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NONLINEAR FILTERING OF A SYSTEM OF LOGISTIC EQUATIONS

REHEZ AHLIP AND V O ANH

This paper is concerned with the filtering problem for a nonlinear stochastic sys-
tem of prey-predator logistic equations. Based on the innovations approach, we
establish the Zakai equation for the unnormalised conditional distribution and the
adjoint Zakai equation for the unnormalised conditional density of the nonlinear
filter. Using a perturbation technique, we obtain the appropriate expressions for
the unnormalised conditional distribution and density of stochastic integrals with
respect to the observation processes.

1. INTRODUCTION

In studies of population dynamics, the state of a system is commonly described by

a logistic-type equation:

(1.1) dNt = ANt(l - BNt)dt.

Here, Nt denotes the population density and A the initial per capita growth rate, while

B is the reciprocal of the environmental carrying capacity. A more realistic model to

describe the state of the system is to include a stochastic element in (1.1) so that the

system under investigation is given by the following stochastic differential equation:

(1.2) dNt = ANt(l - BNt)dt + adW^t),

where W\(t) is a Brownian motion.

It is a common situation in practice that the signal process {Nt} cannot be observed

directly, but must be estimated from observation on a related process yt which can be

assumed to have the form

(1.3) dyt = kNtdt + a,dW2(t),

where Wz(0 is another Brownian motion independent of W\{t). The objective then is

to compute a least squares estimate of Nt given the observations {y,, 0 ^ s ^ t}. In
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220 R. Ahlip and V. Anh [2]

addition, it is required that this computation be done recursively. This is the classical
filtering problem.

In this paper, we consider the filtering of a nonlinear system of prey-predator
competition in a stochastic environment given by:

dN™ = JVt
(1)(A - BN^ - CN™)dt + e.dW},

(1-3) . J

dN[2) = Nl (-D + EN™) dt + e2dW?,

where N} = prey population, JV-f = predator population, and the observation processes
are given by:

dy^^k^dt + dB™,

dy™ = k2N™dt + dB[2\

where W\, W*, B\ and B2 are independent Brownian motions on a probability space
{£1,3, P) with a nitration {3t}t>o-

The filtering problem for the logistic equation of a single species (system (1.1) and
(1.2)) is solved in [4]. In this paper, we extend the results of [4] to the prey-predator
system (1.3) and (1.4). As described in [3] and [4], nonlinear filtering can be approached
via the innovations technique. We shall collect some key results of this technique in
Section 2. Using the innovations technique, we obtain in Section 3 the Kushner equation
for the conditional joint distribution of N\ , NJ given the past history of yt. The
Kushner equation still poses two difficulties: It contains nonlinear terms and is driven
by the innovations process. To overcome these difficulties, we obtain in Section 4 the
Zakai equation for the unnormalised conditional distribution. The Zakai equation for
our model consists of two stochastic integrals with respect to the observation processes.
Using a pertubation technique of Kunita [6], we establish in Section 5 an expression
for the unnormalised conditional distribution involving no stochastic integrals. Finally,
in Section 6, we derive the adjoint Zakai equation for the unnormalised conditional
density, which again can be transformed into an expression free of stochastic integrals
by appealing to Kunita's technique.

The Zakai equation for the unnormalised conditional distribution extends the result
of Elliott [4] in the single species case; while the multidimensional adjoint Zakai equation
for the unnormalised conditional density of the system (1.3) and (1.4) is new. These
results solve the nonlinear filtering problem for the system (1.3) and (1.4) of prey-
predator logistic equations completely.

2. THE INNOVATIONS METHOD TO NONLINEAR FILTERING

The basic references for this section are Davis and Marcus [2], Elliott [3, 4] and
Kunita [6]. All stochastic processes will be defined on a fixed probability space (fi, 5, P)
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and a finite time interval [0, T] , on which there is defined an increasing family of a-fields

{3t, 0 ̂  t ^ T}. All processes considered will be 5t-adapted.

Consider a real-valued Markov process £t and the related observation process yt

given by

(2.1) dyt = h(£t)dt + dBt,

where Bt is Brownian motion. We shall assume that £t is independent of the increments
of Bt. Define 2)i = <r{2/«> 0 ̂  s ^ 0 a s the <7-field generated by the given observation
process yt. The objective is to compute in a recursive form an expression for the best
estimate of £t given the history of the observations to time t, 2)i • That is, we want to
obtain an expression for

(2-2) I = Efo | 2)t].

Now, let us introduce the innovations process

(2.3) vt=yt- I h{i.)ds.
Jo

The incremental innovations vt+h. — "t represents the "new information" concerning the

process {Zt = h(£t)} available from the observations between t and i + h, in the sense

that Vt+h — vt is independent of 2)* •

The process vt has the following properties:

(i) The process (i/i, 2)t) is a standard Brownian motion, that is I/J is a 2)<-
martingale and (i>)t — t, where (i/) is the unique predictable process such
that v2 — [v) is a martingale.

(ii) Every square integrable martingale (m«, 2)t) with respect to the obser-
vation <r-field 2)« is sample continuous and has the representation

(2.4) mt = I g.dv.,
Jo

where the process g is 2)t-predictable. In other words, mt can be written
as a stochastic integral with respect to the innovations process.

Suppose the signal process £t is a real-valued 5t-semimartingale of the form

(2.5) Zt = (o+ I a.ds+rit,
Jo

where a is an 5"adapted process such that

fT

E / a]ds < co,
Jo
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£o is an 5o-measurable random variable with E(% < oo, and r)t is a square in-
tegrable Jt-rnartingale. There is a unique predictable process (77, B) such that
{ritBt — [r], B)t, 5<) is a martingale. Let us assume that this process is of the form

{n,B)t = S*0.ds.

THEOREM 2 . 1 . Write f = -E[6|2)t] for the Sltered estimate of £t, given 2 ) t .

Then {£«} satisfies the stochastic differential equation

(2.6) £ = £ „ + / a,ds+l (6M*»)-6M**)+ &)<*"«•

PROOF: See Elliott [4]. D

Formula (2.6) is not a recursive equation for £t and hence is not very useful as
it stands, but can be used to obtain an infinite-dimensional recursive equation for the
filtering problem.

COROLLARY 2 . 2 . Let {xt} be the solution of the stochastic differential equation

(2.7) dxt = f(t, xt)dt + <r(xt)dWt;

that is,

(2.8) xt = z0 + / / ( * . *.)da + I <r(x.)dW.,
Jo Jo

and let Yt be given by (2.1) with {Wt} and {Bt} being independent. Then for any

function F G C2, TLt(F) = E[f(xt) \ 2)*] satisfies

(2.9) nt(F) = J n.(LF)ds + ̂ [n.iFh) - n.(F)n.(h)]du.,

where LF[x) = f(s, x)F.{x) + ±c(x)2Fxz(x).

PROOF: The Ito differential rule yields

(2.10)

F{xt) - F{x0) + f Fx(x.)f{8, x.)ds + I Fx{x.)<r{x.)dW. + \ ( Fxx{x.)v{x.)2ds.
Jo Jo * Jo

Now applying Theorem 2.1 to the semimartingale /(z«) gives

ut(F) = n0(F)+ f n.(LF)ds+ f \n.(Fh)-n.(F)n.(h)]dv..
Jo Jo l J 1-1

Since {n.t(F) : F £ C2} determines a measure-valued stochastic process I I t , (2.6)
can be regarded as a recursive (infinite-dimensional) stochastic differential equation
for the conditional measure Hi of & given 3)t> &n^ ^-t{F) is a conditional statistic
computed from lit in a memoryless fashion.
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REMARK. Elliott [4] solved the filtering problem for the single species system (1.1)
and (1.2) using these methods together with the perturbation technique of Kunita [6].
Whereas these sophisticated methods are appropriate for an n-dimensional system,
n ^ 2, as can be seen in the next sections, the Kalman-Bucy filter for linear systems is
adequate for the one-dimensional problem, if the observation process is formulated in
an appropriate way. In fact, let us consider the following observation process:

(2.11) dYt =

(see Antonelli [1]). Using the substitution

(2-12)

we obtain the following linear estimation problem:

(2.13) dN; = -AN;A +,

(2.14) dYt = -kNjdt + <r2dW2{t).

Now, to (2.13) and (2.14) we apply the Kalman-Bucy filtering method (see Lipster and
Shiryayev [8]; Oksendal [9]) to obtain Nf, the conditional expectation of N% given
the observations up to time t on 2) t , and S« the mean square error estimate. Suppose
that the initial distribution 9to is Gaussian with zero mean and variance So. The
Kalman-Bucy [5] equations are

(2.15) dN; =

where S(t) = E\ (iVt* — JVt*) | 2)J satisfies the (deterministic) Riccati equation

(2.16) ^ = -2AS(t)^S2(t) + al 5(0) = a2,
dt V V |

which has the solution

A u, A ({A2-Al)kH\Ai - M.A2 exp { ^ j I
q(t\ V °2 /

i M (A2-A1)kU '
1 - M. exp i j —
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where

A2 — k- I -A<T2 - °2

and M = — —.
a2 — A2

Hence we obtain the solution for N£ in the form

Nt*exp [j G(s)ds\N* + ^ jf'exp (j* G{u)dv\s{s)dya,

where

3. NONLINEAR FILTERING OF A PREY-PREDATOR SYSTEM

Consider the system (1.3) and(1.4). Let Et(N) = E[Nt \ 2)t] where 2)t

"{ J/^\ y* > a; ^ < [ • The innovations processes are

v\=v\- j hTL^N^ds,

Let F : R2 —* R1 be any function in C2. Using Ito's differential rule, we have

* 2

that is,

" "«" - "«?>)*?')* + j f
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[7] Nonlinear filtering 225

Let us use the notation

Then lit can be thought of as the conditional joint distribution of N^1 , N± given 2)t •
Since Wf, Wf, B\, B\ are independent, applying Theorem 2.1 to the semimartingale

?\ N™) gives

(3-D

h j* (E,

4. THE UNNORMALISED FILTERING EQUATION

There are two difficulties with equation(3.1). Firstly, it contains the nonlinear
terms II,(JF1)II,(JV(1>), n,(F)n,{N^) and secondly, it is driven by the innovations
processes v\, v\ . Let the process be defined on [0,T]. The first step is to define a new
measure P on the measurable space (f2, 5) by

P{A) = I %{*

for all A £ 5) where

dp
" 1

23t = *{yl y

and

At = ^j - \ J*
GlRSANOV'S THEOREM. Suppose we start witi a filtered probability space

, 5, 3u P) such that

(i) yttVt are independent Brownian motions;

(ii) N}, N? satisfy Equation 1.3.
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dP
We can define P by setting ^ =

dP

= At.
dP

Under P : y\yl are not Brownian motions; in fact

ft

y\ —I k\Nlda = B\ is a Brownian motion under P,
Jo

y\ — I k*N*ds = B\ is a Brownian motion under P.
Jo

Consider any function F (E CQ(R2) with compact support. Using the Ito differen-
tial rule, we have

dN) *

that is
(4.1)

Let 2)t = <T{y), viz s ^ 0 - Then using a Bayes-type theorem [11],

where E is the expectation under P. Consider the numerator

where at ( F ( Nj , N; J J is an unnormalised conditional distribution and is a measure-

valued process. Further, if F(Nl , N^ J = 1, then
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Hence

(4.2,

We first obtain a semimartingale expression for o"t(l). Using the Ito differential
rule, we get

(4.3) dAt = At [hN^dy] + k2N\2Uy2
t).

That is,

(4.4) A, = 1+ / ^N^A.dy] + / k2N™A2dy2,,
Jo Jo

so that At is a (fo, ~P~)-martingale. Consequently, as in Theorem 2.1, At = E[At | 2)t]
is a 2)t-niartingale. Since the process {yl} and {y2} are Brownian motions under P,
there must exist 3)t-adapted processes {f/j} and {TJ%} such that

(4.5) At = 1 + / v]da + / rj2da.
Jo Jo

To determine r]\ , consider, using equation (4.3),

(4.6) ylAt = / A.ciyJ + / y\kxN)A,dy\ + I A.kiN^ds,
Jo Jo Jo

(4.7) yi
2At = / A.dy2. + f y2MN2.A.dy\ + f A.k2N

2ds.
Jo Jo Jo

Conditioning on 2)t under measure P,

(4.8) E [yl At | 2)t] = y,1 Af = / *i A.N1. ds + M\,
Jo

(4.9) E[y2At | 2)t] = »?A« = / k2A.N2ds + M2,

where M\ and M2 are (2)*, ~P~)-martingales. However, from equation (4.5) and Ito's

rule,

(4.10) ylAt= / Vl.da + R*,
Jo

(4.11) y?At= ftfds + B2.
Jo
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The decompositions (4.8) and (4.10) must be the same, so too (4.9) and (4.11). Hence

M] = R\ and M\ = 1%,

which implies that

hE[AaN^ | 2).],

•q] = k2A.N™ = k2E[A,N™ | 2),].

Using Bayes' rule again, we see that

Substituting for TJI and rj\ in equation (4.5) we get

(4.12) At = 1 + I k1A3TL.(^Ni1)>jd3+ f hA.

However, equation (4.12) has the unique solution

A, =

( 4 1 3 )

(Note that ^ denotes conditioning under measure P, while H denotes conditioning
under the original measure P.)

From the equations (4.1) and (4.2), using Ito's rule, we get
(4.14)

&F
+ ^ ' A ' -2
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Conditioning each side on J)t under measure P, we have
(4.15)

E[A,F(«<", W<!») | 2),] = ![F(JV<'\ JV<") | 5),]

+ / ^[A.l!'.ib1^
1> I 2 ) , ] ^ + / ElA^^fciiVi2) | y.jdy2..

Jo Jo

As a result, we have the Zakai equation for the unnormalised conditional distribution:

5. DECOMPOSITION OF SOLUTION

The equation (4.16) contains stochastic integrals. We now apply the decomposition
techniques of K unit a [6, Section 5.2] to obtain an expression that involves no stochastic
integrals.
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230 R. Ahlip and V. Anh [12]

In terms of Stratonovich integrals [10], Equation (4.16) becomes

?\ N™) - kl(N

+ * x / <r,(NWF[N^))odyl+k2l ^ { N ^ F ^ ) ) o A,2,

where

2 dN{1)> + 2

Consider the following operators defined on the functons F(N[ ,

(5.2)

we have

(5.4)

exp (-

\ * / r t̂ I J y I ) I r \ / j

\ i=l

Denoting
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[13] Nonlinear filtering 231

Let (JV(
(1), JV«2)) be the solution of the system

(5.5) N™ = N™ + J* (A (tfW - *,-e?rf)«fa + etWfj, t = 1, 2.
/o

Considering the expectation, given 2) t , of

(5.6) F(N^,N^)exP\

and letting

(5.7) vt{F) = E[F[N^>, N?

where the expectation is taken over the forward sample paths, we have

(5.8) vt{F) = V0{F)

that is, i>t(F) solves equation (5.4). Applying Kunita's Theorem, the solution of the
Zakai equation is given by

at(F) = ut{fj.tF)(x).

Evaluating vt(fitF), we have

(5.9) vtbnF) = MF) + I v.(n.L(s)v71)(n.
Jo

Hence, the solution of the Zakai equation for the unnormalised conditional distribution

is given by

(5.10) <rt(F) = vtin.F) = £! j (exp £ kiN^ylJF^, iVt
(

The advantage of this expression (5.10) over (4.16) is that it involves no stochastic
integrals. The observation trajectories y\, i = 1, 2, appear just as parameters. Further,
the operator HtL(t)n^'1 differs from L(t) only by terms of less than second order.
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6. ZAKAI EQUATION FOR UNNORMALISED CONDITIONAL DENSITY

Now, suppose that at has a density q%[N^, N^) . We then have

(6.1)

= f
+ f'f I

if (L

Since F £ with compact support, integrating by parts yields

NW) (JV<O (A -

= - f F(M'\ N&) {(A-

- CJV<8>)) )
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[15] Nonlinear filtering 233

= /"

= / F

Substituting in equation (6.1) gives

/ F(N<1\ JVW)?,^1),

= f

f\ I F(NM, *<*)) ((D -
Jo I iiHi \

\

Jo \J<H'

+

Hence

^ 1 J , ATj2) = (F, g,>

/ ((-

https://doi.org/10.1017/S000497270003389X Published online by Cambridge University Press

https://doi.org/10.1017/S000497270003389X


234 R. Ahlip and V. Anh [16]

f F(NW, MV) { f ((D -
y«» Uo \

D - EN™))^y (N^, NW)\d,\

/" ^(M1), N&) fkx /V(1)g.

k2

Jo

Hence, the adjoint Zakai equation for the unnormalised conditional density

2)t = a^y], y]; s < < | is given by

(6.2)

BNW

7 ds + J

The above expression again contains stochastic integrals. We once more apply the
decomposition techniques of Kunita [6, Section 5.2] to enable us to obtain a density
free of such integrals. The approach is similar to that adopted for the Zakai equation.
Let

(6.9) A*
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[17] Nonlinear filtering 235

The equation (6.2) takes the form
(6.10)

qt(N^, N™) =

where A* is the adjoint of A. In terms of Stratonovich integrals, this becomes

(6.11) qt(N^, N&) =90(iV
(1), N&) + fU ^(

x?,^1), N^ys + h ^ N ^ q , ^ , N^odyl+^fN^q.^NW, N™)ody].

Consider the following operators defined on q(N^l\

(6.12)

(6.13)

We then obtain
(6.14)

dq

where
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Let (jVt
(1), JVt

(2)) be the solution of the system

(6.15) N^ = N™ + J* Q h t h l - A (AT*) ) da + eidW*-

Let us now consider the expectation, given 2)«, of

tt 2

(6.16) F(JV,"», JV<

Put

(6.17) I , 1 ( F ) = JE;( 'F(JV1
( 1 ) , ATt

(2))

where

8NW
d

and the expectation is taken over the backward sample paths. We then have

(6.18) vt(F) = MF) + J i/.O*;1 £*(«)/*.)

that is, Vt{F) solves equation (6.14). Applying Kunita's theorem, the solution of the
adjoint Zakai equation is given by

Evaluating y.t{vtF), we have

(6.19)

Pt(vtF) = no(F) + f L*(s)p,(u.{F))ds + kx I N?)p.{y.{F)) o dW)
Jo Jo

+ k2
/oJo
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[19] Nonlinear filtering 237

Hence, the solution of the adjoint Zakai equation for the unnormalised conditional

density is given by

(6.20)

<7tfjV
(1) N{2))=E\expYkyiN(-i).F(Nil) N{2))\ * ' * ) Y L-J

 x \ * /

2

Note the appearance of the divergence d/(dN<-1'>) ((a - BN™ - CN&)M1)) and

d/(dNW) ((_£) + ENW)NW) in formula (6.20).

This formula is compatible with that obtained for the unnormalised conditional

distribution where the expectation is over the forward sample paths and the divergence

terms do not appear because there we worked with the Zakai equation itself.
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