
J. Austral. Math. Soc. {Series A) 61 (1996), 57-72

SHADOWING, EXPANSIVENESS AND HYPERBOLIC
HOMEOMORPHISMS

JERZY OMBACH

(Received 21 March 1994; revised 15 August 1994)

Communicated by P. E. Kloeden

Abstract

The purpose of this paper is to complete results concerning the class 3tf of expansive homeomorphisms
having the pseudo orbits tracing property on a compact metric space. We show that hyperbolic homeo-
morphisms introduced by Marte in [8] are exactly those in the class 3^\ then by the result of [12, 20] they
form a class equal to the Smale space introduced by Ruelle in [18]. Next, assuming that the phase space
is a smooth manifold, we show that a diffeomorphism is Anosov if and only if it is in the class £P and
is a lower semi-continuity point of the map which assigns to any diffeomorphism the supremum of its
expansive constants (possibly zero). Then we discuss the behavior of the dynamical systems generated
by homeomorphisms from 3te near their basic sets.

1991 Mathematics subject classification (Amer. Math. Soc): primary 58F15; secondary 54H20.

1. Introduction

Since Walters' paper [19] in 1978 many attempts have been made to express the
concept of hyperbolicity in topological terms. Notions of shadowing, expansiveness,
coordinates, Smale space and others have proved to be very useful in attaining this
aim. A lot of results known for Anosov diffeomorphisms, Axiom A diffeomorphisms
and, more generally, for diffeomorphisms on hyperbolic sets, as well as results known
for the subshifts of finite type, have been extended to homeomorphisms defined on
compact metric spaces and satisfying some of the above properties. We refer to
the Aoki survey [2] the present author's paper [14], and Mane's book [8, Section
IV.9], for more information and complete references lists. In particular, in paper
[12] the present author showed that many classes of homeomorphisms considered as
topological counterparts of hyperbolicity were actually the same. So we can define

© 1996 Australian Mathematical Society 0263-6115/96 $A2.00 + 0.00

57
https://doi.org/10.1017/S1446788700000070 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700000070


58 Jerzy Ombach [2]

such a class requiring, for example, that any of its elements have the shadowing
property and be expansive. Denote this class by M1.

The purpose of this paper is to complete results concerning the class 3C, obtained
by the author in [12, 13, 14] and by others, see below. First we show that hyperbolic
homeomorphisms introduced by Mane in his book referred to above are exactly those
in the class Jf (Theorem 3), then by the result of [12, 20] they form a class equal
to the Smale space introduced by Ruelle in [18]. Next, assuming that the phase
space is a smooth manifold, we compare the class Jf with the class of Anosov
diffeomorphisms. In particular, a diffeomorphism is Anosov if and only if it is
in the class Jf? and is a lower semi-continuity point of the map which assigns to
any diffeomorphism the supremum of its expansive constants (possibly zero); see
below for the precise definition and the statement in Theorem 4. Moreover, the last
condition is the essential one. Then we will discuss the behavior of the dynamical
systems generated by homeomorphisms from Jf? near their basic sets. Generally
speaking, we will show that basic sets may admit exactly three kinds of behavior
corresponding to these (and therefore named so) known as sink, source and saddle,
while one considers a hyperbolic fixed point of a diffeomorphism (Sections 4 and 5).
Finally, under assumptions of connectedness of the space, and taking advantage of the
result from [17], we obtain extra interesting information on the nature of basic sets,
Theorem 24. The results of Sections 4 and 5 have their partial counterparts in the
continuous time case (for flows), [15, 16]. In the discrete case, however, they provide
more information.

Let (X, d) be a compact metric space with a distance d. Let / : X —> X be a
homeomorphism of X onto itself.

Recall that / is expansive if there exists a constant e > 0 such that

d(f"x, fy) < e for all n e 1 implies x = y

and that a sequence [xn}n€j is a S-pseudo orbit if

d(fxn,xn+i) <S forallneZ.

We say that a homeomorphism / has the shadowing property or the pseudo orbits
tracing property, abbreviated POTP, if and only if for every e > 0 there exists S > 0
such that any 5-pseudo orbit is e-traced by some point x e X, that is

d(f"x,xn)<e forallneZ.

DEFINITION 1. A homeomorphism / is in the class Jf? if and only if / is expansive
and has the shadowing property.

The above class was distinguished by Walters [19]. By the results of [12] it is the
same as the class of homeomorphisms having canonical or hyperbolic coordinates and
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[3] Shadowing and hyperbolic homeomorphisms 59

is the same as the class of homeomorphisms generating the Smale space denned in
[18].

Let x G X be an arbitrary point. We define the stable and unstable 'manifolds' at
x:

Ws(x) = {y G X : d(f"x, f"y) —• 0, n —• oo},

W(x) = {y eX : d(fnx, fy) —^0, n —• -oo},

and the local stable and unstable 'manifolds' of size e at x:

Ws
e(x) = {yeX:d(fx,fy)<e, n > 0},

We{x) = {y eX : d(fx, fy) <e, n< 0}.

2. Hyperbolic homeomorphisms

The following definition comes from Manx's book [8].

DEFINITION 2. A homeomorphism / is hyperbolic if there exist constants e0 > 0,
K > 0 , 0 < X < 1 such that

d(fnx, fy) < KX" for all x e X, ye W°o(x) and n > 0;

d(f~"x, f-"y) < KXn for all x e X, ye W^(x) and n > 0;

and there exists <50 > 0 such that

#Ws
eo(x) n Wu

eo{y) = 1,

for all *, y e X with d(x, y) < So.

THEOREM 3. A homeomorphism f is hyperbolic if and only if f e Jff.

PROOF. If a homeomorphism / is in the class Jf, then by a theorem in [12] it has
hyperbolic coordinates, that is the following condition holds:

There exists £ 0 > 0 , A">O,O<A.<1 such that

d(fx, fy) < Kk"d(x, y) for all x G X, y e W°o(x) and n > 0;
d(f~"x, f~"y) < KX"d(x, y) for all x € X, y e W£(x) and n > 0;

and there exists 50 > 0 such that

x) n wu
eo{y) = I
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for all x, y e X with d(x, y) < 80.
This easily implies that / is hyperbolic.
Assume that a homeomorphism / is hyperbolic. Let 0 < £ < s0 be fixed. Let n0

be a number such that Kk"° < e. By continuity, there is a 8 > 0 such that d(x, y) < 8
and \n\ < n0 imply d(f"x, f"y) < e. Now we have:

#Ws
e(x) n Wu

e(y) = 1

for all x, y e X with d(x, y) < 80. This means that / has canonical (or expansive)
coordinates, so by a result in f 12] it is in the class Jf?.

3. Anosov diffeomorphisms

We compare the class Jf? with the class of the Anosov diffeomorphisms, which is
one of the basic classes in the theory of smooth dynamical systems. So, in this section
we assume that X is a smooth manifold without boundary and, as before, that X is
compact. For any g e Diff (X) we define a finite number

e(g) = sup{e > 0 : d(gnx, g"y) < e for all n e 1 implies x = y]

and notice that e(g) > 0 if and only if g is expansive.
We will say that / e Diff(X) is strongly expansive, denoted by / 6 yE, if the

map
e : Diff(X) -> [0, oo) given by g - • e(g)

is lower semi continuous in the C1 topology at the point / , that is every 0 < s < e(f)
is an expansive constant for all diffeomorphisms g from a C1 neighborhood U of / .

The main result of this section is then

THEOREM 4. Let f e Diff (X). Then f is Anosov if and only if f e Jf n ^E.

This theorem will follow from more general result below. We do not repeat all
definitions, referring the reader instead to standard books or monographs such as [8]
or [11].

THEOREM 5. Let f e Diff(X). The following conditions are equivalent.

(i) / is an Anosov diffeomorphism.
(ii) / is structurally stable and is expansive.

(iii) / is C topologically stable and strongly expansive.
(iv) / is topologically stable and strongly expansive.
(v) / has the shadowing property and is strongly expansive.
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We take advantage of results of Mane and the following two propositions.

PROPOSITION 6. If f is structurally stable and expansive, then it is strongly ex-
pansive.

PROOF. In view of Mane's proof of the Stability Conjecture [9], it is known that
structural stability and strong structural stability are equivalent to each other. We fix
0 < £ < e(f). Strong structural stability implies that there exists a C1 neighborhood
U of f such that for every g e U there is a homeomorphism h : X —> X such that

and
f o h = h o g.

To show that e is an expansive constant for a diffeomorphisms g from U assume
that

d(gnx, g"y) < s for all n e I.

Then we have:

d(f"h(x), f"h{y)) = d(h(g"x), h{g"y))

< d(h(gnx), gnx) + d(gnx, g"y) + d(gny, h{gny)) < e(f),

which, by expansiveness of / , means, h(x) = h(y), and so x = y.

PROPOSITION 7. If f is C1 topologically stable and is a strongly expansive diffeo-
morphism, then it is strongly structurally stable.

PROOF. Let 0 < e < \e(f). C1 topological stability provides a C1 neighborhood
U of f such that for any g &U there is a continuous map h : X —> X such that

(1) d(h, idx) < e

and
/ o h = h o g.

We show that h is a homeomorphism. If s is small enough, condition (1) guarantees
that / is onto X, see [10, p. 31]. We show that it is also injective. Let h(x) = h(y).
For all n e Z we have:

d(gnx, g"y) < d(g"x, h{g"x)) + d(h(g"x), h{gny)) + d(h(g"y), g"y)

< 2d(h, idx) + d{fnh{x), f"h(y)) < 2s.

One can find U such that 2e is an expansive constant for all g € U. Hence x — y.
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PROOF OF THEOREM 5. (i) is equivalent to (ii). This is a result of Mane [6, 7].
(i) implies (v). By the Shadowing Lemma any Anosov diffeomorphism has the

shadowing property and by Proposition 6 and condition (ii) it is strongly expansive.
(v) implies (iv). Shadowing and expansiveness imply topological stability, see

[19].
(iv) implies (iii). This is obvious.
(iii) implies (ii). This follows from Proposition 7.

REMARK 8. Strong expansiveness is an essential condition. Namely, the class
JilP is, generally, larger than the class of Anosov diffeomorphisms. In fact, any
diffeomorphism / which is topologically conjugate to some Anosov diffeomorphism
g but which is not Anosov itself, is a good example since shadowing and expansiveness
are topological conjugacy invariants.

4. Isolated invariant sets

Assume once again that X is a general compact metric space and let / e Jff.
We will denote by c(8) a positive number such that

d[x, y) < c{8) implies d(fx, fy) < 8, d{f~xx, f~ly) < 8.

Let K c X be a nonempty closed invariant set. K is isolated or locally maximal if
there is a neighborhood U of K such any invariant subset of U must be contained in
K.

PROPOSITION 9. Let K be a closed invariant set. The following conditions are
equivalent.

(i) The restriction f \ K eJff.
(ii) There is a number eK > 0 such that:

d(f"x, K) < eK for all n el implies x e K.

(iii) K is an isolated set.

PROOF, (i) implies (ii). Let e > 0 be an expansive constant of / . By condition
(i) we can find 8 > 0, 8 < e such that any 5-p.o. in K is e/2 traced by a point
from K. We set eK = min(c(<5/2), 8/2). Assume that for some x e X we have
d(f"x, K) < eK, for all n e 2. There are points xn e K such that d{fx, xn) < eK.
These points form a 5-p.o. because

d(fxn, xn+1) < d(fxn, f f"x) + d(f"+'x, xn+i) < 8.
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This 8-p.o. is e/2 traced by a point y from K. By the triangle inequality:

d(f"x, f"y) < d(fx, xn) + d(xn, f"y) <eK + £-<e.

By expansiveness, x = y e K.

(ii) implies (iii). It is clear that U = {x e X : d(x, K) < eK] is such a neighborhood
ofK.

(iii) implies (i). Clearly f\ K is expansive. We show it has the shadowing property.
Let e > 0 be such that d(x, K) < e implies x e U. By the shadowing of / (on
the whole space X) we choose 8 corresponding to this e. Let {xn}neI be a <5-p.o.
contained in K. We get a point x e X such that d(f"x, xn) < s, for all n e Z. Now
L = K U {f"x}n€i is clearly invariant and contained in U. Hence, by (iii), L C K
and therefore x e K, which completes the proof.

Let K c X be an invariant set. We define the stable and unstable 'manifolds' at
K:

WS{K) = {x e X : d(f"x, K) —• 0, n —• oo},

W(K) = {xeX : d(f"x, K) —»• 0, n —> -oo},

and the local stable and unstable 'manifolds' of size s at K:

Ws
e(K) = {x eX : d(f"x, K) <e, n> 0},

WU
£{K) = {x G X : d(fnx, K)<£, n < 0}.

PROPOSITION 10. Let K C X be a closed invariant isolated set. Then:

(i) For every s > 0 f/jere exists S > 0 SMC/I

(ii) For any small S > 0

(iii)

PROOF, (i). For s > 0 pick <$] > 0 such that any <5i-p.o. in K is e-traced by some
point in K, and then pick S = c(&y/2), 8 < min(5!/2, e/2). Letx € WS

&{K). Then
d(f"x, xn) < 8 for n > 0, where j : n e K. The sequence

/ JC / JC * ^ ^ ^
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is a Si-p.o., as d(fx0, x{) < d(fx0, fx) + d(fx, xi). It is s/2-traced by some point
y € K and hence, by the triangle inequality, x e Ws

e(y).
(ii). It is known (and using compactness arguments is not hard to prove) that for

any x e X, W°(x) c Ws(x), where e < e and e is an expansive constant of / . Now
it is enough to choose 8 corresponding to such an e in terms of (i) that we have just
proved.

(iii). Let x e WS(K). Let e < e and choose S corresponding to this e in terms in
(i). By the definition of WS(K) there is n such that fx € Wj!(K). By (i) there is a
point v e K such that fx e W*(y) c Ws(y). Hence, x e Ws(fny). Since K is
invariant, f~"y € K.

REMARK 11. We will also use the dual statement to Proposition 10 which can be
expressed in terms of the unstable 'manifolds'.

THEOREM 12. Let K C X be a closed invariant isolated set. Let s > 0 be a small
number. Then the following conditions are equivalent.

(i) K <z'v&W's(K).
(ii) There is a neighborhood G ofK such that fGcGand f|^0 f"G = K.

(iii) W(K) = K.
(iv)

PROOF. Let e > 0 be small such that W*(K) c WS(K) and s < eK, where eK was
defined in Proposition 9.

(i) implies (ii). Let Gx be an open set such that K C G{ C ^ ( t f ) . Define
G = [JZLofGt. It is clear that G is an open neighborhood of K and / G c G. Also,
for x e G we have d(x, K) < s. Let x e f|̂ =o / " G - Tt implies / "* e G for all
« < 0. In particular, x e G and by the inclusion fG c G, it follows that / "* e G,
for all« e 2. So J( /"x, AT) < e < ^ for all such «s. Thus x e K.

(ii) implies (iii). Let x e W " ^ ) . By the definition of W" (K), there is an integer
m such that fx e G for all n < m or, equivalent^, fx 6 fl^lo f"G = K. Since
/T is invariant, x € K.

(iii) implies (iv). This follows from the dual version of Proposition 10(ii).
(iv) implies (i). Let S > 0 corresponds to min(e, c(e)) in terms of the shadowing

property. Let x e K and v e B(*, 5) be fixed. The sequence . . . , f~2x, f~xx, y, fy,
f2y,... is a <5-p.o. and is c(e)-traced by some point z. Then we have, d(fx, fz) <
s for all n < 0, and so z e W"(x) c W'(A') = /ST. Also, d(fz, fy) < s for all
n > 0 and so >> € W^(z). As z e K, we see that y 6 W*(K). We have proved that
B(x,S) c WJtAT) for every x e K, which completes the proof.
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REMARK 13. One can state the dual theorem to the above theorem by interchanging
the role of the stable and unstable manifolds. Moreover, both Theorem 12 and its dual
counterpart describe the disjoint situations in the case the set K is non-isolated in the
space X, that is any neighborhood of K contains points from X \ K. In fact, conditions
(ii) and the condition dual to the condition (iv), namely W*(K) = K, exclude each
other.

Having in mind basic sets or periodic orbits we will assume that the set K satisfies
the following condition:

ASSUMPTION. The set K c X is closed isolated invariant and

For every s > 0 and x, y e K

(B) there exists an e-chain (x = x0,..., xn = y) in K, that is

d(fxj, xi+i) < s, for i = 0 , . . . , n — 1, and all x, € K.

In the next Section we will show that any basic set satisfies the above condition
(B). Notice that any periodic orbit satisfies this condition. In fact, the only nontrivial
thing to check is that a periodic orbit is isolated, but this follows from the observation
that any homeomorphism on its periodic orbit has the shadowing property and one
can apply Proposition 9.

Under the above Assumption we may extend Theorem 12 as follows:

THEOREM 14. Let K c X satisfy the assumption. Let e > 0 be a small number.
Then, the following conditions are equivalent.

(i) KcivAWs
e{K).

(ii) There is a neighborhood G of K such that fG cGand f)^,, f"G = K.
(iii) W(K) = K.
(iv) W?(K) = K.
(v) intW*(/O^0.

(vi) K <zinlWs{K).
(vii) Ws(K)isopen.

(viii) int

PROOF. Since the first four conditions are equivalent to each other by Theorem 12,
it is enough to prove that the following implications are true:

(v) implies (vi) implies (vii) implies (i) implies (viii) implies (v).

(v) implies (vi). Let a and £j > 0 be such that B(a, eO C WS(K). Let e > 0
be such that W°(K) c WS(K), using Proposition 10(ii). Let S < min(e1,e/2)
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be chosen such that any 5-p.o. in X is min(e1; £/2)-traced. It is enough to show
that B{K, c(S)) c WS(K). Let then y e B(K, c(S)), so d(y, x) < c(8) with some
x e K. Since a e WS(K) we have b e K and n > 0 such that d(fa, b) < 8. Let
(b = y0,..., yk = x) be a <5-chain provided by the assumption. Define a 5-p.o.

/ ' a f o r / < / i - l ,

y,_n for n < i < n + k,
p-(n+k)y for n + k < L

This is min(£i, ff/2)-traced by some point z. In particular,

z eB(a,«,) c

hence for large is, say / > i0, d(f'z, K) < e/2. On the other hand, for i > n + k,
d(fz, f-(n+k)y) < e/2, and by the triangle inequality, d{f'y, K) < e for ; > j0 =
n + k +10. This means that f»y e W/(AT) C W(Jf). Hence, j e W"(AT).

(vi) implies (vii). If x € WS(K), then by (vi) there is N and an open set U such
that / * * eU c WS(K) such. Continuity of fN completes the proof.

(vii) implies (i). We argue by contradiction. To do so we assume that any neigh-
borhood of K contains points which do not belong to W3

e{K). On the other hand,
since K is compact, there is e, > 0 such that K C B(K, £,) c WS(K). Let 8 > 0
correspond to min^ , e/2) by the shadowing property. By our assumption we find
points a, y such that a e K, d(a, v) < minta, c(8)), and d(fNy, K) > e for some
positive N. By the choice of su y e WS(K). So, we have a number k > N such that
d{fky, b) < 8, with some b e K. We define a 5-p.o. to be a periodic sequence built
of blocks of the form:

a,fy,...,fk-ly,b,yu...,ym-u

where (b = y0,..., ym = a) is a 5-chain provided by the assumption. This 5-p.o. is
minCe!, e/2) traced by some point x. Now, x 6 fi(^, ei) c WS(K), which means
that d(f"x, K) —> 0 as n —> oo. On the other hand the orbit of x visits the ball
B(fNy, e/2) infinitely many times which, by the triangle inequality, means that it
leaves the neighborhood B(K, e/2) infinitely many times, which is a contradiction.

(i) implies (viii) is trivial.
(viii) implies (v). It follows from Proposition 10(ii).

REMARK 15. The theorem we have just proved has a dual version when we change
the role of the stable and unstable manifolds.

REMARK 16. Since certain conditions in the above theorem do not depend on e,
then neither do the others. In other words, if, for example, condition (i) holds for
some small s, then it holds for every small e.
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REMARK 17. By the above Remark, Theorem 14 can be expressed in terms of the
classical theory of stability of sets in the theory of dynamical systems, see [3]. In fact,
condition (i) means stability of K, condition (ii) that K is an attractor in the sense
of Conley, condition (iii) or (iv) that K is a repellor, condition (v) that K attracts
from some open set, condition (vi) that K is an attractor, condition (vii) that K has
an open set of attractivity. However, condition (viii), does not have such a natural
interpretation. Theorem 14 says that all these notions mentioned above are equivalent
to each other under the Assumption.

Let the set K satisfy the Assumption and be non-isolated in the space X, see Remark
13. According to that remark, we can distinguished three types of behavior near the
set K: first, if any of the conditions stated in Theorem 12 or Theorem 14 (and then
all remaining conditions) is satisfied; second, if any of the conditions from the dual
versions to those theorems (and then all remaining conditions) is satisfied; and third,
if all the above conditions fail. We will say that the set K is respectively a sink, a
source or a saddle.

Also, in a similar way, any point nonisolated in X can be treated as a sink, a source
or a saddle, see [13,14,17]. In fact, in [13] a counterpart of Theorem 14 is proved and
it has its dual version when we change the role of the stable and unstable manifolds
and consider negative limit set instead of positive limit set. We recall this result here.

THEOREM 18. [13] Let e > Obea small number, x e K and y a positive limit point
ofx (v e co(x)). Then, the following conditions are equivalent.

(i) intWs(x)^0.
(ii) x eintWs(x).

(iii) Ws(x) is open.
(iv) x € int W*(x).
(v) intWs

e(x)^0.
(vi) W"(x) n H = {x}, where H is a neighborhood ofx.
(vii) W»{y) = {y}.

(viii) W(y) = {v}.
(ix) co(x) = [y,..., fk~ly) is a periodic orbit, and there is a neighborhood U of

x such that fU CU and f|^0 fk"u = M-

As we have mentioned before, any periodic orbit satisfies the Assumption so it
may be treated as a sink, a source or a saddle. The following proposition answers the
natural question.

PROPOSITION 19. Let x e X be a periodic point, nonisolated in the space X and
let K = [x,..., fk~lx) be its periodic orbit. Then x is a sink, a source or a saddle,
if and only if K is a sink, a source or a saddle, respectively.
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PROOF. Let us notice that by the Proposition 10(iii) we have

WS(K) = Ws(x) U • • • U VF(/*- 'JC)

and it is clear that all Ws(f'x) are homeomorphic and pairwise disjoint. Hence,
WS(K) is open if and only if Ws(x) is open, which proves the proposition for the
case of sink. The case of source is similar and the case of saddle follows the previous
cases.

The above proposition and Theorem 18 imply the following corollary.

COROLLARY 20. Let x e X be a nonisolated point in the space X. Then x is a sink
if and only if eo{x) is a periodic orbit and is a sink. A similar statement holds for a
source.

5. Basic sets

Denote by Per(/) the set of all periodic points of / and by £2(/) the set of all
nonwandering points of / . It is known that the above sets are nonempty invariant, and
£2(/) is closed with Per(/) is dense in Q(f). Also £2(/) = CR(f), where CR(f)
denotes the set of all chain recurrent points, see [13]. The restriction / |£2(/) € Jf
(see [1, 14]). Moreover, repeating Bowen's proof for Axiom A diffeomorphisms, one
has the following Spectral Decomposition Theorem (see [2, 14]).

THEOREM 21.

= £2, U---UJ2t,

where the £2i,..., £2k are said to be basic sets. They are closed invariant and pairwise
disjoint and the restriction /|£2,- is topologically transitive, for i = 1 , . . . , k.

Moreover, any basic set has a decomposition:

where the £2, j are closed pairwise disjoint and /£2,,i = £2,,2, • • • >
The restrictions fk'\Q.ij are topologically mixing on each £2,j, i = 1 , . . . , k, j =
1,...,*,-.

We show that any basic set satisfies the assumption from Section 4 and therefore in
the case it is non-isolated in the space X can be treated as a sink or a source or a saddle.
In fact, we have already mentioned the restriction / | £2(/) 6 Jf?. In particular, the
restriction of / to any basic set has the shadowing property, so by Proposition 9 any
basic set is an isolated invariant set. We have to show:
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PROPOSITION 22. Let K be a basic set. Then K satisfies condition (B) of the
assumption.

PROOF. Let x, y e K and s > 0 be fixed. We have to find an £-chain from x
through y. Since K c CR(f), the case x = y is obvious. So we assume that x ^ y.
Let 8 — c(e)/2, 8 < s. We have a dense orbit in K, so there is a point w e K and
an integer M ^ 0 such that d{x, w) < 5 and d(y, /Mu;) < <5. If M > 0 then the
sequence (x, fw,..., fM~lw, v) is an £-chain as required.

Assume M < 0. Let z = / M w and m = —M. Now we have

d(y, z) < e/2 and d(x, fmz) < c{s)/2.

Since periodic points are dense in K we can find a periodic point p e K such that

d(z, p) < e/2 and d(fmz, fmp) < c(e)/2.

There is k > 1 such that fm+kp — p. By the above estimations we have:

d(x, fmp) < d(x, fmz) + d(fmz, fmp) < c(s),

and

d{p, y) <d(p,z) + d(z,y) <s.

So, the sequence (x, fm+1p,..., fm+k~xp, v) is such a required e-chain.

The following is, to some extent, a converse statement to the above proposition:

PROPOSITION 23. If the set K satisfies the Assumption and is a sink or a source,
then K is a basic set.

PROOF. Condition (B) implies that any point in K is chain recurrent, so K c
CR(f) = Q(f). Moreover, the same condition yields that K cannot intersect two
distinct basic sets, so there is such a basic set Qt that K C n,-.

We want to show the opposite inclusion but first we claim that for any two points
x, v from £2, and any £ > 0 there is a periodic orbit (p,..., fk~xp) such that
d(x, p) < £ and d(y, f'p) < s, with some 0 < / < k — 1. We can assume that
e < e/2, where e > 0 is an expansive constant. Choose 8 corresponding to this £ in
the shadowing property and consider two S-chains provided by Proposition 22:

x = xo,...,xk = y and y = y0,..., y, - x.

Define a periodic <5-p.o.;
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It is s/2-traced by some point p and, also, by fk+l~lp. By expansiveness, fk+l~lp —
p, which proves the claim.

Assume that there is a point x e £2,• \ K. As AT is closed, there is s > 0 such that
B{x, e) PI K = 0. Pick a point v e K n £2,-. As AT is a sink, WS(K) is open and
we may decrease e so that B(y, e) c VP(AT). From the assertion we have a periodic
orbit such that some element in it lies in B(x, e) and hence is not in AT. On the other
hand this orbit meets the stable 'manifold' WS(K), hence is contained in K, which is
a contradiction.

In the sequel we will assume that the nonwandering set £2(/) is a proper subset
of X and the all basic sets are non-isolated in the space X. This last assumption is a
quite natural one. In fact, the dynamics on an isolated basic set is independent of the
dynamics on the remaining part of the space.

THEOREM 24. Let £2(/) # X. Assume that any basic set is non-isolated in the
space X. Then:

(i) / has the no-cycle property. In particular, there are at least two basic sets.
(ii) int £2(/) = 0.

(iii) Among basic sets there is at least one sink. The set of points whose positive
orbits tend to some basic set which is a sink is dense and open in the space
X. The corresponding statement is also true for the source case.

(iv) If the space X is connected and locally connected, then any basic set which
is a sink or a source is uncountable.

PROOF, (i). It is the same as the proof of the corresponding result for Axiom A
diffeomorphisms, [5].

(ii). If int £2, ^ 0, for some basic set £2,, then both IP(£2,) and W"(£2,) have
nonempty interiors, hence £2, is a sink and a source at the same time, which is absurd.

(iii) We will show that X = Ws(Qt) U . . . U Ws(£lk), where £2,,. . . , £2* are all
basic sets. Having proved this we argue as follows. Fix any open set U C X. Since
for any £2,, Ws (£2,) = (J^LQ / ~" W/ (£2,), the set U is contained in the countable union
of the closed sets of the form / "" W/(fi,-). By the Baire Category Theorem and the
continuity of /" , there is a basic set for which int IP (£2,) ^ 0, so this basic set
is a sink and its stable 'manifold' contains a point from U. The union of the stable
'manifolds' of sinks is clearly open.

To prove our first claim notice that the positive limit set of every point is contained
in £2 ( /) . The proof will be complete if we show that the positive limit set is contained
in a single basic set. We argue by contradiction. So, let x, v, z e X be such that
v € co(x) n £21; z 6 co(x) fl £22, where £2l5 £22 are distinct basic sets. Fix s > 0 so
small that 2e < e,e < min{dist(£2,, £2,) : £2,, £2, basic sets}, where e is an expansivity
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constant. Let 8 correspond to e in terms of the shadowing property. There are positive
numbers «j < n2 < «3 such that;

d(f"'x, y) < c(8), d(f"*x, z) < c(8), d(fn>x, y) < c(8).

We form a periodic 8-p.o. as follows

. . . , y , f " ' + 1 x , . . . , f n i - x x , z , f n i + l x , . . . , f n i ~ x x , y , . . . .

This orbit is e-traced by a point p, which by expansiveness is periodic, so the whole
orbit of p is contained in a single basic set. On the other hand we have points on this
orbit in s-neighborhoods of Q^ and fi2- By the choice of e it is absurd.

(iv). We use a result from [17] which says that under our assumption every point in
X is a saddle. We argue by contradiction and assume that the basic set K is countable
and a sink. From Proposition 10(i) we have:

xeK

with appropriate small e and 8. By the result mentioned above any set W*(x) is
nowhere dense, so by the Baire Category Theorem the interior of its countable union
is empty. This is a contradiction to condition (viii) in Theorem 14.
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