GENERALIZED D. H. LEHMER PROBLEM OVER SHORT INTERVALS

PING XI
School of Science, Xi'an Jiaotong University, Xi'an 710049, P. R. China email: xprime@163.com

and YUAN YI
School of Science, Xi'an Jiaotong University, Xi'an 710049, P. R. China and Department of Mathematics, The University of Iowa, Iowa City, IA 52242-1419, USA
email: yuanyi@mail.xjtu.edu.cn
(Received 21 December 2009; accepted 1 July 2010; first published online 13 December 2010)

Abstract

Let $n \geqslant 2$ be a fixed positive integer, $q \geqslant 3$ and c, ℓ be integers with $(n c, q)=1$ and $\ell \mid n$. Suppose \mathcal{A} and \mathcal{B} consist of consecutive integers which are coprime to q. We define the cardinality of a set: $$
N(\mathcal{A}, \mathcal{B}, c, n, \ell ; q)=\#\{(a, b) \in \mathcal{A} \times \mathcal{B} \mid a b \equiv c(\bmod q),(a+b, n)=\ell\}
$$

The main purpose of this paper is to use the estimates of Gauss sums and Kloosterman sums to study the asymptotic properties of $N(\mathcal{A}, \mathcal{B}, c, n, \ell ; q)$, and to give an interesting asymptotic formula for it.

2010 Mathematics Subject Classification. Primary 11A07, 11N37; Secondary 11L05.

1. Introduction. Let $q \geqslant 3$ be an integer. For each integer a with $1 \leqslant a<$ $q,(a, q)=1$, there is a unique integer b with $1 \leqslant b<q$ such that $a b \equiv 1(\bmod q)$. Let $N(q)$ denote the number of solutions of the congruence equation $a b \equiv 1(\bmod q)$ with $1 \leqslant a, b<q, 2 \nmid a+b$. That is

$$
N(q)=\#\{(a, b) \in[1, q] \times[1, q] \mid a b \equiv 1(\bmod q), 2 \nmid a+b\},
$$

where $\# \mathcal{S}$ denotes the cardinality of the set \mathcal{S}. Thus, $N(q)$ denotes the number of integers $a, 1 \leqslant a<q,(a, q)=1$, such that a and its inverse $b(\bmod q)$ are of opposite parity.

For an odd prime p, D. H. Lehmer posed the problem to find $N(p)$ or at least to say something nontrivial about it (see Problem F12 of [2], p. 381). Wenpeng Zhang [8] has given an asymptotic estimate:

$$
\begin{equation*}
N(p)=\frac{1}{2} p+O\left(p^{1 / 2} \log ^{2} p\right) \tag{1}
\end{equation*}
$$

[^0]Later, Wenpeng Zhang $[\mathbf{9 , 1 0}]$ also proved that for every odd integer $q \geqslant 3$,

$$
\begin{equation*}
N(q)=\frac{1}{2} \varphi(q)+O\left(q^{1 / 2} \tau^{2}(q) \log ^{2} q\right) \tag{2}
\end{equation*}
$$

where $\varphi(q)$ is the Euler function and $\tau(q)$ is the divisor function.
The classical problem has been generalized by many scholars (see [5-7], et al.). Recently, Yaming Lu and Yuan Yi [3] studied a generalization of the D. H. Lehmer problem over short intervals. Let $n \geqslant 2$ be a fixed positive integer, $q \geqslant 3$ and c be integers with $(n c, q)=1$. We define

$$
r_{n}\left(\theta_{1}, \theta_{2}, c ; q\right)=\#\left\{(a, b) \in\left[1, \theta_{1} q\right] \times\left[1, \theta_{2} q\right] \mid a b \equiv c(\bmod q), n \nmid a+b\right\}
$$

where $0<\theta_{1}, \theta_{2} \leqslant 1$. In [3], it is obtained that

$$
\begin{equation*}
r_{n}\left(\theta_{1}, \theta_{2}, c ; q\right)=\left(1-\frac{1}{n}\right) \theta_{1} \theta_{2} \varphi(q)+O\left(q^{1 / 2} \tau^{6}(q) \log ^{2} q\right) \tag{3}
\end{equation*}
$$

where the O-constant depends only on n.
In this paper, we consider a more extensive generalization of the D. H. Lehmer problem over short intervals, which may be of great arithmetical interest.

Suppose \mathcal{A} and \mathcal{B} consist of consecutive integers which are coprime to q, that is,

$$
\begin{array}{r}
\mathcal{A}=\{n \in \mathcal{Q}: M<n \leqslant M+A\}, \\
\mathcal{B}=\{n \in \mathcal{Q}: N<n \leqslant N+B\}, \tag{5}
\end{array}
$$

where $M, N, A>0, B>0$ are integers, \mathcal{Q} is a reduced residue system modulo q. Let $n \geqslant 2$ be a fixed positive integer, $q \geqslant 3$ and c, ℓ be integers with $(n c, q)=1$ and $\ell \mid n$, and define

$$
N(\mathcal{A}, \mathcal{B}, c, n, \ell ; q)=\#\{(a, b) \in \mathcal{A} \times \mathcal{B} \mid a b \equiv c(\bmod q),(a+b, n)=\ell\}
$$

The main purpose of this paper is to use the estimates of Gauss sums and Kloosterman sums to study the asymptotic properties of $N(\mathcal{A}, \mathcal{B}, c, n, \ell ; q)$, and to give an interesting asymptotic formula for it. In fact, we have the following.

Theorem 1. Let $n \geqslant 2$ be a fixed positive integer, $q \geqslant 3$ and c, ℓ be integers with $(n c, q)=1$ and $\ell \mid n$, the sets \mathcal{A} and \mathcal{B} are defined by (4) and (5). Then, as $q \rightarrow+\infty$, we have the asymptotic formula

$$
\begin{aligned}
N(\mathcal{A}, \mathcal{B}, c, n, \ell ; q)= & \frac{\# \mathcal{A} \# \mathcal{B}}{n} \varphi\left(\frac{n}{\ell}\right) \varphi^{-1}(q)+O\left(\sqrt{\frac{\# \mathcal{A} \# \mathcal{B}}{q}} \tau^{3}(q) \cdot n 2^{\omega(n / \ell)}\right) \\
& +O\left(q^{1 / 2} \tau^{3}(q) \log ^{2} q \cdot 2^{\omega(n / \ell)}\right)
\end{aligned}
$$

where $\varphi(n)$ is the Euler function, $\tau(q)$ is the divisor function, $\omega(q)$ denotes the number of distinct prime factors of $q, \# \mathcal{A}$ denotes the cardinality of \mathcal{A} and two O-constants are both absolute.

We can see that the estimate is nontrivial when $\# \mathcal{A} \# \mathcal{B} \gg q^{3 / 2+\epsilon}$, where the implied constant depends at most on n and ϵ.
2. Lemmas. In order to prove Theorem 1 , we require the following lemmas. First, for integers m, n, q, we introduce the classical Kloosterman sum:

$$
S(m, n ; q)=\sum_{\substack{a \bmod q \\(a, q)=1}} e\left(\frac{m a+n \bar{a}}{q}\right),
$$

where $e(x)=e^{2 \pi i x}, a \bar{a} \equiv 1(\bmod q)$.
Lemma 1. Let m, n, q be integers, $q \geqslant 3$, then we have the upper bound

$$
|S(m, n ; q)| \leqslant q^{1 / 2}(m, n, q)^{1 / 2} \tau(q) .
$$

Proof. See [1].
Denote by χ a Dirichlet character $\bmod q$, by χ^{0} the principal one, and by m an integer. The well known Gauss sum is defined by

$$
G(m, \chi)=\sum_{h \bmod q} \chi(h) e\left(\frac{m h}{q}\right) .
$$

We also require some properties of Gauss sums, which are stated as the following two lemmas.

Lemma 2. For any positive integers q and m, we have

$$
G\left(m, \chi^{0}\right)=\mu\left(\frac{q}{(m, q)}\right) \varphi(q) \varphi^{-1}\left(\frac{q}{(m, q)}\right),
$$

where $\mu(n)$ is the Möbius function.
Proof. See [4], Section 1.2, Lemma 2.
Lemma 3. Let q and c be two integers with $q \geqslant 3,(c, q)=1$. Then for any integers a and b, we have

$$
\sum_{\chi \neq \chi^{0}} \chi(c) G(a, \chi) G(b, \chi) \ll \varphi(q) q^{1 / 2}(a, q)^{1 / 2}(b, q)^{1 / 2} \tau(q)
$$

where the O-constant is absolute.
Proof. By using Lemma 1, we can easily deduce that

$$
\begin{align*}
\sum_{\chi \bmod q} \chi(c) G(a, \chi) G(b, \chi) & =\sum_{\chi \bmod q} \chi(c) \sum_{s=1}^{q} \chi(s) e\left(\frac{a s}{q}\right) \sum_{t=1}^{q} \chi(t) e\left(\frac{b t}{q}\right) \\
& =\sum_{s=1}^{q} \sum_{t=1}^{q} e\left(\frac{a s+b t}{q}\right) \sum_{\chi \bmod q} \chi(s t c) \\
& =\varphi(q) \sum_{\substack{s=1 \\
s t=\bar{c}(\bmod q)}}^{q} e\left(\frac{a s+b t}{q}\right) \\
& =\varphi(q) S(a, b \bar{c} ; q) \\
& \ll \varphi(q) q^{1 / 2}(a, b, q)^{1 / 2} \tau(q) . \tag{6}
\end{align*}
$$

On the other hand, Lemma 2 indicates that

$$
\begin{align*}
G\left(a, \chi^{0}\right) G\left(b, \chi^{0}\right) & =\mu\left(\frac{q}{(a, q)}\right) \mu\left(\frac{q}{(b, q)}\right) \varphi^{2}(q) \varphi^{-1}\left(\frac{q}{(a, q)}\right) \varphi^{-1}\left(\frac{q}{(b, q)}\right) \\
& \ll \varphi^{2}(q) \frac{(a, q)(b, q)}{q^{2}} \tau\left(\frac{q}{(a, q)}\right) \tau\left(\frac{q}{(b, q)}\right) \\
& \ll \varphi^{2}(q) \frac{(a, q)(b, q)}{q^{2}} \frac{q}{\sqrt{(a, q)(b, q)}} \\
& \ll \varphi(q)(a, q)^{1 / 2}(b, q)^{1 / 2} . \tag{7}
\end{align*}
$$

Then Lemma 3 follows from (6) and (7) immediately.
Note: A slight weaker estimate than Lemma 3 can be found in [3].
The following two lemmas focus on the estimation for exponential sums.
Lemma 4. Let N be a positive integer, α be a real number. Then we have

$$
\left|\sum_{n \leqslant N} e(\alpha n)\right| \leqslant \min \left(N, \frac{1}{2\|\alpha\|}\right),
$$

where $\|x\|=\min _{n \in \mathbb{Z}}|x-n|$.
Proof. The estimate is well known, the proof can be found in [4], Section 5.1.
Lemma 5. Assume that U is a positive real number, K_{0} an integer, K a positive integer, α and β two arbitrary real numbers. If α can be written in the form

$$
\alpha=\frac{h}{q}+\frac{\theta}{q^{2}} \quad(q, h)=1, \quad q \geqslant 1, \quad|\theta| \leqslant 1
$$

we have

$$
\sum_{k=K_{0}+1}^{K_{0}+K} \min \left(U, \frac{1}{\|\alpha k+\beta\|}\right) \ll\left(\frac{K}{q}+1\right)(U+q \log q)
$$

where the implied constant is absolute.
Proof. See reference [4], Section 5.1, Lemma 3.
3. Proof of Theorem 1. In this section, we shall complete the proof of Theorem 1. From the orthogonality relation for Dirichlet characters modulo q, one can obtain that

$$
\begin{align*}
N(\mathcal{A}, \mathcal{B}, c, n, \ell ; q) & =\frac{1}{\varphi(q)} \sum_{\chi \bmod } \sum_{\substack{a \in \mathcal{A} \\
(a+b, n)=\ell}} \sum_{b \in \mathcal{B}} \chi(a b) \bar{\chi}(c) \\
& =\frac{1}{\varphi(q)} \sum_{\substack{a \in \mathcal{A} \\
(a+b, n)=\ell}} \sum_{b \in \mathcal{B}} 1+\frac{1}{\varphi(q)} \sum_{\chi \neq \chi^{0}} \sum_{\substack{a \in \mathcal{A} \\
(a+b, n)=\ell}} \sum_{b \in \mathcal{B}} \chi(a b) \bar{\chi}(c) \\
& :=I_{1}+I_{2} . \tag{8}
\end{align*}
$$

We shall estimate I_{1} and I_{2} respectively. Firstly,

$$
\begin{align*}
I_{1} & =\frac{1}{\varphi(q)} \sum_{\substack{a \in \mathcal{A} \\
(a+b, n)=\ell}} 1=\frac{1}{\varphi \in \mathcal{B}} \sum_{\substack{a \in \mathcal{A}}} \sum_{\substack{a \in \mathcal{B} \\
\ell|a+|\left(\frac{a+b}{\ell}, \frac{n}{\ell}\right)}} \mu(r) \\
& =\frac{1}{\varphi(q)} \sum_{a \in \mathcal{A}} \sum_{r \left\lvert\, \frac{n}{\ell}\right.} \mu(r) \sum_{\substack{b \in \mathcal{B} \\
b \equiv-a(\bmod r \ell)}} 1 \\
& =\frac{1}{\varphi(q)} \sum_{a \in \mathcal{A}} \sum_{r \left\lvert\, \frac{n}{\ell}\right.} \mu(r)\left(\frac{\# \mathcal{B}}{r \ell}+O(1)\right) \\
& =\frac{\# \mathcal{B}}{\varphi(q) \ell} \sum_{a \in \mathcal{A}} \sum_{r \left\lvert\, \frac{n}{\ell}\right.} \frac{\mu(r)}{r}+O\left(2^{\omega(n / \ell)}\right) \\
& =\frac{\# \mathcal{A} \# \mathcal{B}}{n} \varphi\left(\frac{n}{\ell}\right) \varphi^{-1}(q)+O\left(2^{\omega(n / \ell)}\right) . \tag{9}
\end{align*}
$$

Secondly,

$$
\begin{align*}
I_{2} & =\frac{1}{\varphi(q)} \sum_{\chi \neq \chi^{0}} \bar{\chi}(c) \sum_{\substack{a \in \mathcal{A} \\
(a+b, n)=\ell}} \sum_{b \in \mathcal{B}} \chi(a b)=\frac{1}{\varphi(q)} \sum_{\chi \neq \chi^{0}} \bar{\chi}(c) \sum_{r \left\lvert\, \frac{n}{\ell}\right.} \mu(r) \sum_{\substack{a \in \mathcal{A} \\
r| |_{b \in b}^{\ell}}} \sum_{\substack{a \in \mathcal{L}}} \chi(a b) \\
& =\frac{1}{\varphi(q) \ell} \sum_{\chi \neq \chi^{0}} \bar{\chi}(c) \sum_{r \left\lvert\, \frac{n}{\ell}\right.} \frac{\mu(r)}{r} \sum_{m \leqslant r \ell} \sum_{a \in \mathcal{A}} \sum_{b \in \mathcal{B}} e\left(\frac{m(a+b)}{r \ell}\right) \chi(a b) \\
& =\frac{1}{\varphi(q) \ell} \sum_{\chi \neq \chi^{0}} \bar{\chi}(c) \sum_{r \left\lvert\, \frac{n}{\ell}\right.} \frac{\mu(r)}{r} \sum_{m \leqslant r \ell} \sum_{a \in \mathcal{A}} \chi(a) e\left(\frac{m a}{r \ell}\right) \sum_{b \in \mathcal{B}} \chi(b) e\left(\frac{m b}{r \ell}\right) . \tag{10}
\end{align*}
$$

Note that for any non-principal character $\chi \bmod q$,

$$
\chi(a)=\frac{1}{q} \sum_{s \leqslant q} G(s, \chi) e\left(-\frac{a s}{q}\right) ;
$$

thus,

$$
\begin{equation*}
\sum_{a \in \mathcal{A}} \chi(a) e\left(\frac{m a}{r \ell}\right)=\frac{1}{q} \sum_{s \leqslant q} G(s, \chi) \sum_{a \in \mathcal{A}} e\left(\left(\frac{m}{r \ell}-\frac{s}{q}\right) a\right) . \tag{11}
\end{equation*}
$$

Combining (10) and (11), and making use of Lemma 3 and 4, we have

$$
\begin{aligned}
I_{2}= & \frac{1}{q^{2} \varphi(q) \ell} \sum_{r \left\lvert\, \frac{n}{\ell}\right.} \frac{\mu(r)}{r} \sum_{m \leqslant r \ell} \sum_{s \leqslant q} \sum_{t \leqslant q} \sum_{a \in \mathcal{A}} \sum_{b \in \mathcal{B}} e\left(\left(\frac{m}{r \ell}-\frac{s}{q}\right) a\right) e\left(\left(\frac{m}{r \ell}-\frac{t}{q}\right) b\right) \\
& \times \sum_{\chi \neq \chi^{0}} \bar{\chi}(c) G(s, \chi) G(t, \chi) \\
\ll & \frac{\tau(q)}{q^{3 / 2} \ell} \sum_{r \left\lvert\, \frac{n}{\ell}\right.} \frac{\mu^{2}(r)}{r} \sum_{m \leqslant r \ell} \sum_{s \leqslant q} \sum_{t \leqslant q}(s, q)^{1 / 2}(t, q)^{1 / 2} \\
& \times \min \left(\# \mathcal{A},\left\|\frac{s}{q}-\frac{m}{r \ell}\right\|^{-1}\right) \cdot \min \left(\# \mathcal{B},\left\|\frac{t}{q}-\frac{m}{r \ell}\right\|^{-1}\right) .
\end{aligned}
$$

By Möbius transform, we have

$$
\begin{equation*}
\sum_{s \leqslant q}(s, q)^{1 / 2} \min \left(\# \mathcal{A},\left\|\frac{s}{q}-\frac{m}{r \ell}\right\|^{-1}\right)=q^{1 / 2} \sum_{d \mid q} d^{-1 / 2} \sum_{\substack{s \leqslant d \\(s, d)=1}} \min \left(\# \mathcal{A},\left\|\frac{s}{d}-\frac{m}{r \ell}\right\|^{-1}\right) \tag{12}
\end{equation*}
$$

Observe that $(n, q)=1$; thus, for $\ell \mid n$ and $d \mid q$, we have

$$
\left\|\frac{s}{d}-\frac{m}{r \ell}\right\| \geqslant \frac{1}{d r \ell},
$$

from which and Lemma 5, the left-hand side of (12) is bounded by

$$
\begin{aligned}
& q^{1 / 2} \sum_{d \mid q} d^{-1 / 2} \sum_{\substack{s \leqslant d \\
(s, d)=1}} \min \left(\# \mathcal{A}, d r \ell,\left\|\frac{s}{d}-\frac{m}{r \ell}\right\|^{-1}\right) \\
& \quad<q^{1 / 2} \sum_{d \mid q} d^{-1 / 2}(\min (\# \mathcal{A}, d r \ell)+d \log d) \\
& \quad=\# \mathcal{A} q^{1 / 2} \sum_{\substack{d \mid q \\
d>\# \mathcal{A} / r \ell}} d^{-1 / 2}+r \ell q^{1 / 2} \sum_{\substack{d \mid q \\
d \leqslant \# \mathcal{A} / r \ell}} d^{1 / 2}+q^{1 / 2} \sum_{d \mid q} d^{1 / 2} \log d \\
&
\end{aligned}<(r \ell)^{1 / 2}(\# \mathcal{A})^{1 / 2} q^{1 / 2} \tau(q)+q \tau(q) \log q,
$$

and similarly

$$
\sum_{t \leqslant q}(t, q)^{1 / 2} \min \left(\# \mathcal{B},\left\|\frac{t}{q}-\frac{m}{r \ell}\right\|^{-1}\right) \ll(r \ell)^{1 / 2}(\# \mathcal{B})^{1 / 2} q^{1 / 2} \tau(q)+q \tau(q) \log q .
$$

Thus,

$$
\begin{equation*}
I_{2} \ll \sqrt{\frac{\# \mathcal{A} \# \mathcal{B}}{q}} \tau^{3}(q) \cdot n 2^{\omega(n / \ell)}+q^{1 / 2} \tau^{3}(q) \log ^{2} q \cdot 2^{\omega(n / \ell)}, \tag{13}
\end{equation*}
$$

where $\omega(n)$ denotes the number of distinct prime factors of n.
Combining (8), (9) and (13), we can deduce the theorem immediately.
4. Remarks. Recalling that \mathcal{Q} is a reduced residue system modulo q, and taking $q=p$ as a prime number, $\mathcal{A}=\mathcal{B}=\mathcal{Q}, n=2, \ell=1$ in Theorem 1 , we can obtain

$$
N(p)=\frac{1}{2} p+O\left(p^{1 / 2} \log ^{2} p\right)
$$

which is just the same as (1). Similarly, Theorem 1 yields (2) with a slightly weaker error term.

Taking $\mathcal{A}=\left\{n \in \mathcal{Q}: 1 \leqslant n \leqslant \theta_{1} q\right\}, \mathcal{B}=\left\{n \in \mathcal{Q}: 1 \leqslant n \leqslant \theta_{2} q\right\}$,

$$
r_{n}\left(\theta_{1}, \theta_{2}, c ; q\right)=\sum_{\ell \mid n} N(\mathcal{A}, \mathcal{B}, c, n, \ell ; q)-N(\mathcal{A}, \mathcal{B}, c, n, n ; q)
$$

and hence

$$
\begin{aligned}
r_{n}\left(\theta_{1}, \theta_{2}, c ; q\right) & =\sum_{\ell \mid n} \frac{\theta_{1} \theta_{2}}{n} \varphi\left(\frac{n}{\ell}\right) \varphi(q)-\frac{\theta_{1} \theta_{2}}{n} \varphi(q)+\left(q^{1 / 2} \tau^{3}(q) n \tau^{2}(n) \log ^{2} q\right) \\
& =\left(1-\frac{1}{n}\right) \theta_{1} \theta_{2} \varphi(q)+O\left(q^{1 / 2} \tau^{3}(q) n \tau^{2}(n) \log ^{2} q\right)
\end{aligned}
$$

which is slightly better than (3).
Observing that the condition $2 \nmid a+b$ is equivalent to $a+b \equiv 1(\bmod 2)$, thus we can consider another generalization of the D. H. Lehmer problem over short intervals.

Let $q \geqslant 3, \ell \geqslant 1$ be fixed integers, n and c be integers with $(n c, q)=1$. We define

$$
T(\mathcal{A}, \mathcal{B}, c, \ell ; q, n)=\#\{(a, b) \in \mathcal{A} \times \mathcal{B} \mid a b \equiv c(\bmod q), a+b \equiv \ell(\bmod n)\}
$$

where \mathcal{A}, \mathcal{B} are defined as before. Using the same method above, we can also prove that

$$
T(\mathcal{A}, \mathcal{B}, c, \ell ; q, n)=\frac{\# \mathcal{A} \# \mathcal{B}}{n} \varphi^{-1}(q)+O\left(q^{1 / 2} \tau^{3}(q) \log ^{2} q\right)
$$

which also yields (1), (2) and (3).
Acknowledgements. The authors would like to express their sincere thanks to the referees for their helpful comments and suggestions.

REFERENCES

1. T. Estermann, On Kloosterman's sum, Mathematika 8 (1961), 83-86.
2. R. K. Guy, Unsolved Problems in Number Theory, 3rd. edn (Springer-Verlag, New York, 2004).
3. Y. Lu and Y. Yi, On the generalization of the D. H. Lehmer problem, Acta Math. Sinica, English Ser. 9 (2009), 1269-1274.
4. C. D. Pan and C. B. Pan, Goldbach Conjecture (Science Press, Beijing, 1981).
5. I. E. Shparlinski, On a generalised Lehmer problem for arbitrary powers, East-West J. Math. Special Vol. (2008), 197-204.
6. I. E. Shparlinski, On a generalisation of a Lehmer problem, Math. Zeitschrift 263 (2009), 619-631.
7. Y. Yi and W. Zhang, On the generalization of a problem of D. H. Lehmer, Kyushu J. Math. 56 (2002), 235-241.
8. W. Zhang, On D. H. Lehmer problem, Chin. Sci. Bull. 21 (1992), 1765-1769.
9. W. Zhang, A problem of D. H. Lehmer and its generalization, Compos. Math. 86 (1993), 307-316.
10. W. Zhang, A problem of D. H. Lehmer and its generalization(II), Compos. Math. 91 (1994), 47-56.

[^0]: Supported by N. S. F. (No.10601039) of P. R. China.

