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Abstract

Cultivation of lowbush blueberry (Vaccinium angustifolium Aiton), an important crop in the
eastern part of North America, is unique, as it is carried out over the course of two consecutive
growing seasons. Pest management, particularly weed management, is impacted by this biennial
cultural practice. The choice of methods to control weeds is narrow, and such a system relies
heavily on herbicides for weed management. Availability of unique herbicide active ingredients
for weed management is limited, and available herbicides are used repeatedly, so the risk of
developing resistance is acute. Hair fescue (Festuca filiformis Pourr.), a perennial grass weed,
has evolved resistance to hexazinone, a photosystem II inhibitor frequently used in lowbush
blueberry production. We show that substitution of phenylalanine to isoleucine at position
255 is responsible for a decreased sensitivity to hexazinone by a factor of 6.12. Early diagnosis
of resistance based on the detection of the mutation will alert growers to use alternative control
methods and thus help to increase the sustainability of the cropping system.

Introduction

Lowbush blueberry (Vaccinium angustifolium Aiton) is a rhizomatous perennial berry species
(Hall et al. 1979) and is an economically important fruit crop in Canada that contributed
Can$47.4 million to farm gate value in 2017 (Anonymous 2019). Lowbush blueberry fields
are developed from natural stands (Anonymous 2019) that are managed under a 2-yr produc-
tion cycle in which plants are pruned to ground level by flail mowing in the first year (nonbear-
ing year) and emerged shoots flower and produce berries in the second year (bearing year)
(Eaton et al. 2004; Wood 2004). Fields are thus maintained as perennial no-till monocultures,
making weed management difficult (McCully et al. 1991). The weed flora of lowbush blueberry
fields is dominated by herbaceous and woody perennials (Jensen and Yarborough 2004;
Lyu et al. 2021; McCully et al. 1991), with many species of perennial grasses being of particular
concern (Anonymous 2019; Boyd et al. 2014; White and Zhang 2019) due to potential to reduce
yields and inhibit harvest (Jensen and Specht 2004; Jensen and Yarborough 2004).

Hair fescue (Festuca filiformis Pourr.) is a caespitose, sod-forming perennial grass introduced
from Europe and now well established in eastern and northwestern North America (USDA
2020). This grass occurs as a weed in lowbush blueberry fields, where it forms perennial sods
that reduce yield by >50% (White 2019; Zhang 2017; Zhang et al. 2018) and inhibit mechanical
harvest. Occurrence of this weed in Nova Scotia lowbush blueberry fields decreased between
1984 to 1985 and 2000 to 2001 (McCully et al. 1991; KIN Jensen and MG Sampson, personal
communication), likely due to control of this species by two photosystem II inhibitors, hexa-
zinone and terbacil (Weed Science Society of America [WSSA] Group 5) (Jensen 1985a, 1985b;
Sampson et al. 1990; Smagula and Ismail 1981). This grass, however, is now widespread in Nova
Scotia lowbush blueberry fields (Lyu et al. 2021; White 2018; White and Zhang 2020b; Zhang
2017; Zhang et al. 2018), and hexazinone no longer provides effective control (White 2019;
Yarborough and Cote 2014; Zhang 2017). Terbacil efficacy is also variable (White and
Zhang 2020a; Zhang 2017; Zhang et al. 2018) and generally limited to single-season suppression
(White 2019). Hexazinone resistance in F. filiformis populations in lowbush blueberry fields has
been suspected since the early 2000s (Jensen and Yarborough 2004), though no work has been
conducted to confirm the presence of resistant biotypes of this weed species in Nova Scotia.
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Mechanisms of herbicide resistance in weeds can be classified
into target-site resistance (TSR) and/or non-target site resis-
tance (NTSR) (Jugulam and Shyam 2019; Powles and Yu
2010). The TSR mechanisms involve mutation(s) in the target
site of action of a herbicide, resulting in a target protein that
is insensitive or less sensitive to the herbicide (Powles and Yu
2010). The NTSR mechanisms include reduced herbicide
uptake/translocation, increased  herbicide = metabolism,
decreased rate of herbicide activation, and/or sequestration
(Devine and Eberlein 1997). Hexazinone has been used since
the early 1980s as the primary preemergence herbicide in low-
bush blueberry (Jensen 1985a; Yarborough 2004; Yarborough
and Jemison 1997). This herbicide inhibits photosynthesis by
binding to D1 proteins encoded by the psbA gene, affecting
CO, fixation and the production of energy needed for plant
growth. Selection for naturally occurring target-site mutations
in the psbA gene that confer resistance to hexazinone are not
widely reported in the literature, though prolonged use of hex-
azinone has selected for such target-site mutations in popula-
tions of shepherds’s-purse [Capsella bursa-pastoris (L.)
Medik.] in alfalfa (Medicago sativa L.) fields in Oregon
(Perez-Jones et al. 2009) and red sorrel (Rumex acetosella L.)
in lowbush blueberry fields in Nova Scotia (Li et al. 2014).
Similar mutations may therefore have also been selected for
in F. filiformis populations following prolonged hexazinone
use in lowbush blueberry fields.

Although most herbicide resistance cases reported concern
annual weeds (Beckie 2006; Holt and LeBaron 1990; Holt
etal. 1993), the phenomenon is also common in perennial weeds
(Hodgson 1970; Patton et al. 2018; Vila-Aiub et al. 2012;
Yanniccari et al. 2012), including some in lowbush blueberry
fields (Li et al. 2014). Herbicides continue to be the primary
method for weed control in lowbush blueberry fields (Jensen
and Yarborough 2004), and limited herbicide availability for
perennial grass management is resulting in repeated use of her-
bicides with similar sites of action (White 2019; White and
Zhang 2019). This is a major factor contributing to development
of herbicide resistance (Norsworthy et al. 2012), and it is imper-
ative that herbicide-resistant weed biotypes be identified in low-
bush blueberry so that priority weed species can be emphasized
in future research and growers can adjust management practices
accordingly.

The objectives of this study were to utilize (1) dose-response
experiments to confirm suspected hexazinone resistance in a
F. filiformis population collected from a lowbush blueberry field
in Nova Scotia and (2) advanced molecular tools to identify the
mechanism of resistance.

Materials and Methods
Material Source

Festuca filiformis seeds were collected from a commercial lowbush
blueberry field in North River, Nova Scotia (45.464933°N,
63.212557°W) (suspected resistant biotype) and from a roadside
population located at Glenholme, Nova Scotia (45.441523°N,
63.529923°W) (negative control). Seeds were maintained in the
laboratory at room temperature in Nova Scotia for approximately 1
mo before being shipped to the Agriculture and AgriFood Canada
Saint-Jean-sur-Richelieu Research & Development Center, Saint-
Jean-sur-Richelieu, QC, Canada, for dose-response experiments
and molecular analysis.
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Seed Germination

Seeds of each biotype were germinated on moistened Whatman
filter paper (Grade 2, GE Healthcare Life Sciences, Baie D’Urfé,
QC, Canada) in petri dishes before planting. Petri dishes were
sealed with parafilm (Parafilm M, Bemis Company, Neenah,
WI, USA) and placed in a growth chamber set at 20 C with a photo-
period of 16 h and 70% relative humidity. Seeds germinated after
20 d, and seedlings were transferred into 9 cm by 9 cm pots con-
taining Pro-Mix potting soil (Premier Tech, Riviere-du-Loup, QC,
Canada) and placed in the growth chamber under the same
conditions as were used for germination. After 25 d of growth
(8 to 10 leaves), the plants were treated with herbicides for the
dose-response experiment.

Dose-Response Experiment

The Group 5 herbicides hexazinone (Velpar® DF, Tessenderlo
Kerley, Phoenix, AZ, USA) and terbacil (Sinbar® WDG,
Tessenderlo Kerley) were used for the dose-response experiment.
Recommended field rates for hexazinone (Velpar®) and terbacil
(Sinbar®) were 1.92 and 2 kg ha™, respectively. The experiment
was arranged as a randomized complete block design, and 18 indi-
viduals of each biotype and repetition were treated with hexazi-
none at eight different doses (0X, 0.03X, 0.08X, 0.25X, 0.5X, 1X,
2X, and 4X times the label rate) and terbacil at nine different doses
(0X, 0.01X, 0.03X, 0.08X, 0.25X, 0.5X, 1X, 2X, and 4X times the
label rate) using a DeVries Manufacturing (Hollandale, MN,
USA) moving-nozzle cabinet sprayer equipped with an 8001E-
VS even-banding nozzle (Tee]ete, Springfield, PA, USA) calibrated
to deliver 164 L ha™! of spray solution at 207 kPa. The dose-
response experiment was repeated three times for both herbicides.
Treated plants were transferred to a greenhouse set at 25/20 C
(day/night) with a photoperiod of 16 h. Plant dry biomass was
determined by collecting all aboveground plant material in each
pot at 21 d after treatment (DAT) and drying it at 70 C for 4 d
before weighing. Log-logistic dose-response analysis was per-
formed as described by Seefeldt et al. (1995), wherein the response
in dry biomass (Y) is related to the herbicide dose (x) and used to
determine the value of the slope (b) and GRs, value that would best
fit the distribution of the values according to Equation 1:

Y = C+ {(D— C)/[1 + (x/GRso)b]} (1

where C is the lower asymptote, D is the upper asymptote, b is the
slope of the line at GRs, and GRsy, is the herbicide dose generating
a 50% reduction in dry biomass (Seefeldt et al. 1995). The resis-
tance factor was calculated by dividing the GRs, value of the resist-
ant biotype by the GRso value of the susceptible biotype.
Calculations were performed with the R (R Core Team 2020)
DRC package (Ritz et al. 2015).

DNA Extraction, psbA Gene Amplification, and Sequencing

Extraction of genomic DNA was performed using Qiagen DNeasy
Plant Mini Kit (Qiagen, Mississauga, ON, Canada) according to
the manufacturer’s instructions. The primer pair (FESTE-psbA
FWD: 5'-CGTGAGCCTGTTTCTGGTTCTT-3’ and FESTE-
psbA REV: 5-CAGCTAGGTCTAGAGGGAAGTTGT-3’) was
designed to amplify the gene region known to harbor resistance-
causing mutations using the psbA gene sequence of red fescue
(Festuca rubra L.) from GenBank (accession number:
MN309826.1). Amplification of an 844-bp fragment was
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performed using Titanium® Taq DNA Polymerase (Takara Bio
USA, CA, USA) under the following conditions: 95 C for 5 min;
35 cycles of denaturation for 30 s at 95 C, annealing for 30 s at
58 C, elongation at 68 C for 35 s, and a final elongation for 8
min at 68 C. The PCR products were visualized on agarose gel
at 1% and sequenced at Genome Quebec Innovation Centre
(Montreal, QC, Canada) using the dideoxynucleotide chain termi-
nation method (Sanger et al. 1977). The partial sequences of psbA
for both susceptible and resistant biotypes are available in
GenBank (accession numbers: MZ394740 and MZ394739,
respectively).

Protein Structure and Docking Analysis

Docking experiments used the wood fescue (Festuca altissima All.)
psbA sequence (GenBank accession AFV62627.1 from the plastid
sequence JX871939.1) with a phenylalanine to isoleucine change at
position 255. Partial sequencing of the F. filiformis psbA gene
revealed that amino acids residues 83 to 339 are identical (results
not shown). Protein structure was determined by protein homol-
ogy using the modeling server CPHmodels (v. 3.2; Nielsen et al.
2010), and the structure of the active ingredients was obtained
from the Toxin and Toxin-Target (T3) database (Wishart et al.
2015). Determination of the binding area and visualization was
done with AutoDock tools (Morris et al. 2009). Blind docking cal-
culation was done with AutoDock (Morris et al. 2009). Results
were visualized using PyMOL (PyMOL Molecular Graphics
System, v. 2.0, Schrodinger, New York, NY, USA).

Development of a Genotyping Assay

A competitive allele-specific PCR (KASP) assay was used in this study
to distinguish between susceptible and resistant biotypes. The partial
sequence of the psbA gene (GenBank accession MT362604) was sent
to LGC Genomics (Biosearch Technologies, Hoddesdon, Ware, UK)
for the design and synthesis of the specific primers. The primer for the
resistant allele (5'-AGCATATTGGAAGATTAATCGGCCAAT-3")
was synthetized with the addition of 3’ terminal 6-carboxyfluorescein
(FAM) and the primer for the susceptible allele (5'-AG
CATATTGGAAGATTAATCGGCCAAA-3') was labeled with
HEX fluorophore at the 3’ terminal. A common primer was used
for both biotypes (5'-ACTTATAATATTGTGGCTGCTCATGG
TTAT-3'). The genotyping reaction contained 0.14 pl of the assay
mix, 5 pl of KASP Master mix, 1 pl of genomic DNA at 1 ng pl™!,
and 4 pl of ddH,0. The KASP assay was performed on an AriaMx
real-time PCR (Agilent, Santa Clara, CA, USA) with the following
conditions: initial denaturation at 94 C for 15 min and 10 touchdown
cycles of 20 s at 94 C and 1 min at 61 to 55 C (decreasing 0.6 C per
cycle), followed by a second PCR amplification of 26 cycles at 94 C for
20 s and 55 C for 1 min and a final elongation at 30 C for 1 min 30s.

Results and Discussion

A dose-response experiment was conducted with the s-triazine
herbicide hexazinone and the uracil herbicide terbacil to assess
potential resistance to these herbicides in a F. filiformis population
from a lowbush blueberry field in Nova Scotia. Dry biomass of the
F. filiformis plants from a roadside (susceptible) decreased
more rapidly with increasing hexazinone dose than that of the
F. filiformis plants from the blueberry field (resistant) (Figure 1).
The estimated GRs, values were 582.1 and 95.1 g hexazinone ha™!
for the resistant and susceptible biotypes, respectively
(Table 1), resulting in a resistance index of 6.1. In contrast,
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reductions in biomass of each biotype in response to increasing
terbacil dose were similar (Figure 1), and the estimated GRs, values
were 314.2 and 195.9 g terbacil ha™ for the resistant and suscep-
tible biotypes, respectively (Table 1), for a resistance index of only
1.6. Dose-response results therefore indicate that the F. filiformis
population sampled from a lowbush blueberry field is resistant to
hexazinone, which may explain the lack of hexazinone efficacy
now observed on this weed species (White 2019; Yarborough
and Cote 2014; Zhang 2017). Additional research, however, is
needed to determine occurrence of resistance throughout the
remainder of Nova Scotia, as our results are limited to one field
population and factors other than resistance may affect hexazinone
efficacy (Anonymous 2017; Minogue et al. 1988). Results also indi-
cate that the F. filiformis population sampled from a lowbush blue-
berry field is susceptible to field rates of terbacil, despite incomplete
control of this weed species with terbacil in lowbush blueberry
fields (White and Zhang 2019; Zhang 2017; Zhang et al. 2018).
Reasons for this are unclear, though it could be related to plant size
at the time of application under field conditions. Festuca filiformis
seedlings are susceptible to terbacil (White 2018), but plants accu-
mulate new leaves and tillers quickly (White and Kumar 2017), and
plants in lowbush blueberry fields are usually established tufts with
hundreds of leaves (Zhang et al. 2018; SNW, personal observation).
Large (12-leaf) field violet (Viola arvensis Murray) plants absorbed
and translocated less terbacil than small (3-leaf) plants (Doohan
etal. 1992). Large plants also metabolized more terbacil than small
plants, and Doohan et al. (1992) indicated that field rates of terbacil
commonly controlled V. arvensis seedlings but not established
plants. A similar effect could occur with terbacil in F. filiformis
in lowbush blueberry fields and, based on our results, should be
explored further.

With the advance of molecular techniques, the state of herbicide
resistance can be quickly determined even when the mechanism is
a priori unknown in certain cases. Several reviews of resistance-
conferring mutations have been published (Beckie and Tardif
2012; Murphy and Tranel 2019), and there is enough information
in the literature for the genotype of resistant individuals to be
determined, usually via DNA sequencing. This information can
be used to identify orthologous mutations in closely related species,
especially when the gene targeted by the herbicide mode of action is
evolutionarily conserved. The gene encoding the DI protein of
PSII targeted by WSSA Group 5 and 7 herbicides is evolutionarily
conserved, and as such, the psbA gene sequence from the related
species F. rubra was used to decipher the mechanism of resistance
of F. filiformis. Amplification and sequencing of the mutation-
containing region of psbA of the suspected hexazinone-resistant
F. filiformis biotype from the lowbush blueberry field revealed a
phenylalanine change to isoleucine at position 255 (Figure 2)
(GenBank accession MT362604). This mutation is reported for
the first time in F. filiformis. It was previously reported in
C. bursa-pastoris (Perez-Jones et al. 2009) and shown to confer
resistance to hexazinone, a symmetrical triazine, and metribuzin,
an asymmetrical triazine, but did not confer resistance to atrazine,
terbacil, or diuron. In contrast, the psbA Phe-255-Val mutation
that conferred resistance to hexazinone in R. acetosella (Li et al.
2014) is different from the one we report, indicating that a range
of mutations can confer resistance to hexazinone and that residue
255 plays a key role in the binding of the herbicide to the D1
protein.

Molecular docking (Figure 3) results indicate a higher affinity of
hexazinone to the wild-type D1 protein (—6.45 kcal mol™!) than for
the mutated form (—6.22 kcal mol™) (Table 2), indicating
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Table 1. Regression parameters of a four-parameter logistic dose-response equation explaining the relationship between herbicide dose (g ai ha™') and Festuca

filiformis dry weight at 21 d after treatment (DAT) with hexazinone or terbacil.?

Herbicide F. filiformis biotype Slope Lower limit Upper limit Resistance index
b (SE) C (SE) D (SE) GRs (SE)
Hexazinone Wild type 2.78 (0.37) 0.0062 (0.0008) 0.062 (0.002) 95.12 (6.48) an
Mutant 1.18 (0.35) 0.0123 (0.0046) 0.060 (0.002) 582.13 (109.24) :
Terbacil Wild type 4.41 (5.69) 0.0088 (0.0027) 0.067 (0.002) 195.87 (64.26)
Mutant 2.16 (0.39) 0.0044 (0.0024) 0.056 (0.002) 314.17 (39.78) 16

2The equation was of the form Y = C + {(D — C)/[1 + (x/GRso)b]}, where C is the lower asymptote, D is the upper asymptote, b is the slope of the line at GRso, and GRs is the herbicide dose

generating a 50% reduction in dry biomass (Seefeldt et al. 1995).
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Figure 1. Effect of hexazinone (top) and terbacil (bottom) dose on dry biomass of suspected resistant (red) and susceptible (blue) Festuca filiformis biotypes. Lines are the
predicted dry biomass obtained from a log-logistic dose-response equation of the form Y = C + {(D — C)/[1 + (x/GRso)b]}, where C is the lower asymptote, D is the upper
asymptote, b is the slope of the line at GRso, and GRs; is the herbicide dose generating a 50% reduction in dry biomass (Seefeldt et al. 1995) as calculated with the brc package in

R (Ritz et al. 2015).

hexazinone is more tightly bound to its ligand in the wild type and
can better compete with plastoquinone at the Qg binding pocket
(Lambreva et al. 2014). A smaller difference in affinity of 0.18 kcal
mol™! can be observed when terbacil is modeled as the ligand, in
favor of the susceptible biotype (Table 2). Comparing inhibition
constants revealed that 48% (27.38 vs. 18.56 pM) more hexazinone
is needed to control the resistant biotype, while a smaller increase,

https://doi.org/10.1017/wsc.2022.36 Published online by Cambridge University Press

36% (185.28 vs. 136.85 pM) more terbacil is needed to achieve sim-
ilar control. This lower difference in concentration values obtained
in docking simulations may explain the similar response of both
biotypes to terbacil and again indicates susceptibility of the F. fil-
iformis population from lowbush blueberry to this herbicide.

A competitive PCR genotyping assay was developed to aid with
the diagnosis of hexazinone resistance in F. filiformis. The fact that
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Figure 2. Partial Festuca filiformis psbA sequence at the Phe-255-Ile locus. Comparison between the susceptible allele (top sequence) and the resistant allele (bottom sequence).
The sequence TTT coding for phenylalanine is found in the wild-type sequence from F. filiformis, while the sequence ATT coding for isoleucine is found in the mutant allele

conferring hexazinone resistance in F. filiformis.

Figure 3. Protein surface visualization of in silico docking of the active ingredients hexazinone (A and B) and terbacil (C and D) to the target protein D1. Protein structure deduced
from wild-type allele (phenylalanine, A and C) and resistant allele (isoleucine, B and D). Residue 255 is indicated in pink. Protein deduced from the plastid psbA sequence

JX871939.1.

the gene coding for the targeted protein D1, psbA, is chloroplast
encoded and thus maternally inherited facilitates genotyping, as
no heterozygous state is expected. Individuals susceptible to hex-
azinone, when submitted to this assay, will show increased HEX
fluorescence, whereas a resistant biotype will have higher FAM
fluorescence (Figure 4). Because each dye is associated with a spe-
cific allele, an increase in the detection of FAM is indicative of the

https://doi.org/10.1017/wsc.2022.36 Published online by Cambridge University Press

presence of the resistance allele, and therefore lack of control with
hexazinone should be expected, and producers should take differ-
ent mitigating actions.

From a practical standpoint, identification of hexazinone-
resistant F. filiformis provides an important warning for a cropping
system that currently has no option for tillage or crop rotation as
part of a weed management program. Festuca filiformis seeds lack
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Table 2. Affinity and inhibition constant (K;) of the active ingredients hexazinone and terbacil to the target D1 protein with and without the Phe-255-Ile amino acid

substitution at 25 C as calculated with AutoDock.

Wild-type allele Resistant allele
Phenylalanine 255 Isoleucine 255 Difference
Active ingredient Affinity (inhibition constant)
kcal mol= (uM)
Hexazinone —6.45 (18.56) —6.22 (27.38) 0.23 (8.82)
Terbacil —5.27 (136.85) —5.09 (185.28) 0.18 (48.43)

2100
2000

1900

1800 -
Susceptible
1700

1600

1500

1400

End fluorescence for HEX

1300

1200

600 700 800 900

Negative control

1000

Resistant

1100 1200 1300 1400

End fluorescence for FAM

Figure 4. Results of the competitive allele-specific PCR (KASP) assay performed on DNA extracted from two negative controls (gray dots) and four susceptible (blue dots) and four
resistant (orange dots) individuals. Fluorescence was measured at the end of cycling on an AriaMx (Agilent, Santa Clara, CA, USA).

primary dormancy and readily germinate following dispersal in
late summer and fall (White 2018). Festuca filiformis seeds can
be killed by short-term exposure to temperatures of 200 and 300
C (White and Boyd 2016), thus the replacement of burning by flail
mowing for pruning (Eaton et al. 2004; Yarborough 2004) may be
contributing to increased seed survival and dispersal of resistant
biotypes. Furthermore, these seeds are common on lowbush blue-
berry harvesters (Boyd and White 2009), and movement of viable,
readily germinable seeds on equipment likely leads to the rapid
spread of F. filiformis that is commonly observed within and
between fields. While a need for improved equipment sanitation
procedures is acknowledged (Anonymous 2019), adoption of
machinery cleaning as routine practice remains limited, and the
spread of new herbicide-resistant biotypes can be expected unless
practices change.

In conclusion, an F. filiformis biotype collected from a lowbush
blueberry field was 6.1 times more tolerant to hexazinone than a
biotype collected from a roadside F. filiformis population. The
mutation conferring this resistance was a phenylalanine change
to isoleucine at position 255, similar to a mutation reported in a
hexazinone-resistant biotype of C. bursa-pastoris. Terbacil suscep-
tibility, however, was similar in both F. filiformis populations, indi-
cating resistance to hexazinone but not terbacil in the F. filiformis
population sampled from a lowbush blueberry field. Confirmation
of hexazinone resistance in this F. filiformis population may
explain recent fajlure of hexazinone to control this weed and pro-
vides the impetus for developing improved cultural practices
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around the reduction of human-mediated secondary weed seed
dispersal in lowbush blueberry production.
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