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Executive Summary

Where Are We Now?

Our current 1.1°C warmer world is already affecting natural and 
human systems in Europe (very high confidence1). Since AR5, there 
has been a substantial increase in detected or attributed impacts of 
climate change in Europe, including extreme events (high confidence). 
Impacts of compound hazards of warming and precipitation have 
become more frequent (medium confidence). Climate change has 
resulted in losses of, and damages to, people, ecosystems, food 
systems, infrastructure, energy and water availability, public health 
and the economy (very high confidence) {13.1.4;13.2.1;13.3.1;13.4.1; 
13.5.1;13.6.1;13.7.1;13.8.1;13.10.1}.

As impacts vary both across and within European regions, 
sectors, and societal groups (high confidence), inequalities 
have deepened (medium confidence). Southern regions tend 
to be more negatively affected, while some benefits have been 
observed, alongside negative impacts in northern and central 
regions. Traditional lifestyles, for example in the European Arctic, are 
threatened already (high confidence). Poor households have lower 
capacity to adapt to, and recover from, impacts (medium confidence) 
{13.5.1;13.6.1;13.7.1;13.8.1.;13.8.2;13.10.1;Box 13.2}.

The range of options available to deal with climate-change 
impacts has increased in most of Europe since AR5 (high 
confidence). Growing public perception and adaptation knowledge 
in public and private sectors, the increasing number of policy and 
legal frameworks, and dedicated spending on adaptation are all 
clear indications that the availability of options has expanded (high 
confidence). Information provision, technical measures and government 
policies are the most common adaptation actions implemented. 
Nature-based Solutions (NbS) that restore or recreate ecosystems, 
build resilience and produce synergies with adaptation and mitigation 
are increasingly used. Many cities are taking adaptation action, but 
with large differences in level of ambition and implementation (high 
confidence) {13.2.2;13.3.2;13.4.2;13.5.2;13.6.2;13.7.2;13.8.2;13.10.2;
13.11.1;13.11.2;13.11.3}.

Observed adaptation actions are largely incremental with only 
a few examples of local transformative action; adaptation 
actions have demonstrated different degrees of effectiveness 
in reducing impacts and feasibility of implementation (high 
confidence). For example, adaptation actions such as flood defences 
and early warning systems have reduced flood damages and heat-
related mortality in parts of Europe. Despite progress in adaptation, 
impacts are observed. Adaptation actions in the private sector are 
limited, with many businesses and regions remaining under-prepared. 
A gap remains between planning and implementation of adaptation 
action (high confidence) {13.2.2;13.5.2;13.6.2;13.7.2;13.11}.

1 In this Report, the following summary terms are used to describe the available evidence: limited, medium or robust; and for the degree of agreement: low, medium or high. A level of confidence is 
expressed using five qualifiers: very low, low, medium, high and very high, and is typeset in italics (e.g., medium confidence). For a given evidence and agreement statement, different confidence levels 
can be assigned, but increasing levels of evidence and degrees of agreement are correlated with increasing confidence.

What Are the Future Risks?

Warming in Europe will continue to rise faster than the global 
mean, widening risk disparities across Europe in the 21st century 
(high confidence). Largely negative impacts are projected for southern 
regions (e.g., increased cooling needs and water demand, losses in 
agricultural production and water scarcity) and some short-term benefits 
are anticipated in the north (e.g., increased crop yields and forest growth) 
{13.1.4;13.2.1;13.3.1;13.4.1;13.5.1;13.6;13.7.1;13.10.2}.

Four key risks (KR) have been identified for Europe, with most 
becoming more severe at 2°C global warming levels (GWL) 
compared with 1.5°C GWL in scenarios with low to medium 
adaptation (high confidence). From 3°C GWL and even with high 
adaptation, severe risks remain for many sectors in Europe (high 
confidence). Key risks are: mortality and morbidity of people and 
ecosystems disruptions due to heat (KR1: heat); loss in agricultural 
production due to combined heat and droughts (KR2: agriculture); 
water scarcity across sectors (KR3: water scarcity); impacts of floods 
on people, economies and infrastructure (KR4: flooding) {13.10.2}.

KR1: The number of deaths and people at risk of heat stress 
will increase two- to threefold at 3°C compared with 1.5°C 
GWL (high confidence). Risk consequences will become severe 
more rapidly in Southern and Western Central Europe and urban areas 
(high confidence). Thermal comfort hours during summer will decrease 
significantly (high confidence), by as much as 74% in Southern Europe 
at 3°C GWL. Above 3°C GWL, there are limits to the adaptation potential 
of people and existing health systems, particularly in Southern Europe, 
Eastern Europe and areas where health systems are under pressure 
(high confidence) {13.6.1;13.6.2;13.7.1;13.7.2;13.8.1;13.10.2.1}.

KR1: Warming will decrease suitable habitat space for current 
terrestrial and marine ecosystems and irreversibly change their 
composition, increasing in severity above 2°C GWL (very high 
confidence). Fire-prone areas are projected to expand across Europe, 
threatening biodiversity and carbon sinks (medium confidence). 
Adaptation actions (e.g., habitat restoration and protection, fire and 
forest management, and agroecology) can increase the resilience of 
ecosystems and their services. Trade-offs between adaptation and 
mitigation options (e.g., coastal infrastructure and NbS) will result in 
risks for the integrity and function of ecosystems (medium confidence) 
{13.3.1;13.3.2;13.4.1;13.4.2;13.10.2.1; Cross-Chapter Box  SLR in 
Chapter 3; Cross-Chapter Box NATURAL in Chapter 2}.

KR2: Due to a combination of heat and drought, substantive 
agricultural production losses are projected for most European 
areas over the 21st century, which will not be offset by gains 
in Northern Europe (high confidence). Yield losses for maize 
will reach 50% in response to 3°C GWL, especially in Southern 
Europe. Yields of some crops (e.g., wheat) may increase in Northern 
Europe if warming does not exceed 2°C (medium confidence). 
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While irrigation is an effective adaptation option for agriculture, the 
ability to adapt using irrigation will be increasingly limited by water 
availability, especially in response to GWL above 3°C (high confidence) 
{13.5.1;13.5.2;13.10.2.2}.

KR3: Risk of water scarcity will become high at 1.5°C and very 
high at 3°C GWL in Southern Europe (high confidence), and 
increase from moderate to high in Western Central Europe 
(medium confidence). In Southern Europe, more than a third of 
the population will be exposed to water scarcity at 2°C GWL; under 
3°C GWL, this risk will double, and significant economic losses in 
water- and energy-dependent sectors may arise (medium confidence). 
For Western Central and Southern Europe, and for many cities, the 
risk of water scarcity will be strongly increasing under 3°C GWL. 
Adaptation becomes increasingly difficult at 3°C GWL and above, 
due to geophysical and technological limits; hard limits are likely2 first 
reached in parts of Southern Europe {13.2.1;13.2.2;13.6.1;13.10.2.3}.

KR4: Due to warming, changes in precipitation and sea level rise 
(SLR), risks to people and infrastructures from coastal, riverine and 
pluvial flooding will increase in Europe (high confidence). Risks of 
inundation and extreme flooding will increase with the accelerating pace 
of SLR along Europe’s coasts (high confidence). Above 3°C GWL, damage 
costs and people affected by precipitation and river flooding may double. 
Coastal flood damage is projected to increase at least tenfold by the end 
of the 21st century, and even more or earlier with current adaptation 
and mitigation (high confidence). Sea level rise represents an existential 
threat for coastal communities and their cultural heritage, particularly 
beyond 2100 {13.2.1;13.2.2;13.6.2;13.10.2.4;Box  13.1; Cross-Chapter 
Box SLR in Chapter 3).

European cities are hotspots for multiple risks of increasing 
temperatures and extreme heat, floods and droughts (high 
confidence). Warming beyond 2°C GWL is projected to result 
in widespread impacts on infrastructure and businesses (high 
confidence). These impacts include increased risks for energy supply 
(high confidence) and transport infrastructure (medium confidence), 
increases in air conditioning needs (very high confidence) and high 
water demand (high confidence) {13.2.2;13.6.1;13.7.1;13.10.2}.

European regions are affected by multiple key risks, with 
more severe consequences in the south than in the north (high 
confidence). These risks may co-occur and amplify each other, but 
there is uncertainty about their interactions and their quantifications. 
There is high confidence that consequences for socioeconomic and 
natural systems will be substantial: the number of people exposed to 
KRs and economic losses are projected to at least double at 3°C GWL 
compared with 1.5°C GWL (medium confidence); and increased risks are 
also projected for biodiversity and ecosystem services, such as carbon 
regulation. The risks resulting from changes in climatic and non-climatic 
drivers in many sectors is a key gap in knowledge (high confidence). This 
gap prevents the precise assessment of systemic risks, socio-ecological 
tipping points and limits to adaptation {13.10.2;13.10.3;13.10.4}.

2 In this Report, the following terms are used to indicate the assessed likelihood of an outcome or a result: virtually certain 99–100% probability, very likely 90–100%, likely 66–100%, about as likely 
as not 33–66%, unlikely 0–33%, very unlikely 0–10% and exceptionally unlikely 0–1%. Additional terms (extremely likely 95–100%, more likely than not >50–100% and extremely unlikely 0–5%) 
may also be used when appropriate. Assessed likelihood is typeset in italics (e.g., very likely).

Climate risks from outside Europe are emerging due to a 
combination of the position of European countries in the global 
supply chain and shared resources (high confidence). There 
is emerging evidence that climate risks in Europe may also impact 
financial markets, food production and marine resources beyond 
Europe. Exposure of European countries to inter-regional risks can be 
reduced by international governance and collaboration on adaptation 
in other regions (medium confidence) {13.5.2;13.9.1;13.9.2;13.11; 
Cross-Chapter Box INTEREG in Chapter16}.

What Are the Solutions, Limits and Opportunities of Adaptation?

There are a growing range of adaptation options available today 
to deal with future climate risks (high confidence). Examples of 
adaptation to the key risks include: behavioural change combined with 
building interventions, space cooling and urban planning to manage 
heat risks (KR1); restoration, expansion and connection of protected 
areas for ecosystems, while generating adaptation and mitigation 
benefits for people (KR1: heat); irrigation, vegetation cover, changes 
in farming practices, crop and animal species, and shifting planting 
(KR2: agriculture); efficiency improvements, water storage, water reuse, 
early warning systems and land-use change (KR3: water scarcity); 
early warning systems, reserving space for water and ecosystem-
based adaptation, sediment or engineering-based options, land-use 
change and managed retreat (KR4: flooding). Nature-based Solutions 
for flood protection and heat alleviation are themselves under threat 
from warming, extreme heat, drought and SLR (high confidence) 
{13.2.2;13.3.2;13.4.2;13.5.2;13.6.2;13.7.2;13.8.2;13.9.4;13.10.2;13.11}.

In many parts of Europe, existing and planned adaptation measures 
are not sufficient to avoid the residual risk, especially beyond 1.5°C 
GWL (high confidence). Residual risk can result in losses of habitat and 
ecosystem services, heat related deaths (KR1), crop failures (KR2), water 
rationing during droughts in Southern Europe (KR3) and loss of land 
(KR4) (medium confidence). At 3°C GWL and beyond, a combination 
of many, maybe even all, adaptation options are needed, including 
transformational changes, to reduce residual risk (medium confidence). 
{13.2.2;13.3.2;13.4.2;13.5.2;13.6.2;13.7.2;13.8.2;13.9.4;13.10.2;13.11}.

Although adaptation is happening across Europe, it is not 
implemented at the scale, depth and speed needed to avoid 
the risks (high confidence). Many sectors and systems, such as 
flood risk management, critical infrastructure and reforestation, are 
on self-reinforcing development paths that can result in lock-ins and 
prevent changes needed to reduce risks in the long term and achieve 
adaptation targets. Forward-looking and adaptive planning can prevent 
path dependencies and maladaptation, and ensure timely action (high 
confidence). Monitoring climate change, socioeconomic developments 
and progress on implementation is critical in assessing if and when 
further actions are needed, and evaluating whether adaptation is 
successful {13.2.2;13.10.2;13.11.1;13.11.2;13.11.3; Cross-Chapter 
Box DEEP in Chapter 17}.
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Systemic barriers constrain the implementation of adaptation 
options in vulnerable sectors, regions and societal groups (high 
confidence). Key barriers are limited resources, lack of private-sector 
and citizen engagement, insufficient mobilisation of finance, lack of 
political leadership and low sense of urgency. Most of the adaptation 
options to the key risks depend on limited water and land resources, 
creating competition and trade-offs, also with mitigation options 
and socioeconomic developments (high confidence). Europe will 
face difficult decisions balancing these trade-offs. Novel adaptation 
options are pilot tested across Europe, but upscaling remains 
challenging. Prioritisation of options and transitions from incremental 
to transformational adaptation are limited due to vested interests, 
economic lock-ins, institutional path dependencies and prevalent 
practices, cultures, norms and belief systems {13.11.1;13.11.2;13.11.3}.

Several windows of opportunity emerge to accelerate climate 
resilient development (CRD) (medium confidence). Such windows 
are either institutionalised (e.g., budget cycles, policy reforms and 
evaluations, infrastructure investment cycles) or open unexpectedly 
(e.g., extreme events, COVID-19 recovery programmes). These 
windows can be used to accelerate action through mainstreaming and 
transformational actions (medium confidence). This CRD is visible in 
European cities, particularly in green infrastructure, energy-efficient 
buildings and construction, and where co-benefits (e.g., to health, 
biodiversity) have been identified. Private-sector adaptation takes 
place mostly in response to extreme events or regulatory, shareholder 
or consumer pressures and incentives (medium confidence) {13.11.3; 
Box 13.3; Cross-Chapter Box COVID in Chapter 7}.

Closing the adaptation gap requires moving beyond short-term 
planning and ensuring timely and adequate implementation 
(high confidence). Inclusive, equitable and just adaptation pathways 
are critical for CRD. Such pathways require consideration of SDGs, 
gender and Indigenous knowledge and local knowledge (IKLK) and 
practices. The success of adaptation will depend on our understanding 
of which adaptation options are feasible and effective in their local 
context (high confidence). Long lead times for nature-based and 
infrastructure solutions or planned relocation require implementation 
in the coming decade to reduce risks in time. To close the adaptation 
gap, political commitment, persistence and consistent action across 
scales of government, and upfront mobilisation of human and financial 
capital, is key (high confidence), even when the benefits are not 
immediately visible {13.2.2;13.8;13.11; Cross-Chapter Box GENDER in 
Chapter 18}.
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13.1 Point of Departure

13.1.1 Introduction and Geographical Scope

This regional chapter on climate-change impacts, vulnerabilities and 
adaptations in Europe examines the impacts on the sectors, regions and 
vulnerable populations of Europe, assesses the causes of vulnerability 
and analyses ways to adapt, thereby considering socioeconomic 
developments, land-use change and other non-climatic drivers. 
Compared with AR5 and in the context of the Paris Agreement (2015), we 
place emphasis on the planned and implemented solutions, assess their 
feasibility and effectiveness, and consider the Sustainable Development 
Goals (SDG) and shared socioeconomic pathways (SSPs). Global 
warming level (GWL) refers to global climate-change emissions relative 
to pre-industrial levels, expressed as global surface air temperature 
(Section 1.6.2; Chen et al., 2021).

The chapter generally follows the overall structure of AR6 WGII. We 
first present our point of departure (the present section) followed by 
the key sectors, starting with water, as water is interconnected and of 
fundamental importance to subsequent sections (Sections 13.2–13.8). 
For each section, we assess the observed impacts and projected risks, 
solution space and adaptation options, and knowledge gaps. The 

solution space is defined as the space within which opportunities and 
constraints determine why, how, when and who adapts to climate risks 
(Haasnoot et al., 2020a). Section 13.9 discusses impacts and adaptation 
beyond Europe, followed by the key risks for Europe (Section 13.10). 
The chapter ends with an assessment of the adaptation solution space, 
CRD pathways and SDGs (13.11), although recognising that scientific 
literature on these aspects is only slowly beginning to emerge.

With the rapidly growing body of scientific literature since WGII 
AR5 (Callaghan et  al., 2020), our assessment prioritises systematic 
reviews, meta-analyses, and synthesis papers and reports. Feasibility 
and effectiveness assessments use revised methods developed for the 
Special Report of Global warming of 1.5°C (de Coninck et al., 2018; 
Singh et al., 2020). Protocols, as well as supporting material for figures 
and tables, can be found in the Supplementary Material.

The geographical scope and subdivision of European land, coastal and 
ocean regions is largely the same as in WGII AR5 Chapter 23 (Kovats 
et al., 2014): Southern Europe (SEU), Western Central Europe (WCE), 
Eastern Europe (EEU) and Northern Europe (NEU). Note that WGI 
assesses a larger region for the Mediterranean (MED) which includes 
North Africa and the Middle East compared with the assessment 
in this chapter (SEU). The European part of the Arctic region is not 

Polygon delineations represent the 
boundaries used for the regional synthesis 
of historical trends and future climate 
change projections used in the Assessment 
Reports of the IPCC WGI.
    (a) Northern Europe (NEU)
    (b) Eastern Europe (EEU)
    (c) Western and Central Europe (WCE)
    (d) Southern Europe (SEU) *

European marine sub-regions
    (i) Northern European Seas (NEUS)
    (ii)Temperate European Seas (TEUS)
    (iii) Southern European Seas (SEUS)

* Different from the WGI Mediterranean (MED) 
which includes also the eastern and southern 
countries bordering the Mediterranean.

Geographical subdivision of
land and ocean regions of Europe

(a)

(c)

(b)

(d)

       
       
       
       

(i)

(ii)

(iii)

       
       
       

Figure 13.1 |  Geographical subdivision of land (a,b,c,d) and ocean (i,ii,iii) regions of Europe. The overlay represents the WGI AR6 (IPCC, 2021) subdivisions for 
climate-change projections of land, while the colour coding indicates the European countries (or, in case of the Russian Federation, the European part of the country, EEU, used for 
this chapter). Note that in the WGI AR6 report, MED includes both Southern Europe and Northern Africa, while this chapter includes only the northern (European) part of the MED 
region. To distinguish between the two the region is called SEU here.
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systematically assessed here, as it is extensively captured in Cross-
Chapter Paper 6. Information relevant to Europe is also synthesised 
in the CCPs (Cross-Chapter Papers), including European biodiversity 
hotspots (Cross-Chapter Paper 1), coastal cities and settlements 
(Cross-Chapter Paper 2), Mediterranean regions (Cross-Chapter Paper 
4) and mountains (Cross-Chapter Paper 5). European seas are broadly 
divided by latitude into (i) European Arctic waters (NEUS), (ii) European 
temperate seas (TEUS) and (iii) southern seas with the Mediterranean 
and the Black Sea (SEUS) (Figure 13.1).

13.1.2 Socioeconomic Boundary Conditions

The adaptive capacity, as measured by the GDP per capita, tends to be 
higher in northern and western parts of Europe (Figure 13.2a). In recent 
decades, climate change has led to substantial losses and damages to 
people and assets across Europe, mostly from riverine flooding, heatwaves 
and storms (Figure 13.2b). Public concern about climate change, which 
is an indicator of the intention to mitigate and adapt, is particularly high 
in parts of SEU and WCE (Figure 13.2c). Current vulnerability to extreme 

weather and climatic events in European countries is low to moderate 
compared with the rest of the world (Figure 13.2d).

13.1.3 Impact Assessment of Climate Change Based on 
Previous Reports

The main findings of previous reports, particularly the WGII AR5 (Kovats 
et  al., 2014) and the IPCC Special Report on 1.5°C (Hoegh-Guldberg 
et al., 2018), highlighted the impacts of warming and rainfall variations 
and their extremes on Europe, particularly SEU and mountainous areas. 
At 2°C GWL, 9% of Europe’s population was projected to be exposed 
to aggravated water scarcity, and 8% of the territory of Europe were 
characterised to have a high or very high sensitivity to desertification 
(UNEP/UNECE, 2016). These impacts are driven by changes in 
temperature, precipitation, irrigation developments, population growth, 
agricultural policies and markets (EEA, 2017a). Heat is a main hazard for 
high-latitude ecosystems (Kovats et al., 2014; Jacob et al., 2018; Hock 
et al., 2019). The majority of mountain glaciers lost mass during the past 
two decades, and permafrost in the European Alps and Scandinavia 

(a) Gross domestic 
product (GDP) per capita

Constant 
international 
dollars
(average 
2013–2018)

No data

(c) Population very or 
extremely worried about 
climate change

Percentage 
of 
respondents

No data

10000
20000
40000
60000
80000

>100000

(d) Vulnerability of 
population to disasters 
and humanitarian crises

Vulnerability 
dimension of 
the 2021 
INFORM RISK 
index

No data

Very 
low

Very
high

15%
20%
30%
40%

>50%

(b) Reported damages 
and fatalities from 
climate-related events 
(1999–2018) 

Global rank of 
the Climate 
Risk Index 
(period 
1999–2018)

No data

1
11
21
51

>100

Damages to people and assets, vulnerability and adaptive capacity across Europe

Figure 13.2 |  Indicators of reported damages to people and assets, vulnerability and adaptive capacity across European countries:

(a) GDP per capita (average 2013–2018), in constant 2011 international dollars (World Bank, 2020); 

(b) exposure as measured by the global rank of the Climate Risk index, which is based on economic damages and fatalities due to climate-related extreme weather events between 
1999 and 2018 (Germanwatch, 2020); 

(c) level of climate-change concern among a representative weighted sample of residents 15 years and older in private households (European Social Survey, 2020); and 

(d) vulnerability to disasters and humanitarian crisis in 2021. The index is based on socioeconomic factors (development, inequality and aid dependency) and vulnerable groups 
(DRMKC, 2020).
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is decreasing (Hock et  al., 2019). In Central Europe, Scandinavia and 
Caucasus, mountain glaciers were projected to lose 60–80% of their mass 
by the end of the 21st century (Hock et al., 2019). The combined impacts 
on tourism, agriculture, forestry, energy, health and infrastructure were 
suggested to make SEU highly vulnerable and increase the risks of failures 
and vulnerability for urban areas (Kovats et al., 2014). Previous reports 
stated that the adaptive capacity in Europe is high compared with other 
regions of the world, but that there are also limits to adaptation from 
physical, social, economic and technological factors. Evidence suggested 
that staying within 1.5°C GWL would strongly increase Europe’s ability 
to adapt to climate change (de Coninck et al., 2018).

13.1.4 European Climate: Main Conclusions of WGI AR6

Changes in several climatic-impact drivers have already emerged in all 
regions of Europe: increases in mean temperature and extreme heat, 
and decreases in cold spells (Ranasinghe et  al., 2021; Seneviratne 
et al., 2021). Lake and river ice has decreased in NEU, WCE and MED, 
and sea ice in NEUS (Fox-Kemper et al., 2021; Ranasinghe et al., 2021). 
With increasing warming, confidence in projections is increasing 

for more drivers (Figure  13.3). Mean and maximum temperatures, 
frequencies of warm days and nights, and heatwaves have increased 
since 1950, while the corresponding cold indices have decreased 
(high confidence) (Ranasinghe et al., 2021; Seneviratne et al., 2021). 
Average warming will be larger than the global mean in all of Europe, 
with largest winter warming in NEU and EEU and largest summer 
warming in MED (high confidence) (Gutiérrez et al., 2021; Ranasinghe 
et  al., 2021). An increase in hot days and a decrease in cold days 
are very likely (Figure  13.4a,b). Projections suggest a substantial 
reduction in European ice glacier volumes and in snow cover below 
elevations of 1500–2000 m, as well as further permafrost thawing 
and degradation, during the 21st century, even at a low GWL (high 
confidence) (Ranasinghe et al., 2021).

The assessment of climate change in WGI AR6 concludes that during 
recent decades mean precipitation has increased over NEU, WCE 
and EEU, while magnitude and sign of observed trends depend 
substantially on time period and study region in MED (medium 
confidence) (Douville et al., 2021; Gutiérrez et al., 2021; Ranasinghe 
et al., 2021). Precipitation extremes have increased in NEU and EEU 
(high confidence) (Seneviratne et  al., 2021), vary spatially in WCE 
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Figure 13.3 |  Observed and projected direction of change in climate-impact drivers at 1.5°C and 4°C GWL for European sub-regions and European seas. 
(Assessment from Gutiérrez et al., 2021; Ranasinghe et al., 2021; Seneviratne et al., 2021).
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Climate impacts drivers and socio-ecological vulnerabilities
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Figure 13.4 |  Changes in climate hazards for global warming levels of 1.5°C and 3°C based on the CMIP6 ensemble (Gutiérrez et al., 2021) with respect to 
the baseline period 1995–2014, combined with information on present exposure or vulnerability: 

(a,b) number of days with temperature maximum above 35°C (TX35) and population density (European Comission, 2019); 

(c,d) daily precipitation maximum (R × 1 d) and built-up area (JRCdatacatalogue, 2021); 

(e,f) consecutive dry days and annual harvested rain-fed area (Portmann et al., 2010); 

(g,h) sea surface temperature and marine protected areas (EEA, 2021b); and 

(k,l) sea level rise (SLR) and coastal population (Merkens et al., 2016). The SLR data consider the long-term period (2081–2100) and SSP1–2.6 for (i) and SSP3–7.0 for (j).

(medium confidence) and have not changed in MED (low confidence). 
For >2°C GWL, of mean precipitation in NEU in winter is increasing and 
decreasing in MED in summer (high confidence). A widespread increase 
of precipitation extremes is projected for >2°C GWL for all sub-regions 
(high confidence), except for MED where no change or decrease 
is projected in some areas (Figure  13.4c,d; Gutiérrez et  al., 2021; 
Ranasinghe et al., 2021). WGI assessed projections for meteorological, 
agricultural/ecological and hydrological drought (Ranasinghe et  al., 

2021) with low confidence in the direction of change in NEU, WCE and 
EEU at 1.5°C GWL. MED is projected to be most affected within Europe 
with all types of droughts increasing for 1.5°C (medium confidence) 
and 4°C GWL (high confidence). At 4°C GWL, hydrological droughts 
in NEU, WCE and EEU will increase (medium confidence). Projections 
for the 21st century show increases in storms across all of Europe 
(medium confidence) for >2°C GWL with a decrease in their frequency 
in the MED (Ranasinghe et al., 2021).
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Sea surface warming between 0.25°C and 1°C has been observed in all 
regions over recent decades (high confidence) (Ranasinghe et al., 2021) 
and are projected to continue increasing (high confidence), particularly 
in the SEUS and at the NEUS (Figure 13.4g,h; Gutiérrez et al., 2021). 
Salinity has increased in the SEUS and decreased in NEUS and is 
projected to continue (medium confidence) (Fox-Kemper et al., 2021). 
European waters have been, and will continue, acidifying (virtually 
certain) (Eyring et  al., 2021; Szopa et  al., 2021), resulting in a mean 
decrease of surface pH of about 0.1 and 0.3 pH units at 1.5°C and 3°C 
GWL with the largest changes at high latitudes (Gutiérrez et al., 2021).

Relative sea level has risen along the European coastlines (Ranasinghe 
et al., 2021), regionally mitigated by post-glacial rise of land masses in 
Scandinavia (Fox-Kemper et al., 2021). This SLR will very likely continue 
to increase during the 21st century (Figure 13.4k,l) (high confidence), 
with regional deviations from global mean SLR (low confidence). 
Extreme water levels, coastal floods and sandy coastline recession 
are projected to increase along many European coastlines (high 
confidence) (Ranasinghe et al., 2021).

13.2 Water

13.2.1 Observed Impacts and Projected Risks

13.2.1.1 Risk of Coastal Flooding and Erosion

Almost 50  million Europeans live within 10 m above mean sea 
level (Vousdoukas et  al., 2020; McEvoy et  al., 2021). Without further 
adaptation (Section 13.2.2), flood risks along Europe’s low-lying coasts 
and estuaries will increase due to SLR compounded by storm surges, 
rainfall and river runoff (high confidence) (Mokrech et al., 2015; Arns 
et al., 2017; Sayol and Marcos, 2018; Vousdoukas et al., 2018a; Bevacqua 
et al., 2019; Couasnon et al., 2020). The population at risk of a 100-year 
flood event starts to rapidly increase beyond 2040 (Vousdoukas et al., 
2018a) reaching 10 million people under RCP8.5 by 2100, but it stays just 
below 10 million people under RCP2.6 by 2150 (Figure 13.5; Haasnoot 
et al., 2021b) assuming present population and protection. The number 
of people at risk is projected to increase and risk to materialise earlier 
especially in response to increasing population under SSP5 (Vousdoukas 
et al., 2018a; Haasnoot et al., 2021b). Under high rates of SLR resulting 
from rapid ice sheet loss from Antarctica, risks may increase by a third by 
2150 (Haasnoot et al., 2021b). Expected annual (direct) damages due to 
coastal flooding are projected to rise from 1.3 billion EUR today to 13–
39 billion EUR by 2050 between 2°C and 2.5°C GWL and 93–960 billion 
EUR by 2100 between 2.5° and 4.4°C GWL, largely depending on 
socioeconomic developments (Cross-Chapter Box  SLR in Chapter 3; 
Vousdoukas et al., 2018a) (high confidence in the sign; low confidence 
in the numbers). UNESCO World Heritage sites in the coastal zone are 
at risk due to SLR, coastal erosion and flooding (Section 13.8.1.3; Cross-
Chapter Paper 4; Marzeion and Levermann, 2014; Reimann et al., 2018b) 
as are coastal landfills and other key infrastructures in Europe (AR6/
SROCC; Brand et al., 2018; Beaven et al., 2020).

Observations indicate that soft cliffs and beaches are most affected by 
erosion in Europe with, for example, 27–40% of Europe’s sandy coast 
eroding today, without climate change being identified as the main 

driver so far (Pranzini et al., 2015; Luijendijk et al., 2018; Mentaschi 
et  al., 2018; Oppenheimer et  al., 2019). SLR will increase coastal 
erosion of sandy shorelines (high confidence) (Ranasinghe et  al., 
2021), but there is low confidence in quantitative values assessment 
of erosion rates and amounts (Athanasiou et al., 2019; Le Cozannet 
et al., 2019; Thieblemont et al., 2019). Without nourishment or other 
natural or artificial barriers to erosion, sandy shorelines could retreat 
by about 100 m in Europe at 4°C GWL; limiting warming to 3°C GWL 
could reduce this value by one-third (Vousdoukas et al., 2020).

13.2.1.2 Risks Related to Inland Water

13.2.1.2.1 Riverine and pluvial flooding

Precipitation has raised river flood hazards in WCE and the UK by 11% 
per decade from 1960 to 2010 and decreased in EEU and SEU by 23% per 
decade (Douville et al., 2021; Ranasinghe et al., 2021). The most recent 
three decades had the highest number of floods in the past 500 years 
with increases in summer (Blöschl et al., 2020). Economic flood damages 
increased strongly, reflecting increasing exposure of people and assets 
(Visser et al., 2014; Hoegh-Guldberg et al., 2018; Merz et al., 2021).

Projections indicate a continuation of the observed trends of river 
flood hazards in WCE (high confidence) of 10% at 2°C GWL and 18% 
at 4.4°C GWL, and a decrease in NEU and SEU (medium confidence) 
with, respectively, 5 and 11% in NEU and SEU for a 100-year peak 
flow, making Europe one of the regions with the largest projected 
increase in flood risk (Di Sante et al., 2021; Ranasinghe et al., 2021). 
While there is disagreement on the magnitude of economic losses 
and people affected, there is high agreement on direction of change, 
particularly in WCE (Alfieri et  al., 2018). New research increases 
confidence in AR5 statements that without adaptation measures, 
increases in extreme rainfall will substantially increase direct flood 
damages (e.g., Madsen et al., 2014; Alfieri et al., 2015a; Alfieri et al., 
2015b; Blöschl et al., 2017; Dottori et al., 2020; Mentaschi et al., 2020). 
With low adaptation, damages from river flooding are projected to be 
three times higher at 1.5°C GWL, four times at 2°C GWL and six times 
at 3°C GWL (Alfieri et al., 2018; Dottori et al., 2020). At 2°C GWL, the 
incidence of summer floods is expected to decrease across the whole 
alpine region, whereas winter and spring floods will increase due 
to extreme precipitation (Gobiet et  al., 2014) and snowmelt-driven 
runoff (Coppola et al., 2018).

Pluvial flooding and flash floods due to intense rainfall constitute 
most flood events in SEU and a substantial risk in other European 
regions (Cross-Chapter Paper 4; Llasat et al., 2016; Rudd et al., 2020). 
The majority (56%) of flood events between 1860 and 2016 were 
flash floods (Paprotny et  al., 2018a). These floods had considerable 
impacts including danger to human lives, for example, causing total 
economic damage of 1 billion USD in Copenhagen (Denmark) in 2011 
(Wójcik et  al., 2013), damage to private households of more than 
70 million EUR in Münster (Germany) in 2014 (Spekkers et al., 2017) 
and during the 2021 floods in Belgium, Germany and the Netherlands 
over 200 deaths, damage to thousands of homes and disrupted 
water and electricity supply (Kreienkamp et  al., 2021). The intensity 
and frequency of heavy rainfall events is projected to increase (high 
confidence) (Figure  13.3; Ranasinghe et  al., 2021). Combined with 
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increasing urbanisation, the risk of pluvial flooding is projected to 
increase (Westra et al., 2014; Rosenzweig et al., 2018; Papalexiou and 
Montanari, 2019). Small catchments, steep river channels and cities 
are particularly vulnerable due to large areas of impermeable surfaces 
where water cannot penetrate (Section 13.6).

13.2.1.2.2 Low Flows and Water Scarcity

The frequency and severity of low flows are projected to increase, making 
streamflow drought and water scarcity more severe and persistent in 
SEU and WCE (medium confidence) (Figure  13.3; Ranasinghe et  al., 
2021), but decreases are projected in most of NEU except the southern 
UK (Forzieri et al., 2014; Prudhomme et al., 2014; Schewe et al., 2014; 
Roudier et al., 2016; Ranasinghe et al., 2021). In EEU, uncertainty about 
changes in water scarcity pose distinct challenges for adaptation (Greve 
et  al., 2018). At 1.5°C GWL, the number of days with water scarcity 
(water availability as opposed to water demand) and drought will 
increase slightly in SEU (Schleussner et al., 2016; Naumann et al., 2018), 
resulting in 18% of the population exposed to at least moderate water 
scarcity, increasing to 54% at 2°C GWL (Byers et al., 2018). Moderate 
water scarcity is emerging in some parts of WCE (Bisselink et al., 2018) 
increasing to16% of the population under 2°C GWL and SSP2 (Byers 
et al., 2018). Under 4°C GWL, areas in WCE experience water scarcity, 
especially in summer and autumn. Future intensive water use can 
aggravate the situation, in particular in SEU (Sections 13.5.1, 13.10.3).

Groundwater abstraction rates reach up to 100 million m³ yr–1 across 
WCE and SEU, and exceed 100 million m³ yr–1 in parts of SEU (Wada, 
2016). Low recharge rates lead to a depletion of groundwater resources 
in parts of SEU and WCE (Doll et al., 2014; Wada, 2016; de Graaf et al., 
2017), increasing the impacts on water scarcity in SEU. Groundwater 
pumping and declines in groundwater discharge already threaten 
environmental flow limits in many European catchments, especially in 
SEU, extending to almost all basins and sub-basins within the next 
30–50 years (de Graaf et al., 2019).

The combined effect of increasing water demand and successive 
dry climatic conditions further exacerbates groundwater depletion 
and lowers groundwater levels in SEU but also WCE (Goderniaux 
et al., 2015). Declines in groundwater recharge of up to 30% further 
increase groundwater depletion (Aeschbach-Hertig and Gleeson, 
2012) especially in SEU and semiarid to arid regions (Moutahir et al., 
2017). Even in WCE and NEU, projected increases in groundwater 
abstraction will impact groundwater discharge, threatening sustaining 
environmental flows under dry conditions (de Graaf et al., 2019).

The risks for soil moisture drought are projected to increase in WCE 
and SEU for all climate scenarios (Grillakis, 2019; Tramblay et al., 2020; 
Ranasinghe et al., 2021). At 3°C GWL compared with 1.5°C GWL, the 
drought area will increase by 40% and the population under drought 
by up to 42%, especially affecting SEU, and to a lesser extent in WCE 
(Samaniego et al., 2018 ).

Box 13.1 | Venice and Its Lagoon

Venice and its lagoon are a UNESCO World Heritage Site. This socio-ecological system is the result of millennia of interactions between 
people and the natural environment. It is exposed to climatic and non-climatic hazards: more frequent floods, warming, pollution, 
invasive species, reduction of salt marshes, hydrodynamic and bathymetric changes, and waves generated by cruise ships and boat traffic.

The elevation of the average city pedestrian level and of its inner historic area are, respectively, 105 and 55 cm above the present relative 
mean sea level (RMSL). Consequently, even small surges and compound events cause floods when they coincide with high tide (Lionello 
et al., 2021a). During the 20th century, RMSL rose at about 2.5 mm yr–1 due to SLR and land subsidence (Zanchettin et al., 2021). The 
frequency of floods affecting the city has increased from once per decade in the first half of the 20th century to 40 times per decade in 
the period 2010–2019 (Figure Box 13.1.1a).

In 1973, the Italian government established a legal framework for safeguarding Venice and its lagoon. Construction of the flood protection 
system started in 2003 and was used for the first time in October 2020 (Lionello et al., 2021b). This system of mobile barriers (MoSE) 
closes the lagoon inlets to avoid floods when needed, while under normal conditions they lay on the seabed, thus allowing ship traffic 
and the exchange between the lagoon and the sea (Molinaroli et al., 2019). To prevent flooding of the central monument area, additional 
measures have been proposed including inlets, expansion of salt marshes and pumping seawater into deep brackish aquifers to raise the 
city’s level (Umgiesser, 1999; Umgiesser, 2004; Teatini et al., 2011).

Without adaptation, potential economic damages between 7 and 17 billion EUR have been estimated for the next 50 years (Caporin 
and Fontini, 2016). Additionally, the ecosystem is vulnerable to warming (Solidoro et al., 2010) and SLR (Day Jr et al., 1999; Marani et al., 
2007). The duration of the closure of the lagoon inlets is expected to increase from 2 to 3 weeks yr–1 for RMSL rises of 30 cm, to 2 months 
yr–1 for 50 cm and 6 months yr–1 for 75 cm (Figure Box 13.1.1b; Umgiesser, 2020; Lionello et al., 2021b), resulting in disconnection from 
the sea for most of the time for RMSL rise exceeding 75 cm. Frequent closures of the inlets would prevent ship traffic and in/outflow 
of water. For Venice, adaptation pathways considering the full range of plausible RMSL (Figure Box 13.1.1c) levels are not available, 
indicating a long-term adaptation gap. As planning and implementation of adaptation of this extent can take several decades (Haasnoot 
et al., 2020b; Cross-Chapter Box SLR in Chapter 3), this increases the risk that the city will not be prepared in case of rapid SLR.
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Figure Box 13.1.1 |  Venice sea level rise (SLR) and coastal flooding: (a) evolution of relative and mean sea level in Venice and decadal frequency of floods 
above the safeguard level in the city centre (Frederikse et al., 2020; Lionello et al., 2021a; Lionello et al., 2021b; Zanchettin et al., 2021); (b) projected relative SLR at 
the Venetian coast (Fox-Kemper et al., 2021); “very likely” corresponds to 5–95th percentile range, “likely” to 17–83rd percentile range; (c) timing when critical relative 
sea level thresholds will be reached depending on scenarios and confidence level (Lionello, 2012; Umgiesser, 2020; Lionello et al., 2021a), the upper limit of the medium 
confidence range under SSP5–8.5 represents a low-likelihood, high-impact storyline, low confidence processes include ice sheet instability; (d) Landsat view of Venice and 
its lagoon with the three inlets connecting it to the Adriatic Sea.

Box 13.1 (continued)

https://doi.org/10.1017/9781009325844.015
Downloaded from https://www.cambridge.org/core. IP address: 18.118.146.102, on 26 Apr 2024 at 12:05:11, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/9781009325844.015
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


13

Chapter 13 Europe

1830

13.2.1.2.3 Water Temperature and Quality

Water temperatures in rivers and lakes have increased over the past 
century by ~1–3°C in major European rivers (CBS, 2014; EEA, 2017a; 
Woolway et al., 2017). Warming is accelerating for all European river 
basins (Wanders et al., 2019) increasing by 0.8°C in response to 1.5°C 
GWL and 1.2°C for 3°C GWL relative to 1971–2000 (van Vliet et al., 
2016a) aggravated by declines in summer river flow.

(Ground)water extractions or drainage have caused saltwater 
intrusions (Rasmussen et  al., 2013; Ketabchi et  al., 2016). During 
summer, seawater will also penetrate estuaries further upstream in 
response to reduced river flow and SLR, resulting in more frequent 
closure of water inlets in the downstream part of the rivers in a period 
when water is most needed (high agreement, low evidence) (e.g., 
Haasnoot et al., 2020b).

13.2.2 Solution Space and Adaptation Options

In recent decades water management in Europe has increasingly 
shifted towards integrated and adaptive strategies, with the most 
noticeable shifts in WCE (high confidence) (e.g., Kreibich et al., 2015; 
Bubeck et  al., 2017). While adaptive strategies are increasingly 
considered as an approach to strengthen flexibility and implement 
climate-change adaptation actions, given deep uncertainty about the 
future (Ranger et  al., 2013; Klijn et  al., 2015; Bloemen et  al., 2019; 
Hall et al., 2019; Pot et al., 2019), more traditional water management 
approaches still dominate across Europe (OECD, 2013; OECD, 2015; 
Wiering et  al., 2017). Current measures focus on structural flood 
protection and water resources supply and play an important role to 
preserve present land use and development patterns. The long-term 
effectiveness of such measures is increasingly challenged by their 
reinforcing path dependency (e.g., flood defence and water supply 
attract developments which require further protection and supply). 
This path dependency limits the solution space and may hamper 
implementation of transformative measures, such as land-use change, 
to accommodate the water system (medium confidence) (Cross-
Chapter Paper 2; Di Baldassarre et al., 2015; Kreibich et al., 2015; Alfieri 
et al., 2016; Gralepois et al., 2016; Welch et al., 2017; Di Baldassarre 
et al., 2018; Haer et al., 2020).

Water laws, policies and guidance documents increasingly mainstream 
climate impacts and adaptation options (Runhaar et al., 2018; Mehryar 
and Surminski, 2021), though not everywhere. Differences are apparent, 
for example, in coastal adaptation where most, but not all, countries 
are planning for SLR (Figure 13.5; McEvoy et al., 2021). Although the 
planning horizon of 2100 and 1-m SLR are most common (adjusted for 
local conditions), there are significant differences between countries 
(e.g., the high-end SLR value in 2100 ranges from 0.3 to 3 m), which 
may lead to unequal impacts over time (McEvoy et al., 2021).

13.2.2.1 Flood Risk Management

Across Europe a range of measures have been implemented to address 
flood risk (Figure 13.6), with protection as the most used strategy (high 
confidence). Early warning and flood protection have been successful in 

reducing vulnerability to coastal and riverine flooding (Jongman et al., 
2015; Kreibich et al., 2015; Bouwer and Jonkman, 2018). Consequently, 
fatalities due to river flooding have decreased in Europe, despite similar 
numbers of people exposed (1990–2010 compared with 1980–1989) 
(Jongman et al., 2015; Paprotny et al., 2018a).

13.2.2.1.1 Coastal flood risk management

Further protection against coastal flooding is considered economically 
beneficial for densely populated areas (Lincke and Hinkel, 2018; 
Tiggeloven et al., 2020). At least 83% of flood damages due to coastal 
flooding could be avoided by elevating dykes along ~23–32% of 
Europe’s coastline by 2100 (RCP4.5-SSP1, RCP8.5-SSP5) (Vousdoukas 
et al., 2020). Limitations of building flood defences include cost–benefit 
considerations in rural areas, available land and social acceptability in 
densely populated areas (Haasnoot et  al., 2018; Hinkel et  al., 2018; 
Meyerhoff et al., 2021).

Nature-based Solutions (NbS) (e.g., wetlands) and sediment-based 
solutions (e.g., sand nourishment) are increasingly considered for 
environmental, economic and/or societal reasons (Cross-Chapter 
Box NATURAL in Chapter 2; Stive et al., 2013; Pranzini et al., 2015; 
Pinto et  al., 2020; de Schipper et  al., 2021). Coastal wetlands can 
be effective to reduce wave height and form habitats, but their 
feasibility and effectiveness is limited for densely populated areas 
with competing land use, runoff of pollution, sediment-starved deltas 
like the Rhine Delta (Edmonds et al., 2020) and rapid SLR (Kirwan 
et  al., 2016; Oppenheimer et  al., 2019; Haasnoot et  al., 2020b). 
While losses of wetlands could be minor if warming stays below 
1.7°C GWL, at high warming or SLR above 0.5 m large-scale losses 
of these habitats will impact their ecological importance, ecosystem 
function (Section  13.4; KR 1, Section  13.10.2) and their ability to 
protect coastlines (Roebeling et al., 2013; van der Spek, 2018; Wang 
et al., 2018; Xi et al., 2021). A combination with structural defences 
could reduce risk in urbanised coastal regions (high confidence). 
Accommodation through elevated or floating houses have been 
implemented and proposed locally within cities as part of a hybrid 
strategy together with protection and as a way of innovative urban 
development (Section  13.6.2; Cross-Chapter Paper 2; Penning-
Rowsell, 2020; Storbjörk and Hjerpe, 2021).

Avoidance through restricting new developments in flood prone 
areas is applied along the coast of WCE and SEU (Harman et  al., 
2015; Lincke et  al., 2020) and is considered a low-cost alternative 
to coastal defence at lower SLR. In SEU, an integrated coastal zone 
management (ICZM) protocol has been developed which requires a 
setback zone of 100 m from the coast in unprotected areas. Setback 
zones are projected to reduce impacts considerably in urbanised 
regions (Lincke et  al., 2020). Planned relocation is increasingly 
considered as a realistic adaptation option in cases of extreme SLR 
(Haasnoot et al., 2021a; Lincke and Hinkel, 2021; Mach and Siders, 
2021), for example, UK Shoreline Management Plans (Nicholls et al., 
2013; Buser, 2020). Retreat is rarely applied in Europe (medium 
confidence), though it can have greater benefit-to-cost outcomes 
than protection, particularly in less populated parts of Europe (Lincke 
and Hinkel, 2021). Along parts of the coast in the UK (e.g., The 
Wash), Germany (e.g., Langeoog Island) and the Netherlands (e.g., 
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Figure 13.5 |  Sea level rise (SLR) vulnerability and national planning in Europe: 

(a) map of countries in Europe summarising the amount of SLR each country is planning for, at different time horizons (blue bars), and the present population (2020) at risk of a 
100-year coastal flood event (orange bars) (Haasnoot et al., 2021b). The amounts of SLR and time horizons reflect national guidance or planning (local or project-based levels may 
differ) (McEvoy et al., 2021); 

(b) projected population at risk to experience a 1-in-10-year coastal flood event under RCP2.6-SSP1 and RCP8.5-SSP5 assuming present protection and population levels, as well 
as population change according to, respectively, SSP1 and SSP5, based on Merkens (2016); 

(c) projected population at risk to experience a 1-in-100-year coastal flood event under RCP2.6-SSP1 and RCP8.5-SSP5, assuming the present protection and population levels, as 
well as population change according to, respectively, SSP1 and SSP5, based on Merkens (2016) (based on Haasnoot et al., 2021b).
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Westerschelde) retreat has been applied to restore salt marshes and 
to aid coastal defence (Haasnoot et  al., 2019; Kiesel et  al., 2020; 
Lincke and Hinkel, 2021).

13.2.2.1.2 Riverine and pluvial flood risk management

Structural flood protection (e.g., levees) is considered economically 
beneficial in densely populated areas (Alfieri et al., 2016; Dottori et al., 
2020) and could reduce flood damage by ~45% as estimated under 
1.5°C GWL and ~70% under 3°C GWL (Dottori et al., 2020).

Providing more room for water through NbS is increasingly considered 
(Kreibich et al., 2015) as they can reduce risk effectively at lower costs, 
except in places with limited space or in areas with large protection. 

Such measures include (forest) restoration for upstream retention, 
restoration of river channels and widening riverbeds for natural flood 
retention (Kreibich et  al., 2015; Barth and Döll, 2016; Wyżga et  al., 
2018). Natural retention areas are estimated to be the most effective 
option to reduce riverine flood risk across Europe in the 21st century, 
followed by protection (low evidence) (Dottori et al., 2020).

Wet and dry proofing of buildings can be applied at household level. 
While measures taken at household level can reduce the risk of flooding, 
there is often insufficient investment (medium confidence) (Bamberg 
et  al., 2017; Aerts et  al., 2018). Reasons include low awareness or 
under-estimation of the risk (Kellens et al., 2013), low perceived efficacy 
of adaptation measures (van Valkengoed and Steg, 2019) and lack 
of financial support (Kreibich, 2011). In the long term, risk reduction 

Effectiveness and feasibility of adaptation options
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Figure 13.6 |  Effectiveness and feasibility of water-related adaptation options to achieve objectives under increasing climate hazards (Section SM13.9; 
Table SM13.1)
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measures by governments are projected to outweigh floodproofing at 
household level, in particular in WCE, while for near-term household 
adaptation or regionally in SEU this could reduce risk more effectively 
(Haer et al., 2019). Relocation of households has occurred in response 
to river flood events (e.g., the 2013 flood events along the Danube River 
in Austria), with financial compensation playing a crucial role (Mayr 
et al., 2020; Thaler and Fuchs, 2020; Thaler, 2021).

Urban drainage infrastructure is designed based on historical rainfall 
intensities, and thus may not have sufficient capacity for increased 
future intensities (Dale et  al., 2018). Adaptation options to pluvial 
flooding include large retention ponds, local green spaces and green 
roofs within cities (Zölch et al., 2017; Maragno et al., 2018; Babovic 
and Mijic, 2019; Ribas et al., 2020).

Early warning systems, insurance and behaviour change can 
complement protect and accommodate measures to limit residual risk 
(high confidence). Early warning systems have high monetary benefits 
(Pappenberger et al., 2015). Behavioural adaptation to flooding relies 
on recognition of the threat and capacity to respond, both of which are 
often lacking (Section 13.11.2.2; Bamberg et al., 2017; Haer et al., 2019). 
Flood risk insurance and compensation systems vary across European 
countries, ranging from post-disaster payments by governments and 
compulsory flood insurance, to public–private partnerships where the 
state acts as reinsurer (Keskitalo et al., 2014; Surminski et al., 2015; 
Hanger et al., 2018). Risk-based insurance premiums can induce risk-
averting behaviour but may become unaffordable to poor households 
and some households in high-risk zones (Hudson, 2018; Surminski, 2018). 
Increasing future flood risks due to both climatic and socioeconomic 
change could overburden government budgets (medium confidence) 
(Section 13.11.2; Paudel et al., 2015; Mysiak and Perez-Blanco, 2016; 
Schinko et al., 2017; Mochizuki et al., 2018), resulting in unavailable or 
unaffordable insurance for private customers (Section 13.8.3; Hudson 
et  al., 2016; Surminski, 2018), and underfunding and insufficient 
solvency of insurance companies (Section  13.6.2.5; Lamond and 
Penning-Rowsell, 2014). Local knowledge about disastrous flood events 
in the past can be lost across generations, leading to (re)-settlement in 
flood-prone areas (Fanta et al., 2019).

Limits to adaptation to extremely high SLR scenarios have been 
identified for coastal defences, such as the Venice MoSE barrier (see 
Box  13.1), Thames Barrier in the UK (Ranger et  al., 2013) and the 
Maeslant Barrier in the Netherlands (Kwadijk et al., 2010; Haasnoot 
et al., 2020b). However, the scale and pace of adaptation required to 
face high-end SLR scenarios along all coasts of Europe has been poorly 
studied. Given the lead and long lifetime of large critical infrastructures, 
there is a growing need to look beyond 2100 to support the design of 
new infrastructures (Cross-Chapter Box SLR in Chapter 3).

13.2.2.2 Water Resources Management

Planning adaptation to water scarcity has centred on increasing 
the availability and supply of freshwater through water storage, 
diversification of sources and water diversion and transfer (high 
confidence). Reservoirs are costly, have negative environmental 
impacts and will not be sufficient under higher warming levels in every 
place (Papadaskalopoulou et  al., 2015a; Di Baldassarre et  al., 2018; 

Garnier and Holman, 2019). Wastewater reuse is considered a low-cost 
and effective measure where wastewater is available (Lavrnic et  al., 
2017; De Roo et al., 2020), but public acceptance for domestic reuse is 
presently limited (high confidence) (Papadaskalopoulou et al., 2015b; 
Morote et al., 2019). Increasing desalination capacity is used particularly 
in SEU but has high energy demands and produces brine waste (Garnier 
and Holman, 2019; Jones et al., 2019; Morote et al., 2019).

Adaptation measures on the demand side include monitoring (e.g., water 
meters, early warning systems of drought) and regulating demand, for 
example, water restrictions, water pricing, water saving and efficiency 
measures, and land management and cover change (Papadaskalopoulou 
et al., 2015b; Varela-Ortega et al., 2016; Manouseli et al., 2018; Garnier 
and Holman, 2019). Prolonged water restrictions and prioritising sectoral 
supply could result in economic losses (e.g., for irrigated agriculture) 
(Section 13.5.2; Wimmer et al., 2014; Salmoral et al., 2019). Economic 
instruments, such as water pricing, can be effective when combined with 
incentives for water saving and efficiency (Kayaga and Smout, 2014; 
Esteve et  al., 2018; Crespo et  al., 2019). Water saving and efficiency 
measures, such as leakage repair, education and improved irrigation, 
could limit conflicts across sectors but necessitate technological 
advances and changes in practice together with a willingness to 
cooperate (Garnier and Holman, 2019; Papadimitriou et  al., 2019; 
Teotónio et al., 2020). Increased irrigation efficiency has reduced water 
scarcity, particularly in SEU (Section 13.5; De Roo et al., 2020), and occur 
at farm level in WCE and NEU (Papadaskalopoulou et al., 2015b; van 
Duinen et  al., 2015; Rey et  al., 2017) but come with increasing path 
dependency on supply and trade-offs which may not be sustainable in 
the long term (high confidence) (Di Baldassarre et al., 2018).

The assessment of the effectiveness and feasibility of adaptation 
options shows that a portfolio of supply-and-demand measures is 
needed to reduce water scarcity (Key Risk 3, Section 13.10.3), although 
locally demand-side measures could be sufficient (Kingsborough et al., 
2016). Under high warming levels, adaptation to drought and low 
flows by water saving and efficiency measures may not be sufficient 
to counteract reduced availability (medium agreement, low evidence) 
(Collet et al., 2015; De Roo et al., 2020). Successful adaptation in the 
water sector depends on integrating water considerations into sectoral 
policies (Collet et al., 2015; Papadaskalopoulou et al., 2016). Inclusive 
and participatory approaches where (local) stakeholders are actively 
involved in the initiation and execution of water management can 
enhance problem ownership, the quality and democratic legitimacy 
of processes and decisions, enhance support and accelerate decisions 
(Edelenbos et al., 2017; Begg, 2018).

13.2.3 Knowledge Gaps

An assessment of the full solution space of adaptation options and 
pathways under low to high GWL, including the long term, is lacking. 
A quantification of the effectiveness of measures in reducing risk is 
limited in the scientific literature. The available assessments consider 
adaptation by incremental measures. Transformative options, such as 
land-use changes, planned relocation from exposed areas or restricting 
future development, are rarely considered. While high-end scenarios 
describing low confidence processes and scenarios beyond 2100 are 
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considered to be useful for risk-averse decision making, in particular 
coastal adaptation (Hinkel et al., 2019; Haasnoot et al., 2020b), they 
are rarely considered in practice.

13.3 Terrestrial and Freshwater Ecosystems 
and Their Services

13.3.1 Observed Impacts and Projected Risks

13.3.1.1 Observed Impacts on Terrestrial and Freshwater 
Ecosystems

European land and freshwater ecosystems (Figure  13.7) are already 
strongly impacted by a range of anthropogenic drivers (very high 
confidence), particularly habitats at the southern and northern margins, 
along the coasts, up mountains and in freshwater systems (Cross-Chapter 
Paper 1). Interacting with climate change are non-climatic hazards, such 
as habitat loss and fragmentation, overexploitation, water abstraction, 

nutrient enrichment and pollution, all of which reduce resilience of 
biotas and ecosystems (very high confidence). Peatlands in NEU and 
EEU and other historically important cultural landscapes in Europe are 
overexploited for forestry, agriculture and peat mining (Page and Baird, 
2016; Tanneberger et  al., 2017; Ojanen and Minkkinen, 2020). Inland 
wetland RAMSAR convention sites in Europe, which constitute 47% of 
the global sites have lost area in WCE and gained in SEU from 1980 to 
2014 (Xi et al., 2021). Forests in WCE were impacted by the extreme heat 
and drought event of 2018, with effects lasting into 2019 (Schuldt et al., 
2020) and losses in conifer timber sales in Europe (Hlásny et al., 2021).

Extirpation (e.g., local losses of species) have been observed in response 
to climate change in Europe (medium confidence) (Wiens, 2016; EEA, 
2017a; Soroye et al., 2020). Strong climate-induced declines have been 
detected in thermosensitive taxa (Hellmann et al., 2016), including many 
freshwater groups, insects (Habel et al., 2019; Harris et al., 2019; Seibold 
et al., 2019; Soroye et al., 2020), amphibians, reptiles (Falaschi et al., 
2019), birds (Lehikoinen et al., 2019) and fishes (Myers et al., 2017a; 
Jarić et al., 2019). The loss of native species, especially specialised taxa, 
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Figure 13.7 |  Köppen-Geiger climate classification and biodiversity hotspots in Europe. Boundaries are of the

(a) Northern European (NEU),

(b) Western–Central European (WCE),

(c) Southern European (SEU) and

(d) Eastern European (EEU) regions for 1985–2014 (left) and 2076–2100 (right, A1FI scenario, ~4°C GWL), based on Rubel and Kottek (2010).
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is changing biodiversity; however, overall biodiversity could remain 
stable because losses may be offset by range shifts of native, and the 
establishment of non-native, species (Dornelas et al., 2014; McGill et al., 
2015; Hillebrand et al., 2018; Outhwaite et al., 2020).

Range shifts are leading to northward and upwards expansions of 
warm-adapted taxa (very high confidence) (Figure  13.8; Chapter 2). 
These shifts have altered species living in the boreal and alpine tundra 
(Elmhagen et al., 2015; Post et al., 2019; Mekonnen et al., 2021) and 
are greening the high Arctic tundra with shrubs and trees (Myers-
Smith et  al., 2020). Plants display more stable distributions at low 
than at higher mountain altitudes (Rumpf et al., 2018 ). Microclimatic 
variability in some locations can buffer warming impacts (medium 
confidence) (Suggitt et al., 2018; Zellweger et al., 2020; Carnicer et al., 
2021). Northward shifts of tree species distributions is documented in 
north-western Europe (Bryn and Potthoff, 2018; Mamet et al., 2019) but 
not consistently detected (Cudlín et al., 2017; Vilà-Cabrera et al., 2019).

The timing of many processes, including spring leaf unfolding, autumn 
senescence and flight rhythms, have changed in response to changes in 
seasonal temperatures, water and light availability (very high confidence) 
(Chapter 2; Szabó et al., 2016; Asse et al., 2018; Peaucelle et al., 2019; 
Menzel et  al., 2020; Rosbakh et  al., 2021), resulting, for example, in 
earlier arrival dates for many birds and butterflies (Karlsson, 2014; 
Bobretsov et al., 2019; Lehikoinen et al., 2019). The largest increase in 
length of growing season in plants has been detected in WCE, NEU and 
EEU, but shortening in parts of SEU driven by later senescence (Garonna 
et  al., 2014), increasing population growth for butterflies and moths 
(Macgregor et al., 2019) and birds (Halupka and Halupka, 2017), and 
residence time for migrant birds (Newson et al., 2016).

13.3.1.2 Projected Risks for Terrestrial and Freshwater 
Ecosystems

Risks for terrestrial ecosystems will increase with warming (very 
high confidence) with high impacts at >2.4°C GWL and very high 
impacts >3.5°C GWL (medium confidence) (Section 13.10.3.1). Land-
use changes will increase extirpation and extinction risk (very high 
confidence) (Vermaat et al., 2017). In NEU, biodiversity vulnerability is 
projected to be lower as new climate and habitat space is becoming 
available (Warren et al., 2018; Harrison et al., 2019). Warming <1.5°C 
GWL would limit risks to biodiversity, while 4°C GWL and intensive land 
use could lead to a loss of suitable climate and habitat space for most 
species (low confidence) (Warren et al., 2018; Harrison et al., 2019).

Disruption of habitat connectivity reduces resilience and is projected to 
impact 30% of lake and river catchments in Europe by 2030, through 
drought and reduced river flows (medium evidence) (Markovic et al., 
2017). Average wetland area is not projected to change at 1.7°C GWL 
across Europe, while for >4°C GWL expanding sites in NEU are not 
sufficient to balance losses in SEU and WCE (high confidence) (Xi et al., 
2021). At 3°C GWL the alpine tundra habitat and its associated species 
are projected to be lost in the Pyrenees and shrink dramatically in NEU, 
WCE and EEU (Anisimov et al., 2017; Barredo et al., 2020).

Population range shifts (Figures 13.7, 13.10) are projected to continue 
(medium confidence at 1.5° GWL, high confidence at 3.0°C GWL) 

(Figure  13.8). The largest losses of suitable climatic conditions are 
projected for plants and insects, with different taxon-specific regions 
of highest risk, while proportions of species projected to lose suitable 
climates are lower for other groups (medium confidence) (Figure 
Box 13.1.1; Table SM13.3; Warren et al., 2018). Temperatures >1.5°C 
GWL will lead to a progressive subtropicalisation in SEU, expanding 
into WCE at >3°C GWL, a northward shift in the temperate domain 
into NEU (medium confidence) (Feyen et al., 2020) and an expansion 
of desert biomes in EEU (Sergienko and Konstantinov, 2016). Changes 
in distribution are projected for major tree species in all European 
regions at 1.7°C GWL (Dyderski et  al., 2018; Leskinen et  al., 2020), 
with economic implications for managed forests (Section 13.5.1.4). The 
longer growth season in NEU and WCE will support the establishment 
of invasive species (Cross-Chapter Paper 1). Temperatures <1.5°C GWL 
would limit expansion and novel appearances of pests, while >3.4°C 
GWL would make large parts of SEU and WCE suitable for pests, for 
example, wood beetles (Urvois et  al., 2021), and increase economic 
losses due to lower harvest quality of timber (Toth et al., 2020).

Risks emerging from climate change for phenology are uncertain, given 
asynchrony between species, taxa and trophic responses (Thackeray 
et  al., 2016; Posledovich et  al., 2018; Keogan et  al., 2021) and the 
complexity of phenological events and their cues (medium confidence) 
(Delgado et al., 2020; Ettinger et al., 2020). Spring events may continue 
to occur earlier (Gaüzère et al., 2016), but reduced chilling may decrease 
this temporal shift (Wang et  al., 2020). Projections for autumn are 
mixed, with continuing delays (Prislan et al., 2019) or earlier onset of 
leaf senescence (Wu et al., 2018), but reduced chilling may also decrease 
these developments (Wang et al., 2020). Advancement, combined with 
longer autumn growth, may extend the growing season of trees by two 
days per decade in SEU (Prislan et al., 2019). Warming to >3°C GWL will 
impact forest planning in NEU (Caffarra et al., 2014).

13.3.1.3 Observed Impacts and Projected Risks of Wildfires

Fires affect over 400,000 ha every year in the EU (San-Miguel-Ayanz 
et al., 2019), with 85% of the area located in SEU (Khabarov et al., 
2016; de Rigo et al., 2017; Gomes Da Costa et al., 2020), where ‘fire 
weather’ conditions (determined by temperature, precipitation, wind 
speed and relative humidity) are most pronounced (Figure 13.10). Fire 
hazard conditions, including heatwaves (Boer et al., 2017), increased 
throughout Europe from 1980 to 2019 (Figure 13.10), with substantive 
increases in SEU and WCE (high confidence) (Urbieta et al., 2019; Di 
Giuseppe et  al., 2020; Fargeon et  al., 2020). Extreme wildfires have 
been observed in recent years, including 2017 in Portugal, 2018 in 
Sweden (Krikken et  al., 2021) and 2021 in south-eastern Europe. In 
SEU, WCE and NEU human activities have caused more than 90–95% 
of the fires, while natural ignition accounts for a substantial portion of 
burned areas in EEU (Wu et al., 2015; Filipchuk et al., 2018).

Except for Portugal, burned area in SEU has shown a slightly 
decreasing trend since 1980, with high interannual variability (Cross-
Chapter Paper 4; Turco et al., 2016; de Rigo et al., 2017). In SEU, burned 
terrestrial biomass declined from 2003 to 2019 (Turco et  al., 2016), 
despite increasing fire risks. This trend is parallel to increasing fire 
management measures implemented (Fernandez-Anez et  al., 2021). 
The slight increase in burned biomass in WCE and NEU is associated 
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with more hazardous landscape configurations and warming in recent 
decades (Turco et al., 2016; Urbieta et al., 2019).

Projections of wildfire risks are uncertain due to multiple factors, 
including compound events, fire–vegetation interaction and social 
factors (Thompson and Calkin, 2011; San-Miguel-Ayanz et al., 2019). 
Wildfire risks could increase across all regions of Europe at 1.5°C and 
3°C GWL (medium to high confidence) (Figure 13.8). In SEU, the fre-
quency of heat-induced fire weather is projected to increase by 14% at 
2.5°C GWL and rise to 30% at 4.4°C GWL (Turco et al., 2018; Gomes 
Da Costa et  al., 2020; Ruffault et  al., 2020). In the European Arctic, 
the extent and duration of extreme fire seasons will increase because 
of increasing extreme fire weather, increased lightning activity, and 

drier vegetation and ground fuel conditions due to prolonged droughts 
(McCarty et al., 2021). Projections suggest that new fire-prone regions 
in Europe could emerge, particularly in WCE and NEU where wildfires 
have been uncommon and fire management capacity is slowly increas-
ing (Wu et al., 2015; Forzieri et al., 2021).

13.3.1.4 Observed Impacts and Projected Risks on Ecosystem 
Functions and Regulating Services

European temperate and boreal forests, wetlands and peatlands 
hold important carbon stocks (Bukvareva and Zamolodchikov, 2016; 
Yousefpour et al., 2018). Effects of warming and increasing droughts 
on soil moisture, respiration and carbon sequestration have been 
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detected across European regions (high confidence) (Figure  13.8; 
Sanginés de Cárcer et al., 2018; Carnicer et al., 2019; Green et al., 2019; 
Schuldt et al., 2020). Forest expansion in boreal regions results in net 
warming (Bright et  al., 2017), possibly influencing cloud formation 
and rainfall patterns (medium confidence) (Teuling et al., 2017). These 
changes are affecting climate, pollination and soil protection services 
(Figure 13.8; Verhagen et al., 2018). If not managed through increased 
reforestation and/or revegetation or peatland restoration, future 
climate-change impacts will progressively limit the climate regulation 
capacity of European terrestrial ecosystems (medium confidence) 
(Figure 13.8), especially in SEU (Peñuelas et al., 2018; Xu et al., 2019). 
Predominantly positive CO2 fertilisation effects at current warming will 
change into increasingly negative effects of warming and drought on 
forests at higher temperatures (medium confidence) (Peñuelas et al., 
2017; Green et al., 2019; Ito et al., 2020; Wang 2020; Yu et al., 2021). 
In NEU and EEU, peatlands are projected to shrink with 1.7°C GWL, 
and become carbon sources at 3°C GWL (Qiu et al., 2020), peat bogs 
to lose 50% carbon at 2°C GWL, and blanket peatland to shrink or 
regionally disappear (Gallego-Sala et al., 2010; Ferretto et al., 2019).

Declines in pollinator ranges in response to climate change are 
occurring for many groups in Europe (high confidence) (Figure 
Box 13.1.1; Figure 13.8; Kerr et al., 2015; Soroye et al., 2020; Zattara 
and Aizen, 2020), with observed shifts to higher elevations in southern 

and lower elevation in northern species (Kerr et al., 2015) resulting in 
higher pollinator richness in NEU (Franzén and Öckinger, 2012). Lags in 
responses to climate change suggest that current impacts on pollination 
have not been fully realised (IPBES, 2018). Pollinators are also declining 
due to lack of suitable habitat, pollution, pesticides, pathogens and 
competing invasive alien species (Settele et al., 2016; Steele et al., 2019).

Projected climate impacts on pollinators show mixed responses across 
Europe but are greater under 3°C GWL (medium confidence) (Rasmont 
et al., 2015). Increasing homogenisation of populations may increase 
vulnerability to extreme events (Vasiliev and Greenwood, 2021). 
Geographical changes to the climatic niche of pollinators are similar to 
those of insects, with mixed trends, depending on group and location 
(Figure 13.9; Kaloveloni et al., 2015; Rasmont et al., 2015; Radenković 
et al., 2017). In NEU, species richness may increase for some groups 
(Rasmont et al., 2015), with unclear trends for bumblebees (Fourcade 
et al., 2019; Soroye et al., 2020). Future land use will have important 
effects on pollinator distribution (Marshall, 2018) as habitat 
fragmentation in densely populated Europe decreases opportunities 
for range shifts and microclimatic buffering (Vasiliev and Greenwood, 
2021).

Soil erosion varies across Europe, with higher rates in parts of SEU and 
WCE, but lower rates in NEU (high confidence) (Figure 13.8; Petz et al., 
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Figure 13.9 |  Species projected to remain within their suitable climate conditions at increasing levels of climate change. Colour shading represents the proportion 
of species projected to remain within their suitable climates averaged over 21 CMIP5 climate models (Warren et al., 2018). Areas shaded in green retain a large number of species 
with suitable climate conditions, while those in purple represent areas where climates become unsuitable for more than 80% of species without dispersal (Table SM13.3).
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2016; Polce et al., 2016; Borrelli et al., 2020), related to vegetation type 
and amount of cover, slope and soil type (Panagos et al., 2015a). Short-
term land-use change and management may impact soil erosion more 
than climate (Verhagen et al., 2018). Where conservation agriculture is 
practised or vegetation cover increasing, erosion is slightly decreasing 
(Panagos et al., 2015b; Guerra et al., 2016). Reduced soil loss due to 
reduced spring snowmelt has been observed in EEU (Golosov et al., 
2018), while fire exacerbates soil loss especially in SEU (Borrelli et al., 
2016; Borrelli et al., 2017).

Projected increase in rainfall could increase soil erosion, while warming 
enhances vegetation cover, leading to overall mixed responses (medium 
confidence) (Berberoglu et al., 2020; Ciampalini et al., 2020). In Europe, 
rainfall erosion could increase by >81% (Panagos et al., 2017) at 2°C 
GWL, especially in NEU (Borrelli et al., 2020) where risks can be limited 
by soil erosion control (Polce et al., 2016). Decreased rainfall projected 
for parts of SEU could reduce erosion, although increases in rainfall 
intensity could offset this (Serpa et al., 2015). Soil losses from fire will 
increase in SEU in response to 2°C GWL (Pastor et al., 2019), especially 
if combined with extreme rainfall (Morán-Ordóñez et  al., 2020). 
In northern regions, reduced soil losses are projected during spring 
snowmelt (Svetlitchnyi, 2020).

13.3.2 Solution Space and Adaptation Options

Autonomous species adaptation, via range shifts towards higher 
latitudes and altitudes and changes in phenology, but also extirpation, 
have been documented in all European regions (very high confidence) 
(Figure 13.8). Lowering vulnerability by reducing other anthropogenic 
impacts (Gillingham et  al., 2015), such as land-use change, habitat 
fragmentation (Eigenbrod et al., 2015; Oliver et al., 2017; Wessely et al., 
2017), pollution and deforestation (Chapter 2), enhances adaptation 
capacity and biodiversity conservation (high confidence) (Ockendon 
et al., 2018). Protected areas, such as the EU Natura 2000 network, have 
contributed to biodiversity protection (medium confidence) (Gaüzère 
et al., 2016; Sanderson et al., 2016; Santini et al., 2016; Hermoso et al., 
2018), but 60% of terrestrial species at these sites could lose suitable 
climate niches at 4°C GWL (Figure Box 13.1.1; EEA, 2017a).

Most protected areas are static and thus do not take species migration 
into consideration (high confidence) (Gillingham et al., 2015; Heikkinen 

et al., 2020b). More dynamic areas of protection, such as networks of 
protected areas with corridors, buffer zones and zoning, can facilitate 
population shifts (Barredo et al., 2016; Nila et al., 2019; Crick et al., 
2020; Keeley et  al., 2021) and thereby reduce but not eliminate 
vulnerability (Wessely et al., 2017; Pavón-Jordán et al., 2020).

Rehabilitation and restoration of land (Prober et al., 2019), particularly 
abandoned agricultural areas in SEU and NEU (Terres et  al., 2015), 
are long-term strategies to improve regulating services and enhance 
biodiversity conservation (Morecroft et al., 2019; Campos et al., 2021). 
Their success will depend on consideration of the future climate 
niche when restoring peatlands (Bellis et  al., 2021) or long-lived 
species with limited mobility (high confidence) (Hazarika et al., 2021). 
The combination of supporting the resilience of species, increasing 
functional diversity of habitats and assisting the migration of species 
at the limit of their adaptive capacity (Park and Talbot, 2018) is needed 
to protect and restore ecosystems (e.g., forests) (Boiffin et al., 2017; 
Messier et  al., 2019). Successful interventions consider habitat and 
the ecological and evolution interactions of species (Šeho et  al., 
2019; Diallo et  al., 2021) combined with monitoring to assess their 
effectiveness (Casazza et al., 2021).

Fire management plans and programmes are in place in most of SEU 
and increasingly developed in the parts of Europe where wildfires 
are less common (Fernandez-Anez et  al., 2021). The capacity to 
implement and maintain these options remains limited, however 
(medium confidence). The dominant fire management paradigm of 
fire suppression in some regions of SEU has been questioned, as it 
contributes to fuel accumulation. Approaches are advocated which 
combine fire-risk mitigation, prevention and preparation (Moreira 
et  al., 2020), recovery through post-fire management (Lucas-Borja 
et al., 2021) and diverse fuel treatment (Mirra et al., 2017), including 
prescribed burning (Fernandes et al., 2013).

Ecosystem-based adaptations (EbA) and NbS that restore or recreate 
ecosystems, build resilience and produce synergies with adaptation 
and mitigation in other sectors are increasingly used in Europe (high 
confidence) (Cross-Chapter Box NATURAL in Chapter 2; Berry et  al., 
2015; Chausson et  al., 2020). Planting trees or recreating wetlands 
can function as part of natural flood management (Dadson et  al., 
2017; Cooper et al., 2021), while urban green infrastructure can reduce 
flooding (Section 13.2.2) and heat stress as well as provide recreation 
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Figure  13.10 |   Geographical variability and dynamic changes in fire 
danger in Europe over recent decades. Significant increases in fire hazard 
at the multi-decadal scale and unprecedented years of elevated fire hazard have 
occurred over the past decade in Southern and Western Central Europe (SEU, 
WCE). The environmental conditions required for fires to spread and intensify 
were evaluated using fire hazard estimates (Fire Weather index, FWI, based on 
meteorological variables such as temperature, precipitation, wind speed and 
relative humidity). The FWI trends were calculated with the ECMWF ERA-5 FWI 
reanalysis dataset (Copernicus, 2019; Copernicus, 2020a; Copernicus, 2020b).
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opportunities and health benefits (Section  13.6.2.3; see Box  13.3; 
Kabisch et al., 2016; Choi et al., 2021).

Appropriately implemented ecosystem-based mitigation, such as 
reforestation with climate-resilient native species (Section  13.3.1.4), 
peatland and wetland restoration, and agroecology (Section 13.5.2), 
can enhance carbon sequestration or storage (medium confidence) 
(Seddon et al., 2020). Salt marsh protection or recreation can increase 
carbon storage capacity, enhance coastal flood protection and provide 
cultural services (Beaumont et al., 2014; Bindoff et al., 2019). Trade-offs 
between ecosystem protection, their services and human adaptation 
and mitigation needs can generate challenges, such as loss of habitats, 
increased emissions from restored wetlands (Günther et  al., 2020) 
and conflicts between carbon capture services, and provisioning of 
bioenergy, food, timber and water (medium confidence) (Lee et  al., 
2019; Krause et al., 2020).

The solution space for responding to climate-change risks for terrestrial 
ecosystems has increased in parts of Europe (medium confidence). 
For example, EbA and NbS figure prominently in the EU Adaptation 
Strategy (2021a) and climate-change adaptation is mainstreamed in 
the EU Biodiversity Strategy for 2030 (European Comission, 2020), 
the EU Forest Strategy for 2030 (European Comission, 2021b), the EU 
Green Infrastructure Strategy (European Comission, 2013), as well as 
several national and regional policies. Yet, in the northern parts of EEU 
and NEU (e.g., Greenland, Iceland, northwest Russian Arctic), areas 
which are often sites of pronounced biodiversity shifts and changes, 
solutions are lacking or slow in emergence, due to remoteness, lack 
of resources and sparse populations (Canosa et al., 2020). In the EU, 
innovative financing schemes, such as the Natural Capital Financing 
Facility, are being explored by the European Investment Bank and 
the European Commission which supports projects delivering on 
biodiversity and climate adaptation through tailored loans and 
investments. Multiple EU-level service platforms have been promoted 
to track climate-change impacts on land ecosystems and adaptation 
(e.g., Climate-Adapt, Copernicus Land and Fire Monitoring Service, 
Forest Information System of Europe) (Section 13.11.1).

Despite an expanding solution space, widespread implementation and 
monitoring of natural and planned adaptation across Europe is currently 
limited, due to high management costs, undervaluation of nature, and 
conservation laws and regulations that do not consider species shifts 
under future socioeconomic and climatic changes (high confidence) 
(Kabisch et al., 2016; Prober et al., 2019; Fernandez-Anez et al., 2021). 
Climate risks are not perceived as urgent due to a continuing perception 
of the high adaptive capacity of ecosystems (Uggla and Lidskog, 2016; 
Esteve et al., 2018; Vulturius et al., 2018). Limited financial resources 
prevent widespread implementation of large-scale and connected 
conservation areas (high confidence) (Hermoso et al., 2017; Lee et al., 
2019; Krause et al., 2020). Particularly in WCE, competition for land use 
with other functions, including mitigation options, is a critical barrier 
to implementation of adaptation. Risks to terrestrial and freshwater 
ecosystems are rarely integrated into regional and local land-use 
planning, land development plans, and agro-system management 
(medium confidence) (Nila et al., 2019; Heikkinen et al., 2020a).

13.3.3 Knowledge Gaps

Despite growing evidence of climate-change impacts and risks, including 
attributed changes to terrestrial ecosystems (Section  13.10.1), this 
information is geographically not equally distributed, leaving clear gaps 
for some processes or regions (high confidence). For processes such as 
wildfire, the Fire Weather index (Section 13.3.1.3) suggests increasing risk 
of fires in Europe, but robust projections on incidents and magnitudes of 
wildfire and their impacts on ecosystems and other sectors is currently 
limited, particularly for NEU, EEU and WCE (high confidence).

Many studies consider only individual climate drivers, though new 
research shows strong interactions between hazards such as warming 
and drought (Section 13.3.1), as well as non-climatic drivers (Chapter 
2). This creates uncertainty about the emergence of extinctions and 
the magnitudes of impacts for European ecosystems and the services 
they provide (high confidence), such as pollination on food production. 
RCP-SSP combinations to assess risks are only just emerging (Harrison 
et al., 2019).

Assessments of the long-term effectiveness of adaptation actions 
are missing, due to the time lag in determining the effectiveness of 
an action and attributing risk reduction (Morecroft et al., 2019). For 
example, many landscape restoration actions have been discussed, but 
it is unclear which would bring the greatest benefits and which species 
should be used for the restoration (Ockendon et al., 2018). Furthermore, 
adaptation actions will depend on local implementation and benefit 
from being assessed using cultural and Indigenous knowledge where 
applicable, but this is hardly studied (medium confidence).

13.4 Ocean and Coastal Ecosystems and Their 
Services

13.4.1 Observed Impacts and Projected Risks

13.4.1.1 Observed Impacts

Warming continues to be the key climate hazard for European seas 
(Figure 13.1). Interacting with other climatic and non-climatic drivers, 
it has detectable and attributable impacts at a wide range of biological 
and ecological organisational levels (Figure 13.11).

Particularly habitat loss in shallow coastal waters and at the coasts 
themselves, and northward distribution shifts of populations and 
communities, are evident across all European marine sub-regions 
(high confidence) (Figure 13.11; Chapter 3). Marine heatwaves have 
had severe ecological impacts in SEUS (high confidence) (Cross-
Chapter Paper 4), threatening sessile benthic biotas and coastal 
habitats (Munari, 2011; Kersting et  al., 2013; Rivetti et  al., 2014; 
Garrabou et  al., 2019). Range contractions, extirpations (medium 
confidence) (Smale, 2020) and species redistributions have been 
observed (high confidence) in TEUS (Cottier-Cook et al., 2017) and 
SEUS (Castellanos-Galindo et al., 2020). Habitat losses, range shifts, 
species invasions and species thermal preferences have altered 
community compositions (Vasilakopoulos et  al., 2017), resulting in 
the ‘subtropicalisation’ of TEUS and ‘tropicalisation’ of SEUS (Chapter 
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3; Cross-Chapter Paper 4) and temperature-dependent timing of 
abundance and reproduction cycles (Hjerne et al., 2019; Polte et al., 
2021; Uriarte et al., 2021).

Reductions in growth and reproductive success of calcifying species 
are not yet unambiguously detected and attributed in European 
seas (medium confidence) (Figure  13.11), as many show resilience 
(Kroeker et al., 2010; Wall et al., 2015). However, fish population sizes 
are shrinking (Queirós et al., 2018; Ikpewe et al., 2021), and growth, 
reproduction and recruitment are negatively impacted (Lindegren et al., 
2018; Goldberg et al., 2019; Hidalgo et al., 2019; Vieira et al., 2019; 
Denechaud et al., 2020; Maynou et al., 2020; Polte et al., 2021), though 
positive effects also occur (Sguotti et al., 2019; Tanner et al., 2019). 
Biodiversity changes depend on region, habitat and taxon (medium 
confidence) (Figure  13.11) overall resulting in the redistribution of 
biodiversity in Europe (García Molinos et al., 2016), and biodiversity 
declines in some sub-regions (high confidence) (IPBES, 2018).

Biological and ecological impacts have cascading effects for marine 
ecosystem functioning (Chivers et  al., 2017; Baird et  al., 2019) and 
biogeochemical cycling (Huete-Stauffer et  al., 2011; Munari, 2011; 
Kersting et al., 2013; Rivetti et al., 2014; Garrabou et al., 2019). In TEUS, 
increased water-column stratification (Section  13.1) and decreasing 
eutrophication, result in reduced primary production (high confidence) 
(Figure 13.11; Capuzzo et al., 2018) and productivity at higher trophic 
levels (high confidence) (Free et  al., 2019), while in NEUS sea ice 
decline has resulted in primary production increase by 40–60% (high 
confidence) (Figure  13.11; Arrigo and van Dijken, 2015; Borsheim, 
2017; Lewis et al., 2020). Climate-related deoxygenation impacts are 
small in most European waters (medium confidence) (Figure 13.11), 
expect for semi-enclosed seas such as the Baltic and Black seas (Frolov 
et al., 2014; Jacob et al., 2014; Reusch et al., 2018). Here warming and 
eutrophication have altered ecosystem functioning (high confidence), 
reduced potential fish yield and increased harmful algal blooms 
(Alekseev et al., 2014; Carstensen et al., 2014; Berdalet et al., 2017; 
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Figure 13.11 |  Major impacts and risks for marine and coastal ecosystems in Europe for observed and projected 1.5°C and 3.0°C GWL (Table SM13.4)
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Daskalov et al., 2017; Riebesell et al., 2018; Stanev et al., 2018) along 
with the risks of Vibrio pathogens and vibriosis (Section 13.7.1; Baker-
Austin et  al., 2017; Semenza et  al., 2017). Across all European seas 
there is only low confidence of a consistent change in provisioning 
ecosystem services (e.g., fishing yields) (Section 13.5), because of inter-
regional variability, but high confidence in the decrease in regulating 
services and coastal protection because of the cascading effects of 
ecosystem impacts (Figure 13.11).

13.4.1.2 Projected Risks

Risks to marine and coastal European ecosystems are very likely to 
intensify (Figure  13.11) in response to projected further warming. 
Since the capacity of natural systems for autonomous adaptation is 
limited (medium confidence) (Thomsen et al., 2017; Miller et al., 2018; 
Bindoff et al., 2019), pronounced changes in community composition 
and biodiversity patterns are projected by 2100 for TEUS and the 
eastern Mediterranean Sea (SEUS) for >3°C GWL (García  Molinos 
et  al., 2016), challenging conservation efforts (Corrales et  al., 2018; 
Cramer et al., 2018; Kim et al., 2019). At 1.5°C GWL, particularly in 
winter, Mediterranean coastal fish communities are projected to lose 
~10% of species, increasing to ~60% at 4°C GWL (Dahlke et  al., 
2020), exacerbating regime shifts linked to overexploitation (medium 
confidence) (Clark et  al., 2020). Warming at this level will threaten 
many species currently living in marine protected areas (MPAs) in 
TEUS and NEUS (Bruno et  al., 2018). Increasing marine heatwaves 
(MWHs), particularly in SEUS at 4°C GWL (Darmaraki et al., 2019a), 
elevate risks for species (Galli et al., 2017), coastal biodiversity, and 
ecosystem functions, goods and services (Smale et al., 2019); however, 
MWH-related risk levels differ among biotas (Pansch et al., 2018) and 
across European seas (Smale et al., 2015).

Marine primary production is projected to further decrease by 2100 
in most European seas between 0.3% at 1.5°C GWL to 2.7% at 4°C 
GWL (high confidence) (Figure 13.11), mainly caused by stratification-
driven reductions in nutrient availability, impacting food webs (Doney 
et  al., 2012; Laufkoetter et  al., 2015; Wakelin et  al., 2015; Salihoglu 
et al., 2017; Holt et al., 2018; Bryndum-Buchholz et al., 2019; Carozza 
et al., 2019; Kwiatkowski et al., 2019). In the Barents Sea, however, 
largely stable primary production is projected under all scenarios in 
response to sea ice decline (Slagstad et al., 2011) and in the eastern 
Mediterranean due to reduced stratification (Macias et  al., 2015; 
Moullec et al., 2019). These changes in productivity are projected to 
increase fish and macroinvertebrate biomass between 5 and 22% 
(Moullec et al., 2019). Decreasing net primary production will impact 
higher trophic levels (Section 13.5.1), for example, in TEUS (Holt et al., 
2016; Holt et al., 2018). Marine animal biomass is projected to likely 
decline in most European waters, with decreases <10% under all 
scenarios until the 2030s but losses growing to 25% at 2°C GWL and 
50% at 4°C GWL in coastal waters of the northeast Atlantic (Lotze 
et al., 2019; Bryndum-Buchholz et al., 2020).

Ocean acidification and its biological and ecological risks are projected 
to rise in European waters by impeding growth and reproductive 
success of vulnerable calcifying organisms (medium confidence) 
(Figure  13.11). Coralline algae are projected to reduce skeletal 
performance at 3°C GWL, with negative consequences for habitat 

formation (medium confidence) (Ragazzola et  al., 2016). Regionally 
(Brodie et  al., 2014), differences in species-specific vulnerability 
will result in community shifts from calcifying macroalgae (medium 
confidence) (Ragazzola et al., 2013) to non-calcifying macroalgae (high 
confidence) (Gordillo et al., 2016). Experimental studies demonstrated 
high resilience of some important habitat formers, such as the deep-
water coral Lophelia pertusa (Wall et al., 2015; Morato et al., 2020), 
and habitat engineers, such as Mediterranean limpets (Langer et al., 
2014), facilitated by energy reallocation. However, if not supported 
by sufficient food availability (Thomsen et  al., 2013; Clements and 
Darrow, 2018), such energy reallocation will negatively impact growth 
or reproduction (medium confidence) (Thomsen et al., 2013; Büscher 
et  al., 2017). This suggests that acidification risks will be amplified 
by increased stratification and reduced primary production (medium 
confidence). The emergence of harmful algal blooms and pathogens 
at higher GWLs is unclear across all European seas (low confidence) 
(Figure 13.11).

Risks to marine biotas and ecosystems in European seas are projected 
to impact important ecosystem services (Figure 13.11). Elevated CO2 
levels predicted at 4°C GWL will affect the C/N ratio of organic-matter 
export and, hence, the efficiency of the biological pump (low confidence), 
depending on the shifts in plankton composition and, hence, food-web 
structure (Taucher et al., 2020). Atlantic herring (Clupea harengus) will 
benefit with enhanced larval growth and survival from indirect food-
web effects (Sswat et al., 2018a), whereas Atlantic cod (Gadus morhua) 
will face overall negative impacts (medium confidence) (Section 13.5; 
Stiasny et al., 2018; Stiasny et al., 2019). Anoxic dead zones in the Black 
(Altieri and Gedan, 2015) and the Baltic (Jokinen et al., 2018; Reusch 
et al., 2018) seas are projected to increase, for example, by 5% in the 
Baltic Sea at 4°C GWL (Saraiva et al., 2019). Europe’s coastal vegetated 
‘blue carbon’ ecosystems (subtidal seagrass meadows and intertidal 
salt marshes) are highly vulnerable (Spencer et  al., 2016; Schuerch 
et al., 2018; Spivak et al., 2019), particularly in microtidal areas such as 
the Baltic and Mediterranean coast. Losses are projected for Posidonia 
oceanica seagrass habitats in the Mediterranean by up to 75% at 
2.5°C GWL (low confidence) (Chapter 3). The Wadden Sea, the world’s 
largest system of intertidal flats, is projected to reduce in surface area 
and height, as the sediment transport capacity limits the possibility of 
growth with rapidly rising sea levels (Wang et al., 2018; Jiang et al., 
2020). For the Dutch Wadden Sea, the critical rate of 6–10 mm yr–1, at 
which intertidal flats will start to ‘drown’, will be reached by 2030 at 
1.5°C GWL (medium confidence), or even earlier through subsidence 
due to human activities (van der Spek, 2018). European coastal zones 
provided a total of 494 billion EUR of ecosystem services in 2018, and 
4.2–5.1% of this value will be lost due to coastal erosion by 2100 at 
2.5°C and 4.6°C GWL, respectively (medium confidence) (Paprotny 
et al., 2021).

13.4.2 Solution Space and Adaptation Options

Human adaptation options for marine systems encompass socio-
institutional adaptation, technology and measures supporting 
autonomous adaptation (Chapter 3). Integrated coastal zone 
management (ICZM) and marine spatial planning (MSP) are 
frameworks for addressing climate-change adaptation needs as well 
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as operationalising and enforcing marine conservation; however, ICZM 
and MSP commonly do not explicitly take climate-change adaptation 
into consideration (Elliott et  al., 2015). Transboundary ICZM and/or 
MSP (Gormley et al., 2015) will become even more important with the 
projected acceleration of range extensions and ecological regime shifts 
due to climate change (IPCC, 2019).

Many climate-change adaptation governance and implementation 
measures are embedded in international strategies, such as HELCOM 
(Baltic Marine Environment Protection Commission) (Backer et  al., 
2010), OSPAR (Convention for the Protection of the Marine Environment 
of the North-East Atlantic) (OSPAR, 2009), and the Marine Strategy 
Framework Directive (MSFD) and European Water Framework Directive 
(EWFD) of the EU. In the Russian Arctic, mainly the Barents Sea, 
conservation priority areas (CPA) have been identified as Ecologically 
and Biologically Significant Areas (EBSA) (Solovyev et  al., 2017); 
however, plans are generally at a relatively early stage (Miller et al., 
2018) and assessments of the effectiveness of these policy frameworks 
to accelerate climate-change adaptation are ongoing (Haasnoot et al., 
2020a).

‘Green’ adaptations, either EbA or NbS, are part of adaptive management 
strategies (European Comission, 2011) that facilitate coastal flood 
protection (Section 13.2.2; Chapter 3; CCC SLR) and generate benefits 
beyond habitat creation (medium confidence), for example, from 
avoided expenditures for flood defence infrastructure and avoided 
loss of the built assets (Gedan et al., 2010).MPAs have been identified 
as adaptation options for natural areas, including permitted and non-

permitted uses (Chapter 3; Selig et  al., 2014; Hopkins et  al., 2016a; 
Roberts et al., 2017). The extent of MPAs has been increasing in Europe, 
albeit with strong regional variations (Figure 13.12). These MPAs provide 
protection from local stressors, such as commercial exploitation, and 
enhance the resilience of marine and coastal ecosystems, thus lessening 
the impacts of climate change (medium confidence) (Narayan et  al., 
2016; Roberts et al., 2017); however, climate-change risk reduction is 
only a limited MPA objective (Hopkins et al., 2016b; Rilov et al., 2019). 
The implementation of the legal frameworks, such as the EC Habitats 
Directive and EC Birds Directive, allows for enabling adaptation 
(Verschuuren, 2015) as does the incorporation of climate considerations 
in management of Natura 2000 sites (European Comission, 2014). There 
is evidence that better international cooperation is required to increase 
the effectiveness of the MSFD (Cavallo et  al., 2019), and the Good 
Environmental Status is currently not effectively monitored (Machado 
et al., 2019).

The greatest benefits are obtained from large, long-established, no-
take MPAs (Edgar et al., 2014), yet most MPAs in Europe are partially 
protected or multi-use areas, and existing no-take areas tend to be 
very small (<50 km2). No-take areas account, in total, for less than 
0.4% of the area of European waters (Figure 13.12) and are often 
nested within multi-use MPAs. In some partially protected MPAs, 
local stressors, such as fishing, are higher than adjacent unprotected 
areas (medium confidence) (Zupan et  al., 2018a; Mazaris et  al., 
2019). Despite evidence for climate mitigation benefits of no-take 
zones (Roberts et  al., 2017), the efficacy of partially protected 
MPAs is debated and dependent on local management (Zupan 

Current protection status of Marine Protected Areas (MPA) across European seas
Together, the three marine sub-regions encompass an approximate total 11 million km2
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Figure 13.12 |  Marine protected areas (MPAs) in European seas. Shown are proportions of designated and proposed MPAs in the total areas of northern (NEUS), temperate 
(TEUS) and southern (SEUS) European seas, as well as the shares of no-take, partial, unimplemented and unknown protection levels of designated MPAs (Marine Conservation 
Institute, 2021). Moreover, the average increase of surface sea temperatures at 4.0°C GWL by 2100 in NEUS, TEUS and SEUS is indicated.
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et al., 2018b). Marine protected areas of all types require effective 
management to contribute to mitigating climate-change impacts, 
including effective monitoring and enforcement (Watson et al., 2014), 
yet the management effectiveness of European MPAs has repeatedly 
been called into question (Batista and Cabral, 2016; Amengual and 
Alvarez-Berastegui, 2018; Fraschetti et al., 2018; Rilov et al., 2019). 
Many MPAs lack management plans, and insufficient resources are 
frequently an issue (Álvarez-Fernández et  al., 2017; Schéré et  al., 
2020). Thus, while substantial in potential, the current capacity of the 
European MPA network to reduce climate-change impacts is limited 
(Jones et al., 2016; Claudet et al., 2020).

Conservation approaches (e.g., MPAs, climate refugia), habitat 
restoration efforts (Bekkby et al., 2020) and further ecosystem-based 
management policies do support alleviation of, or adaptation to, 
climate-change impacts (medium confidence) but are themselves 
impacted by climate change (Chapter 3). Moreover, the interaction of 
adaptation and mitigation measures poses risks to marine systems. 
Many coastal regions of the North Sea, especially in the south, are 
particularly susceptible to rising sea levels because of the strong 
tidal regime and the effects of storm surges (Figure  13.3). Hard 
measures to protect human infrastructure against SLR (Section 13.2) 
will lead to loss of coastal habitats, with negative impacts on marine 
biodiversity (Cross-Chapter Box SLR in Chapter 3; Airoldi and Beck, 
2007; Cooper et  al., 2016). While rising sea levels will also directly 
threaten intertidal and beach ecosystems, coastal wetlands will benefit 
(medium confidence), in case lateral accommodation space and the 
opportunity for systems to migrate landward and upwards is provided, 
enhancing their ability to capture and store carbon (Lecocq et  al., 
2022; Rogers et al., 2019). In general, European coastal blue carbon 
ecosystems (e.g., seagrass meadows, kelp forests, tidal marshes) 
(Bekkby et  al., 2020) are potentially effective as carbon sinks in 
climate mitigation, akin to reforestation efforts on land (Section 13.3); 
however, their expansion has the potential to interfere with other 
ecosystem services (Cadier et al., 2020) and biodiversity conservation 
(Howard et  al., 2017; Chausson et  al., 2020). The ‘Blue Growth’ 
strategy of the European Commission with the aim to increase offshore 
activities (European Comission, 2012) will increase the pressures on 
the marine environments (medium confidence). Large-scale offshore 
wind-park infrastructure is currently developed in European seas, 
mostly in the North Sea (WindEuropeBusinessIntelligence, 2019), as 
a major component of climate-change mitigation efforts (Clarke et al., 
2022). The introduction of novel hard-substrate intertidal habitats 
has, and will continue to have, profound ecological ramifications for 
marine systems, including hydrodynamic changes, stepping stones for 
non-native species, noise and vibration, and changes in the food web 
(high confidence) (Lindeboom et al., 2011; De Mesel et al., 2015; Gill 
et al., 2018; Dannheim et al., 2019).

13.4.3 Knowledge Gaps

Major knowledge gaps are uncertainties and shortcomings in our 
understanding of combined, cascading and interacting impacts of 
climatic and non-climatic pressures on European marine and coastal 
socio-ecological systems (Korpinen et al., 2021). Further observational, 
experimental and modelling work will enhance the insight into multiple 

drivers, processes and their interactions, strengthen the confidence of 
risk projections and provide a foundation for future adaptation actions.

There is limited knowledge about the connectivity among populations, 
species and ecosystems which would provide new recruits, enable 
gene flow in MPA networks (Dubois et al., 2016; Sahyoun et al., 2016) 
and facilitate assisted migration. Such MPAs cover a wide range of 
protection status with limited evidence regarding which level of 
protection and connectivity is needed to achieve adaptations goals in 
response to future warming.

Although European seas and coasts are comparatively well studied 
on a global scale, the spatial and temporal resolution and coverage of 
open-access data is still limited in many regions, particularly in EEU. 
The detection and attribution of ongoing or emerging environmental 
and biological changes are therefore limited. Some efforts are in place, 
such as the six ‘Sea-basin Checkpoints’ (North Sea, Mediterranean Sea, 
Arctic, Atlantic, Baltic, Black Sea) that were established in 2013 under 
The European Marine Observation and Data Network, but high-quality 
observations of key ocean characteristics at the level of regional sea 
basins are still too scarce to support decision making for marine 
adaptation (Míguez et al., 2019).

13.5 Food, Fibre and Other Ecosystem Products

13.5.1 Observed Impacts and Projected Risks

13.5.1.1 Crop Production

Agriculture is the primary user of land in Europe. In 2013, Europe 
provided 28% of cereals, 59% of sugar beet and 60% of wine 
produced globally, as well as being part of a globalised food system 
with a third of the commodities produced and consumed in Europe 
traded internationally (FAOSTAT, 2019).

Observed climate change has led to a northward movement of agro-
climatic zones in Europe and earlier onset of the growing season (high 
confidence) (Ceglar et al., 2019). Warming and precipitation changes 
since 1990 explain continent-wide reductions in yield of wheat and 
barley, as well as increases in maize and sugar beet (high confidence) 
(Fontana et al., 2015; Moore and Lobell, 2015; Ray et al., 2015; Ceglar 
et  al., 2017). Heat stress has increased in SEU in spring, in summer 
throughout Central and Southern Europe, and recently expanded into 
the southern boreal zone (Fontana et al., 2015; Ceglar et al., 2019). 
Drought, excessive rain and the compound hazards of drought and 
heat (Sections 13.2.1, 13.3.1, 13.10.2) have increased costs and cause 
economic losses in forest productivity (Schuldt et al., 2020), annual and 
permanent crops, and livestock farming (Stahl et al., 2016), including 
losses in wheat production in the EU (van der Velde et al., 2018) and 
EEU (high confidence) (Ivanov et al., 2016; Loboda et al., 2017), with 
the severity of impacts from extreme heat and drought tripling over 
the past 50  years (Brás et  al., 2021). Meteorological extremes due 
to compound effects of cold winters, excessive autumn and spring 
precipitation, and summer drought caused production losses (up to 
30% relative to trend expectations) in 2012, 2016 and 2018 (Ben-Ari 
et al., 2018; van der Velde et al., 2018; Zscheischler et al., 2018; Toreti 

https://doi.org/10.1017/9781009325844.015
Downloaded from https://www.cambridge.org/core. IP address: 18.118.146.102, on 26 Apr 2024 at 12:05:11, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/9781009325844.015
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


13

Chapter 13 Europe

1844

et  al., 2019b) that were exceptional compared with recent decades 
(Webber et al., 2020). Regionally, warming caused increases in yields of 
field-grown fruiting vegetables, decreases in root vegetables, tomatoes 
and cucumbers (Potopová et al., 2017) and earlier flowering of olive 
trees (high confidence) (Garcia-Mozo et  al., 2015). Delayed harvest, 
due to both wet conditions and earlier harvests in Central Europe in 
response to warming, has impacted wine quality (Cook and Wolkovich, 
2016; van Leeuwen and Darriet, 2016; Di Lena et al., 2019).

Evidence for growing regional differences of projected climate risks is 
increasing since AR5 (high confidence). While there is high agreement 
of the direction of change, the absolute yield losses are uncertain due 
to differences in model parameterisation and whether adaptation 
options are represented (high confidence) (Donatelli et  al., 2015; 
Moore and Lobell, 2015; Knox et  al., 2016; Webber et  al., 2018). At 
1.5°C GWL, compound events which led to recent large wheat losses 
are projected to become 12% more frequent (Ben-Ari et  al., 2018). 
Growing regions will shift northward or expand for melons (Bisbis 
et al., 2019), tomatoes and grapevines reaching NEU and EEU in 2050 
under 1.5°C GWL (high confidence) (Hannah et  al., 2013; Litskas 
et al., 2019), while warming would increase yields of onions, Chinese 
cabbage and French beans (Bisbis et al., 2019) (medium confidence). 
In response to 2°C GWL, agro-climatic zones in Europe are expected to 
move northward 25–135 km per decade, fastest in EEU (Ceglar et al., 
2019). Negative impacts of warming and drought are counterbalanced 
by CO2 fertilisation for crops such as winter wheat (medium confidence, 
medium agreement), resulting in some regional yield increases with 
climate change (Zhao et al., 2017; Webber et al., 2018).

Reductions in agricultural yields will be higher in the south at 4°C 
GWL, with lower losses or gains in the north (high confidence) 
(Figure 13.5; Trnka et al., 2014; Webber et al., 2016; Szewczyk et al., 
2018). The largest impacts of warming are projected for maize in SEU 
(high confidence) (Deryng et al., 2014; Knox et al., 2016) with yield 
losses across Europe of 10–25% at 1.5°C–2°C GWL and 50–100% at 
4°C GWL (Deryng et al., 2014; Webber et al., 2018; Feyen et al., 2020).

Use of longer-season varieties can compensate for heat stress on maize 
in WCE and lead to yield increases for NEU, but not SEU for 4°C GWL 
(medium confidence) (Siebert et al., 2017; Ceglar et al., 2019). Irrigation 
can reduces projected heat and drought stress, for example, for wheat 
and maize (Ruiz-Ramos et  al., 2018; Feyen et  al., 2020), but use is 
limited by water availability (KR3, Section  13.10.2). The advantages 
of a longer growing season in NEU and EEU are outbalanced by the 
increased risk of early spring and summer heatwaves (Ceglar et  al., 
2019).

Warming causes range expansion and alters host pathogen association 
of pests, diseases and weeds affecting the health of European crops 
(high confidence) (Caffarra et al., 2012; Pushnya and Shirinyan, 2015; 
Latchininsky, 2017) with high risk for contamination of cereals (Moretti 
et al., 2019). Regionally predicted reduction in rainfall (Section 13.1) 
can lead to carryover of herbicides (Karkanis et al., 2018).

Net yield losses will reduce economic output from agriculture in the 
EU, reaching a reduction of 7% for the EU and the UK combined, and 
10% in SEU at 4°C GWL (Naumann et al., 2021). Farmland values are 

projected to decrease by 5–9% per degree of warming in SEU (Van 
Passel et al., 2017). Increased heat and drought stress, and reduced 
irrigation water availability, will decrease profitability and cause 
abandonment of farmland in SEU (limited evidence, low confidence) 
(Holman et al., 2017).

13.5.1.2 Livestock Production

Heat and humidity affect livestock, such as dairy cows and goats, 
directly exposed in open barns and outdoors (Gauly et  al., 2013; 
Bernabucci et  al., 2014; Silanikove and Koluman, 2015), and cold-
adapted husbandry (high confidence) (see Box 13.2; Section 13.8.3). 
Heat impacts animal health (Sanker et  al., 2013; Lambertz et  al., 
2014), nutrition, behaviour and welfare (Heinicke et  al., 2019), 
performance and product quality (Gauly and Ammer, 2020). Climate 
change also impacts grassland production, fodder composition and 
quality, particularly in SEU (Dumont et al., 2015) and EEU (Bezuglova 
et  al., 2020), as well as alters the prevalence, distribution and load 
of pathogens and their vectors (high confidence) (Section  2.4.2.7.3; 
Morgan et al., 2013; Charlier et al., 2016). Projected impacts on poultry 
and pigs are low due to temperature control in large parts of Europe, 
but are greater in SEU where open systems prevail (Chapter 5).

Warming increases the pasture growing season and farming period 
in NEU and at higher altitudes (Fuhrer et  al., 2014), while longer 
drought periods and thunderstorms can influence abandonment of 
remote Alpine pastures, reducing cultural and landscape ecosystem 
services and losing traditional farming practices (high confidence) 
(Section  13.8.3; Herzog and Seidl, 2018). At 2–4°C GWL grassland 
biomass production for forage-fed animals will increase in NEU and 
the northern Alps, while forage production will decrease in SEU and 
the southern Alps due to heat and water scarcity (Gauly et al., 2013; 
Jäger et al., 2020), causing regional reductions of cow milk production 
in WCE and SEU (high confidence) (Silanikove and Koluman, 2015).

13.5.1.3 Aquatic Food Production

Seafood production in Europe provides jobs for >250,000 people, 
predominantly in SEU (Carvalho et al., 2017). Marine fisheries contribute 
80% to European aquatic food production, while marine aquaculture 
provides 18% and freshwater production 3% (Blanchet et al., 2019). 
The Russian Federation provides 25% of seafood production in Europe 
(FAOSTAT, 2019).

Climate change has impacted European marine food production 
(high confidence); however, extraction is still the major impact on 
commercially important fish stocks in Europe (Mullon et  al., 2016), 
with 69% of stocks overfished and 51% outside safe biological limits 
(Froese et al., 2018). The North Sea, the Iberian Coastal Sea and the 
Celtic Sea–Biscay Shelf are globally among the areas most negatively 
affected by warming with losses of 15–35% in maximum sustainable 
yields (MSY) during recent decades (Free et  al., 2019). Warming 
has caused ongoing northward movement and range expansion of 
Northeast Atlantic fish stocks (Section 13.4; Baudron et al., 2020). In 
the North Sea, cuttlefish (van der Kooij et al., 2016; Oesterwind et al., 
2020) and tuna (Bennema, 2018; Faillettaz et al., 2019) have become 
new target species (medium confidence). In SEU, warm-water species 
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increasingly dominate fisheries landings (Fortibuoni et  al., 2015; 
Teixeira et al., 2016; Vasilakopoulos et al., 2017).

European countries are assessed to be globally among the least 
vulnerable to the impacts of climate change on fisheries-related 
food security risks (high confidence) due to low levels of exposure to 
climate hazards, low dependency of economies on fisheries and a high 

adaptive capacity (Barange et al., 2014; Ding et al., 2017). European 
freshwater production is suggested to be less vulnerable than marine 
sectors and marine production vulnerability increases with latitude 
(Blanchet et  al., 2019). In the aquaculture sector, Norway is highly 
vulnerable due to the high sensitivity of salmon farming to warming 
and high per-capita production (Handisyde et al., 2017). In the fisheries 
sector, vulnerability for fishing communities is highest in SEU and the 

Future vulnerability and risks for aquatic food production
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Figure 13.13 |  Future vulnerability and risks for aquatic food production: 

(a) vulnerability for fisheries in 105 coastal regions across 26 countries based on biological traits and physiological metrics of 556 resource populations (Payne et al., 2021); 

(b) vulnerability of major aquaculture species in European countries on physiological attributes, farming methods and economic output (Peck et al., 2020); 

(c,d) differences (%) between projected changes for 1.5°C and 4°C GWL (Peck et al., 2020), with (c) changes in abundance of major fish species by region, and (d) changes in 
productivity of major aquaculture species by country
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Effectiveness and feasibility of adaptation options
for food system to climate impacts and risk in Europe Confidence
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Figure 13.14 |  Effectiveness and feasibility of the main adaptation options for food systems in Europe (Section SM13.9, Table SM13.5)

UK (Figure  13.9A; Handisyde et  al., 2017; Payne et  al., 2021), while 
for aquaculture sectors, it is highest in SEU and some NEU and WCE 
countries (Figure 13.9B, 2020).

Future vulnerabilities, risks and opportunities are projected to strongly 
vary regionally and between major fisheries and aquaculture species 
(Figure  13.13 c,d; Peck et  al., 2020). Assuming MSY management, 
projections suggest reduced abundance of most commercial fish stocks 
in European waters of 35% (up to 90% for individual stocks) between 
1.5°C and 4.0°C GWL (medium confidence) (Figure 13.13; Peck et al., 
2020; Payne et al., 2021). In response to 4°C GWL, higher trophic-level 
biomass is projected to increase in the SEUS mainly due to increases 
in small pelagic and thermophilic, often exotic, species (Moullec et al., 
2019).

Ocean acidification (Section 13.4; Chapter 4) will develop into a major risk 
for marine food production in Europe under 4°C GWL (high confidence), 
affecting recruitment of important European fish stocks, such as those 
of cod in the Western Baltic and Barents Sea, by 8 and 24%, respectively 
(Swat et al., 2018b; Stiasny et al., 2018; Voss et al., 2019). Acidification 
is also projected to negatively affect marine shellfish production and 
aquaculture in Europe with 4°C GWL (medium confidence) (Fernandes 
et al., 2017; Narita and Rehdanz, 2017; Mangi et al., 2018).

13.5.1.4 Forestry and Forest Products

Climate change is altering the structure and function of European 
forests via changes in temperature, precipitation and atmospheric CO2, 
as well as through interaction with pests and fire (high confidence) 
(Section 13.3.1; Moreno et al., 2018; Morin et al., 2018; Senf et al., 2018; 
Orlova-Bienkowskaja et al., 2020). Species-specific responses of trees to 
drier summers (Vitali et al., 2018) shape regional variability in European 
forest productivity in response to water and nutrient availability, 
heatwave and evaporative demand (Reyer et al., 2014; Kellomäki et al., 
2018). While warming and extended growing seasons have positive 
impacts on forest growth in cold areas in WCE and NEU (Pretzsch 
et al., 2014; Matskovsky et al., 2020), EEU (Tei et al., 2017) and higher 
altitude (Sedmáková et al., 2019), drought stress across Europe has been 
increasing (high confidence) (Primicia et al., 2015; Marqués et al., 2018; 
Ruiz-Pérez and Vico, 2020). Combined with land use, climate change has 
increased large-scale forest mortality since the 1980s (Senf et al., 2018). 
Extreme events, such as the 2018 drought in WCE, caused widespread 
leaf shedding and tree mortality (Buras et al., 2020) with carryovers into 
2019 (Schuldt et al., 2020), as well as bark beetle outbreaks (Netherer 
et al., 2019) resulting in felling and cutting of more than 1 million ha of 
spruce forest and disrupting timber markets (Mauser, 2021).
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In response to 3°C GWL, forest productivity is projected to increase 
in NEU and altitudes, show mixed trends in WCE and decrease in 
SEU (medium confidence) (Reyer et  al., 2014). This trend is driven by 
increases in productivity of pine and spruce, and decreases of beech 
and oak, and excludes disturbances and management options (Reyer 
et al., 2014). Water stress exacerbates the incidence from and effects of 
fire and other natural disturbances (Section 13.3.1), resulting in forest 
productivity declines or cancelling out productivity gains from CO2 (high 
confidence) (Seidl et al., 2014; Reyer et al., 2017). In response to 1.7°C 
GLW, managed forest and unmanaged woodland areas are projected 
to decrease only minimally, while at GWL >2.5°C losses are increasing 
for managed forest and unmanaged woodland (Harrison et al., 2019). 
Reducing warming from 4°C GLW to below 1.7°C GLW would reduce the 
Europe-wide impacts on managed forest by 34% (Harrison et al., 2019).

13.5.2 Solution Space and Adaptation Options

The solution space for climate-change adaption for food and timber 
includes production-related options (Sections  13.5.2.1–13.5.2.3) 
and market-based changes to consumer demand and trade 
(Section 13.5.2.4). The assessment of effectiveness and feasibility of 
options in the food system is summarised in Figure 13.14.

13.5.2.1 Crops and Livestock

Farm management adaptation options to climate change include 
changing sowing and harvest dates, changes in cultivars and irrigation, 
and selecting alternative crops (Figures 13.14, 13.15; Donatelli et al., 
2015). Irrigation is effective at reducing yield loss from heat stress 
and drought, for example, for wheat and maize (Figures 13.14, 13.15), 
but it increases demand for water withdrawals (Siebert et al., 2017; 
Ruiz-Ramos et al., 2018; Feyen et al., 2020). Where sufficient water 
and infrastructure is available, irrigation of wheat reverses yield 
losses across Europe at 2°C GWL to become gains, while yield losses 
in maize in SEU are reduced from as much as 80 to 11% (Feyen 
et al., 2020). Extensive droughts during the past two decades have 
caused many irrigated systems in SEU to cease production (Stahl 
et al., 2016) indicating limited adaptive capacity to heat and drought 
(medium confidence). Water management for food production on land 
is becoming increasingly complex due to the need to satisfy other 
social and environmental water demands (KR3, Section 13.10) and is 
limited by costs and institutional coordination (Iglesias and Garrote, 
2015). Agricultural water management adaptation practices include 
irrigation, reallocating water to other crops, improving use efficiency 
and soil water conservation practices (Iglesias and Garrote, 2015). In-
season forecasts of climate impacts on yield were successfully used 
for European wheat during the 2018 drought (van der Velde et  al., 
2018).

Changes to cultivars and sowing dates can reduce yield losses 
(Figure 13.15) but are insufficient to fully ameliorate losses projected 
>3°C GWL, with an increase of risk from north to south and for crops 
growing later in the season such as maize and wheat (high confidence) 
(Ruiz-Ramos et  al., 2018; Feyen et  al., 2020). Adaptations for early 
maturing reduce yield loss by moving the cycle towards a cooler part of 
year, and also constrains the increases in irrigation water demands, but 

reduce the period for photosynthesis and grain filling (high confidence) 
(Ruiz-Ramos et  al., 2018; Holzkämper, 2020). Crop breeding for 
drought and heat tolerance can improve sustainability of agricultural 
production under future climate (Costa et  al., 2019), particularly in 
SEU where drought-tolerant varieties provide 30% higher yields than 
drought-sensitive varieties at 3°C GWL (Senapati et  al., 2019). Soil 
management practices, such as crop residue retention or improved 
crop rotations, generally undertaken as a mitigation option to increase 
soil carbon sequestration, are not commonly evaluated for adaptation 
in European agriculture (Hamidov et al., 2018).

Adaptation practices for livestock systems on European farms commonly 
focus on controlling cooling, shade provision and management of 
feeding times (Gauly et al., 2013). These options are used in indoors-
reared species (Gauly et al., 2013) but are limited in mountain pastures 
(high confidence) (Deléglise et al., 2019). Response options to insufficient 
amounts and quality of fodder include changing feeding strategies 
(Kaufman et al., 2017; Ammer et al., 2018), feed additives (Ghizzi et al., 
2018), relocating livestock linked to improved pasture management, 
organic farming (Rojas-Downing et  al., 2017; EEA, 2019c), importing 
fodder and reducing stock (Toreti et  al., 2019b). Dairy systems that 
maximise the use of grazed pasture are considered more environmentally 
sustainable but are not fully supported by policy and markets (medium 
confidence) (Hennessy et al., 2020). Genetic adaptation of crops, pasture 
and animals could be a long-term adaptation strategy (Anzures-Olvera 
et al., 2019; Deléglise et al., 2019). Control strategies for pathogens and 
vectors include indoor or outdoor rearing and applying new diagnostic 
tools or drugs (Bett et al., 2017; Vercruysse et al., 2018), and regulations 
to ensure safe trade and reduce the risk of introducing or spreading pests 
(European Comission, 2016).

Agroecological systems provide adaptation options that rely on 
ecological process (e.g., soil organic matter recycling and functional 
diversification) to lower inputs without impacting productivity 
(Cross-Chapter Box  NATURAL in Chapter 2; Aguilera et  al., 2020). 
High-frequency rotational grazing and mixed livestock systems are 
agroecological strategies to control pathogens (Aguilera et al., 2020). 
Agroforestry, integrating trees with crops (silvoarable), livestock 
(silvopasture), or both (agrosilvopasture), can enhance resilience 
to climate change (Chapter 5), but implementation in Europe needs 
improved training programmes and policy support (high confidence) 
(Hernández-Morcillo et al., 2018).

Technological innovations, including ‘smart farming’ and knowledge 
training, can strengthen farmers’ responses to climate impacts (Delé-
glise et  al., 2019; Kernecker et  al., 2019), although strong belief in 
‘technosalvation’ by farmers (Ricart et al., 2019) can reduce the solu-
tion space and timing of adaptation options. Agricultural policy, market 
prices, new technology and socioeconomic factors play a more impor-
tant role in short-term farm-level investment decisions than climate-
change impacts (high confidence) (Juhola et al., 2016; Hamidov et al., 
2018).

Effective policy guidance is needed to increase the climate resilience 
of agriculture (Spinoni et  al., 2018; Toreti et  al., 2019b). Financial 
measures include simplifying procedures for obtaining subsidies, and 
insurance premiums and interest rates that incentivise adoption of 
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Projected yield changes with climate change, altered crop management and associated water demand
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Figure 13.15 |  Projected yield changes with climate change for 1.5°C (RCP2.6), 1.7°C (RCP4.5) and 2°C GWL (RCP8.5). Altered crop management and associated 
water demand shows: 

(a) relative yield changes under climate change and elevated CO2 for current production systems (i.e., rain-fed and irrigated simulations weighted by current the share of rain-fed 
and irrigated areas); 

(b) yield increase if current predominantly rain-fed areas are fully irrigated; 

(c) additional yield increases for irrigated production systems if new varieties are used to avoid losses associated with faster development and earlier maturity under climate 
change; and 

(d) water demand for irrigated systems with current varieties in currently rain-fed areas (Webber et al., 2018). Relative yield changes to a period centred on 2055 relative to a 
baseline period centred on 1995. Box plots are Europe’s aggregate results considering current production areas (a) or current rain-fed areas (b,c), showing uncertainty across crop 
models and general circulation models. The maps are for the crop model median for RCP4.5 (1.7°C GWL) with GFDL-CM3.
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climate-friendly agricultural methods (Garrote et al., 2015; Iglesias and 
Garrote, 2015; Zakharov and Sharipova, 2017; Hamidov et al., 2018; 
Wiréhn, 2018). The EU’s Common Agricultural Policy has increasingly 
focused on environmental outcomes (Alliance Environnement, 2018) 
but does not sufficiently provide for adaptation measures (Leventon 
et  al., 2017; Pe’er et  al., 2020). Limits to European farm-level 
adaptation include lack of resources for investment, political urgency 
to adapt, institutional capacity, access to adaptation knowledge and 
information from other countries (EEA, 2019c).

13.5.2.2 Aquatic Food

Climate-resilient fish production in Europe is the goal of the EU’s 
Common Fisheries Policy (CFP) rebuilding fish stocks to MSY levels, but 
success has been variable (Froese et al., 2018; Stecf, 2019). Adaptation 
is largely ignored in related EU policy frameworks such as the CFP, the 
MSFD and the ‘Strategic guidelines for the sustainable development 
of EU aquaculture’. (Pham et al., 2021). A major governance challenge 
for adaptation will be the redistribution of the fixed allocation scheme 
for total allowable catches (Harte et al., 2019; Baudron et al., 2020). 
Inflexible and non-adaptive allocation schemes can result in conflicts 
among European countries (medium confidence), as demonstrated by 
the case of the Northeast Atlantic mackerel (Spijkers and Boonstra, 
2017).

The development of adaptation strategies for seafood production 
since the Paris Agreement is insufficient in Europe (high confidence) 
(Kalikoski et al., 2018; Pham et al., 2021). Concrete plans for adaptation 
planning towards climate-ready fisheries and aquaculture are lacking in 
all parts of Europe (European Comission, 2018), especially accounting 
for the expected reduced landings of traditional target species and in 
preparation for a new portfolio of resource species (Blanchet et  al., 
2019).

Recent scientific progress towards adaptation in European fisheries 
and aquaculture include conceptual guidance and demonstration 
cases on climate adaptation planning (Pham et al., 2021) and climate 
vulnerability assessments (Blanchet et al., 2019; Peck et al., 2020; Payne 
et al., 2021). Sociopolitical scenarios for European aquatic resources 
have been developed and have the potential to inform adaptation 
planning by European fisheries and aquaculture sectors (Kreiss et al., 
2020; Hamon et al., 2021; Pinnegar et al., 2021).

13.5.2.3 Forests

Forest management has been adopted as a frequent strategy to cope with 
drought, reduce fire risk, and maintain biodiverse landscapes and rural 
jobs (Hlásny et al., 2014; Fernández-Manjarrés et al., 2018). Successful 
adaptation strategies include altering the tree species composition to 
enhance the resilience of European forests (high confidence) (Schelhaas 
et al., 2015; Zubizarreta-Gerendiain et al., 2017; Pukkala, 2018). Greater 
diversity of tree species reduces vulnerability to pests and pathogens 
(Felton et  al., 2016), and increases resistance to natural disturbances 
(high confidence) (Jactel et al., 2017; Pukkala, 2018; Pardos et al., 2021). 
Depending on forest successional history (Sheil and Bongers, 2020), tree 
composition change can increase carbon sequestration (high confidence) 
(Liang et al., 2016), biodiversity and water quality (Felton et al., 2016). 

Conservation areas can also help climate-change adaptation by keeping 
the forest cover intact, creating favourable microclimates and protecting 
biodiversity (low confidence) (Jantke et al., 2016).

Reforestation reduces warming rates (Zellweger et  al., 2020) and 
extremely warm days (Sonntag et  al., 2016) inside forests, reducing 
natural disturbances and fires (high confidence). Active management 
approaches can limit the impact of fires (Section  13.3.1) on forest 
productivity, including fuel reduction management, prescribed 
burning, changing from conifers to deciduous, less flammable species, 
and recreating mixed forests (Feyen et  al., 2020) and agroforestry 
(Damianidis et al., 2020).

13.5.2.4 Demand and Trade

An increasing globalised food system makes European nations 
sensitive to supply chain disturbances in other parts of the world, but 
also provides capacity to adapt to production shifts within Europe 
through changes in international trade (Section  13.9.1) (Alexander 
et al., 2018; Challinor et al., 2018; Ercin et al., 2021). Consumer demand 
for food and timber products can adapt to productivity changes and be 
mediated by price (e.g., in response to production changes or policies 
on food-related taxation), reflect changes in preferences (e.g., towards 
plant-based foods motivated by environmental, ethical or health 
concerns) or reductions in food waste (high confidence) (Alexander 
et  al., 2019; Willett et  al., 2019). Although mitigation potentials 
of dietary changes have received increasing attention, evidence is 
lacking on potential for adaptation through changes in European food 
consumption and trade, despite these socioeconomic factors being a 
strong driver for change (medium confidence) (Harrison et al., 2019; 
Kebede, 2021). Calls are increasing across Europe for sustainable and 
resilient agri-food systems acknowledging interdependencies between 
producers and consumers to deliver healthy, safe and nutritional foods 
and services (Section 13.7) (Venghaus and Hake, 2018).

13.5.3 Knowledge Gaps

Aggregated projections of impacts, especially of combined hazards, 
are still rare despite many physiological papers on species-specific 
responses to warming in all food sectors (high confidence). This 
is specifically true for scenarios that consider land-use change 
and population growth, although Agri SSPs are currently being 
developed (Mitter et  al., 2019). Effectiveness of adaptation options 
is predominantly qualitatively mentioned but not assessed, and the 
effectiveness of combinations of measures is rarely assessed (high 
confidence) (Ewert et  al., 2015; Holman et  al., 2018; Müller et  al., 
2020). Effective adaptation planning would be supported by better 
modelling and scenario development including improved coupled 
nature–human interactions (e.g., with more realistic representation of 
behaviours beyond economic rationality and ‘bottom-up’ autonomous 
farmer adaptations) as well as greater stakeholder involvement.

Coverage of impacts and adaptation options in Europe are biased 
towards the EU-28 and have gaps within the eastern part of WCE 
and EEU, despite dramatic changes in land use over recent decades 
in Russia and Ukraine (high confidence) which have the potential to 
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increase production and export of agricultural products, especially 
wheat, meat and milk (Swinnen et al., 2017).

A bias towards modelling of cereals, specifically wheat and maize, 
results in gaps in knowledge for fruit and vegetables, especially for 
temperate regions in Europe (Bisbis et  al., 2019). The assessment 
of irrigation needs and the impact of CO2 and O3 tend to focus on 
individual species and processes hindering upscaling to multiple 
stressors and mixed production (high confidence) (Challinor et  al., 
2016; Webber et al., 2016).

There is a lack of actionable adaptation strategies for European 
fisheries and aquaculture. Knowledge gaps include adaptive capacities 
of local fishing communities to a new mix of target species and 
consumer acceptance of the product. Increased knowledge on the 
effects on freshwater fisheries and their resources is also needed.

13.6 Cities, Settlements and Key 
Infrastructures

Urban areas in Europe house 547 million inhabitants, corresponding to 
74% of the total European population (UN/DESA, 2018). In the EU-28, 
39% of the total population lives in metropolitan regions (i.e., areas 
with at least 1  million inhabitants) where 47% of the total GDP is 
generated (Eurostat, 2016). Apart from urban settlements, this section 
also covers energy and transport systems, as well as tourism, industrial 
and business sectors which are key for livelihood, economic prosperity 
and the well-being of residents.

13.6.1 Observed Impacts and Projected Risks

13.6.1.1 Energy Systems

The energy sector in Europe already faces impacts from climate extremes 
(high confidence). Significant reductions and interruptions of power 
supply have been observed during exceptionally dry and/or hot years of 
the recent 20-year period, for example, in France, Germany, Switzerland 
and the UK during the extremely hot summer of 2018 which led to water-
cooling constraints on power plants (van Vliet et al., 2016b; Abi-Samra, 
2017; Vogel et al., 2019). Heating-degree days decreased and cooling-
degree days increased during 1951–2014, with clearer trends after 1980 
(De Rosa et al., 2015; Spinoni et al., 2015; EEA, 2017a). Projected climate 
risks for energy supply are summarised in Figure 13.16.

New studies reinforce the findings of AR5 on risks for thermoelectric 
power and regional differences between NEU and SEU regarding risks 
for hydropower (Figure 13.16). In NEU and EEU, extremely high water 
inflows to dams are projected to increase flooding risks for plant and 
nearby settlements (Chernet Haregewoin et al., 2014; Porfiriev et al., 
2017), while increasing temperatures could reduce the efficiency of 
steam and gas turbines (Porfiriev et  al., 2017; Cronin et  al., 2018; 
Klimenko et  al., 2018a). Water scarcity may limit onshore carbon 
capture and storage in some regions (Byers et al., 2016; Murrant et al., 
2017; EEA, 2019a).

Reduced surface wind speeds during 1979–2016 (Frolov et al., 2014; 
Perevedentsev and Aukhadeev, 2014; Tian et  al., 2019) support 
projected trends in decreasing onshore wind energy potential. Seasonal 
changes may result in reductions in many areas in summer (by 8–30% 
in Southern Europe) and increases in most of NEU during winter. 
Increasing probabilities and persistence of high winds over the Aegean 
and Baltic seas (Weber et al., 2018a) could create new opportunities 
for offshore wind. The future configuration of the wind fleet will affect 
the spatial and temporal variability of wind power production (Tobin 
et al., 2016). Total backup energy needs in Europe could increase by 
4–7% by 2100 (Wohland et al., 2017) with potentially larger seasonal 
changes (Weber et al., 2018b).

There is low evidence and limited agreement on projections of solar 
power potential due to differences in the integration of aerosols and 
the estimated cloud cover between climate models (Bartok et al., 2017; 
Boé et al., 2020; Gutiérrez et al., 2020). Studies on climate risks for 
bioenergy are also limited.

Energy demand is projected to display regional differences in response 
to warming beyond 2°C GWL, with a the significant southwest-to-
northeast decrease of heating-degree days by 2100 (particularly in 
northern Scandinavia and Russia), and a smaller north-to-south increase 
of cooling-degree days (Porfiriev et  al., 2017; Spinoni et  al., 2018; 
Coppola et  al., 2021). Under the present population numbers, total 
energy demand would decrease in almost all of Europe, whereas it could 
increase in some countries (e.g., UK, Spain, Norway) when considering 
Eurostat’s population projections (Klimenko et  al., 2018b; Spinoni 
et al., 2018). There is medium confidence that peak load will increase 
in SEU and decrease in NEU (Damm et  al., 2017; Wenz et  al., 2017; 
Bird et al., 2019). Beyond 2°C GWL, a shift of peak load from winter to 
summer in many countries is possible (Wenz et al., 2017). Together with 
water-cooling constraints for thermal power, this change in load may 
challenge the stability of electricity networks during heatwaves (EEA, 
2019a). Technological factors, increased electricity use and adaptation 
influence significantly the temperature sensitivity of electricity demand 
and consequently risks (Damm et al., 2017; Wenz et al., 2017; Cassarino 
et  al., 2018; Figueiredo et  al., 2020). Potential power curtailments or 
outages during climatic extremes may increase electricity prices (Pechan 
and Eisenack, 2014; Steinhäuser and Eisenack, 2020).

13.6.1.2 Transport

Heatwaves in 2015 and 2018 in parts of WCE and NEU caused road 
melting, railway asset failures and speed restrictions to reduce the 
likelihood of track buckling (Ferranti et al., 2018; Vogel et al., 2019). 
Recent studies on projected risks focus mainly on infrastructure and 
much less on transport flows and disruptions.

Sea level rise (Section  13.2) may disrupt port operations and 
surrounding areas, mainly in parts of NEU and WCE (Christodoulou 
et  al., 2018), while changes of waves agitation could increase the 
non-operability hours of some Mediterranean ports beyond 2°C GWL 
(Sierra et al., 2016; Camus et al., 2019; Izaguirre et al., 2021). Low-
water-level days at some critical locations for inland navigation at 
the Rhine River are projected to increase beyond 2°C GWL, while 
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decreases at the Danube River are possible (van Slobbe et al., 2016; 
Christodoulou et al., 2020).

Risks of rutting and blow-ups of roads (particularly in low altitudes) 
due to high summer temperatures are expected to increase in WCE 
and EEU at 3°C GWL (medium confidence) (Frolov et  al., 2014; 
Matulla et  al., 2018; Yakubovich and Yakubovich, 2018). In EEU 
and northern Scandinavia, the higher number of freezing–thawing 
cycles of construction materials will increase risks for roads (Frolov 
et al., 2014; Yakubovich and Yakubovich, 2018; Nilsen et al., 2021), 
while warming beyond 2°C GWL could significantly reduce road 
maintenance costs in NEU (Lorentzen, 2020), but limit off-road 
overland transport in northwest Russia (Gädeke et al., 2021). Beyond 
3°C GWL, more frequent hourly precipitation extremes are projected 
over WCE and NEU in summer (e.g., a twofold and tenfold increase, 
respectively, for events exceeding the present-day 99.99th percentile 
in Germany and the UK) but more widely across Europe in autumn 
and winter (an increase higher than tenfold for 99.99th percentile 
events in SEU in autumn (Chan et  al., 2020), potentially severely 
damaging roads as happened in Mandra, Greece, in 2017 (Diakakis 
et al., 2020). Landslide risks in WCE and SEU could increase beyond 
a 2°C GWL, threatening road networks (Schlogl and Matulla, 2018; 
Rianna et al., 2020).

The current flood risk for railways could double or triple at 1.5–3°C 
GWL, particularly in WCE, increasing public expenditure for rail 
transport in Europe by 1.22 billion EUR annually under 3°C GWL and 

no adaptation (Bubeck et  al., 2019). Thermal discomfort in urban 
underground railways is expected to increase, even at a high level of 
carriage cooling (Jenkins et al., 2014a).

The number of airports vulnerable to inundation from SLR and storm 
surges may double between 2030 and 2080 without adaptation, 
especially close to the North Sea and Mediterranean coasts (Christodoulou 
and Demirel, 2018). Rising temperatures reducing lift generation could 
impose weight restrictions for large aircraft at 2°C GWL and beyond in 
airports of France, the UK and Spain (Coffel et al., 2017). There is a lack of 
studies quantifying the effect of future extreme events on flight arrivals 
at, and departures from, European airports.

13.6.1.3 Business and Industry

European industrial and service sectors contribute 85% to gross value 
added in EU-28 (Eurostat, 2020); while their direct exposure and 
vulnerability is smaller compared with sectors directly reliant on weather, 
they are directly and indirectly affected by heat, flooding, water scarcity 
and drought (Weinhofer and Busch, 2013; Gasbarro and Pinkse, 2016; 
Meinel and Schule, 2018; Schiemann and Sakhel, 2018; TEG, 2019). 
Heat reduces the productivity of labour particularly in construction, 
agriculture and manufacturing (Section 13.7.1; García-León et al., 2021; 
Schleypen et al., 2021). Direct losses from floods in Europe are highest 
for manufacturing, utilities and transportation; indirect losses arise, for 
example, for manufacturing, construction, and banking and insurance 
(Koks et  al., 2019a; Sieg et  al., 2019; Mendoza–Tinoco et  al., 2020). 

Projected climate change risks and opportunities for energy supply in Europe
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Figure 13.16 |  Projected climate-change risks for energy supply in Europe for major sources and under 1.5°C, 2°C and >3°C GWL (Tables SM13.5–13.13)
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Drought and water scarcity directly affect European industries in the 
sectors of pulp and paper, chemical and plastic manufacturing, and food 
and beverages (Gasbarro et al., 2019; Teotónio et al., 2020); additionally, 
drought may indirectly affect sectors relying on shipping, hydropower 
or public water supply (Naumann et al., 2021). The European financial 
and insurance sector is affected by climate-change impacts via their 
customers and financial markets (Bank of England, 2015; Georgopoulou 
et al., 2015; Battiston et al., 2017; TCFD, 2017; Bank of England, 2019; 
de Bruin et al., 2020; Monasterolo, 2020).

The vulnerability to climate hazards varies by European region, type of 
risk, sector and business characteristics (Gasbarro et al., 2016; Forzieri 
et  al., 2018; ECB, 2021a; Kouloukoui et  al., 2021). Current damages 
are mainly related to river floods and storms, but heat and drought 
will become major drivers in the future (medium confidence). Until 
2050, the probability of default of firms located in particularly exposed 
locations may increase to up to four times that of an average firm in 
all sectors (ECB, 2021a).

Many European sectors are exposed to multiple and cross-cutting 
risks (Gasbarro et  al., 2019; Schleypen et  al., 2021). Indirect effects 
via supply chains, transport and electricity networks can be as high as, 
or substantially higher than, direct effects (medium confidence) (Koks 
et al., 2019a; Koks et al., 2019b; Knittel et al., 2020).

13.6.1.4  Tourism

Snow-cover duration and snow depth in the Alps has decreased since 
the 1960s (Klein et al., 2016; Schöner et al., 2019; Matiu et al., 2021). 
Despite snowmaking, the number of skiers to French resorts at low 
elevations during the extraordinary warm and dry winters of 2006–
2007 and 2010–2011 was 12–26% lower (Falk and Vanat, 2016).

Due to reduced snow availability and hotter summers, damages are 
projected for the European tourism industry, with larger losses in 
SEU (high confidence) and some smaller gains in the rest of Europe 
(medium confidence) (Ciscar Martinez et al., 2014; Roson and Sartori, 
2016; Dellink et al., 2019).

At 2°C GWL, the operation of low-altitude resorts without snowmaking 
will likely be discontinued, while beyond 3°C GWL, snowmaking will be 
necessary, but not always sufficient, for most resorts in many European 
mountains and parts of NEU (Pons et al., 2015; Joly and Ungureanu, 
2018; Scott et al., 2019; Spandre et al., 2019). Expanding snowmaking 
is capital intensive and will strongly increase water and energy 
consumption, particularly at 3°C GWL and beyond (Spandre et  al., 
2019; Morin et al., 2021), adversely affecting the financial stability of 
small resorts (Pons et al., 2015; Falk and Vanat, 2016; Spandre et al., 
2016; Joly and Ungureanu, 2018; Moreno-Gené et al., 2018; Steiger 
and Scott, 2020). Permafrost degradation due to rising temperatures is 
expected to create stability risks for ropeway transport infrastructure 
at high-altitude Alpine areas (Duvillard et al., 2019).

Climatic conditions from May to October at 1.5–2°C GWL are projected 
to become more favourable for summer tourism in NEU and parts of 
WCE and EEU, while there is medium confidence on opposite trends 
for SEU from June to August (Grillakis et al., 2016; Scott et al., 2016; 

Jacob et al., 2018; Koutroulis et al., 2018). The amenity of European 
beaches may decrease as a result of SLR amplifying coastal erosion 
and inundation risks, although less in NEU (Section 13.2; Ebert et al., 
2016; Toimil et al., 2018; Lopez-Doriga et al., 2019; Ranasinghe et al., 
2021).

13.6.1.5 Built Environment, Settlements and Communities

The expected shift of European residents to large cities and coastal 
areas will increase assets at risk (Section  13.2). The share of urban 
population in Europe is projected to increase from 74% in 2015 to 
84% in 2050, corresponding to 77 million new urban residents (UN/
DESA, 2018), with most of this increase in SEU and WCE (particularly 
in Turkey and France). In the EU-28, urban residents in 2100 may 
increase by about 30 million under SSP1 and SSP5, and decrease by 
90–110 million under SSP3 and SSP4 (Terama et al., 2019).

About 32% of 571 European cities in the GISCO Urban Audit 2014 
dataset show a medium to high or relatively high vulnerability against 
heatwaves, droughts and floods (Tapia et  al., 2017). Under current 
vulnerabilities, future climate hazards will augment climate risks for 
several cities, particularly beyond 3°C GWL (Figure  13.17). In many 
NEU cities, a high increase in pluvial flooding risk by the end of the 
century is possible, while in WCE cities may face a high increase in 
pluvial flooding risks, moderate to very high increase in extreme heat 
risk, and to some extent moderate to high increase in drought risk. 
Many SEU cities could face a high to very high increase in risks from 
extreme heat and meteorological drought.

13.6.1.5.1. Risks from coastal, river and pluvial flooding

New studies increase confidence in AR5 statements that flood 
damages will increase in coastal areas due to SLR and changing social 
and economic conditions (Section 13.2.1.1). Except for areas affected 
by land uplift, it is projected that further adaptation will be required 
to maintain risks at the present level for most coastal cities and 
settlements (Haasnoot et al., 2013; Ranger et al., 2013; Malinin et al., 
2018; Hinkel et al., 2019; Umgiesser, 2020).

In many cities, the sewer system is older than 40  years, potentially 
reducing their capacity to deal with more intense pluvial flooding (EEA, 
2020b). Apart from climate change, urbanisation is an important driver 
for increases in flooding risks as it results in growth of impervious 
surfaces. Flash floods are particularly challenging, causing the 
overburdening of drainage systems (Dale et al., 2018), urban transport 
disruptions, and health and pollution impacts due to untreated sewage 
discharges (Kourtis and Tsihrintzis, 2021).

More than 25% of the population in nearly 13% of EU cities live within 
potential river floodplains. In many of these places (e.g., 50% of UK 
cities), a significant increase in the 10-year high river flow is possible 
beyond 2°C GWL under a high-impact scenario (i.e., 90th percentile of 
projections) (Guerreiro et al., 2018; EEA, 2020b).
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Figure 13.17 |  Projected changes in pluvial flooding, extreme heat and meteorological drought risks for the 65 largest cities in EU-28 plus Norway and 
Switzerland for 2.5°C and 4.4°C GWL compared with the baseline (1995–2014) (Tapia et al., 2017). Exposure is expressed in terms of current population. Values of 
climatic impact drivers are derived from the Euro-CORDEX regional climate model ensemble.
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Figure 13.18 |  Climate risks to critical infrastructures, aggregated at European (EU+) level under the SRES A1B scenario (Forzieri et al., 2018). Baseline: 
1981–2010; 2020s: 2011–2040; 2050s: 2041–2070; 2080s: 2071–2100

13.6.1.5.2 Risks from heatwaves, cold waves and drought

Heatwave days and number of long heatwaves increased in most 
capitals from 1998–2015 compared with 1980–1997 (Morabito et al., 
2017; Seneviratne et al., 2021). In the summer of 2018, many cities 
suffered from heatwaves attributed to climate change (Vogel et  al., 
2019; Undorf et al., 2020). As a result, indoor overheating and reduced 
outdoor thermal comfort, often coupled with urban heat island (UHI) 
effect, have already impacted European cities (see also Section 13.7.1; 
Di Napoli et al., 2018; EEA, 2020b).

Heatwaves are likely to become a major threat, not only for SEU but 
also for WCE and EEU cities (Russo et al., 2015; Guerreiro et al., 2018; 
Lorencova et al., 2018; Smid et al., 2019). At 2°C GWL and SSP3, half 
of the European population will be under very high risk of heat stress 
in summer (Rohat et  al., 2019). The UHI effect will further increase 
urban temperatures (Estrada et  al., 2017). In many cities, hospitals 
and social housing tend to be located within the intense UHI, thus 
increasing exposure to vulnerable groups (EEA, 2020b). There is 
high confidence that overheating during summer in buildings with 
insufficient ventilation and/or solar protection will increase strongly, 
with thermal comfort hours potentially decreasing by 74% in SEU at 
3°C GWL (Jenkins et al., 2014a; Hamdy et al., 2017; Heracleous and 
Michael, 2018; Dino and Meral Akgül, 2019; Shen et al., 2020). Highly 
insulated buildings, following present building standards, will be 
vulnerable to overheating, particularly under high GWL levels, unless 
adequate adaptation measures are applied (Williams et al., 2013; Virk 
et al., 2014; Mulville and Stravoravdis, 2016; Fosas et al., 2018; Ibrahim 
and Pelsmakers, 2018; Salem et al., 2019; Tian et al., 2020). Cities in 
NEU and WCE are more vulnerable due to limited solar shading and 

fewer air conditioning installations (Ward et al., 2016; Thomson et al., 
2019). Cooling energy demand in SEU buildings has been projected 
to increase by 81–104% by 2035 and 91–244% after 2065 compared 
with 1961–1990 depending on GWL (Cellura et al., 2018). Increases of 
31–73% by 2050 and 165–323% by 2100 compared with 1996–2005 
were estimated for buildings in NEU (Dodoo and Gustavsson, 2016) 
with risks modified by adaptation (Section 13.6.2; Viguié et al., 2020). 
Cold waves beyond 3°C GWL will not represent an effective threat for 
European cities at the end of the century, and only a marginal hazard 
under 2°C GWL (Smid et al., 2019).

At 2°C GWL and beyond, cities in SEU and large parts of WCE 
would exceed the historical maximum 12-month Drought Severity 
index of the past 50  years (see Section 13.2 on drought risks) and 
30% will have at least 30% probability of exceeding this maximum 
every month (Guerreiro et al., 2018). This could adversely affect the 
operation of municipal water services (Kingsborough et al., 2016). For 
example, under 2°C GWL, the reservoir storage volume is predicted 
to decrease for all of England and Wales catchments, resulting in a 
probability of years with water-use restrictions doubling by 2050 and 
quadrupling by 2100 compared with 1975–2004 (Dobson et al., 2020). 
The combination of high temperatures, drought and extreme winds, 
potentially coupled with insufficient preparedness and adaptation, 
may amplify the damage of wildfires in peri-urban environments 
(Section 13.3.1.3). High fuel load combined with proximity of the built 
environment to wildland highly increases fire risks (EEA, 2020b).

Extreme heat and drought causes shrinking and swelling of clays, 
threatening the stability of small houses in peri-urban environments 
(Pritchard et al., 2015), with damage costs of 0.9–1 billion EUR during 
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the 2003 heatwave (Corti et al., 2011). In WCE and SEU, mean annual 
damage costs could increase by 50% for 2°C GWL, and by a factor of 
2 for 3°C GWL (Naumann et al., 2021).

13.6.1.5.3 Risks from thaw of permafrost and mudflows

Increasing temperatures in NEU and the Alps has led to accelerated deg-
radation of permafrost, negatively affecting the stability of infrastruc-
tures (Stoffel et al., 2014; Beniston et al., 2018; Duvillard et al., 2019). 
In the Caucasus, glacial mudflows due to permafrost degradation and 
modern tectonic processes pose a significant danger to the infrastruc-
ture (Vaskov, 2016). In the past 30 years, the permafrost temperature in 

the European part of the Russian Arctic has increased by 0.5–2°C, result-
ing in damage to buildings, roads and pipelines, and to significant ex-
penditure for stabilising soils (Porfiriev et al., 2017; Konnova and Lvova, 
2019). Beyond 3°C GWL, the bearing capacity for infrastructure in the 
permafrost region of the European Russia could decrease by 32–75% 
by mid-century and by 95% by 2100, potentially affecting settlements in 
northern EEU (Shiklomanov et al., 2017; Streletskiy et al., 2019). The in-
creasing number of cycles of freezing and thawing, observed in EEU, has 
led to accelerated ageing of building envelopes (Section 13.8.1.4; Frolov 
et al., 2014). Permafrost degradation due to higher temperatures could 
increase the potential of debris flow detachment in Alpine locations 
(Section 13.6.1.4; Damm and Felderer, 2013).

Table 13.1 |  Present status of planned and implemented adaptation in European cities, energy sector, tourism sector, transport and industry (Table SM13.17)

General commitments / Adaptation Plans Implemented adaptation actions
Ci

tie
s

 – An increasing number of cities acknowledge the critical role of 
adaptation in building resilience to climate change.

 – Of 9609 European municipalities in the Covenant of Mayors for 
Climate & Energy (CoM), 2221 reported on adaptation through 
the CoM platform; 429 provided some information on adaptation 
goals, risk and vulnerability assessments/action plans, and less 
than 300 reported adaptation goals and funds. Extreme heat, 
drought and forest fire were the most often reported hazards.

 – Most urban adaptation plans include ecosystem-based measures, 
but often with limited baseline information and convincing 
implementation actions.

 – Adaptation to risks from climate extremes (mostly flooding) is 
often addressed through municipal emergency plans.

 – Large cities (e.g., Helsinki, Copenhagen, Rotterdam, Barcelona, Madrid, London, Moscow) are in the 
process of implementing adaptation actions.

 – Current climate policies implemented at city-scale are primarily addressing mitigation and, to a lesser 
extent adaptation. Though many cities have implemented measures potentially supporting adaptation, 
they are not labelled as such.

 – Nature-based Solutions and ecosystem-based adaptation are increasingly used to address urban heat 
and flooding risks that are enhanced by surface sealing and limited infiltration.

 – Strategic and emergency measures have been applied for drought management in some cities (e.g., 
London, Istanbul).

En
er

gy

 – In 2020, 29 countries had an adaptation plan for the energy 
sector. Some of them included specific adaptation actions (mostly 
preparatory) in their national or energy-specific risk assessments.

 – In 2020, 11 countries had implemented adaptation actions in the energy sector.

 – Measures undertaken by some distribution system operators and energy companies, focus on adaptation 
of transmission lines, water cooling, actions to avoid flooding (e.g. dams) and secure fuel supply.

To
ur

is
m

 – Consideration of tourism in national adaptation strategies is 
limited, and national tourism strategies rarely mention adaptation.

 – In some countries there is legally binding consideration of climate 
change when constructing new tourism units (e.g., the 2016 
French Mountain Act).

 – Many tourism operators focus on near-term coping strategies and 
do not consider longer term adaptation.

 – Snow making is widely applied in the Alps and Pyrenees ski resorts; e.g. from 18% of ski slopes 
in Germany to 67% in Austria. Some resorts already offer nocturnal skiing (e.g., Spain) and other 
snow-based activities.

 – There is already some transformation to year-round mountain resorts (e.g., in 70% of Spanish ski 
resorts).

 – Some diversification of tourism products is offered in Mediterranean coastal destinations.
 – Water saving measures, primarily for cost reduction, have been implemented, e.g. in hotels.

Tr
an

sp
or

t

 – At the national level, 10 countries have started coordination 
activities or identified adaptation measures. Some countries 
are mainstreaming adaptation within transport planning and 
decision-making (e.g., the ‘Low-water Rhine’ action plan, in 
Germany).

 – Some action is undertaken in the public and private sector, e.g., 
revised manuals/guidelines/ protocols that consider climate change 
impacts and extreme events (e.g., Deutsche Bahn, Norwegian 
Public Roads Administration).

 – An integrated, transmodal approach to transport adaptation is 
lacking.

 – Most adaptation actions are preparatory; 5 countries have implemented specific actions. Planned and 
implemented actions mostly focus on infrastructure and much less on services, although the latter are 
increasing (e.g., operational forecasts for water levels in rivers).

 – Transport modes often compete for public funds and political priorities often influence adaptation for 
specific modes.

 – Some public and private actors are moving faster: new railway drainage standards (Network Rail/ UK), 
adverse weather event predictions (Spanish rail service operator), measures against coastal flooding 
(Copenhagen Metro), measures for sea level rise (Rotterdam port, France).

In
du

st
ry

 a
nd

 b
us

in
es

s

 – Some businesses are following recommendations of the High-Level 
Expert Group on Sustainable Finance, endorsed by the European 
Commission, and implementing the guidelines provided by the 
Task Force on Climate-Related Financial Disclosure in 2019.

 – Fifty large European publicly listed companies disclosed their climate risks in 2020, yet only a small 
percentage provided specifics on sectoral risks, as well as how risks differ over time and according to 
different climate scenarios.

 – Large national and multinational companies, and companies regulated by mitigation policy are the first 
movers in corporate adaptation, while small and medium-sized enterprises often lack the knowledge 
and resources to address risks and adaptation options.

 – Climate service providers, insurance companies and central banks have developed different tools for 
climate risk assessment, such as, stress testing, scenario analysis, value at risk.

Well-established adaptation Advancing adaptation Low adaptation
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Increased precipitation falling on local topography can increase land-
slide and mudflow risks, as seen in settlements at the Caucasus moun-
tainous region (Marchenko et al., 2017; Efremov and Shulyakov, 2018; 
Kerimov et al., 2020). At the Umbria region in Italy, landslide events 
could increase by 16–53% under 2°C GWL and by 24–107% beyond 
3°C GWL, mostly during winter (Ciabatta et al., 2016). Risks from shal-
low landslides are expected to increase in the Alps and Carpathians 
if no adequate risk mitigation measures are put in place (CCP5.3.2; 
Gariano and Guzzetti, 2016).

13.6.2 Solution Space and Adaptation Options

Monetary assessments of future damages from climate extremes on 
critical infrastructures show an escalating sevenfold increase by 2080s 
(Figure  13.18) compared with the baseline (Forzieri et  al., 2018), 
highlighting the need for adaptation.

13.6.2.1 Current Status of Adaptation

There is new evidence on increasing adaptation planning in cities, 
settlements and key infrastructures, but less on implemented adaptation 
(Table 13.1; see Box 13.3; Figure 13.36), adaptation by private actors 
and by cities against SLR (Chapter 16; Cross-Chapter Paper 2).

Although urban adaptation is underway, many small, economically weak 
(i.e., with low GDP per capita) or cities facing high climate-change risks 
lack adaptation planning (Reckien et al., 2015; EEA, 2016). While almost 
all large municipalities in NEU and WCE report implemented actions at 
least in one sector, this is not the case for 39% of municipalities in SEU 
(Aguiar et al., 2018). In the UK, the legal requirement to develop urban 
adaptation plans has been a significant driver for their widespread 
adoption (Reckien et al., 2015). The availability of, and access to, funding 
for adaptation is also crucial for plan development (Section 13.11.1). 
Network membership (e.g., ICLEI, C40, Covenant of Mayors for Climate 
& Energy) is an important driver for city planning and transfer of best 
practices (Heikkinen et al., 2020a). Stakeholder engagement is key for 
successful adaptation (Chapter 17; Bertoldi et al., 2020).

Only 29% of local adaptation plans are mainstreamed in cities, 
which could reduce the effectiveness of implementing adaptation 
(Section 13.11.1.2; Reckien et al., 2019). Although large municipalities 
usually fund the implementation of their adaptation plans, smaller 
and less populated municipalities (particularly in SEU and EEU) often 
depend on intergovernmental, international and national funding.

13.6.2.2 Adaptation Options as a Function of Impacts

Examples of adaptation options in Europe are presented in Figure 13.19.

Both NbS and EbA, such as green spaces, ponds, wetlands and 
green roofs for urban stormwater management and vegetation for 
heat mitigation, represent an emerging adaptation option in cities. 
Combined with traditional water infrastructure, they can contribute to 
managing urban flood events (Kourtis and Tsihrintzis, 2021), playing a 
role in mitigating flood peaks (Pour et al., 2020) and protecting critical 
urban infrastructure (Ossa-Moreno et al., 2017). For example, in the 

Augustenborg district of Malmö, Sweden, using nature to manage 
stormwater runoff has resulted in capturing an estimated 90% of 
runoff from impervious surfaces and reduced the total annual runoff 
volume from the district by about 20% compared with the conventional 
system (EEA, 2020b). Urban greening is associated with lower ambient 
air temperature and relatively higher thermal comfort during warm 
periods (Bowler et al., 2010; Oliveira et al., 2011; Cohen et al., 2012; 
Cameron et al., 2014). The scale and relative degree of management 
or integration of approaches drawing on nature with ‘engineered’ 
solutions affect their vulnerability to climate change. Small-scale 
urban NbS are relatively less vulnerable due to increased capacity for 
intervention, while the relatively greater contact between stakeholders 
and urban NbS (compared with larger-scale, rural approaches) provides 
greater opportunity for human intervention to ensure the survival of 
urban vegetation during droughts or heatwaves.

When selecting and combining adaptation options, challenges remain 
on how to address the uncertainties of climate projections and climatic 
extremes (Fowler et  al., 2021) and to translate scientific input into 
practical guidance for adaptation (Section 13.11.1.3; Dale, 2021).

An assessment of the feasibility and effectiveness of the main 
adaptation options, based on the literature, is presented in Figure 13.20. 
(For adaptation to flood risk, see Figure 13.6.)

There are gaps in knowledge on the social, environmental and 
geophysical dimensions of feasibility for many options, and a holistic 
assessment of different options is largely lacking. This latter issue could 
reveal unintended impacts from, and synergies or trade-offs between, 
options, as in water and wastewater services (Dobson and Mijic, 2020).

13.6.2.3 Adaptation Limits, Residual Risks, and Incremental and 
Transformative Adaptation

Adaptation in cities, settlements and key infrastructures in Europe faces 
technical, environmental, economic and social limits (Figure 13.21).

Adaptation options for many sectors will not be sufficient to remove 
residual risks, for example, regarding (a) overheating in buildings under 
high GWL (Tillson et al., 2013; Virk et al., 2014; Dodoo and Gustavsson, 
2016; Mulville and Stravoravdis, 2016; Hamdy et al., 2017; Heracleous 
and Michael, 2018; Dino and Meral Akgül, 2019); (b) snowmaking 
beyond 3°C GWL (Scott et al., 2019; Steiger and Scott, 2020; Steiger 
et  al., 2020); (c) hydropower (Gaudard et  al., 2013; Ranzani et  al., 
2018); (d) electricity transmission and demand (Bollinger and Dijkema, 
2016; EEA, 2019a; Palkowski et al., 2019); (e) urban subways (Jenkins 
et al., 2014a); and (f) flood mitigation in cities (Skougaard Kaspersen 
et  al., 2017; Umgiesser, 2020). Some adaptation actions in a sector 
may also have side effects on others, increasing their vulnerability 
(Sections 13.2.2, 13.2.3; Pranzini et al., 2015).

Examples of transformative adaptation in urban areas have been 
observed (e.g., the Benthemplein water square, the Floating Pavilion in 
Rotterdam and the Hafencity flood proofing in Hamburg), but they often 
remain policy experiments and prove challenging to upscale (Jacob, 
2015; Restemeyer et al., 2015; Restemeyer et al., 2018; Holscher et al., 
2019). Active involvement of local stakeholders, public administration 
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Figure 13.19 |  Adaptation options in cities, settlements and key infrastructures in Europe (Table SM13.7)
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Figure  13.20 |   Effectiveness and feasibility of the main adaptation options for cities, settlements and key infrastructures in Europe (Section  SM13.9; 
Table SM13.8)

and political leaders are drivers for community transformation, whereas 
lack of local resources and/or capacities are frequently reported barriers 
to change (Fünfgeld et al., 2019; Thaler et al., 2019).

13.6.2.4 Governance and Insurance

Urban adaptation plans can enhance resilience, and their development 
is mandatory in the UK, France and Denmark (Reckien et al., 2019). 
There is medium confidence that the development of urban adaptation 
planning is much more influenced by a city’s population size, present 
adaptive capacity and GDP per capita than by anticipated climate risks 
(Reckien et al., 2018). A high organisational capacity in a municipality 
may not be a necessary condition for forward-looking investment 
decisions on urban water infrastructure, although enablers differ 
for small versus medium-to-large municipalities (Pot et  al., 2019). 
There is large in-country variation in policy mixes utilised by local 
governments for supporting adaptation (Lesnikowski et  al., 2019). 
In early-adapter cities (e.g., Rotterdam), adaptation is institutionally 
embedded in climate, resilience and sustainability-related actions, as 
well as collaboration between city departments, government levels, 
businesses and other stakeholders (Holscher et al., 2019). In most other 
cities, however, adaptation planners rarely consider collaborations 
with citizens, and there are difficulties in departmental coordination 
and upscaling from pilot projects (Brink and Wamsler, 2018).

The level and type of collaboration between the public and private 
sectors in managing climate risks varies across Europe (Wiering et al., 
2017; Alkhani, 2020). For example, in flood management (Section 13.2), 

the private-sector involvement in Rotterdam is much more pronounced 
and there are joint public–private responsibilities throughout most of 
the policy process due to the large share of private ownership of land 
and real estate (Mees et al., 2014).

In large infrastructure networks, the lack of a leading and powerful 
institutional body, with sufficient research resources targeted to 
climate-change risk assessment, may limit adaptive capacity, as for 
example in railways (Rotter et al., 2016).

The European insurance industry has developed tailored products 
for specific climate risks threatening cities, settlements and key 
infrastructures, such as risk-based flood insurance for homeowners 
and companies (Section  13.2.3). The European insurance industry 
is developing new services (such as risk analysis and catastrophe 
modelling embedding climate change, early warning and post-event 
recovery recommendations), and it has recently started to play a role 
as communicator of future risks and as institutional investor with the 
aim of risk reduction (Jones and Phillips, 2016; Marchal et al., 2019).

13.6.2.5 Links Between Adaptation and Mitigation

Evidence from transport in Europe shows that adaptation actions do not 
consider enough long-term transition paths embedded in mitigation, 
while mitigation strategies are often not assessed under future 
climate scenarios (Aparicio, 2017). Without rapid decarbonisation of 
electricity supply, greenhouse gas emissions will increase due to the 
increased use of air conditioning installations in cities. This trade-off 
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can be reduced to some extent through use of more efficient cooling 
technologies (IEA, 2018) and complementary adaptation measures 
such as large-scale urban greening, building policies and behavioural 
changes in air conditioning use (Viguié et al., 2020; Sharifi, 2021; Viguié 
et al., 2021). Greenhouse gas emissions from transport may increase 
due to the temporary relocation of city residents to cooler locations 
during heatwaves (Juschten et al., 2019), and from increased energy 
use for snowmaking in European ski resorts (Scott et al., 2019).

13.6.3 Knowledge Gaps

A key knowledge gap is the lack of a quantitative European-wide 
integrated assessment of future climate-change risks on water and 
energy, including different socioeconomic futures. Models capable 
of representing integrated policies for energy and water are lacking 
(Khan et  al., 2016) including quantitative modelling of impacts on 
energy transmission and coastal energy infrastructure (Cronin et al., 
2018). These lacks are especially pertinent when combined with the 
small number of studies considering SSP population projections and 
adaptation tipping points. The limited social vulnerability assessments, 
mapping and validation (Rufat et al., 2019) contribute further to these 
knowledge gaps.

While compound, concurrent and consecutive climate extremes 
become more frequent, there is limited knowledge on sectoral risks or 
on cascading risks for through transport, telecommunications, water, 
and banking and finance. While heat is well studied, studies on risks for 
cities and key infrastructures from hailstorms and lightning are missing.

Empirical data on the damage of transport infrastructure (e.g., railways) 
covering different European countries have not been systematically 
collected, and indirect economic effects of interruptions of transport 
networks have not been well studied (Bubeck et al., 2019). These deficits 
result in uncertainties associated with impacts of climate change on 
transport flows and indirect impacts (e.g., delays, economic losses).

There is limited knowledge on interactions created by synchronous 
adaptation in ski tourism supply and demand, and models do not yet 
include individual snowmaking capacity and a higher time resolution 
(Steiger et  al., 2019). Furthermore, there is no European-wide 
assessment of coastal flooding risks on tourism.

Many studies lack consideration of market characteristics (e.g., competitors) 
in their risk assessment, which would be improved by location- and sector-
specific knowledge on climate risks for firm assets, operations, business, 
industry, finance and insurance needed to inform adaptation actions (de 
Bruin et al., 2020; Feridun and Güngör, 2020; Monasterolo, 2020).
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Figure 13.21 |  Indicative adaptation limits in cities, settlements and key infrastructures in Europe (Table SM13.16)
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13.7 Health, Well-Being and the Changing 
Structure of Communities

13.7.1 Observed Impacts and Projected Risks

13.7.1.1  Mortality Due to Heat and Other Extreme Events

Attribution studies show that human-induced climate change is 
increasing the frequency and intensity of heatwaves and has already 
impacted human health in Europe (Section  13.10.1; Vicedo-Cabrera 
et al., 2021); for example, the 2010 heatwave in EEU resulted in 55,000 
heat-related deaths (Barriopedro et al., 2011; Russo et al., 2015); also, 
the 2018 heatwave in NEU (Ebi et al., 2021) and the 2019 heatwave 
in WCE and NEU both had significant health impacts (Cross-Chapter 
Box DISASTER in Chapter 4; Vautard et al., 2020; Watts et al., 2021). 
Elderly, children, (pregnant) women, socially isolated people and those 
with low physical fitness are particularly exposed and vulnerable to 
heat-related risks, as are those people suffering from pre-existing 
medical conditions, including cardiovascular disease, kidney disorders, 
diabetes and respiratory diseases (de’Donato et al., 2015; Sheridan and 
Allen, 2018; Szopa et  al., 2021). An ageing population in Europe is 
increasing the pool of vulnerable individuals, resulting in higher risk 
of heat-related mortality (Montero et al., 2012; Carmona et al., 2016b; 
WHO, 2018b; Watts et al., 2021).

A GWL of 1.5°C could result in 30,000 annual deaths due to extreme 
heat, with up to threefold the number under 3°C GWL (high confidence) 
(Roldán et al., 2015; Forzieri et al., 2017; Kendrovski et al., 2017; Naumann 
et al., 2020). The risk of heat stress, including mortality and discomfort, 
is dependent on socioeconomic development (Figure  13.22; Rohat 
et al., 2019; Ebi et al., 2021). Heat stress risks will be lower under SSP1 
than the SSP3 or SSP4 scenarios (high confidence) (Hunt et al., 2017; 
Rohat et al., 2019; Wang et al., 2020; Ebi et al., 2021). The incidence of 
heat-related mortality and morbidity will be highest in SEU, where their 
magnitude is also expected to increase more rapidly (Forzieri et al., 2017; 
Gasparrini et al., 2017; Guo et al., 2018; Díaz et al., 2019; Vicedo-Cabrera 
et al., 2021). WCE, NEU and SEU will experience accelerating negative 
consequences beyond 1.5°C GWL, particularly under SSP3 and SSP4 
due to higher vulnerability compared with SSP1 (Figure  13.22; Rohat 
et al., 2019). The number of heat-related respiratory hospital admissions 
is projected to increase from 11,000 (1981–2010) to 26,000 annually 
(2021–2050), particularly in SEU mainly due to a relative increase in 
the number of extremely hot days (Åström et al., 2013). Cold spells are 
projected to decrease across Europe, particularly in Southern Europe, 
but do not compensate for the additional heat-related deaths projected 
(Lhotka and Kysely, 2015; Carmona et al., 2016a; Martinez et al., 2018).

Among Europeans, 74% live in urban areas (Section 13.6), where the 
effect of heatwaves on human health is exacerbated by microclimates 
due to buildings and infrastructure, UHI effects and air pollution (WHO, 
2018a; Smid et al., 2019). In large European cities, stabilising climate 
warming at 1.5°C GWL would decrease premature deaths by 15–22% 
in summer compared with stabilisation at 2°C GWL (high confidence) 
(Mitchell et al., 2018).

Although there is very high confidence that risk consequences will 
inevitably be more pervasive and widespread in a warmer Europe, 

evidence of higher heat tolerance is also emerging across most 
European regions (Todd and Valleron, 2015; Åström et al., 2016; Follos 
et  al., 2020). Future projections of mortality rates in Europe under 
the assumption of complete acclimatisation suggest constant or even 
decreasing rates of mortality in spite of global warming (Åström et al., 
2017; Guo et  al., 2018; Díaz et  al., 2019); however, there are large 
uncertainties in the ability to adapt to future heat extremes which 
might fall outside of historical ranges (Vanos et al., 2020).

Other extreme events already result in major health risks across 
Europe. Between 2000 and 2014, for example, floods in Russia 
killed approximately 420 people, mainly older women (Belyakova 
et al., 2018). Fatalities associated with coastal and riverine flooding 
(Section 13.2.2), wildfires (Section 13.3.4) and windstorms could rise 
substantially by 2100 (Forzieri et al., 2017; Feyen et al., 2020). Lifetime 
exposure to extreme weather events for children born in 2020 will be 
about 50% greater at 3.5°C compared with 1.5°C GWL (Thiery et al., 
2021).

13.7.1.2 Air Quality

Air pollution is already one of the biggest public health concerns 
in Europe: in 2016, roughly 412,000 people died prematurely due 
to long-term exposure to ambient PM2.5, 71,000 due to NO2 and 
more than 15,000 premature mortalities occurred due to near-
surface ozone (EEA, 2019b; Lelieveld et  al., 2019). The impacts 
of air pollution are determined by air-quality policies, changes 
to temperature, humidity and precipitation (Szopa et  al., 2021). 
Climate change could increase air pollution health effects, with the 
size of the effect differing across European regions and pollutants 
(medium confidence) (Jacob and Winner, 2009; Orru et  al., 2017; 
Tarin-Carrasco et al., 2021). Increases in temperature and changes 
in precipitation will impact future air quality due to increased risk 
of wildfires and related air pollution episodes. Data on the health 
impacts of wildfires in Europe is currently limited (Section 13.3.1.4), 
but examples, such as the 2017 fires, suggest that more than 100 
people died prematurely in Portugal alone as a result of poor air 
quality (Oliveira et al., 2020).

At 2.5°C GWL, mortalities due to exposure to PM2.5 are projected to 
increase by up to 73% in Europe (medium confidence) (Silva et al., 
2017; Lelieveld et al., 2019; Tarin-Carrasco et al., 2021). At 2°C GWL, 
annual premature mortalities due to exposure to near-surface ozone 
are projected to increase up to 11% in WCE and SEU and to decrease 
up to 9% in NEU (under RCP4.5) (medium confidence) (Orru et al., 
2019). A projected increase in wildfires and reduced air quality is 
expected to increase respiratory morbidity and mortality, especially 
in SEU (Slezakova et  al., 2013; de Rigo et  al., 2017). Constant or 
lower emissions, combined with stricter regulations and new policy 
initiatives, might improve air quality in the coming decades (medium 
agreement, low evidence). The ageing population in Europe will 
augment the air-quality mortality burden 3–13% by 2050 (Geels 
et al., 2015; Orru et al., 2019). Besides ambient air quality, projected 
increases in flood risk and heavy rainfall could decrease indoor air 
quality (Section 13.6.1.5.2) due to dampness and mould, leading to 
increased negative health impacts, including allergies, asthma and 
rhinitis (EASAC, 2019; EEA, 2019b).
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Projected heat stress risks for people in Europe
(2040–2060)

SSP1-2.6

SSP3-8.5SSP4-4.5

Risk deciles

5th4th3rd2nd1st 10th9th8th7th6th <1 inhabitant/km2

Baseline

Figure 13.22 |  Scenario matrix for multi-model median heat stress risks for the baseline 1986–2005, and different SSP–RCP combinations for the period 
2040–2060. The SSPs are extended for Europe (EU28+). Heat stress risk is calculated by geometrical aggregation of the hazard (heatwave days), population vulnerability and 
exposure. Risk values are normalised using a z-score rescaling with a factor-10 shift. Details of the methodology are provided by Rohat et al. (2019).
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Figure 13.23 |  Assessment of climate-sensitive infectious diseases. The assessment considers the main drivers of hazard (climate-impact drivers, pathogens and vectors), 
vulnerability (lack of safeguards and a predisposition to these hazards) and exposure (humans to be affected by these pathogens and vectors), the direction of change in climatic 
suitability (i.e., temperature, precipitation, relative humidity, extreme weather events) of observed changes and at 1.5°C and 3°C GWL, and the overall infectious disease risks across 
Europe (Chapters 7.3, 7.4; Lindgren et al., 2012; Semenza and Paz, 2021). The assessment does not consider incidence of disease infections through autochthonous transmission 
(Table SM13.18).

13.7.1.3 Climate-Sensitive Infectious Diseases

Figure  13.23 summarises the observed and projected changes in 
climatic suitability and assesses the risk for selected climate-sensitive 
infectious diseases in Europe.

Among the tick-borne diseases, Lyme disease is the most prevalent 
disease in Europe. There has been a temperature-dependent range 
expansion of ticks that is projected to expand further north in Sweden, 
Norway and the Russian Arctic (Jaenson et al., 2012; Jore et al., 2014; 
Tokarevich et al., 2017; Waits et al., 2018), and to higher elevations 
in Austria and the Czech Republic (medium confidence) (Daniel et al., 
2003; Heinz et al., 2015). A potential habitat expansion of these ticks 
of 3.8% across Europe, relative to 1990–2010, is projected for 2°C 
GWL (Porretta et al., 2013; Boeckmann and Joyner, 2014). In contrast, 
there are projected habitat contractions for these ticks in SEU due to 
unfavourable climatic conditions (Semenza and Suk, 2018).

The Asian tiger mosquito (Aedes albopictus) is present in many 
European countries and can transmit dengue, chikungunya and zika 
(Liu-Helmersson et al., 2016; Tjaden et al., 2017; Messina et al., 2019). 
There is a moderate climatic suitability projected for chikungunya 
transmission, notably across France, Spain and Germany, but also 
contractions particularly in Italy. Europe experienced an exceptionally 
early and intense transmission season of the West Nile virus in 2018, 
with elevated spring temperature abnormalities (Haussig et al., 2018; 
Marini et al., 2020). Projections for Europe show the West Nile virus 
risk to expand: by 2025, the risk is projected to increase in SEU and 
southern and eastern parts of WCE (medium confidence) (Semenza 
et  al., 2016). Although climatic suitability for malaria transmission 
in Europe is increasing and will lead to a northward spread of the 
occurrences of Anopheles vectors, the risk from malaria to human 
health in Europe remains low due to economic and social development 
as well as access to health care (medium confidence) (Sudre et al., 
2013; Hertig, 2019).
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Water-borne diseases are also associated with changes in climate such 
as heavy precipitation events (Semenza, 2020). Warming has been 
linked with elevated incidence of campylobacteriosis outbreaks in 
various European countries (Yun et al., 2016; Lake et al., 2019). Marine 
bacteria, such as Vibrio, thrive under elevated sea surface temperature 
and low salinity such as that of the Baltic Sea. Under further warming, 
the number of months with risk of Vibrio transmission increases and 
the seasonal transmission window expands, thereby increasing the risk 
to human health in the future (high confidence) (Baker-Austin et al., 
2017; Semenza et al., 2017).

13.7.1.4.  Allergies and Pollen

The main drivers of allergies are predominantly non-climatic (e.g., 
increased urbanisation, adoption of westernised lifestyles, social and 
genetic factors), but climate change strongly contributes to the spread 
of some allergenic plants, thus exacerbating existing allergies and 
causing new ones in people across Europe (high confidence) (D’Amato 
et al., 2016; EASAC, 2019). The prevalence of hay fever (allergic rhinitis), 
for example, is between 4 and 30% among European adults (Pawankar 
et al., 2013). The invasive common ragweed (Ambrosia asteraceae) is 
a key species already causing major allergy in late summers (including 
hay fever and asthma), particularly in Hungary, Romania and parts of 
Russia (Ambelas Skjøth et al., 2019). Across Europe, sensitisation to 
ragweed is expected to increase from 33 million people in 1986–2005 
to 77 million people at 2°C GWL (Lake et al., 2017).

Warming will result in an earlier start of the pollen season and 
extending it, but this differs across regions, species, traits and flowering 
periods (Ziello et al., 2012; Bock et al., 2014; EASAC, 2019; Revich et al., 
2019). For instance, in different parts of WCE and NEU, the start of 
birch-season flowering has been shifted and extended up to 2 weeks 
earlier during recent decades (Biedermann et al., 2019). Airborne pollen 
concentrations are projected to increase across Europe (Ziello et  al., 
2012). In south-eastern Europe, where pollen already has a substantive 
impact, the pollen count could increase more than 3 to 3.5  times at 
2.5°C GWL and can become a more widespread health problem 
across Europe, particularly where it is currently uncommon (medium 
agreement, low evidence) (Lake et al., 2017).

13.7.1.5. Labour Productivity and Occupational Health

Extreme heat and cold waves have been linked to an increased risk of 
occupational injuries (Martinez-Solanas et al., 2018) and changes in 
labour productivity (Orlov et al., 2019; García-León et al., 2021), while 
evidence on the consequences of other extreme events is lacking. 
The sectors with a high percentage of high-intensity outdoor work in 
Europe, mainly agriculture and construction, have the highest risk of 
increased injury and labour productivity losses, but also manufacturing 
and service sectors can be affected when air conditioning is not 
available (Section  13.6.1.3; Gosling et  al., 2018; Szewczyk et  al., 
2018; Dellink et al., 2019; Orlov et al., 2019). The heatwaves of August 
2003, July 2010 and July 2015 were concentrated in SEU and led to 
reductions in monthly worker productivity of on average 3–3.5% in 
SEU, ranging up to 8–9% in Cyprus (2003, 2010) and Italy (2015) 
(Orlov et al., 2019); in contrast, the heatwave of 2018 centred on NEU 
but also led to pronounced productivity reductions in WCE and SEU 

(García-León et al., 2021). Each of these major European heatwaves 
led to considerable economic losses in agriculture and construction 
(high confidence) and reduced GDP in Europe (except EEU) by 0.3–
0.5% (García-León et al., 2021). At 2.5°C GWL and beyond, GDP losses 
are projected to increase fivefold compared with 1981–2010, ranging 
from 2–3.5% in SEU to 0.5–1.5% in WCE, and below 0.5% in NEU and 
EEU (Section 13.10.3; Roson and Sartori, 2016; Takakura et al., 2017; 
Szewczyk et al., 2018; Dellink et al., 2019; García-León et al., 2021).

13.7.1.6. Food Quality and Nutrition

There is growing evidence that climate change will negatively affect 
food quality (diversity of food, nutrient density and food safety) and 
food access, although the risks for European citizens are significantly 
lower compared with other regions (Fanzo et al., 2018; IFPRI, 2018). 
Projected changes in crop and livestock production (Section 13.5.1), 
particularly reduced access to fruits and vegetables and foods with 
lower nutritional quality, will impact already vulnerable groups 
(Swinburn et al., 2019). The effects of climate change on food quality 
and access varies by income, livelihood and nutrient requirements, 
with low-income and more vulnerable groups in Europe most affected 
(IFPRI, 2018). Spikes in food prices due to changing growing conditions 
in Europe (Section 13.5.1), increased competition for land (e.g., land-
based climate-change mitigation) and feedbacks from international 
markets are expected to decrease access to affordable and nutritious 
food (Section 13.9.1; EASAC, 2019; Loopstra, 2020). Reduced access to 
healthy and varied food could contribute to being overweight or obese, 
which is a growing health concern across Europe (Springmann et al., 
2016). Increased rates of obesity and diabetes further exacerbate risks 
from heat-related events (EASAC, 2019).

13.7.1.7. Mental Health and Well-Being

Extreme weather events can trigger post-traumatic stress disorder 
(PTSD), anxiety and depression; this is well-documented for flooding 
in Europe (high confidence) but less for other extreme weather events. 
For example, in the UK, flooded residents suffered stress and identity 
loss from the flood event itself, but also from subsequent disputes with 
insurance and construction companies (Carroll et  al., 2009; Greene 
et al., 2015). Residents displaced from their homes for at least 1 year 
due to 2013–2014 floods in England were significantly more likely to 
experience PTSD, depression and anxiety, with stronger effects in the 
absence of advance warning (Munro et al., 2017; Waite et al., 2017). 
There is emerging evidence across Europe that young people may 
be experiencing anxiety about climate change, although it is unclear 
how widespread or severe this is (Hickman, 2019). In northern Italy, 
the number of daily emergency psychiatric visits and mean daily air 
temperature has been linked (Cervellin et al., 2014).

13.7.2 Solution Space and Adaptation Options

Adaptation to health impacts has generally received less attention 
compared with other climate impacts across Europe (EASAC, 2019). 
Progress on health adaptation can be observed. Between 2012 and 
2017, at least 20 European countries instituted new governance 
mechanisms, such as interdepartmental coordinating bodies for health 
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adaptation and adopted health adaptation plans (Kendrovski and 
Schmoll, 2019). Progress on city-level health adaptation is generally 
limited (Araos et al., 2015), with most activities occurring in SEU (high 
agreement, medium evidence) (Paz et al., 2016).

Figure 13.24 presents the assessment of the feasibility and effectiveness 
of key heat-related health adaptation actions. It shows that substantial 
social–cultural and institutional barriers complicate widespread 
implementation of measures; studies on the implementation of new 
blue–green spaces in existing urban structures in, for example, Sweden 
(Wihlborg et al., 2019), the UK (Carter et al., 2018) and the Netherlands 
(Aalbers et al., 2019), point to important feasibility challenges (e.g., access 
to financial resources, societal opposition, competition for space) (high 
confidence). Lower perception of health risks has been observed among 
vulnerable groups which, in conjunction with perceived high costs of 
protective measures, act as barriers to implementing health adaptation 
plans (van Loenhout et al., 2016; Macintyre et al., 2018; Martinez et al., 
2019). Key barriers to mental health adaptation actions include lack 
of funding, coordination, monitoring and training (e.g., psychological 
first aid) (Hayes and Poland, 2018). Existing health measures, such as 
monitoring and early warning systems, play an important role in detecting 
and communicating emerging climate risks and weather extremes (high 
confidence) (Confalonieri et al., 2015; Casanueva et al., 2019; Linares 
et  al., 2020). Stricter enforcement of existing health regulations and 
policies can have a positive effect in reducing risks (Berry et al., 2018).

The effectiveness of most options in reducing climate-induced health 
risks is determined by many co-founding factors, including the extent 
of the risk, existing sociopolitical structure and culture, and other 
adaptation options in place (high agreement, medium evidence). 
Successful examples include the implementation of heatwave plans 
(Schifano et al., 2012; van Loenhout and Guha-Sapir, 2016; de’Donato 
et  al., 2018), improvements in health services and infrastructure 
of homes (Section  13.10.2.1; Vandentorren et  al., 2006). A study of 
nine European cities, for example, showed lower numbers of heat-
related deaths in SEU and attributed this to the implementation of 

heat prevention plans, a greater level of individual and household 
adaptation, and growing awareness about exposure to heat (de’Donato 
et al., 2015). Long-term national prevention programmes in NEU have 
been shown to reduce temperature-related suicide (Helama et  al., 
2013). The physical fitness of individuals may increase resilience to 
extreme heat (Schuster et  al., 2017). Combining multiple types of 
adaptation options into a consistent policy portfolio may have an 
amplifying effect in reducing risks, particularly at higher GWL (medium 
confidence) (Chapter 7; Lesnikowski et al., 2019).

Health adaptation actions have demonstrable synergies and trade-
offs (Cross-Chapter Box HEALTH in Chapter 7). For example, increasing 
green–blue spaces in Europe’s densely populated areas can be effective 
in improving microclimates, reducing the impact of heatwaves, improving 
air quality and improving mental health by increasing access to fresh air 
and green (restorative) environments (Gascon et al., 2015; Kondo et al., 
2018; Kumar et al., 2019). Health adaptations can also have negative 
trade-offs, be inconsistent with mitigation ambitions and could lead 
to maladaptation. Green–blue spaces, for example, may create new 
nesting grounds for carriers of vector-borne diseases, increase pollen 
and allergies (Kabisch et al., 2016), enlarge freshwater use for irrigation 
(Reyes-Paecke et al., 2019) and could raise climate equity and justice 
issues such as green gentrification (Yazar et  al., 2019). Similarly, air 
conditioning and cooling devices are considered highly effective but 
have low economic and social feasibility as well as negative trade-
offs due to increasing energy consumption, raising energy costs which 
is particularly challenging for the poor (Section  13.8.1.1), enhancing 
the UHI effect and increasing noise pollution (Fernandez Milan and 
Creutzig, 2015; Hunt et al., 2017; Macintyre et al., 2018).

The solution space for implementing health adaptation options is slowly 
expanding in Europe. Health adaptation can build on, and integrate into, 
established health system infrastructures, but these differ significantly 
across Europe, as do existing capacities to deal with climate-related 
extreme events (Austin et al., 2016; Austin et al., 2018; Orru et al., 2018; 
Watts et al., 2018; Austin et al., 2019; Martinez et al., 2019). Despite some 
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Figure 13.24 |  Effectiveness and feasibility of the main adaptation options to reduce heat-related impacts and health risks in Europe (Section SM13.9, Table 
SM 13.19)
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progress, limited mainstreaming of climate change has been observed, 
particularly due to low societal pressure to change, confidence in existing 
health systems and lack of awareness of links between human health 
and climate change (medium confidence) (Austin et  al., 2016; WHO, 
2018b; Watts et  al., 2021). Coordination of health adaptation actions 
across scales and between public sectors is needed to ensure timely and 
effective responses for a diversity of health impacts (high confidence) 
(Austin et al., 2018; Ebi et al., 2018). Key enabling conditions to extend 
the solution space include increasing the role for national and regional 
governments in facilitating knowledge sharing across scales, allocating 
dedicated financial resources, and creating dedicated knowledge and 
policy programmes on climate and health (Wolf et al., 2014; Akin et al., 
2015; Curtis et al., 2017). Investing in public healthcare systems more 
broadly increases their capacity to respond to climate-related extreme 
events and will ensure wider societal benefits as the COVID-19 pandemic 
has demonstrated (Cross-Chapter Box COVID in Chapter 7).

Despite a range of options available, there are limits to how much 
adaptation can take place, and residual risks remain. These risks 
are predominantly discussed in the context of excess mortality and 
morbidity due to heat extremes (Hanna and Tait, 2015; Martinez et al., 
2019). Future heatwaves are expected to stretch existing adaptation 
interventions well beyond levels observed in response to the observed 
events of 2003 and 2010 (Section 13.10.2.1; Hanna and Tait, 2015).

13.7.3 Knowledge Gaps

Literature on the link between public health, climate impacts, vulnerability 
and adaptation is skewed across Europe, with most studies focusing 
on region-specific impacts (e.g., flood injuries in WCE, heatwaves in 
SEU). In general, attributing health impacts to climate change remains 
challenging, particularly for mental health and well-being, (mal)nutrition 
and food quality and climate-sensitive infectious diseases, where other 
socioeconomic determinants play an important role. The connection 
between climate change and health risks under different socioeconomic 
development pathways is hardly studied comprehensively for Europe, 
with some exceptions for extreme events; however, these interactions 
seem to play an important role in better understanding projected risks 
and inform choices on adaptation planning.

Some climate-related health issues are emerging, but evidence is too 
limited for a robust assessment, for example, the links between climate 
change and violence in Europe (Fountoulakis et al., 2016; Mares and 
Moffett, 2016; Sanz-Barbero et al., 2018; Koubi, 2019).

The solution space for public health adaptation in Europe, and 
the effectiveness of levers for interventions, are hardly assessed. 
Although health adaptations are documented, these are particularly 
around mortality and injuries due to extreme events, predominantly 
floods (Section  13.2.1) and heatwaves (Section  13.7.1.1). There 
are very few studies assessing the barriers and enablers of health 
adaptations, nor systematic assessment of the effectiveness of (the 
portfolio of) options. Limited insights into what works, and where, 
hamper upscaling these insights across Europe and constrains the 
ability to evaluate whether investments in health adaptation have 
actually reduced risks.

13.8 Vulnerable Livelihoods and Social 
Inequality

This section addresses the social consequences of climate change for 
Europe by looking into the consequences for poor households and 
minority groups, migration and displacement of people, livelihoods 
particularly vulnerable to climate change (indigenous and traditional 
communities) and cultural heritage.

13.8.1 Observed Impacts and Projected Risks

13.8.1.1 Poverty and Social Inequality

While climate change is not the main driver of social inequality in 
Europe, poor households and marginalised groups are affected more 
strongly by flooding, heat and drought, as well as health risks due to 
spreading diseases, than other social groups (medium confidence).

Urban poor and ethnic minorities often settle in more vulnerable 
settlement zones, and are therefore impacted more by flooding 
(medium confidence) (Medd et al., 2015; Župarić-Iljić, 2017; Efendić, 
2018; Fielding, 2018; Winsemius et  al., 2018; Puđak, 2019; Inuit 
Circumpolar Council, 2020). Yet, in some Western European residential 
waterside developments this pattern is reversed by flooding impacting 
high-income residents more strongly (Walker and Burningham, 2011).

The health of the poor is disproportionately affected, for example, during 
heatwaves in the Mediterranean (Jouzel and Michelot, 2016). Women, 
those with disabilities and the elderly are disproportionately affected by 
heat (Section 13.7.1). Floods in the Western Balkans in 2014 resulted 
in heavy metal pollution of water and land threatening the health 
condition of the poorer rural population (Filijović and Đorđević, 2014). 
Access to water and sanitation is less available to poorer households 
and marginalised groups in Europe (Ezbakhe et al., 2019; Anthonj et al., 
2020); this effect could be intensified by increasing water scarcity in 
certain parts of Europe under future climate change (Section 13.10.3).

Food self-provisioning is a widespread practice in many parts of 
Europe (Aleynikov et  al., 2014; Corcoran, 2014; Church et  al., 2015; 
Mustonen and Huusari, 2020), reaching over half of German rural areas 
(Vávra et al., 2018). While it strengthens resilience for disadvantaged 
households (Church et al., 2015; Boost and Meier, 2017; Promberger, 
2017; Vávra et al., 2018; Ančić et al., 2019; Pungas, 2019) and renews 
their local knowledge, it can become a risk in regions with projected 
crop yield reductions (high confidence) (Hallegatte et al., 2016; Quiroga 
and Suárez, 2016; Myers et  al., 2017b; Inuit Circumpolar Council, 
2020), and after extreme weather events (Filijović and Đorđević, 2014).

Energy-poor households often live in thermally inefficient homes and 
cannot afford air conditioning to adapt to overheating in summer 
(Sanchez-Guevara et  al., 2019; Thomson et  al., 2019). While energy 
poverty is much more prevalent in SEU and EEU (Bouzarovski and 
Petrova, 2015; Pye et al., 2015; Atsalis et al., 2016; Monge-Barrio and 
Sánchez-Ostiz Gutiérrez, 2018), climate change will also exacerbate 
energy poverty in European regions where heating thus far has been 
the major share of energy costs (medium confidence) (Sanchez-
Guevara et al., 2019; Randazzo et al., 2020).
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Table 13.2 |  Examples of losses and damages to vulnerable livelihoods in Europe, differentiated by category according to non-economic loss and damage (Table SM13.20)

Human life Communal and production sites and intrinsic value

Sense of place Agency and identity

Cultural artefacts
Psychological and emotional distressTeiltabellen 
zusammengezogen. Bitte prüfen.

Biodiversity and ecosystems

Climate hazard Change in exposure and vulnerability Observed impact and/or projected risk

Loss of livelihood, culture, health and well-being of the Sámi and the Nenets

Decrease and alterations in snow and ice sheet, unstable 
winter weather, especially in the form of rain-on-snow 
events; increased precipitation and thawing permafrost, in 
tundra; unstable loss/flux of marine ice cover

Land-use change (e.g., expansion of renewable energy) resulting in 
pasture loss and disconnection of ecosystems

Loss of livelihood (e.g., reindeer herding), food 
security (for cold-dependent species), culture, health 
(impact on safety; psychological impacts from stress 
to reindeer and indigenous way of life), and cultural 
and linguistic well-being; release of anthrax from 
permafrost soils in the Nenets area

Loss of key species in high-Arctic freshwater habitats, proliferation of introduced species and disruption of local food systems in Greenland, Finland, Sweden, northwest Russia and Scotland

Warmer water temperatures in high-Arctic freshwater 
habitats (Section 13.3.1) increase productivity in 
oligotrophic systems and eventually lead to loss of oxygen 
in water; warming temperatures and changes to ice cover 
and cryosphere lead to access issues to freshwater fisheries.

Introduced Pacific pink salmon has expanded in range since the 
1970s, affecting endemic species through competition and reducing 
their abundance. Increased nutrient loading of rivers and rapid 
expansion of algae increase the risks for cold-dependent fish.

Shifts in freshwater aquatic habitats and loss of 
endemic cold-dependent fish, such as Arctic char 
and Arctic salmon, cause disruptions to local food 
supply, and local extinctions threaten livelihood 
safety and cultural well-being.

Warmer winters leading to loss of income from ice fishing and cultural heritage in Finland

The start of ice cover on lakes, e.g., Lake Puruvesi (Finland), 
has changed from November to February; ice breakup 
occurs much earlier in the year.

The quality of the water in the lakes used for fishing depend on ice 
cover during most of the year, and the season of open water is now 
much longer, increasing nutrient flow and loss of water quality in 
these lakes.

Lack of winter ice combined with delayed freeze-up 
and earlier ice breakup reduce fish harvest for 
important species by up to 50% and impacts local 
safety, ecosystems, oral-history maintenance and 
the local economy.

Changes to marine food web resulting in loss of Indigenous knowledge and food insecurity in Greenland

Warmer ocean waters are moving further north (so-called 
atlantification of Greenland waters); higher temperatures 
are melting sea ice.

Traditional practices and knowledge based on sea ice uses and 
hunting are being lost; species are being replaced with southern 
fish.

Loss of Indigenous knowledge of how to deal with 
and use sea ice regarding species and navigation is 
occurring, as is loss of access to seals and walruses, 
as well as food insecurity.

Reduced yields on managed alpine grasslands decreasing the self-sufficiency of pastoral livestock farming in the Austrian, French and Swiss Alps

Increase in heat, precipitation variability and agricultural 
as well as hydrological drought; less snow on the ground, 
increase in glacier melt, landslide susceptibility and erosion

Land-use change resulting in natural reforestation of abandoned 
pastoral land; shifts in alpine plant communities; more intensive 
cultivation of grasslands; change in agricultural markets and 
support policy

Abandonment of summer pastures and farms, with 
negative consequences for farming income, tourism, 
and cultural and aesthetic values
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Reduced yields on semi-natural grasslands, compromising livestock feeding in winter and ultimately decreasing viability of pastoralism in the Spanish Pyrenees

Higher temperatures and more variable precipitation, less 
snow, change in seasonality and drought

Demographic change, change in policy and market conditions, 
simplification of pastoral practices and agroecosystems, land 
abandonment or afforestation of marginal pastoral lands 
and intensification of more favourable lands in the lowlands, 
troublesome coexistence with tourism and nature conservation 
initiatives

Decreasing viability of pastoralism, concentration 
of pastoral production on most profitable locations 
for intensive rearing of livestock with abandonment 
of the rest of the land; pastoral land encroachment 
both by shrubs and other activities; grassland 
degradation; biodiversity loss

Retreating glaciers and changes in the landscape leading to loss of identity, culture and self-reliance in the Italian Alps (Alto Adige)

Glacier volume loss from increasing temperatures Vulnerability mainly driven by reliance on tourism

Loss of sense of community through shared 
memories, and history; sadness caused by the loss 
of what feels like ‘home’; loss of well-being due to 
uncertainty and fear of the future

Drought resulting in a reduction of provisioning (water) and regulating services (protection against floods) in the Western and Eastern Alps, Iberian Mountains and Dinaric Mountains

Increase in drought, particularly under high-end GWL
Forest management strategies, including that of natural forests, 
which can enhance or reduce vulnerability

Critical importance of alpine natural forests and 
meadows for regulating services; negative impacts 
of climate change found mainly at low elevations 
and for specific species (e.g., Norway spruce); 
decrease in soil moisture due to abandonment of 
pastoralism resulting in reduced water provision for 
downstream water users

Increase in sea temperature leading to shifts in distribution of cold-water species, reducing productivity at lower latitudes; artisanal fisheries in southern European coastal areas 
(Mediterranean) that rely on local, nearshore stocks can have difficulties to adapt

Increase in sea temperature

Substitution of artisanal fisheries by industrial fisheries; less support 
by governments; shift in employment (e.g., tourism) which does 
not match the skill sets, education or desires of small-scale fishers; 
national quota system leading to prices too high to buy or lease 
quotas and an immense amount of bureaucracy and regulations

Due to their low investment capacity and boat 
size, fishers are limited in their movement to 
other fishing places when local fish stocks decline. 
Increasing sea temperatures are increasing the 
threat of invasive species in coastal ecosystems.

13.8.1.2 Migration and Displacement of People

Most migration and displacement due to climate change is taking place 
within national borders and single regions (Cross-Chapter Box MIGRATE 
in Chapter 7). There is low confidence in climate change contributing to 
migration from outside Europe into Europe (Gemenne, 2011; Topilin, 
2016; Gemenne and Blocher, 2017; Selby et al., 2017). Some economic 
models project that asylum applications to the EU might increase by 
a third at 2.5°C GWL and more than double beyond 4°C GWL by end 
of the century (Missirian and Schlenker, 2017), but empirical evidence 
shows that applications might decrease due to growing economic and 
legal barriers in the capacity of populations to emigrate from Africa or 
other regions (Kelley et al., 2015; Zickgraf, 2018; Borderon et al., 2019).

Migration of people within Europe is predominantly triggered 
by economic disparities among European countries (Fischer and 
Pfaffermayr, 2018). There is limited evidence and low agreement for 
climate-driven impacts on these movements (Hoffmann et al., 2020). 

Small-scale climate-induced displacement within Europe occurs in the 
aftermath of flood and drought disasters and over short distances 
(Cattaneo et al., 2019). The unequal distribution of future climate risks 
(Section  13.1) and adaptive capacity across European regions may 
increase pressure for internal migration (Williges et al., 2017; Forzieri 
et al., 2018). For instance, projected SLR (Section 13.2.1; Cross-Chapter 
Box  SLR in Chapter 3) may result in planned relocation of coastal 
settlements and inland migration in the UK, the Netherlands and the 
northern Mediterranean (Mulligan et al., 2014; Antonioli et al., 2017). 
The number of people living in areas at risk in Europe is projected to 
increase with future SSPs increasing exposure (Merkens et al., 2016; 
Byers et al., 2018; Harrison et al., 2019).

13.8.1.3 Loss and Damage to Vulnerable Livelihoods in Europe

A number of livelihoods maintaining unique cultures in Europe are 
particularly vulnerable to climate change (Table  13.2): indigenous 
communities in the European polar region because of their dependence 
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Box 13.2 | Sámi Reindeer Herding in Sweden

Reindeer (Rangifer tarandus) are keystone species in northern landscapes (Vors and Boyce, 2009). Reindeer herding is a traditional, semi-
nomadic livelihood of the Sámi. Reindeer migrate between seasonal pastures that cover 55% of Sweden and are simultaneously used for 
multiple other purposes (Sandström et al., 2016). Reindeer herding is recognised as an indigenous right, protected by the UN Declaration 
on the Rights of Indigenous Peoples, several UN conventions and through Swedish national legislation.

Temperatures in Arctic and sub-Arctic regions have increased on average by 2°C over the past 30 years (very high confidence) (Ranasinghe 
et al., 2021). Future warming is expected to further increase winter precipitation (high confidence) (Ranasinghe et al., 2021) and rain-on-
snow events, creating a hard ice crust on the snow after refreezing (Bokhorst et al., 2016; Rasmus et al., 2018).

The documented and projected impacts on reindeer are complex and varied. Warming and CO2 increase result in higher plant productivity 
(Section  13.3), changes in plant community composition and higher parasite harassment; unstable ice conditions affect migration; 
extreme weather conditions during critical winter months, more frequent forest fires and changes in plant community composition 
reduce pasture quality (medium confidence) (see Figure Box 13.2.1; Mallory and Boyce, 2018). High snow depth and rain-on-snow events 
impede reindeer access to ground lichen in winter and delay spring green-up during the critical calving period; both cause malnutrition 
and negative impacts on reindeer health, mortality and reproductive success (medium confidence) (Hansen et al., 2014; Forbes et al., 
2016; Mallory and Boyce, 2018). Lower slaughter weights and increased mortality reduce the income of herders (high confidence) (Tyler 
et al., 2007; Helle and Kojola, 2008).

Reindeer herders already autonomously adapt to changing conditions through flexible use of pastures and supplementary feeding (high 
confidence), reducing and thereby hiding some of the negative impacts of climate change (Uboni et al., 2016). However, adaptive herding 
practices have themselves added significant burden through increased workload, costs and stress (high confidence) (Furberg et al., 2011; 
Löf, 2013; Rosqvist et al., 2021). Supplementary feeding increases the risk of infectious diseases and implies culturally undesirable herding 
practices (low confidence) (Lawrence and Kløcker Larsen, 2019; Tryland et al., 2019).

Rapid land-use change reduces the ability to adapt (high confidence) (Tyler, 2010; Löf, 2013). National and EU policies expand land uses 
for mining, wind energy and bioeconomy in the area, causing loss, fragmentation and degradation of pastures, and increasing human 
disturbance to animals (medium confidence) (Kivinen et al., 2012; Skarin and Åhman, 2014; Kivinen, 2015; Skarin et al., 2015; Sandström 
et  al., 2016; Beland Lindahl et  al., 2017; Österlin and Raitio, 2020). The cumulative impacts of these land uses on pastures are not 
adequately assessed or recognised in land-use planning (Kløcker Larsen et al., 2017; Kløcker Larsen et al., 2018). Herding communities 
face strong barriers to protecting their rights and halting further degradation of pastures (medium confidence) (Allard, 2018; Kløcker 
Larsen and Raitio, 2019; Raitio et al., 2020). Attempts by herding communities to stop mining projects have led to conflicts with other 
actors, including racist hate incidences (Persson et al., 2017; Beland Lindahl et al., 2018). Combined with land-use conflicts, climate 
impacts cause reduced psycho-social health and increase suicidal thoughts among herders (low confidence) (Kaiser et al., 2010; Furberg 
et al., 2011).

Reindeer herding is significantly affected by climate change directly and indirectly (Figure Box 13.2.1) (Pape and Löffler, 2012; Andersson 
et  al., 2015). The cumulative effects of land-use and climate change have already increased vulnerability and reduced the adaptive 
capacity of reindeer herding to the extent that its long-term sustainability is threatened (medium confidence) (Löf, 2013; Horstkotte et al., 
2014; Kløcker Larsen et al., 2017).

Maintaining and improving the solution space to adapt reindeer herding is crucial for reducing existing impacts and projected risks 
of climate and land-use change (Andersson et al., 2015; Turunen et al., 2016; AMAP, 2017; Hausner et al., 2020). Lack of control over 
land use is the biggest and most urgent threat to the adaptive capacity of reindeer herding and the right of Sámi to their culture (high 
confidence) (Pape and Löffler, 2012; Andersson et al., 2015; Kløcker Larsen and Raitio, 2019).
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Climate change-related impacts affecting nomadic reindeer herding

This Indigenous way of  life is still in place in 
Northern Europe. It is dependent on:
• Access to pastures (lack of barriers)
• Quality of pastures (vegetation)
• Connectivity of pasture areas (lack of fragmentation)
• Grazing peace (lack of disturbance)

Political
boundaries

200 km

(a)  Boundaries of the reindeer herding areas in Sweden

Obs. Proj.

Increased snow amounts

Frequent freeze-thaw cycles

Unstable ice conditions

Late snow melting during spring

Heat waves during summer

i.

ii.

iii.

iv.

v.

Mining

Hydropower

Forestry

Wind power

Infrastructure development

Tourism

xii.

xiii.

xiv.

xv.

xvi.

xvii.

Spread of new diseases

Psychological stress

Work load & costs

Conflicts

Self-determination & adaptive capacity

Insect harassment

vi.

vii.
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Obs. Proj. Obs. Proj.

(b) Changing weather conditions (d) Combined effects from land pressures(c) Effects on people and animals
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Type of impact:
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Figure  Box  13.2.1 |   Cumulative impacts of climate and land-use change on reindeer herding as a traditional, semi-nomadic Sámi livelihood 
(Table SM13.21)

Box 13.2 (continued)
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on cryosphere ecosystems (high confidence) (Cross-Chapter Paper 6; 
Hayashi, 2017; Huntington et  al., 2017; Hock et  al., 2019; Meredith 
et  al., 2019; Inuit Circumpolar Council, 2020; Douville et  al., 2021; 
Fox-Kemper et al., 2021) and communities dependent on small-scale 
fisheries, traditional farming and unique cultural landscapes (medium 
confidence) (Kovats et al., 2014; Ruiz-Díaz et al., 2020).

For Sámi reindeer, herding impacts cascade due to a lack of access to key 
ecosystems, lakes and rivers, thereby threatening traditional livelihoods, 
food security, cultural heritage (e.g., burial grounds, seasonal dwellings 
and routes), mental health (see Box 13.2; Figure 13.13; Feodoroff, 2021) 
and growing costs, for example, as a result of the need for artificial 
feeding of reindeer.

13.8.1.4 Cultural and Natural Heritage

Climate change poses a serious threat to the preservation of cultural 
heritage in Europe, both tangible and intangible (high confidence) 
(Haugen and Mattsson, 2011; Daire et  al., 2012; Dupont and Van 
Eetvelde, 2013; Macalister, 2015; Phillips, 2015; Fatorić and Seekamp, 
2017; Graham et al., 2017; Carroll and Aarrevaara, 2018; Sesana et al., 
2018; Iosub et  al., 2019; Daly et  al., 2020). At higher GWL, building 
exteriors and valuable indoor collections become at risk (Leissner et al., 
2015). Coastal heritage, such as along the North Sea and Mediterranean, 
are under water-related threats (see Box 13.1; Cross-Chapter Paper 4; 
Reimann et al., 2018b; Walsh, 2018; Harkin et al., 2020).

Disappearing cultural heritage can reduce incomes due to loss of 
tourism (Hall et al., 2016), as exemplified by glacier retreat, for example, 
in the Swiss Alps and Greenland (CCP5.3.2.4; Bjorst and Ren, 2015; 
Bosson et al., 2019). Glacier retreat can create a sense of discomfort, 
loss of sense of place, displacement and anxiety in people (Section 13.7; 
Albrecht et al., 2007; Brugger et al., 2013; Allison, 2015; Jurt et al., 2015). 
Intangible cultural heritage, such as place names, and lost traditional 
practices can also be affected (Mustonen, 2018; Dastgerdi et al., 2019).

13.8.2 Solution Space and Adaptation Options

As climate change is interacting with many other drivers of poverty, 
improving the social position of the currently poor may increase their 
climate resilience (low confidence) (Hallegatte and Rozenberg, 2017; 
Fronzek et al., 2019). Some adaptation actions have the potential to 
alleviate poverty (Section 13.11.3), but adaptation can also increase 
social inequalities, for instance, when practices of disaster recovery 
focus on high-visibility areas and not on low-income neighbourhoods 
or marginalised communities (D’Alisa and Kallis, 2016). Risk 
communication and management reliant on new information 
technologies can exclude the elderly and populations with lower 
educational attainment (Kešetović et al., 2017).

Unlike migration within the EU, migration from outside Europe to Europe 
is heavily constrained by restrictive migration and asylum policies 
(Fielding, 2011; Mulligan et al., 2014), eventually leaving people to stay in 
more exposed and risk-prone regions (Benveniste et al., 2020). To reduce 
vulnerability in these regions, Europe can contribute to adaptation and 
development in regions outside Europe (Section 13.9.4).

IKLK, embedded, for example, in fishers, farmers and navigators, 
can be a vehicle for detecting, monitoring and observing impacts 
(Section  13.11.1.3; Arctic Council, 2013; Brattland and Mustonen, 
2018; Madine et al., 2018; Meredith et al., 2019). Regarding risks to 
northern traditional livelihoods and indigenous communities, small-
scale adaptation is taking place, for example, by ecological restoration 
of habitats (Section 13.3; Mustonen and Kontkanen, 2019); however, 
limited access to resources outside the jurisdictions of the communities 
limits the scope of community-based adaptation (Arctic Council, 2013; 
Mustonen et al., 2018; Meredith et al., 2019).

European cultural heritage in general and world heritage sites specifically 
lack adaptation strategies to preserve key cultural assets (Haugen 
and Mattsson, 2011; Howard, 2013; Heathcote et  al., 2017; Reimann 
et al., 2018b; Harkin et al., 2020). Key reasons are the underdeveloped 
adaptation actions available, resources for implementing them and the 
absence of overarching policy guidance (Phillips, 2015; Fernandes et al., 
2017; Sesana et al., 2018; Daly et al., 2020; Fatorić and Biesbroek, 2020; 
Sesana et al., 2020).

13.8.3 Knowledge Gaps

There is limited understanding of how different social groups are 
affected by the four European key risks under future climate change 
(Section 13.11.2), and by adaptation to them. Similarly, the interaction 
of multiple risks across sectors and how this interaction results in 
displacement, migration or immobility of people both within and 
from outside Europe is insufficiently understood. For indigenous 
and traditional livelihoods in Europe, the understanding of how 
risks will change at different warming levels is very limited, due to 
complex interactions with socioeconomic and political change. For 
European cultural heritage, there is also a lack of tailored knowledge 
and understanding of the impacts and how to translate them into 
adaptation measures.

13.9 Inter-regional Impacts, Risks 
and Adaptation

This section addresses inter-regional risks between Europe and other 
parts of the world. Global risk pathways affecting sectors and supply 
chains relevant for European economies and societies involve (a) 
ecosystems, (b) people (e.g., through migration), (c) financial flows 
and (d) trade; and these pathways ultimately impact security, health, 
well-being and food supply (Cross-Chapter Box  INTEREG in Chapter 
16; Yokohata et al., 2019).

13.9.1 Consequences of Climate-Change-Driven Impacts, 
Risks and Adaptation Emerging in Other Parts of 
the World for Europe

Recent literature (Wenz and Levermann, 2016; Hedlund et al., 2018; 
Benzie et al., 2019) strengthens the confidence in the AR5 statement 
that ‘with increasing globalisation, the impacts of climate change 
outside the European region are likely to have implications for countries 
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within the region’ (Kovats et  al., 2014). The exposure of European 
countries to trans-European climate impact and risk pathways varies 
depending on their territorial settings, national policies and position in 
the global supply chain (high confidence) (Berry et al., 2015; Hedlund 
et al., 2018; Benzie et al., 2019). There is limited evidence that Europe 
is more exposed to inter-regional risks than North America, and less 
than Africa and Asia (Hedlund et al., 2018). The social and governance 
context in Europe make the region less vulnerable to conflicts driven 
by climate change than other regions, at least up to 2°C GWL (Buhaug 
et al., 2014; Mach et al., 2019; Ide et al., 2020).

Climate risks in other parts of the world can be transmitted to 
European economies via trade networks (Figure  13.25). European 
agricultural imports exert a high water footprint in originating 
countries already today (Dolganova et al., 2019; Ercin et al., 2019), 
and some crop imports, such as tropical fruits, are highly vulnerable to 
future climate change (Brás et al., 2019). Simultaneous breadbasket 
failures, and trade restrictions, increase risks to food supply (medium 
confidence) (Fellmann et al., 2014; d’Amour et al., 2016; Gaupp et al., 
2017; Gaupp et al., 2020). There is high confidence that the European 
economy could be negatively affected by supply chain disruptions 
due to flooding destroying facilities, heatwaves and malaria 
reducing productivity in labour-intensive industries and regions 

(Section 13.7.1), and SLR affecting ports and cities along coastlines 
(Section 13.6.1.2; Nicholls and Kebede, 2012; Challinor, 2016; Wenz 
and Levermann, 2016; Hedlund et  al., 2018; Koks, 2018; Szewczyk 
et al., 2018; Willner et al., 2018; Knittel et al., 2020; Kulmer et al., 
2020; Carter et al., 2021).

13.9.2 Inter-regional Consequences of Climate Risks and 
Adaptation Emerging from Europe

New literature since AR5 suggests that climate risks in Europe can 
propagate worldwide in response to 3°C GWL (medium confidence). 
Key concerns include climate impacts on European agriculture 
threatening global food security (Section  13.5.1; Berry et  al., 2017; 
van der Velde et  al., 2018) and the European demand limiting the 
adaptation potential for ecosystems in South America, Africa and 
Asia (IPBES, 2018; Pendrill et al., 2019; Fuchs et al., 2020). Emerging 
literature suggests that coastal and riverine flood risks in Europe 
could be amplified through the global financial system and generate 
a systemic financial crisis (Figure 13.26; Mandel et al., 2021). For 3°C 
GWL and without adaptation, northern Atlantic flight routes and 
European ports are projected to be increasingly disrupted by changing 
winds, waves and SLR (Section  13.6.1.2; Williams and Joshi, 2013; 

Virtual water flows (of blue and green water) embodied in imports of agricultural products to the European Union
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Figure 13.25 |  Trans-European climate risks in trade: virtual water flows embodied in agricultural imports to Europe in 2018 and the vulnerability to climate 
change of the most important crops in the originating countries (Dolganova et al., 2019; Ercin et al., 2019)
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Irvine et al., 2016; Williams, 2016; Becker et al., 2018; Camus et al., 
2019; Verschuur et al., 2020).

13.9.3 European Territories Outside Europe

European territories outside Europe are critically exposed to climate 
risks such as increased forest fires (e.g., in Russian Siberia) (Chapter 
10; Sitnov et  al., 2017), climate-change-induced biodiversity losses 
and SLR (e.g., in British, Spanish, Portuguese, French and Dutch 
overseas regions and territories) (Chapters 12, 15; Ferdinand, 2018; 
Sieber et  al., 2018). Climate risks emerging from these territories 
include smoke and dust from Siberian forest fires (Sitnov et al., 2017) 
and, depending on European health-risk mitigation measures, dengue 
and other mosquito-transmitted diseases (Section 13.7; Schaffner and 
Mathis, 2014). Some MPAs (Section  13.4.3) in European overseas 
territories are increasingly affected by changes originating in far-field 
upstream areas. These changes ultimately undermine their ability to 
curb biodiversity losses and provide ecosystem services (Schaffner 
and Mathis, 2014; Robinson et  al., 2017). Adaptation options and 
regulations developed within Europe apply in these territories, 
despite low confidence that they meet local and regional adaptation 

challenges and address the aspiration for social justice, promotion of 
local solutions and consideration of traditional knowledge (Ferdinand, 
2018; Terorotua et al., 2020).

13.9.4 Solution Space and Adaptation Options

European countries can address inter-regional risks at the place of origin 
or destination, for example, by (a) developing local adaptation capacity 
in trading-partner countries and in European territories outside Europe 
(Petit and Prudent, 2008; Benzie et al., 2019; Adams et al., 2020; Terorotua 
et al., 2020), (b) providing international adaptation finance (Dzebo and 
Stripple, 2015; BMUB, 2017), (c) developing insurance mechanisms 
suitable for adaptation or (d) providing European climate services to 
support global adaptation (Cross-Chapter Box  INTEREG in Chapter 
16; Linnerooth-Bayer and Mechler, 2015; Brasseur and Gallardo, 2016; 
Street, 2016; Cavelier et al., 2017). Along the supply chain, risks can be 
reduced by trade diversification and alternative sourcing (Benzie and 
Persson, 2019; Adams et al., 2020). Within Europe, risks can be reduced by 
integrating inter-regional climate risks into national adaptation strategies 
and plans, and mainstreaming them into EU policies (e.g., Common 
Agricultural Policy, trade agreements) (Benzie and Persson, 2019; Benzie 
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Transmission of flood risks via finance 
flows from Europe to the rest of the world
Arcs shows how European regions are 
connected via the global financial system to 
other regions of the world in 2019.

The circles below illustrate how 
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the regional damage costs of a 
20-year return period coastal or 
riverine flood event in 2080 
(RCP8.5-SSP5, with current 
adaptation) from Europe to 
the rest of the world. 
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(with high adaptation) to 5 
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Figure 13.26 |  The transmission of coastal and riverine flood risks via finance flows from Europe to the rest of the world. (From Mandel et al., 2021).
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et al., 2019; Groundstroem and Juhola, 2019; Adams et al., 2020). There is 
high confidence that the exposure of European countries to inter-regional 
risks can be reduced by international governance (Cross-Chapter Paper 4; 
Dzebo and Stripple, 2015; Cramer et al., 2018; Persson and Dzebo, 2019), 
for example, fulfilling the targets of environmental agreements such as 
the Convention for Biological Diversity (IPBES, 2018). There is emerging 
evidence that supporting adaptation outside Europe may generate 
economic co-benefits for Europe (Román et al., 2018).

13.10 Detection and Attribution, Key Risks and 
Adaptation Pathways

13.10.1 Detection and Attribution of Impacts

Since AR5, scientific documentation of observed changes attributed 
to global warming have proliferated (high confidence). These include 
ecosystem changes detected in previous assessments, such as earlier 
annual greening and onset of faunal reproduction processes, relocation 
of species towards higher latitudes and altitudes (high confidence), and 
impacts of heat on human health and productivity (high confidence) 
(Figure  13.27; Table  SM13.22; Vicedo-Cabrera et  al., 2021). Formal 
attribution of impacts of compound events to anthropogenic climate 
change is just emerging, for example, in the recent crop failures due to 
heat and drought (Toreti et al., 2019a). Also, there is high agreement 
and medium evidence that particular events attributed to climate 
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Figure 13.27 |  Detected changes and attribution (D&A) of climate-related impacts on land (top) and in the ocean (bottom) are shown. Assessment is based on 
peer-reviewed literature in this chapter that reported observed evidence with at least 90% significance (usually with 95% significance or more) (Table SM13.22).
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Figure 13.29 |  Burning embers and illustrative adaptation pathways for risks to human health from heat (Key Risk 1)

(a) Burning ember diagrams for the risk to human health from heat are shown. The low to medium adaptation scenario corresponds to present, SSP2 and SSP4 socioeconomic 
conditions. The high adaptation includes SSP1 and adaptation needed to maintain current risk levels. 

(b,c) Illustrative adaptation pathways for NEU (top) and SEU (bottom), and key messages based on the feasibility and effectiveness assessment in Figures 13.20 and 13.24. Grey 
shading means long lead time and dotted lines signal reduced effectiveness. The circles imply transfer to another measure and the bars imply that the measure has reached a tipping 
point (Tables SM13.24, SM13.25).
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change have induced cascading impacts and other impact interactions 
(Smale et al., 2019; Vogel et al., 2019). In recent decades (2000–2015), 
economic losses intensified in SEU (high confidence) and were detected 
for parts of WCE and NEU (medium confidence). (The methodology for 
detection and attribution is presented in Section 16.2.)

13.10.2 Key Risks Assessment for Europe

Key risks (KRs) are defined as a subset of climate risks that can 
potentially become, or are already, severe (Section  16.5). The 
selection process included a review of KRs already identified in 
AR5 Chapter 23 (Kovats et al., 2014) and a review of the large body 
of new evidence on projected risks presented in Sections  13.2–
13.9. Key risks are reinforced by evidence from the detection and 
attribution assessment (Section  13.10.1) and new evidence from 
WGI AR6 Chapters 11 and 12 on regional climatic impact drivers and 
extremes (Ranasinghe et al., 2021; Seneviratne et al., 2021). Several 
expert opinion workshops of lead and contributing authors led to 
further refinements, adjustment and consensus building around the 
characteristics of KRs, which ultimately guided the construction of 
the burning embers (Figures  13.28–13.32; SM13.10). There is high 
confidence that under low or medium adaptation, high to very high 
risks are projected at 3°GWL (Figure  13.28; Sections  13.10.2.1–
13.10.2.4). Most risks are assessed as moderate up to 1.5°GWL 
(Figure 13.28).

This section also includes an assessment of the solution space using 
illustrative adaptation pathways which show alternative sequences of 
options to reduce risks as climate changes (SM13.10). Low-effectiveness 
measures are followed by measures of higher effectiveness, while 
accounting for path dependency of decisions (Toreti et  al., 2019b; 
Haasnoot et  al., 2020a). The process to derive the pathways draws 
on evidence from the feasibility and effectiveness assessments 
(Sections 13.2, 13.5–13.7).

13.10.2.1 KR1: Risks of Human Mortality and Heat Stress, and 
of Ecosystem Disruptions Due to Heat Extremes and 
Increases in Average Temperatures

Key risk 1 has cut across humans and ecosystems, and severe 
consequences are mainly driven by an increasing frequency, intensity 
and duration of heat extremes and increasing average temperatures 
(high confidence) (Urban, 2015; Forzieri et al., 2017; Feyen et al., 2020; 
Naumann et al., 2020; Ranasinghe et al., 2021). The risk of human heat 
stress and mortality is largely influenced by underlying socioeconomic 
pathways, with consequences being more severe under SSP3, SSP4 
and SSP5 scenarios than SSP1 (very high confidence) (Figure  13.22; 
Sections  13.6.1.5.2, 13.7.1.1; Hunt et  al., 2017; Kendrovski et  al., 
2017; Rohat et  al., 2019; Casanueva et  al., 2020). The SSPs impact 
natural systems as well but are not yet well studied. The impact of 
warming in marine systems are often synergistic with SLR in coastal 
systems and ocean acidification driven by the rise in CO2, while habitat 
fragmentation and land use have important synergies in terrestrial 
systems (high confidence) (Sections 13.3.1.2, 13.4.1.2). More intense 
heatwaves on land and in the ocean, particularly in Mediterranean 
Europe (Section 13.4; Cross-Chapter Paper 4; Darmaraki et al., 2019b; 

Fox-Kemper et  al., 2021), are expected to cause mass mortalities of 
vulnerable species, and species extinction, altering the provision of 
important ecosystem goods and services (Marbà and Duarte, 2010).

The burning embers on risks for humans (Figure 13.29a) differentiate 
between present and medium adaptation conditions, drawing on SSP2 
and SSP4 (and to a lesser extent SSP3), and high adaptation conditions, 
drawing on SSP1 and papers using various temperature adjustment 
methods (Table  SM13.25). There is high confidence that the risk is 
already moderate now because it has been detected and attributed 
with high confidence (Section 13.10.1). The transition from moderate 
to high risk for human health is assessed to happen after 1.5°C GWL 
in a scenario with present to medium adaptation and implies a two- to 
threefold increase (compared with moderate risk levels) in magnitude 
of consequences such as mortality, morbidity, heat stress and thermal 
discomfort (Rohat et  al., 2019; Casanueva et  al., 2020; Naumann 
et al., 2020). At this level, the risk will also become more persistent 
across the continent due to increase in heat events exceeding critical 
thresholds for health (high confidence on the direction of change and 
temperature transition, but medium confidence on the magnitude) 
(Ranasinghe et al., 2021).

The burning embers on risk for terrestrial and marine ecosystems, 
and some of their services, are shown in Figure 13.28 (second and 
third ember from the left) (Tables SM13.26, SM13.27). The transition 
to moderate risk is currently happening as warming already results in 
changes in timing of development, species migration northward and 
upwards, and desynchronisation of species interactions, especially 
at the range limits, with cascading and cumulative impacts through 
ecosystems and food webs (high confidence) (Sections  13.3, 13.4; 
Figures 13.8, 13.12). While some terrestrial ecosystems are already 
impacted today, such as Alpine, cryosphere and peatlands, the 
impacts are not widespread and severe yet across a wide range of 
terrestrial systems. Around 2°C GWL, losses accelerate in marine 
ecosystem and appear across systems, including habitat losses 
especially in coastal wetlands (Roebeling et  al., 2013; Clark et  al., 
2020), biodiversity and biomass losses (Bryndum-Buchholz et  al., 
2019; Lotze et al., 2019) and ecosystem services such as fishing (high 
confidence on the direction of change, but medium confidence on the 
local and regional magnitude) (Raybaud et al., 2017). The transition 
is happening at slightly higher warming in terrestrial systems due 
to a higher number of thermal refugia in terrestrial systems causing 
relocation but not already severe impacts (medium confidence) 
(Chapter 2).

There is medium confidence that high adaptation or conditions posing 
low challenges for adaptation (e.g., SSP1) in the context of human 
health can delay the transition from moderate to high risk (Åström 
et al., 2017; Ebi et al., 2021). The illustrative adaptation pathways in 
Figure 13.29b,c show the sequencing of options to a high adaptation 
future for NEU and SEU. Whether or not adaptation measures are 
effective to reduce risk severity for people’s health depends on local 
context (high confidence) (Figure  13.29; Sections  13.6.2, 13.7.2). 
Some adaptation options are found to be highly effective across 
Europe irrespective of warming levels, including air conditioning 
and urban planning (high confidence) (Sections  13.6.2, 13.7.2; 
Jenkins et  al., 2014b; Donner et  al., 2015; Dodoo and Gustavsson, 
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2016; Åström et al., 2017; Dino and Meral Akgül, 2019; Venter et al., 
2020), although air conditioning increasingly faces some feasibility 
constraints (Figure  13.20). Building interventions alone have low to 
medium effectiveness independent of the region. Many behavioural 
changes, such as personal and home heat protection, have already 
been implemented in SEU (Section  13.7.2; Martinez et  al., 2019). 
To reach high adaptation, a combination of low, medium and high 
effectiveness measures in different sectors and sub-regions is needed, 
many of which entail systems’ transformations (e.g., heat-proof land 
management) (Chapter 16) and remain effective at higher warming 
levels (medium confidence) (Díaz et al., 2019). These transformations 
have long lead times, thereby requiring timely start of implementation 
including regions that are not yet experiencing high heat stress (e.g., 
NEU) (high agreement, medium evidence).

Autonomous adaptation of species via migration in response to climate 
change is well documented in contemporary, historical and geological 
records (Chapter 2; Cross-Chapter Box PALEO in Chapter 1); however, 
the projected rate of climate change can exceed migration potential, 
leading to evolutionary adaptation or increased extinction risk (Chapters 
2, 3; Sections 13.3, 13.4). A reduction of non-climatic stressors, such as 
nutrient loads, resource extraction, habitat fragmentation or pesticides 
on land, are considered important adaptation options to increase the 
resilience to climate-change impacts (high confidence) (Sections 13.3, 
13.4; Ramírez et al., 2018). A major governance tool to reduce climatic 
and non-climatic impacts is the establishment of networks of protected 
areas (Sections 13.3.2, 13.4.2) especially when aggregated, zoned or 
linked with corridors for migration (high confidence), as well as a cost-
effective adaptation strategy with multiple additional co-benefits (Berry 
et al., 2015; Roberts et al., 2017). Reforestation, rewilding and habitat 
restoration are long-term strategies for reducing risk for biodiversity 
loss supported by assisted migration and evolution (Section  13.3.2, 
13.4), though current laws and regulations do not include species 
migration (high confidence) (Prober et al., 2019; Fernandez-Anez et al., 
2021).

Very high risks are expected beyond 3°C GWL due to the magnitude 
and increased likelihood of serious consequences, as well as to the 
limited ability of humans and ecosystems to cope with these impacts. 
There is high confidence that even under high adaptation scenarios 
for human systems or autonomous adaptation of natural systems, the 
risk will still be high at 3°C GWL and beyond (Section 13.7.2; Hanna 
and Tait, 2015; Spencer et al., 2016) with medium confidence on the 
temperature range of the transition. Projected SLR will strongly impact 
coastal ecosystems (high confidence), minimising their contribution to 
shoreline protection (Section 13.10.2.4).

13.10.2.2 KR2: Risk of Losses in Crop Production, Due to 
Compound Heat and Dry Conditions, and Extreme 
Weather

Key risk 2 encompasses agriculture productivity (Figure 13.30a). It is 
mainly driven by the increase in the likelihood of compound heat and 
dry conditions and extreme weather, and their impact on crops. There 
is high confidence that climate change will increase the likelihood 
of concurrent extremely dry (Table SM13.28) and hot warm seasons 
with higher risks for WCE, EEU (particularly northwest Russia) 

and SEU leading to enhanced risk of crop failure and decrease in 
pasture quality (Section 13.5.1; Zscheischler and Seneviratne, 2017; 
Sedlmeier et al., 2018; Seneviratne et al., 2021). The risk is already 
moderately severe due to multiple crop failures in the past decade 
in WCE and Russia (Section 13.5.1; Hao et al., 2018; Pfleiderer et al., 
2019; Vogel et al., 2019). Under high-end scenarios, heat and drought 
extremes are projected to become more frequent and widespread as 
early as mid-century (Toreti et al., 2019a). For present to moderate 
adaptation and at least up to 2.5°GWL, negative consequences are 
mostly in SEU (Bird et al., 2016; EEA, 2019c; Moretti et al., 2019; Feyen 
et al., 2020). The transition from moderate to high risk is projected 
to happen around 2.7°C GWL when hazards and risk will become 
more persistent and widespread in other regions (Section  13.1; 
Deryng et al., 2014; Donatelli et al., 2015; Webber et al., 2018; Ceglar 
et al., 2019; Ranasinghe et al., 2021; Seneviratne et al., 2021). This 
temperature increase will trigger shifts in agricultural zones, onset 
of early heat stress, losses in maize yield of up to 28% across EU-
28 and regional disparity in losses and gains in wheat, which are 
not able to offset losses across the continent (Deryng et al., 2014; 
Szewczyk et al., 2018; Ceglar et al., 2019). There will be also broader 
adverse impacts such as reduction of grassland biomass production 
for fodder, increases in weeds and reduction in pollination (medium 
confidence) (Castellanos-Frias et al., 2016; Nielsen et al., 2017; Brás 
et al., 2019). Combined with socioeconomic development, increased 
heat and drought stress, and reduced irrigation water availability, in 
SEU are projected to lead to abandonment of farmland (Holman et 
al., 2017). Around 4°C GWL, the risk is very high due to persistent 
heat and dry conditions (Ben-Ari et al., 2018) and the emergence of 
losses also in NEU which would be much higher without the assumed 
CO2 fertilisation (Deryng et al., 2014; Szewczyk et al., 2018; Harrison 
et al., 2019).

Farmers have historically adapted to environmental changes, and 
such autonomous adaptation will continue. Higher CO2 levels have 
a fertilisation effect on plants that is considered to decrease crop 
production risks (Deryng et al., 2014). Adaptation solutions to heat and 
drought risks include changes in sowing and harvest dates, increased 
irrigation, changes in crop varieties, the use of cover crops and mixed 
agricultural practices (Section  13.5.2; Figures  13.14, Figure  13.30b). 
Under high adaptation, the use of irrigation can substantially reduce 
risk by both reducing canopy temperature and drought impacts (high 
confidence) (Section 13.5.2; Webber et al., 2018). Some reductions of 
maize yields in SEU are still possible, but are balanced by gains in other 
crops and regions (Deryng et al., 2014; Donatelli et al., 2015; Webber 
et al., 2018; Feyen et al., 2020). At 3°C GWL and beyond, the adaptive 
capacity is reduced (Ruiz-Ramos et  al., 2018). Crop production is a 
major consumer of water in agriculture (Gerveni et  al., 2020), yet a 
potentially scarcer supply of water in some regions must be distributed 
across many needs (KR3, Section  13.10.2.3), limiting availability to 
agriculture which is currently the main user of water in many regions of 
Europe (high confidence) (Section 13.5.1). Where the ability to irrigate 
is limited by water availability, other adaptation options are insufficient 
to mitigate crop losses in some sub-regions, particularly at 3°C GWL 
and above, with an increase in risk from north to south and higher risk 
for late-season crops such as maize (high confidence). Under these 
conditions, land abandonment is projected (low confidence) (Holman 
et al., 2017).
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13.10.2.3 KR3: Risk of Water Scarcity to Multiple Interconnected 
Sectors

Risks related to water scarcity across multiple sectors can become 
severe in WCE and, to a much larger extent, in SEU based on projections 
of drought damage, population and sectors exposed, and they 
increase in water exploitation (Figure 13.31a; Table SM13.29). In EEU, 
uncertainty in hydrological drought projections and risk consequences 
is higher (Greve et al., 2018; Ranasinghe et al., 2021; Seneviratne et al., 
2021) and the available number of publications is lower, not allowing a 
conclusion on how risk levels change with GWL. Yet, there is emerging 
evidence that drought-related risks increase with warming beyond 
3°C GWL also in EEU (Seneviratne, 2021, for hydrological drought and 
4°C GWL; Kattsov and Porfiriev, 2020). Evidence from the detected 
changes and attribution assessment suggests that the risk is already 
moderate in SEU (e.g., 48 million people exposed to moderate water 
scarcity between 1981 and 2010) (high confidence) (Section 13.10.1; 
Figure 13.31a).

Risk of water scarcity has a high potential to lead to cascading impacts 
well beyond the water sector. These materialize in a number of highly 
interconnected sectors from agriculture and livestock farming to 
energy (hydropower and cooling of thermal power plants) and industry 

(e.g., shipping) (Blauhut et  al., 2015; Stahl et  al., 2016; Bisselink 
et al., 2020; Cammalleri et al., 2020). Extensive water extraction will 
augment pressures on water reserves, impacting the ecological status 
of rivers and ecosystems dependent on them (Grizzetti et al., 2017). 
Socioeconomic conditions contributing to severe consequences are 
when more residents settle in drought-prone regions, or when the 
share of agriculture in GDP declines (high confidence). For Europe, risks 
of water scarcity will be higher under SSP5 and SSP3 than under SSP1 
(medium confidence) (Byers et al., 2018; Arnell et al., 2019; Harrison 
et al., 2019). Transition to high risks is projected to occur below 
2°C GWL in SEU and be associated with more persistent droughts 
(Section  13.1.3), and at 2°C GWL to show a 54% increase of the 
population facing at least moderate levels of water shortage (Byers 
et  al., 2018). This transition will happen at higher warming in WCE 
since risks are projected to increase less rapidly (transition between 
2°C and 3°C GWL) (medium confidence) (Section 13.2.1.2; Byers et al., 
2018). At 3°C GWL and beyond, water scarcity will become much more 
widespread and severe in already water-scarce areas in SEU (high 
confidence) and will expand to currently non-water-scarce regions 
in WCE (medium confidence) (Section 13.2.1.2; Bisselink et al., 2018; 
Naumann et  al., 2018; Harrison et  al., 2019; Koutroulis et  al., 2019; 
Cammalleri et al., 2020; Spinoni et al., 2020). Decrease in hydropower 
potential in SEU and WCE are expected beyond 3°GWL (Figure 13.16).
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Figure 13.30 |  Burning embers and illustrative adaptation pathways for losses in crop production (Key Risk 2)

(a) Burning ember diagrams for losses in crop production with present or medium adaptation conditions, and with high adaptation, are shown.

(b) Illustrative adaptation pathways and key messages based on the feasibility and effectiveness assessment in Figure 13.14. Grey shading means long lead time and dotted lines 
signal reduced effectiveness. The circles imply transfer to another measure and the bars imply that the measure has reached a tipping point (Table SM13.28).
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To reduce risk to water scarcity, adaptation measures, at both the 
supply and the demand side, have been suggested (Section  13.2.2; 
Figures  13.6, 13.31b; Garnier and Holman, 2019; Hagenlocher 
et  al., 2019). Several measures are already in place showing high 
technical and institutional feasibility (Sections  13.2.2.2, 13.5.2.1). 
The effectiveness of options varies regionally (in particular between 
northern and southern regions). For example, in SEU many water 
reservoirs are already in place. Irrigation is used to support agriculture 
where rain-fed supplies are not sufficient (Section 13.5.2). Their future 
extension depends on available precipitation. Also, wastewater reuse 
can only be effective if sufficient wastewater is available. Improvements 
in water efficiency and behavioural changes are very effective in 
SEU (>25% of damages avoided) (Section  13.2.2.2). Investments in 
large water infrastructures and advanced technologies (including 
storage), water transfer, water recycling and reuse, and desalination 
will allow to buy time and therefore to cope with additional warming 
(Papadaskalopoulou et  al., 2016; Greve et  al., 2018). Beyond 2.5°C 
GWL, transformational adaptation is needed to lower risk levels, such 
as planned relocation of industry, abandonment of farmland or the 
development of alternative livelihoods (Holman et al., 2017). In WCE, 
the solution space to water scarcity is expanding with considerable 
potential for investments in large water infrastructure and advanced 
technologies (including storage), for reducing risks above 3°C GWL 
(Greve et  al., 2018). Under medium warming a larger portfolio of 

measures might be needed in SEU in particular, although it may not be 
able to completely avoid water shortages at high warming.

13.10.2.4 KR4: Risks to People, Economies and Infrastructures 
Due to Coastal and Inland Flooding

Damages and losses from coastal and river floods are projected to 
increase substantially in Europe over the 21st century (high confidence) 
(Section 13.2.1; SM13.10). Coastal areas have already started to be 
affected by SLR (see Box 13.1; Section 13.10.1) and human exposure 
to coastal hazards is projected to increase in the next decades (high 
confidence), but less under SSP1 (20%) than SSP5 (50%) by the end of 
the century (medium confidence) (Merkens et al., 2016; Reimann et al., 
2018a). Under low adaptation (i.e., coastal defences are maintained 
but not further strengthened), severe consequences include an increase 
in expected annual damage by a factor of at least 20 for 1.5°C–2.1°C 
GWL (i.e., high risks) and by two to three orders of magnitude between 
2°C and 3°C GWL in EU-28 (i.e., very high risk) (medium confidence) 
(Figures  13.28, 13.34c; Section  13.2.1.1; Vousdoukas et  al., 2018b; 
Haasnoot et  al., 2021b). Under high adaptation (i.e., lowlands 
are protected where it is economically efficient), expected annual 
damages still increase by a factor of 5 above 2°C GWL (Section 13.2; 
Vousdoukas et al., 2020). Sea levels are committed to rise for centuries 
(Fox-Kemper et al., 2021), submerging at least 10% of the territory in 

(b) Adaptation pathways water scarcity(a) People at risk of water scarcity
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demand. Water re-use is effective, but depends on water availability, has a long lead time for infrastructure 
development and overcome hesitation for household use (•••).

v. Under medium GWL, the portfolio of demand side measures needs to be combined with transformative 
measures inc diversification of sources or land-use/cover changes (••).

vi. Under high global warming a large portfolio of measures is needed to reduce risk to water scarcity sufficiently, 
and this may not be possible to avoid water shortage (dashed lines) (••).
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Burning embers and illustrative adaptation pathways for risk of water scarcity to people in Europe (Key Risk 3)

Figure 13.31 |  Burning embers and illustrative adaptation pathways for risk of water scarcity to people (Key Risk 3)

(a) Burning ember diagrams for the risk of water scarcity with no or low adaptation, and with high adaptation for SEU and WCE, are shown.

(b) Illustrative adaptation pathways and key messages (see Figure 13.6). Grey shading means long lead time and dotted lines signal reduced effectiveness. The circles imply transfer 
to another measure and the bars imply that the measure has reached a tipping point (Table SM13.29).
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(b) Adaptation pathways riverine flood risk
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i. Continuing a protect pathway by strengthening existing dyke systems is cost-effective, but with regional variation in benefit 
cost ratio. This comes with increasing path-dependency and residual risk (•••).

ii. In cities where there is no place or no support to further heighten structure, upstream retention and movable barriers 
combined with an early warning system can be added (••).

iii. Natural retention and diversion of peak flows can reduce risk effectively and have co benefits for the environment and 
climate mitigation. A combination with flood defenses in highly urbanized regions can further reduce risk (•••).

iv. Insurance can limit consequences of residual risk for people (•••).
v. Wet and dry proofing can be taken at household level and can reduce residual risk as levees are raised (••).
vi. Planned relocation has been implemented locally to restore floodplain both pre and post-hoc events and can ultimately
  remove risk (•••).

(d) Adaptation pathways coastal flood risk(c) Coastal flooding risks
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ii. There is lack of evidence of long-term consequences and the need to switch to alternative measures under long-term and/or 
high global warming level (GWL) (•••).

iii. Ecosystem based solutions (e.g. wetlands) can reduce waves and provide co-benefits for the environment and climate 
mitigation. They can be effective to low to medium GWL. Beyond they can reduce costs for flood defences (•••).

iv. Wet and dry proofing measures are effective under low GWL. A combination with protection could extend the functional 
lifetime. Floating houses are in experiment stage (••).

v. No-build zones exist and can mitigate risk (•••). With higher GWL planned relocation is an option. Impacts can be delayed by 
wet and dry proofing of buildings (•).

vi. Planned relocation has been implemented locally for ecosystem restoration and in support of coastal defence, but is 
increasingly considered for less populated areas and ultimately removes risk (•••).
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Figure 13.32 |  Burning embers and illustrative adaptation pathways for inland and coastal flooding (Key Risk 4)

(a) Burning ember diagrams for the risks from riverine and pluvial flooding, with and without adaptation, are shown.

(b) Illustrative adaptation pathways to riverine flooding risks.

(c) Burning ember diagrams for the risks from coastal flooding, with and without adaptation, are shown.

(d) Illustrative adaptation pathways to coastal flooding risks. Grey shading means long lead time and dotted lines signal reduced effectiveness. The circles imply transfer to another 
measure and the bars imply that the measure has reached a tipping point (Tables SM13.30, SM13.31).

https://doi.org/10.1017/9781009325844.015
Downloaded from https://www.cambridge.org/core. IP address: 18.118.146.102, on 26 Apr 2024 at 12:05:11, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1017/9781009325844.015
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


13

Chapter 13 Europe

1880

12 countries in Europe if GWL exceed 1.5°C–2.5°C (Clark et al., 2016), 
and this represents a major threat for the European and Mediterranean 
cultural heritage (Figure 13.28; Cross-Chapter Box SLR in Chapter 3; 
Cross-Chapter Paper 4; Marzeion and Levermann, 2014; Reimann 
et al., 2018b).

Pluvial and riverine flood events in Europe have been attributed to 
climate change, but the associated damages and losses also depend 
on land-use planning and flood risk management practices (medium 
confidence) (Section  13.10.1; Ranasinghe et  al., 2021). Exposure to 
urban flooding will increase with urbanisation (Jongman et al., 2012; 
Jones and O’Neill, 2016; Dottori et al., 2018; Paprotny et al., 2018b). 
Flooding is projected to rise with temperature in Europe with, for 
example, a doubling of damage costs and people affected from river 
flood for low adaptation above 3°C GWL (Alfieri et al., 2018). Inland 
flooding represents a KR for Europe due to the extent of settlements 
exposed, the frequency of the hazards, the risks to human lives 
associated with flash floods and the limited adaptation potential to 
pluvial flooding (e.g., difficulty to upgrade urban drainage systems) 
(Dale et al., 2018; Dale, 2021); hence, risks can become very high from 
3°C GWL (Figure 13.32a).

A range of adaptation options to coastal flooding exists, and 
adaptation is possible in many European regions if started on time 
(Section  13.2; Figure  13.32d). Continuing a protection pathway is 
cost-effective in urbanised regions for this century (Vousdoukas 
et al., 2020), but there is high agreement that it comes with residual 
risk if coastal defences fail during a storm. This residual risk can 
be reduced through early warning and evacuations, insurance and 
accommodate measures (Section  13.2.2). Soft limits to protection 
have been identified under high GWL, in particular due to the rate of 
change and delayed impacts of long-term SLR (medium confidence) 
(Hinkel et  al., 2018; Haasnoot et  al., 2020a). Ecosystem-based 
solutions, such as wetlands, can reduce waves’ propagation, provide 
co-benefits for the environment and climate mitigation, and reduce 
costs for flood defences (medium confidence) (Section  13.2.2.1). 
At higher GWL, ecosystems are projected to experience reduced 
effectiveness due to temperature increases and an increased rate 
of SLR combined with a lack of sediment and human pressures 
(Cross-Chapter Box SLR in Chapter 3). Retention and diversion can 
be effective for compound flooding or for estuaries with a limited 
storm surge duration, but there is a lack of knowledge on their 
effectiveness (Sections 13.2.2).

In the case of river flooding, adaptation has the potential to contain 
damage and losses up to 3°C GWL (Figure 13.32b; Jongman et al., 2014; 
Alfieri et al., 2016), provided they are implemented on time and that the 
technical, social and financial barriers are addressed (Sections 13.2.2, 
13.6.2). Residual risks can be reduced through early warning and 
evacuations, insurance and accommodate measures (Section  13.2.2; 
Kreibich et  al., 2015). Accommodation strategies, such as retention 
and ecosystem-based solutions, require space, which is not always 
available in cities. Both protection and flood retention are effective in 
reducing inland flooding risk across Europe, but with regional variation 
in the benefit-to-cost ratio (medium confidence) (Alfieri et al., 2016; 
Dottori et  al., 2020). Furthermore, upgrading drainage systems to 

accommodate increase in pluvial flooding is costly, technically complex 
and requires time (Dale et al., 2018; Dale, 2021).

Avoiding developments in risk-prone areas can reduce both coastal 
and inland flooding risks and can be followed by planned relocation, 
particularly in less populated areas. To align relocation with social 
goals and achieve positive outcomes, long lead times are needed 
(Haasnoot et al., 2021a).

13.10.3 Consequences of Multiple Climate Risks for Europe

European regions are affected by multiple KRs simultaneously. While 
there is a wide range in quantifications, there is high agreement that 
the consequences for socioeconomic and natural systems can be 
substantial, with more severe consequences in the south than in the 
north (very high confidence); and there is some indication also for a 
west-to-east gradient, with higher uncertainty in eastern WCE and 
EEU, which makes adaptation more challenging (medium confidence). 
Furthermore, the food–water–energy–land nexus plays an important 
role in amplifying overall risk levels in Europe (medium confidence) 
(Forzieri et al., 2016; Harrison et al., 2016; Byers et al., 2018; Arnell 
et  al., 2019; Harrison et  al., 2019; Kebede et  al., 2021). Southern 
Europe, European cities and coastal areas are projected to become 
hotspots of multiple risks (high confidence) (Cramer et  al., 2018; 
Forzieri et  al., 2018; Guerreiro et  al., 2018). The number of people 
exposed to multiple KRs in Europe are projected to at least double 
at 3°C GWL compared with 1.5°C GWL (Forzieri et al., 2017; Byers 
et al., 2018; Arnell et al., 2019), but risk levels are already higher at 
1.5°C GWL than today for a number of KRs (medium confidence) 
(Figure 13.28).

Economic losses and damages for European economies from multiple 
KRs are projected to increase (high confidence) (Figure  13.34; 
Szewczyk et  al., 2018; Feyen et  al., 2020; Kalkuhl and Wenz, 2020) 
and potentially quadruple at 3°C GWL compared with 1.5°C GWL 
(Feyen et al., 2020). Existing estimates of projected economic costs for 
Europe, based on integrated assessment or computable general equi-
librium models, are, however, likely to be underestimations of the true 
costs because of incomplete coverage of biophysical impacts, in par-
ticular low-probability high-impact events, and disruptive risk prop-
agation channels (Lamperti et al., 2018; Stoerk et al., 2018; Schewe 
et al., 2019; Piontek et al., 2021). The main driver for this increase in 
economic losses and damages is mortality due to heat stress (me-
dium confidence), followed by reduced labour productivity, coastal 
and inland flooding, water scarcity and drought (medium confidence) 
(Figure 13.33; Section 13.6.1.3). While losses are highest in SEU for 
both 1.5°C and 3°C GWL, and increase by a factor of more than 3 
between these GWLs, the projected economic damages and losses 
also increase significantly in WCE (by a factor of 4 from 1.5°C to 3°C 
GWL; 40% of total losses in EU-28 at 3°C GWL) and in NEU (almost 
10% of total losses at 3°C GWL) (Szewczyk et  al., 2018; Szewczyk 
et al., 2020). Adaptation is projected to reduce macroeconomic costs, 
but residual costs will remain particularly for warming above 3°C 
GWL (medium confidence) (De Cian et al., 2016; Bosello et al., 2018; 
Parrado et al., 2020).
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13.10.4 Knowledge Gaps

Information on risk levels and development are available for 1.7°C, 
2.5°C and >4°C GWL, making the determination of transitions for 
the burning embers challenging and impairing a comprehensive 
assessment across KRs. Further efforts to extend the SSP narratives 
to Europe can contribute to a more disaggregated understanding of 
risk severity for different vulnerability and exposure conditions, but the 
evidence to date remains limited to few sectors (Cross-Chapter Paper 
4; Kok et al., 2019; Pedde et al., 2019; Rohat et al., 2019). There is only 
very limited evidence on the extent and timing of residual risks under 
different GWL, even with high adaptation.

There is medium confidence on the effectiveness of adaptation beyond 
3°C GWL particularly where risks are high to very high (Figures 13.28–
13.32). There is limited evidence on the effectiveness of specific 
adaptation options at different levels of warming that also include 
consideration of lead and lifetimes. An integrated assessment, which 
projects the impacts on crop production by examining the potential 
availability of water for agricultural purposes together with other 
adaptation measures, is missing.

Transboundary risks, interactions between commodity and financial 
markets, market imperfections, non-linear socioeconomic responses 
and loss of ecosystem services may amplify losses for European 
economies. Available models may underestimate the full costs of 
climate change as they generally neglect systemic risks, tipping points, 

indirect and intangible losses, and limits to adaptation (Dafermos 
et al., 2018; Lamperti et al., 2018; van Ginkel et al., 2020; Dasgupta, 
2021; Ercin et al., 2021; Piontek et al., 2021). With increasing global 
warming, compound, low likelihood, or unprecedented extremes 
such as the European dry and hot summer of 2018 or the extreme 
rainfall following storm Desmond in the UK in 2015, become more 
frequent (AR6 WGI Cross-Chapter Box 11.2). These events could have 
catastrophic consequences for Europe, but the extent of economic and 
non-economic damages and losses remain largely uncertain.

13.11 Societal Adaptation to Climate Change 
Across Regions, Sectors and Scales

Building on our sectoral analysis in previous sections, this section looks 
across European sectors, regions and vulnerable groups to assess how 
climate-change impacts are being responded to generally by state 
(Section  13.11.1) and non-state (Section  13.11.2) actors, and their 
synergies and dependencies. Section  13.11.3 assesses if and how 
system transformations have emerged and implications for the SDGs 
and climate resilient development pathways (CRDPs).
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Figure  13.33 |   Economic damages and gains due to projected climate risks are shown for 1.5°C and 3°C GWL relative to no additional warming; 
macroeconomic effects are measured in GDP or welfare. Effects for EEU are reported for Russia as a whole country, deviating from the definition of EEU in this chapter. 
Effects may deviate from sectoral assessments in Sections 13.2–13.7 due to different degrees of coverage of risk channels (Table SM13.23).
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13.11.1 Policy Responses, Options and Pathways

13.11.1.1 Progress on Adaptation Planning and Implementation

The solution space for climate change adaptation has expanded across 
European regions since AR5 (high confidence). European countries 
are increasingly planning to adapt to observed impacts and projected 
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Figure 13.34 |  Progress of national adaptation in Europe in 2018 and status of national adaptation plans and strategies in 2020. Data on the progress of 
national adaptation are from the self-reported status of EU member states, as documented in the Adaptation Scoreboard for Country fiches (SWD(2018)460). The status of national 
adaptation plans and strategies data are from EEA Report 6/2020 (EEA, 2020a), the ClimateADAPT portal (EEA, 2021a) and the Grantham Institute database ‘Climate Change Laws 
of the World’ (Grantham Research Institute, 2021).
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Box 13.3 | Climate Resilient Development Pathways in European Cities

Climate resilient development (CRD) in European cities offers synergies and co-benefits from integrating adaptation and mitigation with 
environmental, social and economic sustainability (Geneletti and Zardo, 2016; Grafakos et al., 2020). Climate networks (e.g., Covenant 
of Mayors), funding (e.g., Climate-KIC), research programmes (e.g., Horizon Europe), European and national legislation, international 
treaties and the identification of co-benefits contribute to the prioritisation of climate action in European cities (Heidrich et al., 2016; 
Reckien et al., 2018; CDP, 2020). Still, mitigation and adaptation remain largely siloed and sectoral (Heidrich et al., 2016; Reckien et al., 
2018; Grafakos et al., 2020). An assessment of the integration of mitigation and adaptation in urban climate-change action plans in 
Europe found only 147 cases in a representative sample of 885 cities (Reckien et al., 2018).

In European cities, CRD is most evident in the areas of green infrastructure, energy-efficient buildings and construction, and active and 
low-carbon transport (Pasimeni et al., 2019; Grafakos et al., 2020). Nature-based Solutions, such as urban greening, often integrate 
adaptation and mitigation in sustainable urban developments and are associated with increasing natural and social capital in urban 
communities, improving health and well-being, and raising property prices (Geneletti and Zardo, 2016; Pasimeni et al., 2019; Grafakos 
et  al., 2020). Barriers to CRD in European cities include limitations in: funding, local capacity, guidance documents and quantified 
information on costs, co-benefits and trade-offs (Grafakos et al., 2020). Pilot projects are used to initiate CRD transitions (Nagorny-Koring 
and Nochta, 2018). Malmö (Sweden) and Milan (Italy) are two examples to illustrate the strategies and challenges of two European cities 
attempting to implement CRDP.

Malmö (population 300,000): Since the 1990s, Malmö has been transitioning towards an environmentally, economically and socially 
sustainable city, investing in eco-districts (redeveloped areas that integrate and showcase the city’s sustainability strategies) and adopting 
ambitious adaptation and mitigation targets. The city has focused on energy-efficient buildings and construction, collective and low-carbon 
transportation, and green spaces and infrastructure (Anderson, 2014; Malmo Stad, 2018). Malmö has developed creative implementation 
mechanisms, including a ‘climate contract’ between the city, the energy distributor and the water and waste utility to co-develop the 
climate-smart district, Hyllie (Isaksson and Heikkinen, 2018; Kanters and Wall, 2018; Parks, 2019). Flagship eco-districts play a central role 
in the city’s transition, in the wider adoption of CRD and in securing implementation partners (Isaksson and Heikkinen, 2018; Stripple and 
Bulkeley, 2019). The city has also leveraged its status as a CRD leader to attract investment. The private sector views CRD as profitable, due 
to the high demand and competitive value of these developments (Holgersen and Malm, 2015). Malmö adopted the SDGs as local goals 
and the city’s Comprehensive Plan is evaluated based on them, for example, considering gender in the use, access and safety of public 
spaces, and emphasising development that facilitates climate-resilient lifestyles (Malmo Stad, 2018). Malmö also engages stakeholders via 
dialogue with residents, collaboration with universities and partnerships with industry and service providers (Kanters and Wall, 2018; Parks, 
2019). Despite measurable and monitored targets, and supportive institutional arrangements, sustainability outcomes for the flagship 
districts have been tempered by developers’ market-oriented demands (Holgersen and Malm, 2015; Isaksson and Heikkinen, 2018) and 
there is limited low-income housing in climate-resilient districts (Anderson, 2014; Holgersen and Malm, 2015).

Milan (population 1.4 million): Milan is taking a CRD approach to new developments (Comune di Milano, 2019). From 2020, new 
buildings must be carbon neutral and reconstructions must reduce the existing land footprint by at least 10%. The Climate and Air 
Plan (CAP) and the city’s Master Plan (Comune di Milano, 2019) focus on low-carbon, inclusive and equitable development. The CAP 
is directed at municipal and private assets, and individual- to city-scale actions. In 2020, Milan released a revised Adaptation Plan and 
the Open Streets Project to ensure synergies between the COVID-19 response and longer-term CRD. Examples include strengthening 
neighbourhood-scale disaster response and reallocating street space for walking and cycling (Comune di Milano, 2020). Milan emphasises 
institutionalisation of CRD via a dedicated resilience department, and through active participation in climate networks and projects that 
support learning and exchange. Climate network commitments are cited in the city’s Master Plan and CAP guidelines as driving more 
ambitious deadlines and emissions targets (Comune di Milano, 2019). Implementation of Milan’s plans remains a challenge, despite 
dedicated resources and commitment.

climate risks across scales of government (high confidence) (Lesnikowski 
et al., 2016; Russel et al., 2020). Whereas in 2009, only nine EU countries 
had developed a National Adaptation Strategy (NAS) (Biesbroek et al., 
2010; EEA, 2014), by mid-2020 all EU member states and several 
other European countries had adopted at least a NAS and/or revised 
and updated prior strategies (Figure 13.34, bottom; Klostermann et al., 
2018; EEA, 2020a). Progress is also observed at the level of the EU with 
the adoption of the new EU strategy on adaptation to climate change 

in 2021 (European Comission, 2021a), and regionally, particularly 
in federalist and decentralised states (Steurer and Clar, 2018; EEA, 
2020b; Pietrapertosa et  al., 2021), and locally, with an increasing 
number of European cities planning for climate risks (high confidence) 
(Section 13.6.2.1; see Box 13.3; Chapter 6; Aguiar et al., 2018; Reckien 
et al., 2018; Grafakos et al., 2020). There is evidence of action across 
sectors and scales, even in European countries where national adaptation 
frameworks are absent (medium confidence) (Figure 13.34; De Gregorio 
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Hurtado et  al., 2015; Pietrapertosa et  al., 2018; Reckien et  al., 2018). 
However, the implementation gap identified in AR5 (Chambwera et al., 
2014), that is, the gap between defined goals and ambitions and actual 
implemented actions on the ground, persists in Europe (Aguiar et al., 
2018; Russel et al., 2020; UNEP, 2021).

The drivers of adaptation progress in Europe differ across sectors and 
regions. Common drivers include: experienced climatic events, improved 
climatic information, societal pressures to act, projected economic and 
societal costs of climate change, participation in (city) networks, societal 
and political leadership, and changes in national and European policies 
and legislation (medium evidence, high agreement) (EEA, 2014; Massey 
et al., 2014; Reckien et al., 2018). The availability of knowledge, human 
and financial resources appears important for proactive adaptation 
(Termeer et al., 2012; Sanderson et al., 2018), while adaptation is 
also strongly dependent on economic and social development (high 
confidence) (Sanderson et  al., 2018). How adaptation is governed 
differs substantially across Europe (Clar, 2019; Lesnikowski et al., 2021). 
Political commitment, persistence and consistent action across scales of 
government is critical to move beyond planning for adaptation (Steps 
A–C in Figure 13.34) and to ensure adequacy of implementation (Steps 
D and E in Figure 13.34) (Howlett and Kemmerling, 2017; Lesnikowski 
et al., 2021; Patterson, 2021).

The scope of climate risks included in European adaptation policies 
and plans (Step B in Figure 13.34) is generally broad (EEA, 2018a). 
Systemic and cascading risks (Section 13.10) are often recognised, but 
most conventional risk assessment methods that inform adaptation 
planning are ill-equipped to deal with these effects (Adger et  al., 
2018). For example, transboundary risks emerging in regions outside 
of Europe are considered only by a few countries such as the UK 
and Germany (Section 13.9.3). European climate change adaptation 
strategies and national policies are generally weak on gender, sexual 
orientation, as well as other social equality issues (Cross-Chapter 
Box GENDER in Chapter 18; Boeckmann and Zeeb, 2014; Allwood, 
2020).

Many near-term investment decisions have long-term consequences, 
and planning and implementation (Steps C and D in Figure 13.34) can 
take decades, particularly for critical infrastructure planning in Europe 
(Zandvoort et al., 2017; Pot et al., 2018). Consequently, there are calls 
to expand planning horizons, to consider long-term uncertainties to 
prevent lock-in decision dependencies, to seize opportunities and 
synergies from other investments (e.g., socioeconomic developments 
and systems transitions) and to broaden the range of considered possible 
impacts (e.g., Frantzeskaki et al., 2019; Marchau, 2019; Oppenheimer 
et  al., 2019; Haasnoot et  al., 2020b ). Yet, high GWL scenarios 
beyond 2100 are often not considered in climate-change adaptation 
planning due to a lack of perceived usability, missing socioeconomic 
information, constraining institutional settings and conflicting 
decision-making timeframes (medium confidence) (Lourenco et  al., 
2019; Taylor et al., 2020). High GWL scenarios are often seen as having 
a low probability of occurrence, resulting in inaction or incremental 
rather than transformative adaptation responses to projected climate 
risks (Dunn et  al., 2017). Extending planning horizons to beyond 
2100 increases deep uncertainties for decision makers as a result of 
unclear future socioeconomic and climatic changes. For adaptation to 

SLR along Europe’s coast, for example, there are already considerable 
uncertainties during this century (Fox-Kemper et al., 2021).

Adaptive planning and decision making are still limited across Europe 
(high confidence). Prominent examples of adaptive plans include the 
flood defence systems for the City of London (Ranger et  al., 2013; 
Kingsborough et  al., 2016; Hall et  al., 2019) and the Netherlands 
(Van Alphen, 2016; Bloemen et al., 2019). Adaptation pathways also 
have been developed for planning urban water supply (Kingsborough 
et al., 2016; Erfani et  al., 2018), urban drainage (Babovic and Mijic, 
2019) and wastewater systems (Cross-Chapter Box DEEP in Chapter 
17; Sadr et al., 2020). Flexible strategies are increasingly considered 
by European countries (e.g., Stive et  al., 2013; Kreibich et  al., 2015; 
Bubeck et  al., 2017; Haasnoot et  al., 2019) but require appropriate 
design to be effective (Metzger et al., 2021).

Monitoring and evaluation of adaptation action is done only in some 
European countries (Step E in Figure 13.34) but is important for adjusting 
planning, if needed (Hermans et al., 2017; Haasnoot et al., 2018), and 
enhancing transparency and accountability of progress (Mees and 
Driessen, 2019). In the Netherlands, a comprehensive monitoring system 
has been put in place, including signals for adaptation that support 
decisions on when to implement adaptation options or to adjust plans 
(Hermans et al., 2017; Haasnoot et al., 2018; Bloemen et al., 2019).

13.11.1.2 Mainstreaming and Coordination

Coordinated responses are necessary to prevent inefficient and 
costly action (Biesbroek, 2021), balance under- and overreaction to 
climate risks (Peters et al., 2017; Biesbroek and Candel, 2019), prevent 
redistributing vulnerability and maladaptive actions (Atteridge and 
Remling, 2018; Albizua et al., 2019; Neset et al., 2019), and ensure 
timely implementation (high confidence) (Benson and Lorenzoni, 
2017). Since AR5, progress has been made to increase coordinated 
adaptation actions, but so far this is limited to a few sectors (mostly 
water management and agriculture) and European countries 
and regions (mostly SEU, and WCE depending on impact) (high 
confidence) (Section 13.11.2; Lesnikowski et al., 2016; Biesbroek and 
Delaney, 2020; Booth et  al., 2020). Despite evidence of emerging 
bottom-up (e.g., citizens and business) and top-down initiatives (e.g., 
governmental plans and instruments to ensure action), there are 
considerable barriers to mainstreaming adaptation (high confidence) 
(Runhaar et al., 2018).

While mainstreaming of adaptation into other policy domains has 
been advocated as an enabler for adaptation, it may have resulted in 
incremental rather than transformational adaptation, and may not be 
sufficient to close the adaptation gap (Andersson and Keskitalo, 2018; 
Remling, 2018; Scoville-Simonds et al., 2020).

13.11.1.3 Climate Services and Local Knowledge

Climate services to support adaptation decision making of governments 
and businesses across Europe have rapidly increased since AR5, partly 
as a result of national and EU investments such as the Copernicus 
C3S service (high confidence) (Street, 2016; Soares and Buontempo, 
2019). These services are increasingly used in NEU, SEU and WCE, for 
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example, in energy and risk prevention in coastal and riverine cities, 
stimulating regulations and bottom-up initiatives (Cavelier et al., 2017; 
Le Cozannet et al., 2017; Reckien et al., 2018; Howard et al., 2020). 
However, climate service efficacy is rarely systematically evaluated 
(Cortekar et  al., 2020). Barriers to use include: lack of perceived 
usefulness of climate information to organisations and expertise to 
use the information, outdated statistics, mismatch between needs and 
type of information made available, insufficient effective engagement 
between providers and recipients of climate information and lack of 
business models to sustain climate services over time (high evidence, 
medium agreement) (Cavelier et al., 2017; Räsänen et al., 2017; Bruno 
Soares et al., 2018; Christel et al., 2018; Oberlack and Eisenack, 2018; 
Hewitt et al., 2020). Adaptation-decision support platforms also face 
challenges regarding updating, training and engagement with users 
(EEA, 2015; Palutikof et al., 2019).

In addition to scientific knowledge, traditional and local knowledge can 
enable adaptation action (Huntington et al., 2017) as is the case with 
indigenous-led ecosystem restoration in the European Arctic (Brattland 
and Mustonen, 2018). There is a need to draw on surviving Indigenous 
knowledge systems in Europe (Greenland, Nenets, Khanty, Sámi, Veps, 
Ingrian) as unique, endemic ways of knowing the world that can position 
present and historical change in context and offer unique reflections of 
change in the future (Ogar et al., 2020; Mustonen et al., 2021).

13.11.1.4 Financing Adaptation and Financial Stability

Dedicated financial resources for the implementation of NAS and 
plans are a key enabling factor for successful adaptation (high 
confidence) (Chapter 17; Russel et  al., 2020). Yet, only 14 EU 
countries have announced such budget allocations in their plans 
and strategies; and even if budget numbers are available, they are 
difficult to compare (EEA, 2020a). Current adaptation spending 
varies greatly across and within European countries, partly reflecting 
(sub)national adaptation priorities or financing sources targeting 
investment projects (López-Dóriga et al., 2020; Russel et al., 2020) 
and competing statutory priorities (Porter et  al., 2015). European 
government budgets are also burdened by climate-change damages 
today, particularly after huge flooding events, and austerity following 
financial crises, limiting anticipatory action (Penning-Rowsell and 
Priest, 2015; Miskic et  al., 2017; Schinko et  al., 2017; Slavíková 
et  al., 2020). National adaptation funding in EU member states 
is complemented by EU funding (e.g., European Structural and 
Investment Funds, European Regional Development Funds, and LIFE 
program). While the EU spending target on climate action increased 
from 20% in 2016–2020 to 25% in 2021–2026, most spending is 
going into mitigation, not adaptation (Berkhout et al., 2015; Hanger 
et al., 2015; EEA, 2020a).

With higher warming levels, financing needs are likely to increase 
(high confidence) (Mochizuki et al., 2018; Bachner et al., 2019; Parrado 
et al., 2020), and governments can address this higher need by cutting 
other expenditures, increasing taxes or by increasing the fiscal deficit 
(Miskic et al., 2017; Mochizuki et al., 2018; Bachner et al., 2019). Yet, 
the requirement for fiscal consolidation that will be needed after the 
COVID-19 pandemic (Cross-Chapter Box  COVID in Chapter 7) may 
also lead to a cessation of adaptation spending, as evidenced by the 

expenditure drop in coastal protection in Spain after the financial crisis 
in 2008 (López-Dóriga et al., 2020). Governments can shift the financial 
burden to beneficiaries of adaptation, as suggested, for example, for 
coastal protection and riverine flooding (Jongman et al., 2014; Penning-
Rowsell and Priest, 2015; Bisaro and Hinkel, 2018). There is also an 
increase in financial mechanisms to accelerate private adaptation 
actions, including adaptation loans, subsidies, direct investments 
and novel public–private arrangements. For example, the European 
Investment Bank created a finance facility to support European regions 
through loans to implement adaptation projects (EEA, 2020a).

Since AR5, new evidence has emerged that climate change may 
deteriorate financial stability both at the global and European scales 
(Campiglio et al., 2018; Dafermos et al., 2018; Lamperti et al., 2019; 
ECB, 2021a). The European Central Bank, the European Systemic 
Risk Board, and several national central banks in NEU and WCE have 
started to systematically assess the consequences of climate risks for 
financial stability and plan to integrate climate stress testing into their 
supervisory tools (Batten et al., 2016; ECB, 2021a; ECB, 2021b).

13.11.2 Societal Responses, Options and Pathways

13.11.2.1 Private Sector

Within the private sector, there tends to be a preference for ‘soft’ (e.g., 
knowledge generation) than ‘hard’ (e.g., infrastructure) adaptation 
measures (Goldstein et  al., 2019), in contrast to government-led 
responses typically favouring hard measures (Pranzini et  al., 2015). 
However, there also remains diversity across sectors and organisations in 
the degree and type of adaptation response (Trawöger, 2014; Dannevig 
and Hovelsrud, 2016; Ray et al., 2017; Ricart et al., 2019). Whereas some 
sectors, such as flood management, banking and insurance, and energy 
(Bank of England, 2015; Gasbarro and Pinkse, 2016; Bank of England, 
2019; Botzen et al., 2019), have generally made moderate progress on 
adaptation planning across Europe, there are key vulnerable economic 
sectors that are in earlier stages, including aviation (Burbidge, 2018), 
ports and shipping (Becker et al., 2018; Ng et al., 2018), and ICT (high 
confidence) (EEA, 2018b). There is also some evidence of ‘short-sighted’ 
adaptation or maladaptation; for example, in winter tourism there is a 
preference for technical and reactive solutions (e.g., artificial snow) that 
will not be sufficient under high levels of warming (Section 13.6.1.4).

Where adaptation is considered by companies, it is typically triggered 
either by the experience of extreme weather events that led to business 
disruptions (McKnight and Linnenluecke, 2019) or is included into 
corporate risk management in response to regulatory, shareholder or 
customer pressure (Averchenkova et al., 2016; Gasbarro et al., 2017). 
For instance, following the implementation of the recommendations 
of the Task Force on Climate-Related Financial Disclosure by the 
European Commission in 2019, 50 publicly listed companies revealed 
their exposure to their physical climate risks in 2020 (CDSB, 2020). But 
even if companies experience extreme weather events or stakeholder 
pressure, they may not adapt because they underestimate their 
vulnerability (Table  13.1; Pinkse and Gasbarro, 2019). For example, 
key barriers to adaptation among Greek firms include both external 
(e.g., lack of support and/or guidance) and internal factors (e.g., 
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few resources, managerial perceptions) (Halkos et al., 2018). Lack of 
knowledge, feeling climate change is not a salient risk, and lack of 
social learning or collaboration appear to be key barriers to private-
sector adaptation (Section 13.16.2.2; Dinca et al., 2014; André et al., 
2017; Romagosa and Pons, 2017; Esteve et  al., 2018; Luís et  al., 
2018; Ng et al., 2018). There remains little research on private-sector 
awareness of, or responses to, cascading or compound risks associated 
with climate change (Miller and Pescaroli, 2018; Pescaroli, 2018).

13.11.2.2 Communities, Households and Citizens

Planned behavioural adaptation remains limited among European 
households (high confidence), with few examples that can be consid-
ered transformative (e.g., structural, long-term, collective) (medium 
confidence) (Wilson et al., 2020). One Swedish survey of householders 
at risk of extreme weather events (e.g., floods, storms) found evidence 
of some organisational measures (e.g., bringing possessions inside 
prior to a storm, preparing for power cuts with candles, etc.), but very 
few households took any other (technical, social, nature-based, or eco-
nomic) measures (Brink and Wamsler, 2019). Similarly, few at risk of 
flooding are taking action (Sections  13.2.1, 13.6.1; Stojanov et  al., 
2015); for example, there is little public take-up of available municipal 
support for individual adaptation in Germany (Wamsler, 2016). Water 
efficiency measures in anticipation of, or response to, drought are also 
limited (Bryan et  al., 2019), although water reuse in Mediterranean 
and some other EU (e.g., the UK and the Netherlands) countries is 
increasing (Section  13.2; Aparicio, 2017). Among the adaptation re-
sponses recorded, few are perceived as opportunities (Taylor et  al., 

2014; Simonet and Fatorić, 2016). There is currently little European 
research on public responses to risks other than flooding, heat stress 
and drought, such as vector-borne disease, and to multiple and cas-
cading risks (Section 13.7; van Valkengoed and Steg, 2019).

Perceived personal responsibility for tackling climate change remains 
low across the EU (Figure 13.35) and partly explains why household 
adaptation remains limited (high confidence) (Taylor et  al., 2014; 
van Valkengoed and Steg, 2019), despite risk perception apparently 
growing (Figure Box 13.2.1; Capstick et al., 2015; Poppel et al., 2015; 
BEIS, 2019). Householders’ risk perception and concern about climate 
change fluctuates in response to media coverage and significant 
weather or sociopolitical events (high confidence) (Capstick et  al., 
2015). On average across Europe, and particularly in relation to gradual 
change, compared with experts, non-experts continue to underestimate 
climate-change risks (medium confidence) (Taylor et  al., 2014), have 
low awareness of adaptation options, and confuse adaptation and 
mitigation (Harcourt, 2019), suggesting a need for improved climate 
literacy among the public. Indeed, fostering learning and coping 
capacity supports robust adaptation pathways (Jäger et al., 2015).

There is strong public support for adaptation policy (e.g., building flood 
defences), particularly within the UK, France, Norway and Germany 
(Doran et al., 2018). Although, in some cases such public adaptation can 
undermine motivation for householders to take adaptation measures 
(Section  13.2), public adaptation can also increase householder 
motivations, with perceived efficacy of action a strong predictor of 
adaptation (high confidence) (Moser, 2014; van Valkengoed and Steg, 
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Figure 13.35 |  Trends in perceived climate-change risks and responsibility for tackling climate change across EU-28; data collected from around 1000 
respondents per country for each year surveyed (European Comission, 2017)
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2019). However, there are also structural and economic barriers to 
household adaptation due to lack of policy incentives or regulations. 
For example, water-saving devices in homes could halve consumption, 
but lack of economic benefits to householders are barriers to adoption; 
and lack of standards as well as societal hesitation may explain low 
levels of water reuse in Europe (Section 13.2; EEA, 2017b). Conversely, 
water meters and higher tariffs have been found to reduce water 
consumption only in combination with other measures (EEA, 2017b; 
Bryan et al., 2019).

As well as temporal trends in climate-change risk perception, the lit-
erature since AR5 continues to show much heterogeneity (both within 
and between nations) among householders in respect of risk percep-
tion (high confidence). Higher climate-change risk perceptions have 
been observed in Spain, Portugal, Iceland and Germany (Figure 13.2); 
at the individual level, women, younger age groups, more educated, 
left-leaning and those with more ‘self-transcendent’ values perceive 
more negative impacts from climate change, although the strength 
of these relationships varies across European nations (Clayton et al., 
2015; Doran et al., 2018; Poortinga et al., 2019; Duijndam and van 
Beukering, 2021). Stronger evidence exists since AR5 that experience 
of extreme weather events can shape climate-change risk perceptions, 
if these events are attributed to climate change or evoke negative 
emotions (high confidence) (Clayton et al., 2015; Demski et al., 2017; 
Ogunbode et al., 2019). Proximity to climate hazards does not pre-
dict adaptation responses in a straightforward way: in Portugal, those 
living by the coast were more likely to attribute local natural hazards 
to climate change and to take some adaptive measures (Luís et al., 
2017); while waterside residents in flood-prone regions of France and 
Austria were more resistant to relocation, due to higher place attach-
ment (Adger et al., 2013; Rey-Valette et al., 2019; van Valkengoed and 
Steg, 2019; Seebauer and Winkler, 2020). Migration from threatened 
regions is discussed in Section 13.8.1.3.

13.11.3 Adaptation, Transformation and Sustainable 
Development Goals

The implementation of far-reaching and rapid systemic changes, 
including both adaptation and mitigation options (de Coninck et  al., 
2018), remains less researched in societal systems than natural ones 
(Salomaa, 2020) that enhance multi-level governance and institutional 
capabilities, and enables lifestyle and behavioural change as well as 
technology innovation. Adaptation responses across European regions 
and sectors are more often incremental than transformative (medium 
confidence), with possible exceptions including water-related examples 
in, for example, the Netherlands (Section 13.2.2) and some cities (see 
Box  13.3). Transformative options may be better able to exploit new 
opportunities and co-benefits (see Box 13.3; Cross-Chapter Box HEALTH 
in Chapter 7; EEA, 2019a). Transitions towards more adaptive and climate-
resilient systems are often the result of responses to crises which create 
windows of opportunity for systemic changes (Chapter 18; Johannessen 
et al., 2019). This includes extreme weather events, financial crises, for 
example in Malmö (Anderson, 2014; Isaksson and Heikkinen, 2018), and 
the COVID-19 pandemic (e.g., Milan), all of which have disrupted the 
status quo and accelerated innovation and implementation (e.g., Milan; 
see Box 13.3; Cross-Chapter Box COVID in Chapter 7).

Considerable barriers exist that prevent system transitions from taking 
place in Europe, including institutional and behavioural lock-ins such 
as administrative routines, certain types of legislation and dominant 
paradigms of problem solving (high confidence) (Johannessen et  al., 
2019; Roberts and Geels, 2019). For example, near-term and sectoral 
decision-making constrains transformative options for water-related risks 
(Section 13.2). Breaking through these lock-ins requires substantive (i.e., 
political) will, (un)learning of practices, resources, and evidence of what 
works. Trade-offs exist between the depth, scope and pace of change 
in transitioning from one system to another, suggesting that designing 
system transformations is a delicate balancing act (Termeer et al., 2017). 
Aspiring in-depth and comprehensive transformational changes might 
create a consensus framework to which to aspire, but it might not offer 
concrete perspectives to act on the ground. Taking small steps and quick 
wins offer an alternative pathway (Termeer and Dewulf, 2018).

Adaptation responses can also be understood in terms of their trade-
offs and synergies with SDGs (Papadimitriou et al., 2019; Bogdanovich 
and Lipka, 2020). In terms of synergies, analysis of the Russian NAP 
found that successful completion of the NAP’s first phase could lead to 
significant progress towards 15 of the 17 goals (Bogdanovich and Lipka, 
2020). European water adaptation (e.g., flood protection) can similarly 
support freshwater provision; and water-secured environments support 
socioeconomic growth (Sadoff et  al., 2015) since people and assets 
tend to accumulate in areas protected from flooding and supplied with 
water, reducing the incentive for autonomous adaptation (de Moel et al., 
2011; Hartmann and Spit, 2016; Di Baldassarre et al., 2018). In health, 
behavioural measures to reduce mental health impacts (e.g., gardening, 
active travel) can have broader health benefits (SDG 3) as well as help 
reduce emissions (Section 13.7; SDGs 7 and 13). Conversely, growing 
use of air conditioning for humans and livestock represents a potential 
trade-off between adaptation and mitigation (Sections  13.5–13.7, 
13.10). As noted in Section 13.8, addressing poverty (SDG 1)–including 
energy poverty (SDG 7) and hunger (SDG 2); and addressing inequalities 
(SDG 10), including gender inequality (SDG 5)–improves resilience to 
climate impacts for those groups that are disproportionately affected 
(women, low-income and marginalised groups). Also, more inclusive and 
fair decision making can enhance resilience (SDG 16; Section 13.4.4), 
although adaptation measures may also lead to resource conflicts (SDG 
16; Section  13.7). Climate adaptation, particularly NbS, also supports 
ecosystem health (SDGs 14 and 15) (Dzebo et al., 2019).

Economic trade-offs appear to be more common across adaptation 
strategies, for example, reduced employment arising from land-use-
change measures (Papadimitriou et  al., 2019). There are also trade-
offs between large-scale mitigation measures (e.g., wind farms) and 
adaptation options that rely on ecosystem services (e.g., water regulation) 
(Sections  13.3–13.4); and conversely, some adaptation options (e.g., 
air conditioning) may negatively impact mitigation. Figure  13.36 
summarises the synergies between adaptation and SDGs as identified 
by 167 European cities in 2019; particularly prominent are reported 
biodiversity and health benefits most often arising from societal (e.g., 
informational) and structural (e.g., technological and/or engineering) 
measures. Beyond the urban context, biodiversity co-benefits from 
agroecology are also recognised (Section 13.5). Sustainable behaviour-
change measures have been found to be particularly likely to lead to 
synergies with SDGs (Papadimitriou et al., 2019).
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Figure 13.36 |  Co-benefits for SDGs from adaptation actions. Shown is how European cities have assessed the sustainability co-benefits of taking adaptation actions. 
Data were extracted from the Carbon Disclosure Project (CDP) database using the 2019 dataset; of the 861 European cities submitting data, 167 provided data on their adaptation 
actions, and these data are shown here (CDP, 2019). The CDP categories of climate hazards were re-categorised into WGI Climate Impact Drivers (e.g., cold spell, heavy precipitation); 
CDP adaptation actions were re-classified into AR5 adaptation options (‘social’, ‘structural’ and ‘institutional’; ‘other’ includes actions falling outside these AR5 categories); and CDP 
co-benefits were re-categorised as SDGs. The upper panel shows that all SDGs except one (SDG 17) were identified as a co-benefit of adaptation, although more environmental 
co-benefits were identified than social or economic ones. The lower left panel shows that societal actions were most common, followed by structural, then institutional. Informational 
measures were particularly common. The lower right panel shows how many actions were taken by different European cities.
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FAQ 13.1 | How can climate change affect social inequality in Europe?

The poor and those practising traditional livelihoods are particularly exposed and vulnerable to climate change. They rely more often on 
food self-provisioning and settle in flood-prone areas. They also often lack the financial resources or the rights to successfully adapt to 
climate-driven changes. Good practice examples demonstrate that adaptation can reduce inequalities.

Social inequalities in Europe arise from disparities in income, gender, ethnicity, age as well as other social 
categorisations. In the EU, about 20% of the population (109 million people) live under conditions of poverty or 
social exclusion. Moreover, poverty is unequally distributed across Europe, with higher poverty levels in EEU. The 
oldest and youngest in society are often most vulnerable.

The poor and those practising traditional livelihoods are particularly vulnerable and exposed to climate risks. Many 
depend on food self-provisioning from lakes, the sea and the land. With higher temperatures, the availability 
of these sources of food is likely to be reduced, particularly in SEU. Poorer households often settle in flood-prone 
areas and are therefore more exposed to flooding. Traditional pastoralist and fishing practices are also negatively 
affected by climate change across Europe. Semi-migratory reindeer herding, a way of life among Indigenous and 
traditional communities (i.e., Komi, Sámi, Nenets) in the European Arctic, is threatened by reduced ice and snow 
cover. Almost 15% of the EU population (in some countries more than 25%) already cannot meet their health care 
needs for financial reasons, while they are at risk of health impacts from warming.

In addition to being more exposed to climate risks, socially vulnerable groups are also less able to adapt to these 
risks, because of financial and institutional barriers. More than 20% of people in SEU and EEU live in dwellings 
that cannot be cooled to comfortable levels during summer. These people are particularly vulnerable to risks from 
increasing heatwave days in European cities (e.g., when they already face energy poverty). They may also lack 
the means to protect against flooding or heat (e.g., when they do not own the property). Risk-based insurance 
premiums, which are intended to help people reduce climate risks, are potentially unaffordable for poor households. 
The ability to adapt is also often limited for Indigenous people, as they often lack the rights and governance of 
resources, particularly when in competition with economic interests such as resource mining, oil and gas, forestry 
and expansion of bioenergy.

Adaptation actions by governments can both increase and decrease social inequality. The installation of new, or 
the restoration of existing, green spaces may increase land prices and rents due to a higher attractiveness of these 
areas, leading to potential displacement of population groups who cannot afford higher prices. On the other hand, 
rewilding and restoration of ecosystems can improve the access of less privileged people to ecosystem services and 
goods, such as the availability of freshwater. At city level, there are examples of good practice in CRD that consider 
social equity which integrate a gender-inclusive perspective in its sustainable urban planning, including designing 
public spaces and transit to ensure that women, persons with disabilities and other groups can access, and feel safe 
using, these public amenities.
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FAQ 13.2 | What are the limits of adaptation for ecosystems in Europe?

Land, freshwater and ocean organisms and ecosystems across Europe are facing increasing pressures from human activities. Climate change is 
rapidly becoming an additional and, in the future, a primary threat. Ongoing and projected future changes are too severe and happen too fast 
for many organisms and ecosystems to adapt. More expensive and better implemented environmental conservation and adaptation measures 
can slow down, halt, and potentially reverse biodiversity and ecosystem declines, but only at low or intermediate warming.

Ecosystem degradation and biodiversity loss have been evident across Europe since 1950, mainly due to land use and 
overfishing; however, climate change is becoming a key threat. The unprecedented pace of environmental change 
has already surpassed the natural adaptive capability of many species, communities and ecosystems in Europe. For 
instance, the space available for some land ecosystems has shrunk, especially in Europe’s polar and mountain areas, 
due to warming and thawing of permafrost. Across Europe, heatwaves and droughts, and their impacts such as 
wildfires, add further acute pressures, as seen in the 2018 heatwave, which impacted forest ecosystems and their 
services. In the Mediterranean Sea, plants and animals cannot shift northward and are negatively affected by 
marine heatwaves. Food-web dynamics of European ecosystems are disrupted as climate change alters the timing 
of biological processes, such as spawning and migration of species, and ecosystem composition. Moreover, warming 
fosters the immigration of invasive species that compete with–and can even out-compete–the native flora and 
fauna.

In a future with further and even stronger warming, climate change and its many impacts will become increasingly 
more important threats. Several species and ecosystems are projected to be already at high risk at 2°C GWL, including 
fishes and lake and river ecosystems. At 3°C GWL, many European ecosystems, such as coastal wetlands, peatlands 
and forests, are projected to be at much higher risk of being severely disrupted than in a 2°C warmer world. For 
example, Mediterranean seagrass meadows will very likely become extinct due to more frequent, longer and more 
severe marine heatwaves by 2050. Several wetland and forest plants and animals will be at high risk to be replaced 
by invasive species that are better adapted to increasingly dry conditions, especially in boreal and Arctic ecosystems.

Current protection and adaptation measures, such as the Natura 2000 network of protected areas, have some 
positive effects for European ecosystems; however, these policies are not sufficient to effectively curb overall 
ecosystem decline, especially for the projected higher risks above 2°C GWL. NbS, such as the restoration of wetlands, 
peatlands and forests, can serve both ecosystem protection and climate-change mitigation through strengthening 
carbon sequestration. Some climate-change mitigation measures, such as reforestation and restoration of coastal 
ecosystems, can strengthen conservation measures. These approaches are projected to reduce risks for European 
ecosystems and biodiversity, especially when internationally coordinated.

Not all climate-change adaptation options are beneficial to ecosystems. When planning and implementing 
adaptation options and NbS, trade-offs and unintended side effects should be considered. On one hand, engineering 
coastal protection measures (seawalls, breakwaters and similar infrastructure) in response to SLR reduce the space 
available for coastal ecosystems. One the other hand, NbS can also have unintended side effects, such as increased 
methane release from larger wetland areas and large-scale tree planting changing the albedo of the surface.
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FAQ 13.3 | How can people adapt at individual and community level to heatwaves in Europe?

Heatwaves will become more frequent, more intense and will last longer. A range of adaptation measures are available for communities 
and individuals before, during and after a heatwave strikes. Implementing adaptation measures are important to reduce the risks of future 
heatwaves.

Heatwaves affect people in different ways; risks are higher for the elderly, pregnant women, small children, people 
with pre-existing health conditions and low-income groups. By 2050, about half of the European population may 
be exposed to high or very high risk of heat stress during summer, particularly in SEU and increasingly in EEU and 
WCE. The severity of heat-related risks will be highest in large cities, due to the UHI effect.

In SEU, people are already aware of the risks of heat extremes. Consequently, governments and citizens have 
implemented a range of adaptation responses to reduce the impacts of heatwaves; however, there are limits to how 
much adaptation can be implemented. At 3°C GWL, there will be substantial risks to human lives and productivity, 
which cannot be avoided. In the parts of Europe where heatwaves are a relatively new phenomenon, such as many 
parts of NEU and WCE, public awareness of heat extremes is increasing and institutional capacity to respond is 
growing.

Preparing for heatwaves is an important first step. Implementing and sustaining effective measures, such as national 
or regional early warning and information systems, heatwave plans and guidelines, and raising public awareness 
through campaigns, are successful responses. Evidence suggests that such measures have contributed to reduced 
mortality rates in SEU and WCE. At city level, preparing for heatwaves can sometimes require urban re-design. 
For example, green–blue spaces, such as recreational parks and ponds in cities, have been shown to reduce the 
average temperature in cities dramatically and to provide co-benefits, such as improved air quality and recreational 
space. The use of cool materials in asphalt, increasing reflectivity, green roofs and building construction measures 
are being considered in urban planning for reducing heat risks. Citizens can prepare themselves by using natural 
ventilation, using approaches to stay cool in heatwaves, green roofs and green façades on their buildings.

During heatwaves, public information that is targeted at people and social care providers is critical, particularly for 
the most vulnerable citizens. Governments and NGOs play an important role in informing people about how to 
prepare and what to do to avoid health impacts and reduce mortality. Coordination between vital emergency and 
health services is critical. Individuals can take several actions to effectively protect themselves from heat including 
(a) decrease exposure to high temperatures (e.g., avoid outdoor during hottest times of the day, access cool areas, 
wear protective and appropriate clothing), (b) keep hydrated (e.g., drink enough proper fluids, avoid alcohol, etc.) 
and (c) be sensitive to the symptoms of heat illness (dizziness, heavy sweating, fatigue, cool and moist skin with 
goosebumps when in heat, etc.).

Once the heatwave has ended, evaluation of what worked well and how improvements can be made is key 
to prepare for the next heatwave. Governments can, for example, evaluate whether the early warning systems 
provided timely and useful information, whether coordination went smoothly and assess the estimated number of 
lives saved, to determine the effectiveness of the measures implemented. Sharing these lessons learned is critical to 
allow other cities and regions to plan for heat extremes. After the heatwave, citizens can reflect if their responses 
were sufficient, whether investments are needed to be better prepared and draw key lessons about what (not) to 
do when the next heatwave strikes.
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FAQ 13.4 | What opportunities does climate change generate for human and natural systems in Europe?

Not all climate-change impacts across Europe pose challenges and threats to natural communities and human society. In some regions, and for 
some sectors, opportunities will emerge. Although these opportunities do not outweigh the negative impacts of climate change, considering 
these in adaptation planning and implementation is important to benefit from them. Nevertheless, Europe will face difficult decisions balancing 
the trade-offs between the adaptation needs of different sectors, regions and adaptation and mitigation actions.

Opportunities of climate change can be (a) positive effects of warming for specific sectors and regions, such as 
agriculture in NEU, and (b) co-benefits of transformation of cities or transport measures that reduce the speed 
and impact of climate change while improving air quality, mental health and well-being. Windows of action for 
transformation opportunities for large-scale transitions and transformation of our society may be accelerated 
through new policy initiatives in response to the COVID-19 crisis, such as the European New Green Deal and Building 
Back Better.

As warming and droughts impact SEU most strongly, direct opportunities from climate change are primarily in 
northern regions, thereby increasing existing inequalities across Europe. Across Europe, positive effects of climate 
change are fewer than negative impacts and are typically limited to some aspects of agriculture, forestry, tourism 
and energy sectors. In the food sector, opportunities emerge by the northward movement of food production 
zones, increases in plant growth due to CO2 fertilisation and reduction of heating costs for livestock during cold 
winters. In the energy sector, positive effects include increased wind energy in the southwest Mediterranean and 
reduced energy demand for heating across Europe. While climatic conditions for tourist activities are projected to 
decrease for winter tourism (e.g., insufficient snow amount) and summer tourism in some parts of Europe (e.g., too 
much heat), conditions may improve during spring and autumn in many European locations. Fewer cold waves will 
reduce risks on transport infrastructure, such as cracking of road surface, in parts of NEU and EEU particularly by 
the end of the century.

Indirect opportunities emerge from the co-benefits of implementing adaptation actions. Some of these co-benefits 
are widespread but need careful consideration in order to be utilised. For example, an NbS approach to adaptation 
can make cities and settlements more liveable, increase the resilience of agriculture and protect biodiversity. 
Ecosystem-based adaptation can attract tourists and create recreational space. There are opportunities to 
mainstream adaptation into other developments and transitions, including the energy or agricultural transitions 
as well as COVID-19 recovery plans. Transformative solutions to achieve sustainability may be accelerated through 
larger changes of, for example, behaviour, energy, food or transport, to better exploit new opportunities and 
co-benefits. Implementation of adaptation actions can also help to make progress towards achieving the SDGs.

Inclusive, equitable and just adaptation is critical for CRD considering SDGs, gender as well as IKLK and practices. 
Implementation requires political commitment, persistence and consistent action across scales of government. 
Upfront mobilisation of political, human and financial capital in implementation of adaptation actions is key, even 
when the benefits are not immediately visible.
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