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Complete Families of Linearly
Non-degenerate Rational Curves

Matthew DeLand

Abstract. We prove that every complete family of linearly non-degenerate rational curves of degree

e > 2 in Pn has at most n−1 moduli. For e = 2 we prove that such a family has at most n moduli. The

general method involves exhibiting a map from the base of a family X to the Grassmannian of e-planes

in Pn and analyzing the resulting map on cohomology.

1 Introduction and Main Theorem

The goal of this note is to prove the following theorem.

Theorem 1.1 If X is the base of a complete family of linearly non-degenerate degree

e ≥ 3 curves in Pn with maximal moduli, then dim X ≤ n − 1. If X is the base of such

a complete family of non-degenerate degree 2 curves in Pn, then dim X ≤ n.

We first introduce the notation used above. Let Y be a smooth projective variety

over C. The Kontsevich moduli space M0,0(Y, β) parametrizes isomorphism classes

of pairs (C, f ), where C is a proper, connected, at-worst-nodal, arithmetic genus 0

curve, and f is a stable morphism f : C → Y such that f∗[C] = β ∈ H2(Y, Z). This

is a Deligne–Mumford stack whose coarse moduli space M0,0(Y, β) is projective. See,

for example, [FP].

For the remainder of this paper, we will restrict to the case of degree e curves in

Y = Pn. Since H2(Pn, Z) = Z, we use the standard notation e = e · [line].

Let U ⊂ M0,0(Pn, e) be the open substack parametrizing maps f : P1 → Pn that

are isomorphisms onto their image such that the span of each image is a Pe. Note that

no point in U admits automorphisms and that U is isomorphic to an open subscheme

in the appropriate Hilbert and Chow schemes. In particular, U is a quasi-projective

variety over C.

Definition 1.2 Suppose X and C are proper varieties and π : C → X is a proper

surjective morphism. We will consider diagrams of the form:

C

f
//

π

²²

Pn

X.
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In the case where each fiber of π is a P1, and f , restricted to each fiber, corresponds

to a point in U, we will call the diagram a complete family of linearly non-degenerate

degree e curves. Such a family induces a map α : X → U. If the map is generically

finite, that is, if dim X = dim α(X), we will call the diagram a family of maximal

moduli. We will refer to X as the base of the family. Note that C is the pullback of

the universal curve over U, and so we will refer to the map f as ev. The notation

(C, X, ev, π, n, e) will denote a complete family of linearly non-degenerate degree e

curves in Pn.

One can ask for the largest number of moduli of such a family, that is, the dimen-

sion of the base X of a family of maximal moduli. This is also the largest dimension

of a proper subvariety of U. A simple argument shows that the number of moduli of

a linearly non-degenerate family of degree e curves in Pe is in fact 0. The bend and

break lemma [DEB] gives a strict upper bound on the dimension of complete subva-

rieties X ⊂ M0,0(Pn, e), namely 2n− 2. When the genus of the curves in question are

positive, M. Chang and Z. Ran have shown a similar dimension bound. They proved

that if Λ is a closed non-degenerate family of positive genus immersed curves in Pn,

then dim Λ ≤ n − 2 [CR]. Theorem 1.1 addresses the situation where the curves are

rational and required to be linearly non-degenerate.

1.1 Discussion

Question 1.3 What is the best possible result along the lines of Theorem 1.1? For

any value e > 1, there are certainly examples of complete, linearly non-degenerate

r-dimensional families in Pr+e. One way to construct such families is to take the Segre

embedding

P1 × Pr
(e,1)

// PN ,

where N = (e + 1) · (r + 1) − 1. Project from a point p ∈ PN not in any Pe spanned

by the image of P1 × {q} for every point q ∈ Pr. This gives an r-dimensional family

of non-degenerate degree e curves in PN−1. Continue projecting in this fashion. We

can always find a point p to project from as long as N > r + e. So we arrive at an

r-dimensional family of degree e curves in Pr+e.

Question 1.4 Does there exist a complete family with maximal moduli of degree e

non-degenerate rational curves in Pm whose base has dimension greater than m − e?

Does there exist a complete 2 parameter family of smooth conics in P3? Does there

exist a complete 2 parameter family of smooth cubics in P4?

Question 1.5 Does there exist a similar bound if the condition of being linearly

non-degenerate is removed?

Question 1.6 If the variety swept out by these curves is required to be contained

in a smooth hypersurface, does the bound improve? In fact, this question was the

original motivation for this work.
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1.2 Outline of Proof

Let e > 2 and fix X to be the base of a complete family of linearly non-degenerate

degree e curves in Pn with maximal moduli. Assume that dim X ≥ n. Using results

from section 2, we will reduce the situation to the case where the universal curve C

over X is the projectivization of a rank 2 vector bundle E on X. The situation will

then be further reduced to the case where we have the following maps.

(1.1) C = P(E)
ev

//

π

²²

Pn

X
φ

// Gr(e + 1, n + 1)

Here φ is the generically finite map that associates with each map the e-plane it spans.

Using the universal curve C, we will form the following commutative diagram.

(1.2) P(E)
γ

//

π

²²

Fl(1, . . . , e + 1; n + 1)

²²

X
φ

// Gr(e + 1, n + 1)

The map γ associates with point of the universal curve (that is, a map f : P1 → Pn

and a marked point p ∈ P1), the sequence of osculating k-planes to f (P1) at f (p).

The map between the flag variety and the Grassmannian is the obvious projection.

In Section 3, we will construct an ample line bundle L on Fl(1, . . . , e + 1; n + 1)

and give a cohomological argument to show that c1(L)n+1 pulls back to 0 by γ. This

will allow us to conclude the proof. In the case e = 2, a different computation is

needed, but similar ideas apply.

Notation 1.7 Fix the ambient Pn. We will denote by Fl(a1, . . . , ak; n + 1) with

a1 < a2 < · · · < ak the flag variety parametrizing vector quotient spaces Cn+1 →
Ak → Ak−1 → · · · → A1 (all arrows surjective) such that dim(Ai) = ai . In the

special case Fl(a; n + 1) we will write Gr(a, n + 1), the Grassmannian of a dimensional

quotients of Cn+1. We will follow the convention of [EGAII] and denote the set of

hyperplanes in the fibers of E by P(E).

2 Reductions

We first prove some general lemmas. In the following section we will apply these to

the case of a complete family of linearly non-degenerate degree e curves.
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Proposition 2.1 Suppose that π : C → X is a proper surjective morphism of com-

plete varieties where each fiber of π is abstractly isomorphic to P1. Then there exists a

surjective, generically finite map f : X ′ → X such that in the fiber square

C′

π ′

²²

f ′

// C

π

²²

X ′

f
// X,

π ′ realizes C ′ as the projectivization of a rank 2 vector bundle E on X ′. That is,

C ′
= P(E).

Proof Let i : ν → X denote the inclusion of the generic point into X. Let Cν be the

generic fiber. That is, there is a fibered square

Cν
//

²²

C

π

²²

ν
i

// X.

Let y be a closed point of Cν , and let X ′
= y in C. Note that X ′ is irreducible and

proper, and that π(X ′) = X. The restricted map f = π|X ′ : X ′ → X is proper and

has only one point in the generic fiber, so is generically finite.

Consider then, the fibered square that defines C ′:

C′

π ′

²²

f ′

// C

π

²²

X ′

f
// X

Note that X ′ maps to C by construction, so (by the universal property of fiber

products) there is a section of π ′. That is, there is a map σ : X ′ → C ′ such that

π ′ ◦ σ = idX ′ . The existence of the section will allow us to conclude that C′ ∼= P(E)

by a standard argument. For example, the argument used in [HAR, V.2 Proposition

2.2] applies word for word.

In the case where a projective bundle over X admits a map to Pn, we are able

to adjust the bundle (using another finite base change) to control the pullback of

OPn (1).

Proposition 2.2 Suppose that E is a rank 2 vector bundle on a variety X, and let

π : P(E) → X be the natural map. Suppose in addition that P(E) admits a map to Pn
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that is degree e on each fiber. Then there exists a finite, surjective map f : X ′ → X such

that in the fiber product diagram

P(EX ′)

π ′

²²

f ′

// P(E)
ev

//

π

²²

Pn

X ′

f
// X

we have that π ′
∗ev ′∗O(1) = Syme(EX ′), where ev ′

= ev ◦ f ′.

Proof First we remark that ev∗O(1) is a line bundle that is degree e on each fiber

of π. Thus ev∗O(1) = O(e) ⊗ π∗(N) for some line bundle N on X. This follows by

the description of the Picard group of a projective bundle [HAR]. Then π∗ev∗O(1) =

Syme(E) ⊗ N. If there is a line bundle L on X such that Le ≃ N, then it is an easy

exercise to show that Syme(E) ⊗ N ≃ Syme(E ⊗ L), and it is well known ([HAR])

that P(E) ≃ P(E ⊗ L). Finally, [BG, Lemma 2.1] implies that there exists a finite

surjective map τ : X ′ → X and a line bundle L on X ′ such that L⊗e ≃ τ∗N.

3 Proof

Before looking at the general case, we first prove a stronger (though well-known)

result than the main theorem would imply when n = e.

Proposition 3.1 If n = e, and (C, X, ev, π, n, n) is a family of maximal moduli as

in Definition 1.2, then dim X = 0. That is, there is no complete curve contained in

U ⊂ M0,0(Pn, n).

Proof The space of rational normal curves in projective space is well known to be

PGLn+1/PGL2. By Matsushima’s criterion, the quotient of a reductive affine group

scheme by a reductive subgroup is affine [B]. As no affine variety contains a positive

dimensional complete subvariety, the proposition follows. Note that there has been

recent success in determining the effective cone of this moduli space (see [CHS]).

We are now ready to prove the main theorem.

Proof of Theorem 1.1 Fix (C, X, ev, π, n, e) to be a family of maximal moduli as in

Definition 1.2 with 2 < e < n. By way of contradiction, assume that dim X ≥ n.

By taking an irreducible proper subvariety of X and restricting the family, we may

assume that dim X = n.

For any point x ∈ X, denote by φ(x) the linear e-plane spanned by the image of

the map corresponding to x. That is, φ(x) = Span(ev(π−1(x)). The map φ : X →
Gr(e + 1, n + 1) is well defined because each curve corresponding to a point in X is

linearly non-degenerate. This morphism factors through α : X → U (notation as in

Definition 1.2), and so is generically finite by Proposition 3.1.
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Applying Proposition 2.1 and then Proposition 2.2, we may assume that there is

a generically finite, surjective map f : X ′ → X such that we have a fiber product

diagram

P(E)

π ′

²²

f ′

// C

ev
//

π

²²

Pn

X ′

f
// X

where E is a rank two vector bundle on X ′ and π ′
∗( f ′ ◦ ev)∗O(1) = Syme(E). The

collection (P(E), X ′, f ′◦ev, π ′, n, e) is still a family of linearly non-degenerate degree

e curves with maximal moduli, and dim X ′
= n. The composed map f ◦ φ is a

generically finite map from X ′ to the Grassmannian. To simplify notation, we rename

this new family (P(E), X, ev, π, n, e).

We construct the universal section. Let Y = P(E) and consider the fiber product

diagram

P(EY)

π ′

²²

// P(E)

π

²²

Y // X.

We have a natural section σ : Y → P(EY) given by the diagonal map. This section

corresponds to a surjection EY → L, where L = σ∗OP(EY)(1). Let L1 = L, and let

L2 be the line bundle such that

0 → L2 → EY → L1 → 0.

This sequence induces a filtration on Syme(E):

Syme(EY) = F0 ⊃ F1 ⊃ · · · Fe ⊃ Fe+1
= 0

such that Fp/Fp+1 ≃ L
p
2 ⊗ L

e−p
1 ([HAR, II.5]). Note that Y corresponds to curves

parametrized by X and a point on that curve. We have a natural map from Y →
Gr(e + 1, n + 1) by composition, and the data of the Fps induce a map from γ : Y →
Fl(1, . . . , e+1; n+1). Informally, the information of “the point” on the curve induces

a linear filtration of the Pe spanned by the curve. The linear spaces in between the

point and the entire Pe are the osculating k-planes, k = 1, . . . , e. We can see this by

working locally where the map is defined by t → (1, t, t2, . . . , te, 0, . . . , 0). All the

maps in diagrams (1.1) and (1.2) have been constructed.

On Fl(1, . . . , e + 1; n + 1) we have the natural sequence of universal quotient bun-

dles.

O
n+1 → Qe+1 → · · · → Q1 → 0.

Recall the previously defined map: γ : P(E) → Fl(1, . . . , e + 1; n + 1). The proof

hinges on the following construction.
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Proposition 3.2 There exists an ample line bundle on the flag variety Fl(1, . . . , e + 1;

n + 1) whose first Chern class D ∈ H2(Fl, Z) satisfies γ∗(Dn+1) = 0.

Assuming the proposition for the moment, we always have ([FUL]) that Ddim Y ·
γ(Y ) > 0, because γ is generically finite and D is ample. Since dim Y = n + 1, we

can rewrite this as (D|γ(Y ))
n+1 > 0. Applying Lemma 3.3, we see that γ∗(Dn+1) > 0,

which contradicts Proposition 3.2. Hence we can conclude that dim P(E) < n + 1

and so dim X < n. The theorem follows.

It remains to prove Proposition 3.2.

Proof For p = 0, . . . , e, let xp = c1(ker Qp+1 → Qp). By construction of γ we have

γ∗xp = c1(Fp/Fp+1) = pc1(L2) + (e − p)c1(L1).

Consider the projection map pr : Fl(1, . . . , n; n + 1) → Fl(1, . . . , e + 1; n + 1) and

the injective map it induces on cohomology (always with rational coefficients)

pr∗ : H∗(Fl(1, . . . , e + 1; n + 1)) → H∗(Fl(1, . . . , n; n + 1)).

It is well known that H∗(Fl(1, . . . , n; n + 1)) = Q[x0, . . . , xn]/I, where I is the ideal

of symmetric polynomials in the xis [FUL]. By a slight abuse of notation, denote

pr∗(xi) again by xi .

In the cohomology ring of full flags, we claim that xn+1
p = 0 for each p. To see this,

note that in this ring, the identity

Tn+1
= (T − x1) · (T − x2) · · · (T − xn)

holds, since on the right-hand side each coefficient of Tk with k < n+1 is a symmetric

polynomial. Taking T = xp proves the identity. Then since pr∗ is injective, we must

also have that xn+1
p = 0 in the cohomology ring of partial flags, so

(pc1(L2) + (e − p)c1(L1))n+1
= 0 for each p = 0, . . . , e.

To simplify notation, in what follows we write z = c1(L1) and y = c1(L2). For

relevant facts about the cohomology ring of the flag variety, see Appendix A. For any

D = λ0x0 + · · · + λexe we have

γ∗(D) = γ∗(λ0 · x0 + · · · + λe · xe) =

e∑

p=0

λp · (py + (e − p)z)

= (λ1 + 2λ2 + 3λ3 + · · · + eλe)y + (eλ0 + (e − 1)λ1 + · · · + λe−1)z

Let A be the coefficient of y, and let B be the coefficient of z. If we can choose

λ0, . . . , λe so that γ∗(D) = Ay + Bz is a Q multiple of one of the (py + (e − p)z),

then for some rational number m we have

γ∗(Dn+1) = (m(py + (e − p)z))n+1
= 0.
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It remains to show that D can be chosen with these properties. See Appendix A for a

description of the ample cone of the flag variety. To arrange this choice of D, set

λ0 =
1

e
, λ1 =

1

e − 1
, . . . , λi =

1

e − i
, . . . , λe−1 = 1.

Then, obviously, we have that B = e. We will prove that λe can be chosen to satisfy

λe > λe−1 = 1 and A
B

= e − 1.

This is equivalent to

eλe = e(e − 1) − Σ
e−1
i=1

i

e − i
, λe = (e − 1) − Σ

e−1
i=1

i

e(e − i)

Using partial fractions and simplifying, we get

λe = e − Σ
e−1
i=0

1

e − i
.

It is then easy to show this is strictly larger than 1 as long as e ≥ 3. Therefore, D

can be chosen with the required positivity property, and the proof is complete when

e ≥ 3. A simple calculation shows this method cannot work when e = 2. To show a

slightly weaker result in that case, we need another method.

We include the statement of the projection formula used in the proof above.

Lemma 3.3 ([DEB]) Let π : V → W be a surjective morphism between proper vari-

eties. Let D1, . . . , Dr be Cartier divisors on W with r ≥ dim(V ). Then the projection

formula holds, i.e.,

π∗D1 · · ·π
∗Dr = deg(π)(D1 · · ·Dr).

4 The Proof for Conics

In this section we prove the dimension bound for complete families of smooth con-

ics with maximal moduli. Note that for conics (and cubics), being linearly non-

degenerate is equivalent to having smooth images.

Theorem 4.1 If (C, X, ev, π, 2, n) is a family of linearly non-degenerate conics in Pn

with maximal moduli, then dim X ≤ n.

Proof Exactly as in the case e > 2, we apply Proposition 2.1 and then Proposition 2.2

to reduce to the case where the family has the form

C = P(E)

π

²²

ev
// Pn

X
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where E is a rank two vector bundle on X and π∗ev∗O(1) = Sym2(E). As in the

higher degree case, we have a generically finite map φ : X → Gr(3, n + 1). On the

Grassmannian Gr(3, n + 1), we have the tautological exact sequence

0 → S → O → Q → 0,

where Q is the tautological rank 3 quotient bundle. Applying [BG, Lemma 2.1]

again, and pulling back the family one more time, we may further assume that

φ∗(Q) = Sym2(E).

Now we proceed with a Chern class computation. First, we compute the Chern

polynomial

ct (Sym2(E)) = 1 + 3c1(E)t + (2c1(E)2 + 4c2(E))t2 + 4c1(E)c2(E)t3.

If we let A = 3c1(E), B = 2c1(E)2 + 4c2(E), and C = 4c1(E)c2(E), an easy compu-

tation shows that

9AB − 27C − 2A3
= 0.

Write Ã = c1(Q), B̃ = c2(Q), and C̃ = c3(Q). These classes pull back under φ in the

following way:

A = c1(Sym2(E)) = c1(φ∗(Q)) = φ∗(c1(Q)) = φ∗(Ã).

Here, we have used the properties of φ and the functoriality of Chern classes.

Similarly, B = φ∗(B̃) and C = φ∗(C̃). By the functoriality of Chern classes and the

above relationships, we have

φ∗(9ÃB̃ − 27C̃ − 2Ã3) = 0.

Let ξ = 9ÃB̃ − 27C̃ − 2Ã3. It becomes convenient to rewrite ξ in terms of the Chern

roots of Q. If α1, α2, α3 are the Chern roots of Q, then we calculate

Ã = α1 + α2 + α3

B̃ = α1α2 + α1α3 + α2α3

C̃ = α1α2α3

ξ = (α1 + α2 − 2α3)(α2 + α3 − 2α1)(α1 + α3 − 2α2)

Now let f = φ∗[X] ∈ H∗(Gr(3, n + 1), Q), where [X] is the fundamental class of

X. The projection formula then gives ξ · f = 0.

Since c1(Q) is positive, c1(φ∗Q) is positive by Lemma 3.3, and we get the desired

bound on dim X by showing that c1(φ∗Q)n+1
= 0. Since we have already shown that

φ∗(ξ) = 0, it would suffice to show that c1(Q)n+1 is divisible by ξ in H∗(Gr(3, n + 1)).

Instead, we show that this relationship holds in the cohomology ring of full flags and

argue that this is enough to conclude the proof.
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Claim. ξ divides (α1 + α2 + α3)n+1 in H∗(Fl, Q), where Fl denotes the space of full

flags.

Consider the fiber square

X̃

p ′

²²

φ ′

// Fl

p

²²

X
φ

// Gr(3, n + 1).

We have presentations for the cohomology rings

H∗(Gr, Q) = Q[α1, α2, α3]/I,

H∗(Fl, Q) = Q[α1, . . . , αn+1]/(Symm),

where Symm is the ideal generated by the elementary symmetric functions, and the

injective map p∗ satisfies p∗(αi) = αi for i = 1, 2, 3. In H∗(Fl, Q) we have

Tn+1
= (T − α1) · · · (T − αn+1),

as before. Evaluate the two sides of the equation at T =
α1+α2+α3

3
to find

(α1 + α2 + α3)n+1
= (

α2 + α3 − 2α1

3
)(

α1 + α3 − 2α2

3
)(

α1 + α2 − 2α3

3
)g ′(α)

= ξ · g(α)

for some polynomials g ′ and g, which proves the claim. To finish the proof, note that

the fibers of p are projective varieties, that is, effective cycles, and so the same is true

of p ′. By [FUL], we have

(p ′)∗φ∗(c1(Q))n+1
= (φ ′)∗p∗(c1(Q))n+1

The left-hand side of the equation gives an effective cycle on X̃, in particular, a

non-zero cohomology class. On the right side, however, we get

(φ ′)∗p∗(c1(Q))n+1
= (φ ′)∗(α1 + α2 + α3)n+1

= (φ ′)∗(ξ · g(α)) = (φ ′)∗(p∗ξ · g(α))

= (φ ′)∗p∗ξ · (φ ′)∗g(α) = (p ′)∗φ∗ξ · (φ ′)∗g(α)

= 0 · (φ ′)∗g(α) = 0

This gives a contradiction, so we conclude that dim(X) ≤ n.
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A Appendix: Divisors on the Flag Variety

In this appendix we include some notes on the ample cone of the flag variety

F = Fl(1, . . . , e + 1; n + 1). Let wi be the P1 constructed by letting the i-th flag vary

while leaving the others constant. These e+1 lines freely generate the homology group

H2(F). They are also generators of the effective cone of curves. The e+1 Chern classes

xp = c1(ker(Qp+1 → Qp)) generate H2(F), and we check that the intersection matrix

〈xi , w j〉 is given by 


1 0 . . . 0 0

−1 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

0 0 . . . −1 1




with 1’s on the diagonal and −1’s on the lower diagonal. The ample cone of F is given

by combinations of the xi ’s that evaluate positively, that is, by Q divisors λ0x0 + · · · +

λexe, where 0 < λ1 < λ2 < · · · < λe.

In fact, it is well known that for varieties of the type F = G/B, the Picard group of

F is isomorphic to the character group of F, often denoted X(T), where T is a maxi-

mal torus. Any character can be written as a linear combination of the fundamental

weights λ =
∑

aiti , and a character is called dominant if all ai ≥ 0 and regular if

all ai are non-zero. The ample divisors correspond exactly to the dominant and reg-

ular characters (see [LG]). In our case, the full flag variety corresponds to G/B for

G = SL(n + 1). The simple roots correspond to si = αi − αi+1 for 0 ≤ i ≤ n.

Suppose L = λ0x0 + · · · + λnxn, where the xi are as above. Then L corresponds

to the weight λ0s0 + · · · + λnsn, which is dominant if and only if L is ample, if and

only if 0 < λ1 < λ2 < · · · < λn. The case of the partial flag variety then follows

immediately from this one.
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