐 ∙
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Due to the different lengths of shaft and hub in industrial practice, there is always a jump in stiffness at the 

ends of the hub, so that excessive stresses occur within that area. Because the analytical design is based on 

the simplified assumption of a plane stress state, it disregards the stresses that occur in reality (see Figure 

1c). This becomes particularly critical when this method is used to design highly stressed shrink fits or 

connections using brittle hub materials. If the tangential stress σt reaches the separation strength of the hub 

material it will suffer spontaneous brittle failure. (Figure 1d) shows an example of the pressure profile 

within the joint of a practical shrink fit normalized to the pressure within the joint resulting from the plane 

stress condition. This means that basically all parameters (e.g. DI/DO, L/DI) that influence the stiffness of 

the shrink fit can also influence the stress increase. The results in (Figure 2) based on research completed 

in (Kröger et al., 2018) illustrates the effects of different geometric dimensions on the stress increase. 

 
Figure 2. Influence of the length-to-diameter L/DI ratio (left) and the diameter ratio of the hub 

DI/DO (right) on the radial stresses in the interstice based on (Kröger et al., 2018) 

3.2. Simple methods to reduce stress peaks in the area of the hub ends 

In literature (Leidich, 1983; Kollmann, 1984), there are many approaches aimed at enabling a reduction 

of the excessive stresses in the areas of the ends of the hub. Examples include circumferential grooves in 

the hub faces (cf. Figure 3d) and chamfers or radii at the inner hub edges. However, investigations 

(Leidich, 1983; Kollmann, 1984; Kröger et al., 2018) have shown that many of these approaches fail to 

improve the stress condition or suffer from other undesirable disadvantages. Using the examples of the 

circumferential groove on the hub face and the radius at the edge of the hub, (Figure 3) (left) illustrates 

the problems arising from simple geometric adjustments for stress optimization. Although the 

circumferential face groove effectively reduces the value of the stress peaks, it also reduces the pressure 

within the joint so that the inevitable increase in slip amplitude creates conditions favorable to the 

occurrence of fretting fatigue. In contrast, the use of a radius at the hub edge only causes an axial 

displacement of the location of the jump in stiffness and hence of the location of the increased stress. 

Other strategies, such for instance as those proposed by Kollmann in (Kollmann, 1984) or Leidich in 

(Leidich, 1983), create similar problems (Figure 3a). They require additional axial design space (Figure 

3a, b) or restrict the common functional areas of the hubs with respect to their design (Figure 3b, c). 
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Figure 3. Comparison of the radial stress in the interstice of shrink fits with and without simple 

geometric modifications (left) and examples of simple geometric modifications (right, a to d) 

3.3. Homogenization of the pressure within the joint through contoured shaft 

Compared with the simple methods presented in section 3.2, complex contouring of the outer surface of 

the shaft and/or the inner surface of the hub can be used to prevent undesirable variations in stress (see 

Section 3.1). This is in fact the only way to achieve stress and pressure profiles within the joint that 

counteract failures due on the one hand to overstressing and on the other hand to frictional fatigue 

loading. In addition to the structural and tribo-mechanical advantages of this process, it also demands no 

additional space and creates no difficulties regarding integration into conventional CNC production. 

Blacha mentions in (Blacha, 2009) that the same reduction in stress peaks (cf. section 3.1) for a shrink fit 

can be achieved by use of the pressure within the joint p or the tangential stress σt as input variables for 

the optimization process. In addition to (Figure 2), the necessity for a specific adjustment is also shown 

in (Figure 4) by means of comparison of the actual stress profile of an asymmetric shrink fit against the 

stress profile of the plane stress condition which was described in Section 3.1. The profile shows that 

complex optimization is necessary, in particular for asymmetric shrink fits (e.g. pulleys or gears with a 

collar), since the effects that occur at the two ends of the hub can be in the opposite sense to each other. 

 
Figure 4. Excessive radial (left) and first principal stress (right) in asymmetrical shrink fits 

At the research center, several methods (Blacha, 2009; Krautter et al., 2015) have already been 

developed for achieving a specific pressure within the joint. Basically, the method used by Blacha is 

based on a separate numerical simulation of shaft and hub, whereby the actual contact surfaces are 

subjected to the desired pressure profiles within the joint, which for example can be constant. By 

summing the amounts of the resulting component deformations, the desired contouring is obtained and 
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can be applied to the shaft or hub. For the ideal case of a frictionless interstice, this results in a 

constant profile of the pressure within the joint. To take account of the frictional forces within the 

interstice, Blacha includes these as additional linear boundary conditions in the individual simulations 

described above. In (Krautter et al., 2015), Krautter was able to show that the friction force profile in 

the interstice is non-linear. Krautter then extended the procedure with a thermo-mechanical simulation 

in order to determine the frictional force profile more precisely. What the existing methods have in 

common is that the procedures are very complex and time-consuming and also require expert 

knowledge. In addition, the optimization focuses solely on the pressure within the joint, so that it fails 

to offer precision in addressing what is the critical criterion for failure, i.e. the optimization of the 

main stress. 

3.4. Concretization of the problem and requirements for an AI 

Within certain limits, ductile hub materials can reduce the excess stresses (cf. Section 3.1) by local 

plasticizing, so that they do not have a negative effect in further operation. Brittle materials (e.g. cast 

materials, technical ceramics, composites or hardened components) can reduce these stress peaks to 

only a limited extent, hence their use can lead to failure. In addition, the trend toward higher 

utilization of material properties in terms of higher power densities and lightweight design causes 

reductions in the existing safety margins previously contributed by the ductility of hub materials; thus 

failures due to excessive stress can occur here also. Simple approaches to reduce stress peaks (see 

Section 3.2) do not offer sufficient solutions to this problem (Kollmann, 1984; Kröger et al., 2018; 

Mather et al., 1972). However, complex adjustments of the shaft outer or hub inner contour can 

achieve the goal of eliminating undesirable variations of the pressure within the joint and/or the 

failure-critical principal stress. However, these iterative numerical approaches of (Blacha, 2009) and 

(Krautter et al., 2015) reach such complexity that even experts refuse to accept them as an economic 

technique for optimization. In particular, the reason for this is that a local adjustment of the contour 

also affects adjacent areas, resulting in complex interactions. 

Using AI as a solution approach for contour optimization, which, in addition to the previous 

optimization of the pressure within the joint, also allows direct optimization of the failure-critical 

principal stress, thus providing significant added value for the user. Especially, this added value is 

characterized by an increased efficiency, which is achieved by automatization and by learning the 

relations of neighboring areas. Here, learning is performed by coupling numerically calculated stress 

results with the corresponding geometric change of the interstice. From the overall objective of this 

paper, the requirements for an AI approach are derived as follows: 

High degree of generalization of the optimization target, so that stress optimization can be 

applied in many ways 

Self-determined selection of the optimization parameter in the shrink fit by the operator 

(pressure within the joint, main stress or shear stress) 

Specification of a target variable profile along the interstice; tailored to the needs and 

requirements of the application 

No expert knowledge required, such as specification of limits for interferences, stresses, etc.  

4. Artificial Intelligence 

4.1. Basic considerations 

In the field of Artificial Intelligence (AI), there are now many terms being used synonymously and 

sometimes mixed together or are not clearly differentiated from one another. The general term AI 

includes various other terms. Systems that are listed under the term AI basically serve to imitate human 

thought and action (European Parliament, 2020). This includes, for example, machine learning (ML), 

which is relevant to the optimization problem presented. According to Mitchell, ML is spoken of when 

"A computer program is said to learn from experience E with respect to some class of 

tasks T and performance measure P, if its performance at tasks in T, as measured by 

P, improves with experience E." (Mitchell, 1997) 
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Subcategories of ML are Supervised Learning (SL), Unsupervised Learning (UL) and Reinforcement 

Learning (RL) (see Figure 5, left) (Skansi, 2018). The subdivision takes place depending on the data 

situation and / or the optimization goal. If a computer independently learns complicated contexts by 

mapping them and by combining simple contexts, the result is a multi-layered model that shows the 

interconnection of many contexts in artificial neural networks. This form of information processing is 

called Deep Learning (DL) (Goodfellow et al., 2016). (Figure 5) (left) illustrates the categorization of 

terms within AI. SL requires a training data set that clearly links inputs to outputs. From the point of 

view of the corresponding algorithms, the relationship between input and output is thus known from 

the beginning. The goal in this case is to find the best possible generalization for the dataset so that 

future events can be predicted in the best possible way based on the training dataset (Cunningham et 

al., 2008). An example of supervised learning would be weather forecasting based on a large amount 

of historical data. UL, on the other hand, is used with a training data set that has only inputs (Ayodele, 

2010). The goal of the corresponding unsupervised learning algorithms is to independently find 

previously unknown patterns in the data and thus establish unique relationships. An example of this 

would be the derivation of categories in messages (IBM, 2020). RL is an agent-based algorithm, 

where the agent independently develops a strategy to maximize the value of the reward function. The 

value of the reward function is used to directly evaluate the agent's action, thereby approximating a 

utility function from which the agent adjusts its strategy. The method of DL can be applied to any 

method of ML and also to its hybrid forms (Skansi, 2018). DL is suitable for processing large data sets 

in combination with artificial neural networks. This last is a data structure that is modelled like the 

human brain. Based on the basics of the different machine learning methods and their possible 

applications presented above, a suitable method can be selected in the following, together with the 

requirements from section 3.4. UL is the least suitable for the use case presented here, since this 

method is particularly suited for identifying clusters in data sets and thus dependencies between 

several parameters (Ayodele, 2010). RL and SL are better suited, since they can be used to describe 

the relationship between input and output reliably (Nasteski, 2017). Furthermore, RL differs positively 

from SL because the agent-based method does not need to be provided with initial training data 

(Sutton et al., 2018). Thus, RL is also suitable for application by non-experts. For the reasons 

explained above, RL is the most suitable approach to find an optimal solution in a fully automated 

way, without the necessity of having expert knowledge or initial training data. Therefore, the AI-based 

method for optimization presented in this paper is RL.  

4.2. Definition of Reinforcement Learning 

In RL, the process is determined by the agent-environment interaction (see Figure 5, right). The agent 

executes the action at at a time t based on the reward rt and the state st. This action influences the 

environment in the downstream time step t+1 in such a way that the agent can change the reward rt. 

This action influences the environment in the subsequent time step t+1 in such a way that the agent 

receives the reward rt+1 for its action at and is now confronted with the state st+1, which in turn leads to 

the cycle starting again from the beginning by a renewed action execution of action at+1. The policy πt 

based on the states governs the probability of selecting a particular action at from the range of all 

possible actions A. (Sutton et al., 2018)  

The policy πt describes the procedure of an agent to assign a suitable action to a state at a certain point 

in time. It is essential for the model quality and can be very simple or highly complex. The reward 

signal represents the core of an RL process. After each iteration step, the agent is rewarded with a 

number (reward signal). The reward signal helps the agent to distinguish between good and bad 

actions. The agent always pursues the goal of maximizing his reward. The value function describes 

the sum of all expected rewards for a state. It is thus a long-term orientation for the agent and gives an 

indication of which chosen actions could lead to which states. The model allows the RL algorithm to 

predict subsequent actions and states from a combination of action and state. A model is thus needed 

for the prediction of states before they have even occurred. (Sutton et al., 2018) 
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Figure 5. Schematic classification of the most important terminology within AI (left) and 

schematic illustration of the process of an RL alogrithm (right) 

5. Integration of AI into stress optimization on shrink fits 
The implementation of RL into the FEM-based optimization of a shrink fit offers the option that profiles 

of stresses along the interstice can be generated by contouring. In this paper, the AI-based contour 

optimization is applied to the shaft. In principle there is nothing to prevent application of the same 

procedure to the hub. If an RL algorithm from (Figure 5) (right) is transferred to the usage case presented 

here, the simulation of the shrink fit corresponds to the environment. Here, the shrink fit, i.e. the 

environment, is discretized in the area of the interstice by a number n of transversely displaceable points 

on the shaft (cf. Figure 6). These n points represent the function of the agent (cf. Figure 5, right). By the 

possible actions A, in the form of a transversal displacement of the agent, the interference at any point 

can thus be increased, decreased or maintained. The states S represent the deviation determined between 

the plane stress condition σpsc and the numerical simulation σFE, and results from the shape of the radial 

point positions (cf. Figure 6). This results in the reward of a point according to Equation 5: 

𝑟𝑛 = 1 − [(
|𝜎𝐹𝐸,𝑛−𝜎𝑝𝑠𝑐|

𝜎𝑝𝑠𝑐
)] = 1 − (

|∆𝜎𝑛|

𝜎𝑝𝑠𝑐
) (5) 

 
Figure 6. Interstice discretized by means of n transversely movable points 

A common algorithm within reinforcement learning is the so-called Q-learning. Here, a table, the Q-

table, is created. This table is updated continuously. The table contains the possible actions A in columns 

and the possible states S in rows. The values of the table correspond to the Q-values (see Figure 7, left). 

The table thus acts as an action specification for the agent. For each of the n points a state vector s 

contains i state descriptions (Equation 6). This results in a matrix of n∙i possible states S (Equation 7). 

𝑠1⋯𝑛 = [∆𝜎𝑛,1 …  ∆𝜎𝑛,𝑖]
𝑇
 (6) 

𝑆 = [𝑠1 …  𝑠𝑛]𝑇 (7) 

The determination of i is done via Equation 8 by setting an upper limit ULs and a lower limit LLs for 

the state s and choosing a state step size j: 

𝑖 =
𝑈𝐿𝑠−𝐿𝐿𝑠

𝑗
 (8) 

Applied to the shrink fit discussed here, a state vector s is the description of the possible stress deviation 

at a point. The lower and upper state limits are determined on the basis of σpsc. The determination of the 
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step size j corresponds to the achievable accuracy of the homogenization and is also determined by 

σpsc. If either of the two state limits ULs or LLs is exceeded, no further state can be assigned from the 

table. In this case, a directional correction is to be provided at the affected point(s) (maximum 

interference change, which requires an increase or decrease of the interference depending on the 

situation). This must be repeated until a state is reached once again in the Q-table. The possible actions 

A are the same at all points and correspond to the transverse displacement in discrete form. The 

required upper and lower action limits (ULa and LLa, respectively) result from the interference Upsc of 

the plane stress condition. The step size k is determined based on the manufacturing process 

(predominantly CNC turning). This results in the possible number of interference changes m 

according to Equation 9: 

𝑚 =
𝑈𝐿𝑎−𝐿𝐿𝑎

𝑘
 (9) 

From this follows for action a (Equation 10): 

𝑎1⋯𝑚 = ∆𝑈1⋯𝑚  (10) 

and for the vector A to (Equation 11): 

𝐴 = [∆𝑈1 ⋯ ∆𝑈𝑚] (11) 

A tabular overview of all values and correlations for the shrink fit can be found in Table 1. The 

structure of the Q-Table is shown schematically in (Figure 7) (left). 

Table 1. Overview of defined values 

 

Each combination of a state s to an action a can be assigned a Q-value. This Q-value allows the agent 

to receive a valuation for his action a. According to Bellman's optimality principle (Equation 12), the 

quality value Q is a function of s and a at a given time t (Sutton et al., 2018): 

𝑄(𝑠𝑡 , 𝑎𝑡) ← 𝑄(𝑠𝑡 , 𝑎𝑡) + 𝛼 ∙ [𝑟𝑡+1 + 𝛾 ∙ max
𝑎

𝑄(𝑠𝑡+1, 𝑎) − 𝑄(𝑠𝑡 , 𝑎𝑡)] (12) 

This equation contains the current Q-value Q(st,at), the learning rate α, the reward rt+1 for the action at, 

the discount rate γ and the maximum expected future Q-value for action a in the next state st+1. The 

learning rate α influences the rate at which the agent uses learned knowledge to modify the existing Q-

value. At a lower Q-value the algorithm learns more slowly and is therefore more stable, whereas at a 

higher Q-value it mainly considers recently learned knowledge. The discount rate γ can be used to 

differentiate between a high reward in the immediate and a more far-sighted strategy. The goal is to 

identify the maximum possible Q-value for each of the n points. For each Q-value Q(s,a), the action a is 

associated with the state s, resulting in an optimal contour. At the beginning of Q-learning, all Q-values 

are initialized to 0. This poses a problem, because the algorithm cannot use the maximum Q-value to 

decide which action is the best possible. In Q-learning, there is a danger that a local optimum will be 

reached too quickly, because the process is increasingly focused on the Q-values (greedy strategy) so 

that the global optimum cannot be reached. These considerations show the importance of the trade-off 

between exploration and exploitation. Q-learning can explore the environment through exploration and 

thus discover new areas. However, the search to achieve an optimum is not triggered systematically but 

occurs as the result of random variations. Through exploitation, Q-learning always strives towards the 

currently known optimum. With the help of an epsilon-greedy action selection, Q-learning can achieve a 

trade-off between exploration and exploitation. Epsilon (ε) stands for the probability with which the 

algorithm does not select the best possible action according to the Q-values (at,greedy) but instead 

randomly selects another possible action (at,ε-greedy). Thus, several optima can be found. Epsilon does not 

necessarily have to be a constant. There are approaches which adapt epsilon during learning (Tokic, 

2010). An epsilon-greedy strategy is used for the present optimization problem. 

Symbol Description Defined as Symbol Description Defined as 

ULs Upper state limit 1,5∙σpsc  ULa Upper action limit 1,5∙Upsc 

LLs Lower state limit 0,5∙σpsc LLa Lower action limit 0,5∙Upsc 

j State step size 0,05∙σpsc k Action step size 1 µm 
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The optimization process described above was finally applied on cylindrical shrink fits with simple 

geometries similar to (Figure 1Figure 2d). It became apparent that an oscillating stress curve initially 

results in the early exploration phase (cf. Figure 7, center). This behavior of the algorithm can be 

justified by the previously chosen epsilon-greedy strategy, which explores the solution space in the 

first iterations. However, with increasing number of iterations, the algorithm has gathered experience 

and the epsilon-greedy strategy changes towards exploitation. Therefore, an improvement of the stress 

profile can be observed (cf. Figure 7, center). In order to validate the gained results, a proven indirect 

method (Ulrich et al., 2016; Kröger et al., 2018; Kröger et al., 2020) was chosen, since there is no 

direct method to measure the pressure within the interstice. This indirect method compares the 

diameter expansion of the hub within the experiment and the numerical calculation. For this purpose, 

the specimens were measured before and after joining on a coordinate measuring machine, so that the 

resulting diameter expansion could be compared with the numerically calculated values. Such a 

comparison also requires a precise representation of the materials used, which was ensured before by 

precision tensile tests. The results show a very high accordance (Figure 7, right), which is why they 

are considered validated. 

     
Figure 7. Qualitative representation of the Q-table for the presented use case (left), initial 

application on a sample shrink fit (center) and generated contour as well as validation (right) 

6. Conclusion and Outlook 
Increases in the power density of drive systems inevitably result in increased stresses within shrink 

fits. These can cause the permissible stresses of the materials to be reached or exceeded, in particular 

at stress peaks (cf. Section 3.1). Simple geometric optimization options already exist (Leidich, 1983; 

Kollmann, 1984), but these suffer from various disadvantages (Kröger et al., 2018) (cf. Section 3.2). 

The approaches developed at the research center (Blacha, 2009; Krautter et al., 2015) permit 

achievement of almost constant pressure profiles within the joint. However, application of these 

approaches is very complex, time-consuming, imprecise and also requires expert knowledge. 

Furthermore, the approaches are so far suitable only for optimizing the pressure within the joint (cf. 

Section 3.3). 

The RL-based optimization method presented in Section 5 is capable of addressing these remaining 

drawbacks. In terms of complexity, the user's work is reduced by the fact that the algorithm developed 

can be easily transferred to any geometries of shrink fits. Therefore, the user only has to define the 

geometry to be optimized and the desired interference. Additionally, this is why expert knowledge is 

no longer required. Moreover, instead of the pressure within the joint, any stress such as the tangential 

stress σt, which is critical for the failure of the shrink fit, can be used as an optimization parameter, 

resulting in an enhanced material utilization. Finally, the epsilon-greedy Q-learning algorithm is able 

to find the optimal solution to a problem independently. 

Currently, the research center is working on an optimization of the algorithm to avoid a contouring of the 

interstice which is not manufacturable. This will increase the performance of the algorithm in terms of 

saving time, since these implausible solutions will not be considered from the beginning. In future, the 

results obtained with the AI support presented in Section 5 will be made available in an (online) 

database, so that where solutions to problems already exist these can be accessed directly or by 

interpolation, without the need to perform a new numerical simulation. This will gradually reduce the 
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expert knowledge required to find solutions, allowing any designer to perform such optimization with 

little effort. Furthermore, future Q-learning can be extended to incorporate a neural network, which takes 

us into the territory of deep-Q-learning. In that particular usage case, the neural network can help find the 

optimal action within a continuous solution space, thus further improving the optimization results. 

Beyond this usage case, the optimization algorithm can be adapted for many other applications. 
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