ON THE RANK OF A p-GROUP OF CLASS 2

BY
U. H. M. WEBB

Abstract

Let $d(G)$ denote the minimal number of generators of the finite p-group $G, r(G)$ the maximum over all subgroups H of G of $d(H)$ and $r_{a}(G)$ the maximum over all abelian subgroups H of G of $d(H)$. If G is of class two it is clear that $$
d([G, G]) \leq r_{a}(G) \leq r(G) \leq d(G /[G, G])+d([G, G]) .
$$

By considering properties of the stability number of graphs we construct examples which show that any value of $r(G)$ within these bounds can occur.

§1. If G is a group let $d(G)$ denote the minimal number of generators of G, and $r(G)=\max \{d(H) \mid H \leq G\}$, the rank of G. Let $r_{a}(G)=\max \{d(H) \mid H \leq G$ and H abelian\}. Patterson [3] has shown that if p is an odd prime then any finite p-group G has a subgroup N of nilpotency class at most two with $d(N)=r(G)$.

It is clear that in any group $r_{a}(G) \leq r(G)$; we shall look at groups in which

$$
\begin{equation*}
r_{a}(G)=r(G) \tag{I}
\end{equation*}
$$

that is groups with an abelian subgroup N with $d(N)=r(G)$. It was shown by Wehrfritz [4] that if G is the iterated wreath product of cyclic groups of order $p>3$, then G has the stronger property that
(II) any subgroup H of G with $d(H)=r(G)$ must be abelian,
and one might ask whether this characterises such groups. We shall construct a family of p-groups of class two and exponent p which show among other things, that the answer is no.

If G is any nilpotent group of class two then it is clear that $d\left(G^{\prime}\right) \leq r_{a}(G) \leq$ $r(G) \leq d\left(G / G^{\prime}\right)+d\left(G^{\prime}\right)$. We shall show that even among p-groups satisfying (I) it is possible for every value of $r(G)$ within these bounds to occur.

Our results follow from a construction which associates to any graph on n vertices and any odd prime p an n-generator group of class at most two and exponent p. We denote by $\mathscr{G}(n, p)$ the set of all such groups arising from graphs on n vertices.

[^0]Theorem. Let p be an odd prime, and n an integer greater than two. There is a family $\mathscr{G}(n, p)$ of n generator groups of exponent p and nilpotency class at most two with the following properties.
(i) Every group in $\mathscr{G}(n, p)$ has property I.
(ii) If $n-1 \geq a \geq 2$ then $X_{a}=\left\{G \in \mathscr{G}(n, p) \mid r(G)=a+r\left(G^{\prime}\right)\right\}$ has unique elements G_{1} and G_{2} of largest and smallest order respectively, and G_{1} has II and G_{2} does not.
(iii) $A s$

$$
n \rightarrow \infty, \quad \frac{\left|X_{a_{1}}\right|+\left|X_{a_{2}}\right|}{|\mathscr{G}(n, p)|} \rightarrow 1
$$

where $a_{1}=\lfloor d\rfloor, a_{2}=\lceil d\rceil$ and d is the real solution of

$$
\binom{n}{d}=2\binom{d}{2} \quad \text { i.e. } \quad d=\frac{2 \log n}{\log 2}+0(\log \log n)
$$

(iv) X_{n} consists of the elementary abelian p-group p on n generators $P ; r_{a}(P)=$ $r(P)=n=n+r\left(P^{\prime}\right) . X_{1}$ consists of the free group Q of nilpotency class 2 and exponent p on r generators; $r_{a}(Q)=r(Q)=1+r\left(Q^{\prime}\right)$. Both P and Q have II.
Part (iii) leads one to wonder whether a similar result is true if $\mathscr{G}(n, p)$ is replaced by the set of all n generator p-groups of exponent p, in other words whether almost all such groups would have ranks drawn from some finite set $d_{1}(n), \ldots, d_{k}(n)$.

It is perhaps worth noticing that Patterson's result does not hold for arbitrary nilpotent groups. For if $C=A \downharpoonleft B$ where A is free abelian on three generators $\{a, b, c\}$ and B is cyclic generated by t, where $a^{t}=a b^{3}, b^{t}=b c^{3}, c^{t}=c$ then G has class 3 and $d(G)=4$. If H is a subgroup of G with $d(H)=4$ then $d(H)=4 \leq d(H / H \cap A)+d(H \cap A) \leq 1+3$ so $d(H / H \cap A)=1$ and $d(H \cap A)=$ 3. But then H has the same class as G.
§2. Some combinatorics. In this section we describe the graphs needed for our construction in Section 3. Let Γ be a finite non-directed graph with $e(\Gamma)$ edges. We denote by K_{r} the complete graph on r vertices; then $e\left(K_{r}\right)=r(r-1) / 2$. A subset T of the vertices of Γ involves a particular edge if both ends of it lie in T; in other words the edge lies in the subgraph spanned by T. The stability number of Γ (also called the vertex independence number in the literature) is $a(\Gamma)=\max \{m \mid \exists m$ vertices in Γ which involve no edge $\}$. It is clear that there is a unique graph Γ_{1} on n vertices with stability number a and maximal number of edges: Γ_{1} is the complement of the graph on n vertices consisting of a K_{a} and $(n-a)$ isolated vertices, and $e\left(\Gamma_{1}\right)=\binom{n}{2}-\binom{a}{2}$.

It is a famous result of Turan (in for example [1] Chapter 4, Section 2) that there is a unique graph Γ_{2} on n vertices with stability number a and minimal number of edges. In fact if $n=r a+s$ with $0 \leq s<a$ then Γ_{2} consists of s copies of K_{r+1} and $(a-s)$ copies of K_{r}, so

$$
e\left(\Gamma_{2}\right)=s\binom{r+1}{2}+(a-s)\binom{r}{2}=\frac{1}{2}\left\lfloor\frac{n}{a}\right\rfloor\left\{2 n-a\left(\left\lfloor\frac{n}{a}\right\rfloor+1\right)\right\} .
$$

Thus if Γ has n vertices and stability number a then

$$
e\left(\Gamma_{2}\right) \leq e(\Gamma) \leq\binom{ n}{2}-\binom{a}{2},
$$

and $e(\Gamma)$ can taken any value in this range.
It has been shown by Bollabas (see [1] Chapter 7, Section 4) that if A_{n} is the set of all graphs on n vertices, then the stability number of almost all graphs in A_{n} takes one of two possible values, d_{1} and d_{2}. That is to say if $B_{n}=$ $\left\{\Gamma \in A_{n} \mid a(\Gamma)=d_{1}\right.$ or $\left.a(\Gamma)=d_{2}\right\}$, then $\left|B_{n}\right|\left|\left|A_{n}\right| \rightarrow 1\right.$ as $n \rightarrow \infty$. Explicitly $d_{1}=$ $\lfloor d\rfloor, d_{2}=\lceil d\rceil$, where d is the real solution to

$$
\binom{n}{d}=2^{(d)},
$$

and $d=2 \log n / \log 2+0(\log \log n)$.
If Γ has stability number a then any $(a+1)$ vertices must involve at least one edge. This generalises as follows.

Lemma 1. Let Γ be a graph on n vertices with stability number $1 \leq a \leq n$, and suppose any $(a+1)$ vertices involve at least $k \geq 1$ edges. Then any $(a+r)$ vertices involve at least $k+r-1$ edges, for $1 \leq r \leq n-a$.

Proof. We use induction on r; the case $r=1$ is given. Suppose any $a+d$ vertices involve at least $k+d-1$ edges, $d \geq 1$. Let T be a set of $a+d-1$ vertices. Then for $d \geq 2, T$ involves at least one edge. Removing one end of this from T leaves a set of $a+d-2$ vertices, which by induction involve at least $k+d-2$ edges, so T involves at least $k+d-1$ edges.
§3. The construction. In this section we construct the elements of $\mathscr{G}(n, p)$. Let p be an odd prime, and n an integer greater than two.

Now given a graph Γ on n vertices $\left\{V_{1}, \ldots, V_{n}\right\}$ we construct a p-group G as follows. Let F be the free group of nilpotency class two and exponent p on n generators $\left\{X_{1}, \ldots, X_{n}\right\}$, so F / F^{\prime} and $F^{\prime}=Z(F)$ are elementary abelian on n and $\binom{n}{2}$ generators respectively, and $F^{\prime} \mathbf{O}$ is generated by $\left\{\left[X_{i}, X_{i}\right] \mid i \neq j, 1 \leq i, j \leq\right.$ $n\}$. See for example [2]. Let X be the subgroup of F^{\prime} generated by $\left\{\left[X_{i}, X_{j}\right] \mid V_{i}\right.$ is not adjacent to V_{j} in $\left.\Gamma\right\}$, so X is elementary abelian on $\binom{n}{2}-e(\Gamma)$ generators. As X is a subgroup of $Z(F), X$ is normal in F. We use bars to denote images modulo X; let $G=\bar{F}$. Then $d(G)=d(F)=n$, and $G^{\prime}=\bar{F}^{\prime}$ so $d\left(G^{\prime}\right)=d\left(\bar{F}^{\prime}\right)=$ $d\left(F^{\prime}\right)-d(X)=e(\Gamma)$.

Lemma 2. Let Γ be a graph on n vertices with e edges and stability number a, and suppose any $(a+1)$ vertices of Γ involve at least $k \geq 1$ edges. Then if p is an odd prime, and L is any subgroup of the p-group G constructed as above, $d(L) \leq a+e$. If further $k \geq 2$ then $d(L)=a+e$ only if L is abelian.

Proof. As G^{\prime} is central in $G, d(L) \leq d\left(L, G^{\prime}\right)$, so we may assume $L \geq G^{\prime}$. Let $L=\bar{H}$, and let $h=d\left(H / F^{\prime}\right)=d\left(L / G^{\prime}\right)$. If $h=1$ then L / G^{\prime} is cyclic so L is abelian, and $d(L)=1+d\left(G^{\prime}\right)=1+e=h+e$. If $h>1$ pick a basis $\left\{u_{1} F^{\prime}, \ldots, u_{h} F^{\prime}\right\}$ for H / F^{\prime}. Let $D=\left\langle u_{1}, \ldots, u_{h}\right\rangle$. Then $D^{\prime}=H^{\prime}$, and D is free of exponent p on h generators, so $d\left(D^{\prime}\right)=d\left(H^{\prime}\right)=\binom{h}{2}$. Suppose that $u_{1} F^{\prime}=$ $X_{1}^{\alpha_{11}} \cdots X_{n}^{\alpha_{1 n}} F^{\prime}, \ldots, u_{h} F^{\prime}=X_{1}^{\alpha_{n 1}} \cdots X_{n}^{\alpha_{n n}} F^{\prime}$. Then by performing row operations and relabelling the X_{i} if necessary we may assume $u_{i}=X_{i} n_{i}, 1 \leq i \leq h$, where $n_{i} \in\left\langle X_{h+1}, \ldots, X_{n}\right\rangle$. If $i<j$, let $t_{i j}=\left[u_{i}, u_{i}\right]=\left[X_{i} n_{i}, X_{j} n_{j}\right]=\left[X_{i}, X_{i}\right] m_{i j}$, where $m_{i j}$ involves no [X_{r}, X_{s}] with $1 \leq r, s \leq h$. Then $\left\{t_{i j} \mid 1 \leq i<j \leq h\right\}$ form a basis of H^{\prime}, and $\left[X_{i}, X_{\mathrm{j}}\right.$] occurs in $t_{i j}$ but in no other $t_{r s}$ with $r \neq i, s \neq j$. Let T be the subgraph of Γ on vertices $\left\{V_{1}, \ldots, V_{h}\right\}$.

Suppose $d\left(H^{\prime} \cap X\right)=x$; then $H^{\prime} \cap X$ lies in the span of at least x of the $t_{i j}$. If some linear combination of the $t_{i j}$ lies in $H^{\prime} \cap X$ then each of the corresponding [X_{i}, X_{j}] lies in X, so there is no edge joining V_{i} and V_{j} in Γ, and hence in T. Thus $x \leq(\#$ of non edges of $T)=\binom{h}{2}-e(T)$.

It follows that

$$
\begin{aligned}
d(L) & =d\left(L / L^{\prime}\right) \\
& =d\left(L / G^{\prime}\right)+d\left(G^{\prime} / L^{\prime}\right) \\
& =h+d\left(G^{\prime}\right)-d\left(L^{\prime}\right) \\
& =h+e-d\left(L^{\prime}\right) \quad(*) \\
& =h+e-\left(d\left(H^{\prime}\right)-d\left(H^{\prime} \cap X\right)\right) \quad(* *) \\
& \leq h+e-\binom{h}{2}+\left(\binom{h}{2}-e(T)\right) \\
& =h+e-e(T) .
\end{aligned}
$$

Now since any $(a+1)$ element subset of the vertices of Γ involves at least k edges, then by Lemma 1 any $(a+r)$ element subset involves at least $(k+r-1)$ edges. Thus if $h>a$, say $h=a+r$ with $r \geq 1$, then $e(T) \geq r+k-1$ and $d(L) \leq$ $a+r+e-(r+k-1)=a+e+1-k \leq a+e$, and if $k \geq 2, d(L)<a+e$. If $h=a$ then $d(L) \leq a+e-e(T)$, and if $d(L)=a+e$ then by $(*) d\left(L^{\prime}\right)=0$, so L is abelian. If $h<a$ then $d(L) \leq h+e+e(T)<a+e$. So in any case $d(L) \leq a+e$, and if $k \geq 2$ then $d(L)=a+e$ only if L is abelian.

Now let A_{n} be the set of graphs on n vertices. If p is an odd prime and $\Gamma \in A_{n}$ let $G(\Gamma, p)$ be the group constructed above. Let $\mathscr{G}(n, p)=$ $\left\{G(\Gamma, p) \mid \Gamma \in A_{n}\right\}$. Then each element of $\mathscr{G}(n, p)$ is nilpotent of class at most two and exponent p, and $|G(\Gamma, p)|=p^{n+e(\Gamma)}$.

Lemma 3. If $G=G(\Gamma, p) \in \mathscr{G}(n, p)$ and Γ has stability number a then (i) $r_{a}(G)=r(G)=a+r\left(G^{\prime}\right)$ and G satisfies (I).
(ii) G satisfies (II) if and only if any $a+1$ vertices of Γ involve at least two edges.

Proof. (i) As Γ has stability number a we can find a vertices $\left\{V_{1}, \ldots, V_{a}\right\}$ of Γ involving no edges: then let $A=\left\langle X_{1}, \ldots, X_{a}, F^{\prime}\right\rangle \leq F$. It follows that $A^{\prime} \leq X$ so \bar{A} is abelian and $d(\bar{A})=a+e$, so $r_{a}(G) \geq a+e$. But by Lemma $2 r(G) \leq$ $a+e$, so $r(G)=r_{a}(G)=a+e$.
(ii) If any $(a+1)$ vertices involve at least two edges then by Lemma 2 any subgroup L with $d(L)=a+e$ is abelian, so G satisfies (II). If there is a set of $(a+1)$ vertices $\left\{V_{1}, \ldots, V_{a+1}\right\}$ which involve only one edge let $N=$ $\left\langle X_{1}, \ldots, X_{a+1}, F^{\prime}\right\rangle \leq F$. Then by $(* *)$

$$
d(\bar{N})=(a+1)+e-\binom{a+1}{2}+d\left(N^{\prime} \cap X\right)
$$

and here

$$
d\left(N^{\prime} \cap X\right)=\binom{a+1}{2}-e(T)
$$

where T is the subgraph generated by $\left\{V_{1}, \ldots, V_{a+1}\right\}$, so $d(\bar{N})=$ $(a+1)+e-e(T)=a+e$. However as T has one edge, $V_{i} V_{j}$ say, then $\left[\bar{X}_{i}, \bar{X}_{j}\right] \neq 1$ so \bar{N} is not abelian.

This enables us to prove the Theorem.
Proof. Part (i) follows from Lemma 3. Part (ii) follows from our remarks in Section 3; set $G_{1}=G\left(\Gamma_{1}, p\right)$ and $G_{2}=G\left(\Gamma_{2}, p\right)$. Clearly any $(a+1)$ vertices of G_{1} involve at least $a \geq 2$ edges so by Lemma $2 G_{1}$ has property II. On the other hand we can find $(a+1)$ vertices in G_{2} which involve only one edge (for since $a<n, \Gamma_{2}$ consists of a complete graphs at least one of which contains more than one vertex: select two vertices from this complete graph and one from each of the other complete graphs). Thus by Lemma 3, G_{2} does not have property II. Part (iii) follows from the result of Bollobas quoted in Section 2. Part (iv) is clear from Lemma 2.

References

1. B. Bollobas, Graph Theory, Springer GTM 63.
2. G. Higman, Enumerating p-groups. I: Inequalities. Proc. Lond. Math. Soc., Ser 3, 10, (1960), 24-30.
3. A. R. (MacWilliams) Patterson, The minimal number of generators for p^{\prime} subgroups of GL(n, p), J. Algebra 32, (1974) 132-140.
4. B. A. F. Wehrfritz, The rank of a linear p-group; An apology, J. Lond. Math. Soc. (2), 21 (1980), 237-243.

Department of Pure Mathematics Queen Mary College (University of London) Mile End Road London E1 4NS
Current address:
University of Illinois at Urbana-Champaign Urbana, IL 61801, U.S.A.

[^0]: Received by the editors August 25, 1981, and in revised form, November 20, 1981.
 AMS (1980) subject classification: 20D15.
 (C) Canadian Mathematical Society, 1983.

