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Complete Families of Linearly
Non-degenerate Rational Curves

Matthew DelLand

Abstract. 'We prove that every complete family of linearly non-degenerate rational curves of degree
e > 21in P" has at most n — 1 moduli. For e = 2 we prove that such a family has at most # moduli. The
general method involves exhibiting a map from the base of a family X to the Grassmannian of e-planes
in P" and analyzing the resulting map on cohomology.

1 Introduction and Main Theorem
The goal of this note is to prove the following theorem.

Theorem 1.1 If X is the base of a complete family of linearly non-degenerate degree
e > 3 curves in P" with maximal moduli, then dim X < n — 1. If X is the base of such
a complete family of non-degenerate degree 2 curves in P", then dim X < n.

We first introduce the notation used above. Let Y be a smooth projective variety
over C. The Kontsevich moduli space My (Y, 3) parametrizes isomorphism classes
of pairs (C, f), where C is a proper, connected, at-worst-nodal, arithmetic genus 0
curve, and f is a stable morphism f: C — Y such that f,[C] = 8 € Hy(Y,Z). This
is a Deligne-Mumford stack whose coarse moduli space M o(Y, ) is projective. See,
for example, [FP].

For the remainder of this paper, we will restrict to the case of degree e curves in
Y = P". Since H,(P",7Z) = 7, we use the standard notation e = e - [line].

Let U C Mo o(IP", ) be the open substack parametrizing maps f: P! — P" that
are isomorphisms onto their image such that the span of each image is a ’°. Note that
no point in U admits automorphisms and that U is isomorphic to an open subscheme
in the appropriate Hilbert and Chow schemes. In particular, U is a quasi-projective
variety over C.

Definition 1.2 Suppose X and C are proper varieties and 7: € — X is a proper
surjective morphism. We will consider diagrams of the form:

f

¢ —— P

X.
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In the case where each fiber of 7 is a P!, and f, restricted to each fiber, corresponds
to a point in U, we will call the diagram a complete family of linearly non-degenerate
degree e curves. Such a family induces a map o: X — U. If the map is generically
finite, that is, if dim X = dim a/(X), we will call the diagram a family of maximal
moduli. We will refer to X as the base of the family. Note that C is the pullback of
the universal curve over U, and so we will refer to the map f as ev. The notation
(C, X, ev,m,n,e) will denote a complete family of linearly non-degenerate degree e
curves in P".

One can ask for the largest number of moduli of such a family, that is, the dimen-
sion of the base X of a family of maximal moduli. This is also the largest dimension
of a proper subvariety of U. A simple argument shows that the number of moduli of
a linearly non-degenerate family of degree e curves in IP° is in fact 0. The bend and
break lemma [DEB] gives a strict upper bound on the dimension of complete subva-
rieties X C My o(IP", e), namely 21 — 2. When the genus of the curves in question are
positive, M. Chang and Z. Ran have shown a similar dimension bound. They proved
that if A is a closed non-degenerate family of positive genus immersed curves in P”,
then dim A < n — 2 [CR]. Theorem[I.1]addresses the situation where the curves are
rational and required to be linearly non-degenerate.

1.1 Discussion

Question 1.3 What is the best possible result along the lines of Theorem [T} For
any value e > 1, there are certainly examples of complete, linearly non-degenerate
r-dimensional families in P"*¢. One way to construct such families is to take the Segre
embedding

(e,1)
pl x pr —— PN ,

where N = (e+ 1) - (r + 1) — 1. Project from a point p € PN not in any P spanned
by the image of P! x {g} for every point q € P". This gives an r-dimensional family
of non-degenerate degree e curves in PN 1. Continue projecting in this fashion. We
can always find a point p to project from as long as N > r + e. So we arrive at an
r-dimensional family of degree e curves in P"*°.

Question 1.4 Does there exist a complete family with maximal moduli of degree e
non-degenerate rational curves in P whose base has dimension greater than m — e?
Does there exist a complete 2 parameter family of smooth conics in P*? Does there
exist a complete 2 parameter family of smooth cubics in P*?

Question 1.5 Does there exist a similar bound if the condition of being linearly
non-degenerate is removed?

Question 1.6 If the variety swept out by these curves is required to be contained

in a smooth hypersurface, does the bound improve? In fact, this question was the
original motivation for this work.
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1.2 Outline of Proof

Let e > 2 and fix X to be the base of a complete family of linearly non-degenerate
degree e curves in IP” with maximal moduli. Assume that dim X > #n. Using results
from section 2, we will reduce the situation to the case where the universal curve C
over X is the projectivization of a rank 2 vector bundle € on X. The situation will
then be further reduced to the case where we have the following maps.

(1.1) C=PE) — > pn

o

X — > Gr(e+1,n+1)

Here ¢ is the generically finite map that associates with each map the e-plane it spans.
Using the universal curve €, we will form the following commutative diagram.

v
(1.2) P(E) —— FI(1,...,e+1;n+1)

A

X — Gr(e+1,n+1)

The map 7 associates with point of the universal curve (that is, a map f: P! — P"
and a marked point p € P!), the sequence of osculating k-planes to f(IP!) at f(p).
The map between the flag variety and the Grassmannian is the obvious projection.

In Section 3, we will construct an ample line bundle £ on FI(1,...,e+ 1;n+ 1)
and give a cohomological argument to show that ¢;(£)"*! pulls back to 0 by +. This
will allow us to conclude the proof. In the case e = 2, a different computation is
needed, but similar ideas apply.

Notation 1.7 Fix the ambient P”. We will denote by Fl(ay,...,ai;n + 1) with
a, < a; < --- < ay the flag variety parametrizing vector quotient spaces C"*! —
Ay — Ay—1 — --- — A; (all arrows surjective) such that dim(A4;) = ;. In the
special case Fl(a; n+ 1) we will write Gr(a, n+ 1), the Grassmannian of a dimensional
quotients of C"*!. We will follow the convention of [EGAII] and denote the set of
hyperplanes in the fibers of € by P(&).

2 Reductions

We first prove some general lemmas. In the following section we will apply these to
the case of a complete family of linearly non-degenerate degree e curves.
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Proposition 2.1 Suppose that w: C — X is a proper surjective morphism of com-
plete varieties where each fiber of 7 is abstractly isomorphic to PL. Then there exists a
surjective, generically finite map f: X' — X such that in the fiber square

f/

e —a

iﬂ/f |-

X/HX,

7' realizes C' as the projectivization of a rank 2 vector bundle € on X'. That is,
' =P().

Proof Leti: v — X denote the inclusion of the generic point into X. Let C, be the
generic fiber. That is, there is a fibered square

C, ——

|

_—

™

N

Let y be a closed point of €, and let X’ = ¥ in C. Note that X’ is irreducible and
proper, and that 7(X’) = X. The restricted map f = 7|x/: X’ — X is proper and
has only one point in the generic fiber, so is generically finite.

Consider then, the fibered square that defines C’:

f/

¢ —2C

A

X — X

Note that X’ maps to € by construction, so (by the universal property of fiber
products) there is a section of 7/. That is, there is a map o: X’ — €’ such that
7w’ o o = idy,. The existence of the section will allow us to conclude that €’ = P(€)
by a standard argument. For example, the argument used in [HAR, V.2 Proposition
2.2] applies word for word. ]

In the case where a projective bundle over X admits a map to P, we are able
to adjust the bundle (using another finite base change) to control the pullback of
Opn (1).

Proposition 2.2 Suppose that € is a rank 2 vector bundle on a variety X, and let
m: P(E) — X be the natural map. Suppose in addition that P(E) admits a map to P"
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that is degree e on each fiber. Then there exists a finite, surjective map f: X' — X such
that in the fiber product diagram

ev

f
P(Ex) P(E) P

l f l

X — X

we have that wlev'*O(1) = Sym°(Ex-), whereev' = evo f'.

Proof First we remark that ev*O(1) is a line bundle that is degree e on each fiber
of m. Thus ev*O(1) = O(e) ® 7*(N) for some line bundle N on X. This follows by
the description of the Picard group of a projective bundle [HAR]. Then m,.ev*O(1) =
Sym*(€) ® N. If there is a line bundle £ on X such that £¢ ~ N, then it is an easy
exercise to show that Sym°(€) ® N ~ Sym*°(€ ® L), and it is well known ([HAR])
that P(€) ~ P(E ® L). Finally, [BG, Lemma 2.1] implies that there exists a finite
surjective map 7: X’ — X and a line bundle £ on X’ such that £L&¢ ~ 7*N. ]

3 Proof

Before looking at the general case, we first prove a stronger (though well-known)
result than the main theorem would imply when n = e.

Proposition 3.1 Ifn = e, and (C, X, ev,m, n,n) is a family of maximal moduli as
in Definition then dim X = 0. That is, there is no complete curve contained in
U c M070(]P)n, 1’1)

Proof The space of rational normal curves in projective space is well known to be
PGL,,;/PGL,. By Matsushima’s criterion, the quotient of a reductive affine group
scheme by a reductive subgroup is affine [B]. As no affine variety contains a positive
dimensional complete subvariety, the proposition follows. Note that there has been
recent success in determining the effective cone of this moduli space (see [CHS]). B

We are now ready to prove the main theorem.

Proof of Theorem Fix (C, X, ev, m, n, e) to be a family of maximal moduli as in
Definition [L2lwith 2 < e < n. By way of contradiction, assume that dimX > n.
By taking an irreducible proper subvariety of X and restricting the family, we may
assume that dim X = n.

For any point x € X, denote by ¢(x) the linear e-plane spanned by the image of
the map corresponding to x. That is, ¢(x) = Span(ev(w~'(x)). The map ¢: X —
Gr(e + 1,n + 1) is well defined because each curve corresponding to a point in X is
linearly non-degenerate. This morphism factors through a:: X — U (notation as in
Definition[L.2]), and so is generically finite by Proposition[3.11
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Applying Proposition [Z.I] and then Proposition we may assume that there is
a generically finite, surjective map f: X’ — X such that we have a fiber product
diagram

PE) —> @ — pr

I, b

X — X

where € is a rank two vector bundle on X' and 7/(f’ o ev)*O(1) = Sym®(€). The
collection (P(€),X’, f'oev, 7', n, e) is still a family of linearly non-degenerate degree
e curves with maximal moduli, and dim X’ = n. The composed map f o ¢ is a
generically finite map from X’ to the Grassmannian. To simplify notation, we rename
this new family (P(€), X, ev, 7, n, e).

We construct the universal section. Let Y = P(€) and consider the fiber product
diagram

P(Ey) —— P(E)

Y —— X.

We have a natural section o: Y — IP(Ey) given by the diagonal map. This section
corresponds to a surjection &y — L, where L = 0*Op(e,)(1). Let L; = L, and let
L, be the line bundle such that

0—-L, — & — Ly —0.
This sequence induces a filtration on Sym‘(&):
Sym‘(€y) =F°DF D FFOF™" =0

such that F? /FP*! ~ Lg & [fi_P ([HAR, IL.5]). Note that Y corresponds to curves
parametrized by X and a point on that curve. We have a natural map from Y —
Gr(e + 1,1 + 1) by composition, and the data of the F?s induce a map from y: Y —
FI(1,...,e+1;n+1). Informally, the information of “the point” on the curve induces
a linear filtration of the ¢ spanned by the curve. The linear spaces in between the
point and the entire IP° are the osculating k-planes, k = 1, ..., e. We can see this by
working locally where the map is defined by t — (1,¢,¢%,...,¢°0,...,0). All the
maps in diagrams (L)) and (L2)) have been constructed.

On FI(1,...,e+ 1;n+ 1) we have the natural sequence of universal quotient bun-
dles.

O™ —Quy — - — Q) — 0.

Recall the previously defined map: v: P(€) — Fl(1,...,e+ 131+ 1). The proof
hinges on the following construction.
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Proposition 3.2 There exists an ample line bundle on the flag variety FI(1,... e+ 1;
n + 1) whose first Chern class D € H*(Fl, Z) satisfies v*(D"*) = 0.

Assuming the proposition for the moment, we always have ([FUL]) that pdimY
~v(Y) > 0, because « is generically finite and D is ample. Since dimY = n + 1, we
can rewrite this as (D]y))""' > 0. Applying Lemma[3.3] we see that v*(D"*!) > 0,
which contradicts Proposition 3.2} Hence we can conclude that dimP(€) < n + 1
and so dim X < n. The theorem follows. ]

It remains to prove Proposition[3.2]

Proof Forp =0,...,¢letx, = c;(ker Q,;; — Q,). By construction of -y we have
Y*xp = c1(Fp/Fpi1) = pai(L7) + (e — plar(Ly).
Consider the projection map pr: FI(1,...,mn+1) — FI(1,...,e+1;n+1) and

the injective map it induces on cohomology (always with rational coefficients)
pr*: H*(FI(1,...,e+ Ln+ 1)) —» H*(FI(1,...,mn+ 1)).

It is well known that H*(FI(1,...,mn+ 1)) = Q[x,. .., x,]/J, where J is the ideal
of symmetric polynomials in the x;s [FUL]. By a slight abuse of notation, denote
pr*(x;) again by x;.

In the cohomology ring of full flags, we claim that xl’;“ = 0 for each p. To see this,
note that in this ring, the identity

T = (T —x1) - (T—x) (T — x)

holds, since on the right-hand side each coefficient of TX with k < n+1 is a symmetric
polynomial. Taking T = x, proves the identity. Then since pr* is injective, we must

also have that x;*' = 0 in the cohomology ring of partial flags, so

(pe1(L7) + (e — p)ey(L1))™ =0foreach p = 0,... e

To simplify notation, in what follows we write z = ¢;(£;) and y = ¢;(L;). For
relevant facts about the cohomology ring of the flag variety, see Appendix[Al For any
D = M\gxp + - - - + Aex, we have

YD) =7 Mo X0+ A x) = D Ay (py + (e — p)2)
p=0

=AM +2X0 430+ ted )yt e+ (e— DA+ + A1)z
Let A be the coefficient of y, and let B be the coefficient of z. If we can choose

Aoy - - -5 Ae 80 that v*(D) = Ay + Bz is a ) multiple of one of the (py + (e — p)z),
then for some rational number m we have

Y (D" = (m(py + (e — p)2))"" = 0.

https://doi.org/10.4153/CMB-2011-021-2 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2011-021-2

Families of Rational Curves 437

It remains to show that D can be chosen with these properties. See Appendix[Alfor a
description of the ample cone of the flag variety. To arrange this choice of D, set

1 1 1
N = e = 1

PRl
e—1

Then, obviously, we have that B = e. We will prove that A, can be chosen to satisfy
Ae>Ae—1 =1 and %:e—l.
This is equivalent to
i

eAe = e(e—1) *Elele_i’ Ae=(e—1) 72":116(6—1.)

Using partial fractions and simplifying, we get

1

e—i

_ e—1
Ae=e— X,

It is then easy to show this is strictly larger than 1 as long as e > 3. Therefore, D
can be chosen with the required positivity property, and the proof is complete when
e > 3. A simple calculation shows this method cannot work when e = 2. To show a
slightly weaker result in that case, we need another method. ]

We include the statement of the projection formula used in the proof above.

Lemma 3.3 ([DEB]) Letmw:V — W be a surjective morphism between proper vari-
eties. Let Dy, ..., D, be Cartier divisors on W with r > dim(V'). Then the projection

formula holds, i.e.,
7*Dy - - 7* D, = deg(7)(D, - - - D,).

4 The Proof for Conics

In this section we prove the dimension bound for complete families of smooth con-
ics with maximal moduli. Note that for conics (and cubics), being linearly non-
degenerate is equivalent to having smooth images.

Theorem 4.1 If (C, X, ev,m,2,n) is a family of linearly non-degenerate conics in P
with maximal moduli, then dim X < n.

Proof Exactly as in the case e > 2, we apply Proposition[2.Iland then Proposition[2.2]
to reduce to the case where the family has the form

C=PE) —s pn

lw

X
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where € is a rank two vector bundle on X and m,ev*O(1) = Sym?*(€). As in the
higher degree case, we have a generically finite map ¢: X — Gr(3,n + 1). On the
Grassmannian Gr(3, n + 1), we have the tautological exact sequence

0—-8—->0—9—0,

where Q is the tautological rank 3 quotient bundle. Applying [BG, Lemma 2.1]
again, and pulling back the family one more time, we may further assume that
¢*(Q) = Sym’(&).

Now we proceed with a Chern class computation. First, we compute the Chern
polynomial

¢ (Sym?(€)) = 1+ 3¢ (E)t + (2¢1(E)* + 462 (E))t* + 4c1 (E)er (E)F.

Ifwelet A = 3¢1(€), B = 2c1(€)? +4c,(€),and C = 4¢,(€)cy(€), an easy compu-
tation shows that
9AB — 27C — 2A° = 0.

Write A = ¢1(Q), B = »(Q), and C = ¢3(Q). These classes pull back under ¢ in the
following way:

A =ca(Sym’(€)) = a(6™(Q) = ¢ (c1(Q) = 6" (A).

Here, we have used the properties of ¢ and the functoriality of Chern classes.
Similarly, B = ¢*(B) and C = ¢*(C). By the functoriality of Chern classes and the
above relationships, we have

$*(9AB — 27C — 2A4%) = 0.

Let§ = 9AB — 27C — 2A3. It becomes convenient to rewrite ¢ in terms of the Chern
roots of Q. If a, arp, 3 are the Chern roots of Q, then we calculate

A=o;+or+ a3
B=oajap +ajas + anas
C= Q1003

(o + an — 203)(y + a3 — 20) () + a3 — 2¢0y)

Now let f = ¢.[X] € H*(Gr(3,n + 1),Q)), where [X] is the fundamental class of
X. The projection formula then gives £ - f = 0.

Since ¢;(Q) is positive, ¢;(¢*Q) is positive by Lemma[3.3] and we get the desired
bound on dim X by showing that ¢;(¢*Q)""! = 0. Since we have already shown that
¢*(€) = 0, it would suffice to show that ¢;(Q)"*! is divisible by & in H*(Gr(3,n+1)).
Instead, we show that this relationship holds in the cohomology ring of full flags and
argue that this is enough to conclude the proof.
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Claim. £ divides (o + oy + a3)" in H*(Fl, Q)), where Fl denotes the space of full
flags.

Consider the fiber square

X —— Gr(3,n+1).

We have presentations for the cohomology rings

H*(Gr,Q) = Qlay, 2z, a3]/1,
H*(F17 (Ol) = (Ol[ala AR an+l]/(symm)a

where Symm is the ideal generated by the elementary symmetric functions, and the
injective map p* satisfies p* (o) = «; fori = 1,2, 3. In H*(FL, Q) we have

"' = (T—ay)-- (T — Q1)
as before. Evaluate the two sides of the equation at T = 44219 to find

062+Oé3—20él)(0£1+043—20(2)(0114'0(2—20(3

3 3 3
=¢-gla)

(o1 +ax +a3)™ = (

)g' (@)

for some polynomials ¢’ and g, which proves the claim. To finish the proof, note that
the fibers of p are projective varieties, that is, effective cycles, and so the same is true
of p’. By [FUL], we have

(P ¢* ()" = (") p*(car(Q)"™

The left-hand side of the equation gives an effective cycle on )?, in particular, a
non-zero cohomology class. On the right side, however, we get

(@)™ (cr( Q)" = (¢ (e + a2 + a3)"™ = ()" (€ - g(@) = (¢)"(p"E - g(e))
= (¢)p"¢ - (¢")"gla) = (p")" ¢"E - (¢))"g(e)
=0-(¢)"g(@) =0

This gives a contradiction, so we conclude that dim(X) < n. [ |
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A Appendix: Divisors on the Flag Variety

In this appendix we include some notes on the ample cone of the flag variety
F=FI(1,...,e+ 131+ 1). Let w; be the P! constructed by letting the i-th flag vary
while leaving the others constant. These e+1 lines freely generate the homology group
H,(F). They are also generators of the effective cone of curves. The e+1 Chern classes
xp = c(ker(Qp11 — Q,)) generate H?(F), and we check that the intersection matrix
(xi, wj) is given by

—
(e
o
(e

-1 1 0 0
o 0 ... 1
0o 0 ... -1 1

with I’s on the diagonal and —1’s on the lower diagonal. The ample cone of F is given
by combinations of the x;’s that evaluate positively, that is, by Q) divisors Agxg + - - - +
AeXe, Where 0 < Ap < Ay < - -+ < A,

In fact, it is well known that for varieties of the type F = G/B, the Picard group of
F is isomorphic to the character group of F, often denoted X(T'), where T is a maxi-
mal torus. Any character can be written as a linear combination of the fundamental
weights A\ = Y a;t;, and a character is called dominant if all a; > 0 and regular if
all a; are non-zero. The ample divisors correspond exactly to the dominant and reg-
ular characters (see [LG]). In our case, the full flag variety corresponds to G/B for
G = SL(n + 1). The simple roots correspond to s; = «; — a;y; for 0 < i < n.
Suppose L = Aoxp + - -+ + A\,x,, where the x; are as above. Then L corresponds
to the weight Agsp + - - - + A5, which is dominant if and only if L is ample, if and
onlyif 0 < A; < Ay < -+ < A,. The case of the partial flag variety then follows
immediately from this one.
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