BULL. AUSTRAL. MATH. SOC. VOL. 4 (1971), 349-353.

Homogeneous Lie algebras

S. Świerczkowski

It is shown that the automorphism group of a real Lie algebra operates transitively on the set of its one-dimensional subspaces iff the Lie algebra is abelian, or isomorphic to the algebra of skew-symmetric 3×3 real matrices. This allows to conclude that R, SO(2), SO(3) and Spin(3) are the only connected Lie groups such that:

- the conjugates of every connected set containing e cover a neighbourhood of e,
- (2) every point sufficiently close to e lies on exactly one l-parameter subgroup.

Let G be the group of 3×3 orthogonal matrices with positive determinant, that is, the rotations of R^3 . It was observed by J. Mycielski that G has the following property

(*) if S is a non-trivial connected subset of G containing the identity, then $\bigcup xSx^{-1}$ is a neighbourhood of the identity. $x \in G$

This can be seen as follows. Associate with each $z \in G$ its rotation angle $\varphi(z)$; $0 \leq \varphi(z) \leq \pi$. Since $\varphi : G \rightarrow R$ is continuous, the sets $V_{\varepsilon} = \{z \mid \varphi(z) < \varepsilon\}$ are open for every $\varepsilon > 0$. If $S \subset G$ is connected, non-trivial and $e \in S$, then $\varphi(S)$ contains an interval $\{t \mid 0 \leq t < \varepsilon\}$ for some $\varepsilon > 0$, whence $V_{\varepsilon} \subset \bigcup_{x \in G} xSx^{-1}$, since any two rotations by the same angle are conjugate.

Received 27 November 1970.

349

J. Mycielski posed the problem of determining all connected Lie groups G which have the property (*).

It is clear that (*) is possessed by the additive group of reals R and by the circle group S^1 . Moreover, if (*) holds for G and there are arbitrary small neighbourhoods of the identity in G which are invariant under all inner automorphisms, then it is easily seen that (*) holds also for any group locally isomorphic to G. Thus (*) holds also for Spin(3). Suppose a group G has the property

(**) there is a neighbourhood V of e such that through every $x \in V$ there passes at most one 1-parameter subgroup S of G.

If moreover (*) holds, then it is clear that the inner automorphisms of G operate transitively on the one-parameter subgroups. This leads to the following concept.

DEFINITION. Call a Lie algebra *homogeneous* if its automorphism group operates transitively on the set of its 1-dimensional subspaces.

Thus the Lie algebra of a group having properties (*) and (**) is homogeneous. The main purpose of this note is to prove the

THEOREM. The only homogeneous Lie algebras are

i) the abelian Lie algebras,

ii) the algebra A_1 of skew-symmetric 3×3 real matrices.

One concludes that the only connected Lie groups having properties (*) and (**) are R, S^1 , SO(3) and Spin(3).

To prove the Theorem, assume that \underline{g} is a non-abelian homogeneous Lie algebra. Since A_1 is known to be the only semi-simple, compact Lie algebra of rank 1 ([2], Chapter XI), the Theorem follows from the subsequent three Lemmas.

LEMMA 1. g is semi-simple.

Proof. Suppose the radical \underline{r} of \underline{g} is non-trivial. Since \underline{r} is invariant under automorphisms of \underline{g} , \underline{r} must coincide with \underline{g} , that is \underline{g} is solvable. Let $\underline{g}^{(m)}$ be the last non-vanishing term of the derived series of \underline{g} . Then $\underline{g}^{(m)}$ is an abelian ideal which is invariant under

350

all automorphisms of \underline{g} , hence $\underline{g}^{(m)} = \underline{g}$. It follows that \underline{g} is abelian, a contradiction.

LEMMA 2. <u>g</u> is compact.

It will be shown that $\operatorname{Int}(\underline{g})$, the adjoint group of \underline{g} , is compact. This will suffice, since the adjoint representation $\underline{g} \rightarrow \operatorname{ad}(\underline{g})$ is an isomorphism and $\operatorname{ad}(\underline{g})$ is the Lie algebra of $\operatorname{Int}(\underline{g})$.

Let $\underline{g} = \underline{k} + \underline{p}$ be a Cartan decomposition, and let $\operatorname{ad}_{\underline{g}}(\underline{k})$ be the image of \underline{k} under the adjoint representation $\operatorname{ad} : \underline{g} \to \operatorname{ad}(\underline{g})$. Denote by $\operatorname{Int}_{\underline{g}}(\underline{k})$ the subgroup of $\operatorname{Int}(\underline{g})$ corresponding to the subalgebra $\operatorname{ad}_{\underline{g}}(\underline{k})$ of $\operatorname{ad}(\underline{g})$. Then it is well known that $\operatorname{Int}_{\underline{g}}(\underline{k})$ is non-trivial and compact ([1], Chapter III, Proposition 7.4). Hence $\operatorname{Int}(\underline{g})$ contains a compact 1-parameter subgroup T.

Let $X \in \underline{g}$ be the vector such that T is tangent to adX at 0. Consider an automorphism σ of \underline{g} and the corresponding 1-parameter subgroup $\sigma T \sigma^{-1}$ of $\operatorname{Int}(\underline{g})$. Then $\sigma T \sigma^{-1}$ is tangent to $\operatorname{ad}(\sigma X)$ at 0, as can be seen from the identity

$$\sigma e^{tadX} \sigma^{-1} = e^{tad(\sigma X)}$$
 for all $t \in \mathbb{R}$.

By assumption, $ad(\sigma X)$ runs over all of $ad(\underline{g})$ when σ runs over the automorphism group of \underline{g} . It follows that every 1-parameter subgroup of $Int(\underline{g})$ is compact, and thus $Int(\underline{g})$ is compact ([1], Chapter I, Proposition 10.7).

LEMMA 3. g is of rank 1.

Proof. Assume the notation of [2], Chapter XI. Let n be the rank of $\underline{\mathbf{g}}$,

$$n = \min \dim \ker(\operatorname{ad} X : \underline{g} \to \underline{g}) .$$

$$X \in \underline{g}$$

An $X \in \underline{g}$ at which this minimum is attained is called regular. By the assumption of homogeneity every element of \underline{g} is regular. Let $X_0 \in \underline{g}$ be arbitrary and denote $\underline{s} = \ker \operatorname{ad} X_0$. Then \underline{s} is an abelian subalgebra of dimension n and there is a subset Σ of non-zero vectors in \underline{s} (the

root system of \underline{g}) with the following property: If $\underline{g}^{\mathcal{C}}$ and $\underline{s}^{\mathcal{C}}$ denote the complexifications of \underline{g} and \underline{s} , then there is an injection $\Sigma + \underline{g}^{\mathcal{C}}$ given by $\alpha \mapsto r_{\alpha}$ for every $\alpha \in \Sigma$, such that,

- a) the r_{α} ; $\alpha \in \Sigma$ are independent, and together with \underline{s}^{c} they span \underline{g}^{c} ,
- b) $[X, r_{\alpha}] = -iB(\alpha, X)r_{\alpha}$ for every $\alpha \in \Sigma$, $X \in s$, where B is the Killing form of \underline{g} .

Now consider for any $X \in \underline{g}$ the characteristic polynomial $\chi(\lambda, X) = \det(\operatorname{ad} X - \lambda I)$ of $\operatorname{ad} X$. It is known that if X is regular then the multiplicity of the root $\lambda = 0$ equals the rank n of \underline{g} . Thus, in the present case, for every $X \in \underline{g}$

$$\chi(\lambda, X) = \lambda^{p} + \chi_{1}(X)\lambda^{p-1} + \ldots + \chi_{p-n}(X)\lambda^{n} ; (r = \dim \underline{g})$$

with $\chi_{p-n}(X) \neq 0$. Extend $adX : \underline{g} \neq \underline{g}$ to the complexification \underline{g}^{C} . Denote the extended map also by $adX : \underline{g}^{C} \neq \underline{g}^{C}$. In a basis common to both \underline{g} and \underline{g}^{C} , both $adX : \underline{g} \neq \underline{g}$ and $adX : \underline{g}^{C} \neq \underline{g}^{C}$ have the same matrix. Hence $\chi(\lambda, X)$ is also the characteristic polynomial of $adX : \underline{g}^{C} \neq \underline{g}^{C}$.

Now let $X \in \underline{s}$. Choosing a basis of \underline{g}^{C} composed of a basis S_{1}, \ldots, S_{n} of \underline{s} and the vectors r_{α} ; $\alpha \in \Sigma$, one has by a), b) above that $adX : \underline{g}^{C} \rightarrow \underline{g}^{C}$ is represented by a diagonal matrix whose only non-zero terms are $-iB(\alpha, X)$; $\alpha \in \Sigma$. Thus,

$$\chi_{\gamma-\eta}(X) = \prod_{\alpha \in \Sigma} (-i)^{\gamma-\eta} B(\alpha, X)$$

Since $\chi_{p-n}(X) \neq 0$ for every $X \in \underline{s}$, it follows that $B(\alpha, X) \neq 0$ for all $\alpha \in \Sigma$, $X \in \underline{s}$. This is possible only if dim $\underline{s} = 1$, that is if n = 1.

References

- [1] Sigurdur Helgason, Differential geometry and symmetric spaces (Academic Press, New York, London, 1962).
- [2] L.S. Pontrjagin, Topologische Gruppen. 2 (B.G. Teubner Verlagsgesellschaft, Leipzig, 1958).

Institute of Advanced Studies, Australian National University, Canberra, ACT.