LINEAR TRANSFORMATIONS ON ALGEBRAS OF MATRICES: THE INVARIANCE OF THE ELEMENTARY SYMMETRIC FUNGTIONS

MARVIN MARCUS AND ROGER PURVES

1. Introduction. In this paper we examine the structure of certain linear transformations T on the algebra of n-square matrices M_{n} into itself. In particular if $A \in M_{n}$ let $E_{r}(A)$ be the r th elementary symmetric function of the eigenvalues of A. Our main result states that if $4 \leqslant r \leqslant n-1$ and $E_{r}(T(A))=E_{r}(A)$ for $A \in M_{n}$ then T is essentially (modulo taking the transpose and multiplying by a constant) a similarity transformation:

$$
T: A \rightarrow S A S^{-1}
$$

No such result as this is true for $r=1,2$ and we shall exhibit certain classes of counterexamples. These counterexamples fail to work for $r=3$ and the structure of those T such that $E_{3}(T(A))=E_{3}(A)$ for all $A \in M_{n}$ is unknown to us. In (1) it is established that those T which preserve the rank (determinant) of every matrix in M_{n} are essentially of the form $T: A \rightarrow P A Q$ where P and Q are non-singular, ($P Q$ is unimodular). In the first part of what follows, we shall improve this result by requiring only that T preserves non-singularity. We remark that in general we do not assume that T is multiplicative or antimultiplicative anywhere in the paper.

We shall collect here the notation to be used throughout. For $A \in M_{n}$ let $A^{\prime}=\operatorname{transpose}$ of $A, \rho(A)=\operatorname{rank}$ of $A, \operatorname{tr}(A)=\operatorname{trace}$ of $A, A_{i j}=$ the element in position (i, j) of $A, O_{n}=$ the n-square zero matrix, and $E_{i j}=$ the n-square matrix with 1 at position (i, j), 0 elsewhere. In addition if $A \in M_{p}$ and $B \in M_{q}$ we define $A \oplus B \in M_{p+q}$ to be the direct sum of A and B. If $1 \leqslant p \leqslant n$ then $Q_{p n}$ will be the set of all sequences of p-tuples $\omega=\left(i_{1}, \ldots, i_{p}\right)$ where $1 \leqslant i_{1}<i_{2}<\ldots<i_{p} \leqslant n$. A transformation $T: M_{n} \rightarrow M_{n}$ will be called a direct product if there exists a scalar c and fixed U and V in M_{n} such that

$$
T(A)=c U A V
$$

or

$$
T(A)=c U A^{\prime} V
$$

for all $A \in M_{n}$. This is motivated by the fact that the mapping $T: A \rightarrow U A V$ has a matrix representation $V^{\prime} \times U$, the direct product of V^{\prime} and U, with a

[^0]proper choice of co-ordinate system for M_{n}. We remark that the mapping $T: A \rightarrow A^{\prime}$ cannot be accomplished by pre- and post-multiplication by fixed matrices U and V for all A. We shall also denote by e.v. (A) the set of all n eigenvalues of A counting multiplicities.
2. Linear maps of $G L_{n}$ into itself. As usual, $G L_{n}$ is the group of n-square non-singular matrices in M_{n}. We shall determine all T such that $T\left(G L_{n}\right) \subseteq$ $G L_{n}$.

Lemma 2.1. If $0 \neq A \in M_{n}$ then A is similar to a matrix B with $B_{i i} \neq 0$, $i=1, \ldots, n$.

Proof. We may assume A is in Jordan form. It is known in general that A is similar to a matrix with $\operatorname{tr}(A) / n$ in position $(i, i), i=1, \ldots, n$. Hence we may assume $\operatorname{tr}(A)=0$. If $A=E_{12}$ let u_{1} be the vector with all entries 1 and let u_{2} be the vector with first entry $1-n$ and the remaining entries 1 . Normalize u_{1} and u_{2} and let u_{3}, \ldots, u_{n} be a completion to an orthonormal basis. Let U be the orthogonal matrix with u_{i} as column i. Then the (i, i) entry of $U E_{12} U^{\prime}$ is $u_{i 1} u_{i 2} \neq 0$. The proof is now completed by induction on n. If $A \in M_{n+1}$ is in Jordan form with zero trace we consider first the case that A is diagonal. Since $A \neq 0$ we can assume $A_{11} \neq 0$ and moreover the matrix $C \in M_{n}$ obtained by deleting row and column 1 of A is not 0_{n}. By induction choose $V \in M_{n}$ such that $\left(V C V^{-1}\right)_{i i} \neq 0$ for $i=1, \ldots, n$. Then

$$
(1 \oplus V) \mathrm{A}\left(1 \oplus V^{-1}\right)=\mathrm{A}_{11} \oplus V C V^{-1}
$$

has all non-zero diagonal elements. If A is not diagonal we can clearly assume $A_{12}=1$ and the submatrix C above is not 0_{n}. As before we select $V \in M_{n}$ such that

$$
P=(1 \oplus V) A\left(1 \oplus V^{-1}\right)
$$

has all non-zero entries on the diagonal with the possible exception of P_{11}. If $P_{11}=0$ and b_{11} is the $(1,1)$ entry of $V C V^{-1}$ then select $U \in M_{2}$ such that

$$
U\left(\begin{array}{ll}
0 & * \\
0 & b_{11}
\end{array}\right) U^{-1}
$$

has non-zero diagonal entries. Then

$$
B=\left(U \oplus I_{n-1}\right) P\left(U^{-1} \oplus I_{n-1}\right)
$$

is the required matrix.
Lemma 2.2. If $0 \neq A \in M_{n}$ then there is a $Z \in M_{n}$ such that

$$
\text { e.v. }(A+Z) \cap \text { e.v. }(Z)=0
$$

Proof. By Lemma 2.1. choose $P \in M_{n}$ such that $\left(P^{-1} A P\right)_{i i \neq 0}$ for $i=1$, \ldots, n. Let X be defined as follows:

$$
\begin{array}{ll}
X_{i i}=1, & i=1, \ldots, n \\
X_{i j}=-\left(P^{-1} A P\right)_{i j}, & i>j \\
X_{i j}=0, & i<j .
\end{array}
$$

Then X has all n eigenvalues 1 and $P^{-1} A P+X$ has eigenvalues $1+\left(P^{-1} A P\right)_{i i}$ $i=1, \ldots, n$ none of which are 1 . Then $Z=P X P^{-1}$ has the required property.

Lemma 2.3. If $T\left(G L_{n}\right) \subseteq G L_{n}$ then T is non-singular.
Proof. We have that if

$$
\operatorname{det}\left(x \mathrm{I}_{n}-\left[T\left(I_{n}\right)\right]^{-1} T(A)\right)=0
$$

for some x then

$$
\operatorname{det}\left(x I_{n}-A\right)=0
$$

for that x. In other words the distinct elements of e.v. $\left([T(I)]^{-1} T(A)\right)$ form a subset of the distinct eigenvalues of A. Now suppose $0 \neq A \in M_{n}$ and $T(A)=$ 0 . Choose $Z \in M_{n}$ by Lemma 2.2 such that

$$
\text { e.v. }(Z) \cap \text { e.v. }(A+Z)=0
$$

Then

$$
\left[T\left(I_{n}\right)\right]^{-1} T(A+Z)=\left[T\left(I_{n}\right)\right]^{-1} T(Z)
$$

and the distinct eigenvalues of $\left[T\left(I_{n}\right)\right]^{-1} T(Z)$ form a subset of the distinct eigenvalues of both $A+Z$ and Z. This shows that $A=0$ if $T(A)=0$ and T is non-singular.

Lemma 2.4. If $T\left(G L_{n}\right) \subseteq G L_{n}$ and $T\left(I_{n}\right)=I_{n}$ then e.v. $(T(A))=$ e.v. (A) for all $A \in M_{n}$.

Proof. As in the proof of Lemma 2.3, we know that if $T(A)$ has a set of n distinct eigenvalues then

$$
\text { e.v. }(A)=\text { e.v. }(T(A))
$$

Since T^{-1} exists we can say that if B has n distinct eigenvalues then

$$
\text { e.v. }(B)=\text { e.v. }\left(T^{-1}(B)\right)
$$

If $T(A)$ has multiple eigenvalues choose a sequence B_{j} converging to $T(A)$ such that B_{j} has distinct eigenvalues. The proof is completed using the fact that the eigenvalues depend continuously on the elements.

Theorem 2.1. If $T\left(G L_{n}\right) \subseteq G L_{n}$ then there exist U and V in $G L_{n}$ such that either

$$
T: A \rightarrow U A V \text { for all } A \in M_{n}
$$

or

$$
T: A \rightarrow U A^{\prime} V \text { for all } A \in M_{n} .
$$

Proof. By Lemma 2.4 the map

$$
\phi: A \rightarrow\left[T\left(I_{n}\right)\right]^{-1} T(A)
$$

satisfies

$$
\text { e.v. }(\phi(A))=\text { e.v. }(A)
$$

for all $A \in M_{n}$. But by (1: Theorem 2),

$$
\phi(A)=U A U^{-1}
$$

or

$$
\phi(A)=U A^{\prime} U^{-1} .
$$

Multiplication on the left by $T\left(I_{n}\right)$ completes the proof.
3. Linear maps preserving the symmetric functions. We now determine the structure of those linear T on M_{n} to M_{n} such that for each $A \in M_{n}$

$$
E_{\tau}(A)=E_{\tau}(T(A))
$$

For each r let the class of all such T be denoted by \mathfrak{A}_{r}. It is clear that if T, $S \in \mathfrak{A}_{T}$ then $T S \in \mathfrak{U}_{r}$. Also if $T \in \mathfrak{U}_{T}$ and T^{-1} exists then $T^{-1} \in \mathfrak{A}_{r}$; for since any B is in the range of T we have

$$
E_{r}(B)=E_{r}\left(T T^{-1}(B)\right)=E_{r}\left(T^{-1}(B)\right)
$$

Our first result shows that \mathfrak{Q}_{r} is actually a multiplicative group for $r \geqslant 2$.
Lemma 3.1. If $r \geqslant 2$ and $T \in \mathfrak{A}_{r}$ then T^{-1} exists. Thus \mathfrak{A}_{r} is a multiplicative group for $r \geqslant 2$.

Proof. Suppose $T(A)=\mathrm{O}_{n}$ and $A \neq \mathrm{O}_{n}$. Then

$$
E_{r}(A+X)=E_{r}(T(A+X))=E_{r}(T(X))=E_{r}(X)
$$

for any $X \in M_{n}$. By Lemma 2.1 there exists $P \in G L_{n}$ such that $\left(P^{-1} A P\right)_{i i}$ $\neq 0$ for $i=1, \ldots, n$.
Define $X \in M_{n}$ as follows:

$$
\begin{array}{ll}
X_{i i}=x & i=1, \\
X_{i i}=0 & i=r, \\
X_{i j}=0 & i<j \\
X_{i j}=-\left(P^{-1} A P\right)_{i j} & i>j .
\end{array}
$$

Then

$$
f_{r}(x)=E_{r}\left(P^{-1} A P+X\right)=E_{r}\left(A+P X P^{-1}\right)=E_{r}\left(P X P^{-1}\right)=E_{r}(X)=0 .
$$

Thus the coefficient of x^{r-1} in the polynomial $f_{r}(x)$ must be 0 . This means that the sum of the last $n-r+1$ entries on the main diagonal of $P^{-1} A P$ is 0 . Similarly we can show that the sum of any $n-r+1$ is 0 . But since $r \geqslant 2, n-r+1<n$ and it is clear that $\left(P^{-1} A P\right)_{i i}=0(i=1, \ldots, n)$. This completes the proof.

Lemma 3.2. If $A \in M_{n}$ and $A \neq 0$ then

$$
\operatorname{deg} \operatorname{det}(x A+B) \leqslant 1 \text { for all } B \in M_{n}
$$

if, and only if, $\rho(A)=1$.
Proof. We can clearly assume that A is in Jordan canonical form and the "if" part of the result is obvious.

In the other direction we show first that A has at most one non-zero eigenvalue. Suppose

$$
\lambda_{i_{1}}, \ldots, \lambda_{i_{k}}
$$

are the non-zero eigenvalues of A in positions $\left(i_{t}, i_{t}\right), t=1, \ldots, k$. Let B be a diagonal matrix with 0 at positions $\left(i_{\mathrm{t}}, i_{\mathrm{t}}\right) t=1, \ldots, k$ and 1 elsewhere on the main diagonal. Then

$$
\operatorname{deg} \operatorname{det}(x A+B)=k=1
$$

Suppose now that A has the single non-zero eigenvalue λ which we may assume is in position $(1,1)$. To show that $\rho(A)=1$ it will suffice to show that the elements along the superdiagonal of A are all 0 . This is clear for $n=2$. If $n>2$ let α be the largest integer such that there is a 1 at position $(\alpha, \alpha+1)$ of A. Define B as follows:

$$
\begin{array}{lr}
B_{i i}=0 & i=\alpha, \alpha+1 \\
B_{i i}=1 & i \neq \alpha, \alpha+1 \\
B_{\alpha+1, \alpha}=1 & \\
B_{i j}=0 & \text { elsewhere. }
\end{array}
$$

Then

$$
\operatorname{det}(x A+B)=-\lambda x^{2}-x
$$

Thus there must be a 0 at $(\alpha, \alpha+1)$ and a repetition of this procedure shows that there are no 1 's along the superdiagonal when $\lambda \neq 0$.

Now assume that $\lambda=0$ and that the $(1,2)$ entry of A is 1 . Define α as above and if $\alpha>2$ define B as follows:

$$
\begin{array}{ll}
B_{i i}=0 & i=1,2, \alpha, \alpha+1 \\
B_{i i}=1 & \text { elsewhere on the main diagonal } \\
B_{21}=1 & \\
B_{i j}=0 & \text { elsewhere off the main diagonal. }
\end{array}
$$

Then

$$
\operatorname{det}(x A+B)=x^{2} .
$$

In this way all elements $(i, i+1)$ for $2<i<n-1$ are shown to be 0 . To settle position $(2,3)$ use the test matrix

$$
B=E_{31} \oplus I_{n-3}
$$

for $E_{31} \in M_{3}$. This completes the proof.

Lemma 3.3. If $3 \leqslant r<n$ and $A \in M_{n}, A \neq O_{n}$ then the condition

$$
\operatorname{deg} E_{r}(x A+B) \leqslant 1
$$

for all $B \in M_{n}$ implies that A has at most one non-zero eigenvalue.
Proof. We can again assume A is in Jordan canonical form with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$. Let z_{1}, \ldots, z_{n} be indeterminates and let B be the diagonal matrix with $B_{i i}=z_{i} i=1, \ldots, n$. Then

$$
\begin{aligned}
E_{r}(x A+B) & =\sum_{\omega=\left(i_{1}, \ldots, i_{r}\right) \in Q_{r n}} \prod_{k=1}^{r}\left(x \lambda_{i_{k}}+z_{i_{k}}\right) \\
& =\sum_{t=0}^{r}\left(\sum_{\omega \in Q_{r n}} \sum_{s_{t} \leq \omega} \prod_{\alpha \in s_{t}} \lambda_{\alpha} \prod_{\beta \in \omega-s_{t}} z_{\beta}\right) x^{t}
\end{aligned}
$$

where

$$
\sum_{s_{t} \subseteq \omega}
$$

means the sum over all subsets s_{t} of ω with t members and

$$
\prod_{\beta \in \omega-s_{t}}
$$

means the product over those elements of ω not in s_{t}. Hence for $t \geqslant 2$ we have that the coefficient of x^{t} in the above sum must be 0 for any choice of z_{1}, \ldots, z_{n}. From this it is not difficult to show that the t th elementary symmetric function of any $n-r+t$ of the λ_{j} is 0 . Choosing $t=2$ we have that if all the λ_{j} are equal they must all be 0 . Assume then that for some $\mu, \sigma, \lambda_{\sigma} \neq \lambda_{\mu}$. Since $r \geqslant 3$ we have that $k=n-r+2<n$. Let

$$
\lambda_{i_{1}}, \ldots, \lambda_{i_{k-1}}
$$

be a choice of $k-1$ of the eigenvalues with $i_{j} \neq \sigma, \mu$ for $j=1, \ldots, k-1$. Then

$$
0=E_{2}\left(\lambda_{\sigma}, \lambda_{i_{1}}, \ldots, \lambda_{i_{k-1}}\right)=\lambda_{\sigma} E_{1}\left(\lambda_{i_{1}}, \ldots, \lambda_{i k-1}\right)+E_{2}\left(\lambda_{i_{1}}, \ldots, \lambda_{i k-1}\right)
$$

and a similar relation holds for λ_{μ}.
We then have

$$
\left(\lambda_{\sigma}-\lambda_{\mu}\right) E_{1}\left(\lambda_{i_{1}}, \ldots, \lambda_{i k-1}\right)=0 .
$$

If $r>3$ then $k-1<n-2$ and this last relation implies that $\lambda_{i}=0$ for $i \neq \sigma, \mu$. In this case

$$
\lambda_{\sigma} \lambda_{\mu}=0
$$

and A has at most one non-zero eigenvalue. To settle the case $r=3$ let $E_{l}\left(\hat{\lambda}_{j}\right)$ denote the t th elementary symmetric function of all the λ_{i} for $i \neq j$. We first note that

$$
E_{2}\left(\lambda_{1}, \ldots, \lambda_{n}\right)=\lambda_{j} E_{1}\left(\hat{\lambda}_{j}\right)+E_{2}\left(\hat{\lambda}_{j}\right)=\lambda_{j} E_{1}\left(\hat{\lambda}_{j}\right) .
$$

Summing on j we have

$$
n E_{2}\left(\lambda_{1}, \ldots, \lambda_{n}\right)=2 E_{2}\left(\lambda_{1}, \ldots, \lambda_{n}\right)=0 .
$$

Thus

$$
\lambda_{j} E_{1}\left(\hat{\lambda}_{j}\right)=0 .
$$

Setting

$$
s=\sum_{j=1}^{n} \lambda_{j}
$$

we have

$$
\lambda_{j}^{2}=\lambda_{j} s, \lambda_{j}\left(\lambda_{j}-s\right)=0
$$

and thus the non-zero eigenvalues of A are all equal to s. This completes $r=3$.

Lemma 3.4. Assume $4 \leqslant r \leqslant n+3$ and let $A \in M_{n+3}, A \neq O_{n}$. Then

$$
\operatorname{deg} E_{r}(x A+B) \leqslant 1 \quad \text { for all } \quad B \in M_{n+3}
$$

if, and only if, $\rho(A)=1$.
Proof. The "if" part of the theorem is clear. To prove the "only if" part we can assume A is in Jordan canonical form and proceed by induction on n. For $n=1$ or $r=n+3$ Lemma 3.2 gives the result. Thus assume $r<n+4$ and by Lemma 3.3 we know that A has at most one non-zero eigenvalue λ which we can assume is in position $(1,1)$. Call the $(2,3)$ entry ϵ (either 1 or 0). Define B to be the matrix with 1 in position (3,2) and $r-31$'s in any of the diagonal positions (i, i) for $i>3,0$'s elsewhere. Then

$$
E_{r}(x A+B)=\lambda \epsilon x^{2} .
$$

Consider first the situation in which $\lambda \neq 0$. Then $\epsilon=0$ and row 2 and column 2 of A are both zero. If we restrict B to those matrices with row 2 and column 2 zero we can apply the induction hypothesis to conclude that the submatrix of A obtained by deleting row 2 and column 2 has rank 1 . Thus $\rho(A)=1$ as well. In case $\lambda=0$ let ϵ_{1} and ϵ_{2} be the $(1,2)$ and $(n+3, n+4)$ entries of A respectively. Define B as follows:

$$
\begin{array}{lr}
B_{21}=B_{n+4, n+3}=1 . & \\
B_{i i}=1, & 3 \leqslant i<r-2 \\
B_{i j}=0 & \text { elsewhere. }
\end{array}
$$

Then

$$
E_{r}(x A+B)=\epsilon_{1} \epsilon_{2} x^{2}
$$

and we may assume without loss of generality that $\epsilon_{2}=0$. But then we can apply the induction argument as before to obtain $\rho(A)=1$.

Lemma 3.5. If $4 \leqslant r \leqslant n$ and $T \in \mathfrak{A}_{r}$ and $\rho(A)=1$ for $A \in M_{n}$ then $\rho(T(A))=1$.

Proof. Consider the polynomial $f_{\tau}(x)=E_{\tau}(x T(A)+B)$. Since $T^{-1} \in \mathfrak{N}_{r}$
we have $f_{r}(x)=E_{r}\left(x A+T^{-1}(B)\right)$. Since $\rho(A)=1, \operatorname{deg} f_{r}(x) \leqslant 1$ for all B, and by Lemma $3.4 \rho(T(A))=1$.

Lemma 3.6. If $4 \leqslant r \leqslant n$ and $T \in \mathfrak{A}_{\tau}$ then for every $A \in M_{n}$

$$
\rho(T(A))=\rho(A)
$$

Proof. Let $\rho(A)=k$ and select $A_{j} j=1, \ldots, k$ such that $\rho\left(A_{j}\right)=1$ and

$$
A=\sum_{j=1}^{k} A_{j} .
$$

Then by Lemmas 3.5 and 3.1

$$
\rho(T(A)) \leqslant k=\rho(A)=\rho\left(T^{-1}(T(A)) \leqslant \rho(T(A)) .\right.
$$

We are now in a position to prove our main result concerning the structure of \mathfrak{A}_{r}.

Theorem 3.1. If $4 \leqslant r \leqslant n-1$ and $T \in \mathfrak{A}_{r}$ then there exist U and V in M_{n} such that either

$$
\begin{equation*}
T: A \rightarrow U A V \text { for all } A \in M_{n} \tag{i}
\end{equation*}
$$

or

$$
\begin{equation*}
T: A \rightarrow U A^{\prime} V \quad \text { for all } A \in M_{n} \tag{ii}
\end{equation*}
$$

where
(iii)

$$
U V=e^{i \phi} \mathrm{I}_{n}, r \phi \equiv 0(2 \pi)
$$

Proof. The existence of U and V satisfying (i) and (ii) is an immediate consequence of Lemma 3.6 and Theorem 2.1. It is clear that it suffices to show that $E_{r}(P B)=E_{r}(B)$ for all $B \in M_{n}$ implies that $P=e^{i \phi} \mathrm{I}_{n}$ with $r \phi \equiv 0(2 \pi)$. Letting $C_{r}(B)$ denote the r th compound of B we have

$$
\operatorname{tr} C_{r}(P B)=\operatorname{tr} C_{r}(B) \text { for all } B \in M_{n} .
$$

Hence

$$
\operatorname{tr}\left\{\left[C_{r}(P)-I_{\binom{n}{r}}\right] C_{r}(B)\right\}=0
$$

This implies immediately that

$$
C_{r}(P)=I_{\binom{n}{r}} .
$$

By the polar factorization theorem let $P=U H$ where U is unitary and H is positive definite Hermitian (p. d. h.). Then

$$
C_{r}(U) C_{r}(H)=I_{\binom{n}{r}}
$$

implies that $C_{r}(U)$ is both unitary and p. d. h. Hence every eigenvalue of $C_{r}(U)$ is 1 and this in turn implies that every eigenvalue of U is $e^{i \phi}$ for $r \phi \equiv$ $0(2 \pi)$. Similarly we show $H=I_{n}$ and the result is at hand.
4. The structure of $\mathfrak{Q} j$ for $j=1,2,3$. At this point Theorem 3.1 together with the results in (1) completely settle the question of the structure of \mathfrak{U}_{r} when $r \geqslant 4$. It is easy to construct singular $T \in \mathfrak{U}_{1}$ (map A into the diagonal matrix B with $B_{i i}=A_{i i}$). Thus not much can be said about \mathfrak{A}_{1}. In examining \mathfrak{H}_{2} we are led to two kinds of counterexamples: (i) those transformations $S \in \mathfrak{H}_{2}$ which permute the entries of every $A \in M_{n}$ in some fixed way; (ii) those transformations $C \in \mathfrak{U}_{2}$ which map A into $K \circ A$ where $K \in M_{n}$ and $K \circ A$ is the Hadamard product of K and $A\left((K \circ A)_{i j}=\right.$ $\left.K_{i j} A_{i j} i, j=1, \ldots, n\right)$. We shall show that there exist non-trivial examples of both types (i) and (ii) in \mathfrak{A}_{2} but that no such examples exist in \mathfrak{U}_{3}. We remark here that Lemma 3.4 fails for $r=3$; for take $A=E_{12}+E_{34} \in M_{4}$ and note that although $E_{3}(x A+B)$ is at most linear in x for $B \in M_{4}, \rho(A)=2$. Thus there is no hope for proving Theorem 3.1 via Lemma 3.4 for $r=3$.

Denote by S_{r} that subset of \mathfrak{A}_{r} consisting of transformations that rearrange the elements of every $A \in M_{n}$ in some fixed way. Similarly, let H_{r} denote that subset of \mathfrak{A}_{r} consisting of transformations of the type $A \rightarrow K \circ A, K \in M_{n}$.

Theorem 4.1. If $S \in S_{2}$ then $S=\sigma_{1} \sigma_{2} \sigma_{3}$ where
(i) σ_{3} is a permutation of the main diagonal entries only.
(ii) σ_{2} is a permutation of the set of pairs of entries symmetrically located across the main diagonal.
(iii) σ_{1} interchanges symmetrically located entries.

The proof of Theorem 4.1 is a straightforward enumeration of the possibilities for images under S of matrices of the types $E_{i i}+E_{j j}, i<j$ and $E_{i j}$ $+E_{j i}, i<j$. We omit the details.

Theorem 4.2. No element of S_{2} of the types (i), (ii), (iii) in Theorem 4.1 is a direct product except the identity map and the transpose map.

Proof. This is done by showing that any map of the types $\sigma_{1}, \sigma_{2}, \sigma_{3}$ described in Theorem 4.1 maps some non-singular N into a singular matrix. First, suppose σ_{3} maps the (j, j) entry into the $\left(i_{j}, i_{j}\right)$ entry. Choose a permutation π of $1, \ldots, n$ such that $\pi(j)=j$ and $\pi(i) \neq i$ for $i \neq j$. Let N be the permutation matrix corresponding to π and observe that $\sigma_{3}(N)$ is singular. Next, suppose σ_{2} maps (i, j) and (j, i) into (k, l) and (l, k) respectively. Let

$$
N=E_{i j}+E_{j i}+\sum_{t \neq i, j} E_{t t}
$$

and note that N is non-singular and $\sigma_{2}(N)$ is singular. Next, suppose σ_{1} interchanges (i, j) and (j, i) and leaves fixed (k, l) and (l, k). It is not difficult to exhibit non-singular $N \in M_{3}$ or M_{4} for which $\sigma_{1}(N)$ is singular and we proceed to show that the examples in M_{n} for $n>4$ can be reduced to one of the cases $n=3$ or $n=4$. Suppose first that none of the equalities: $i=k, i=l$, $j=k, j=l$ holds. Then set $N_{1}=E_{i j}+E_{j i}+E_{k l}+E_{l k}$ and let the permutation π of $1, \ldots, n$ be ($i j$) ($2 i$) with corresponding permutation matrix
P. Then $P_{\sigma}\left(N_{1}\right) P^{\prime}=E_{12}+E_{21}+E_{k l}+E_{l k}$. Similarly obtain a permutation matrix Q such that $Q P \sigma_{1}\left(N_{1}\right) P^{\prime} Q^{\prime}=E_{12}+E_{21}+E_{34}+E_{43}$. We are then confronted essentially with the case $n=4$. If any of the equalities $i=k$, $i=l, j=k, j=l$ holds we can reduce the situation to the case $n=3$ by a similar device.

We may describe the structure of H_{2} as follows:
Theorem 4.3. If $C \in H_{2}, C: A \rightarrow K \circ A$ then $K_{i j}=\left(K_{j i}\right)^{-1}$ for $i \neq j$ and either $K_{i i}=1(i=1, \ldots, n)$ or $K_{i i}=-1$ for $i=1, \ldots, n$.

We omit the proof which consists of a straightforward consideration of the possibilities for the 2 -square sub-determinants of K.

We remark at this point that it seems plausible that \mathfrak{H}_{2} is generated by taking only products of elements of S_{2}, H_{2} and maps of the form $A \rightarrow P A P^{-1}$, $P \in G L_{n}$. We have been unable to prove this, however.

The situations for S_{3} and H_{3} are somewhat more involved but we shall use a sequence of lemmas to show that:
S_{3} consists only of the identity map, the transpose map, and maps of the form $A \rightarrow P A P^{\prime}$ for P a permutation matrix; H_{3} consists only of the identity map and the map $A \rightarrow K \circ A=\theta D A D^{-1}$ where D is a diagonal matrix and θ is a cube root of 1 . It is not known to us whether there exist other elements of \mathfrak{A}_{3} which are not direct products.

Lemma 4.1. If $A \in M_{n}$ and A has n elements 1 , the rest 0 , then for $n>r \geqslant 1$,

$$
E_{r}(A)=\binom{n}{r}
$$

if, and only if, $A=I_{n}$.
Proof. It is clear that since the r th order subdeterminants of A are integers that

$$
E_{r}(A) \leqslant \operatorname{tr}\left\{\left[C_{r}(A)\right]\left[C_{r}(A)\right]^{\prime}\right\}
$$

Hence

$$
E_{r}(A) \leqslant \operatorname{tr} C_{r}\left(A A^{\prime}\right)=E_{r}\left(\alpha_{1}^{2}, \ldots, \alpha_{n}^{2}\right)
$$

where $\alpha_{j}{ }^{2}, j=1, \ldots, n$ are the eigenvalues of $A A^{\prime}$. If $\rho(A)=k$ and $k<r$ it is clear that

$$
0=E_{r}(A)<\binom{n}{r} .
$$

Otherwise if $k \geqslant r$

$$
\begin{aligned}
E_{r}(A) & \leqslant E_{r}\left(\alpha_{1}^{2}, \ldots, \alpha_{n}^{2}\right)=E_{r}\left(\alpha_{1}^{2}, \ldots, \alpha_{k}^{2}\right) \\
& \leqslant\binom{ k}{r} k^{-r}\left\{E_{1}\left(\alpha_{1}^{2}, \ldots, \alpha_{k}^{2}\right)\right\}^{r} \\
& =\binom{k}{r} k^{-r}\left\{\operatorname{tr}\left(A A^{\prime}\right)\right\}^{r}=\binom{k}{r} k^{-r} n^{r} .
\end{aligned}
$$

We consider two cases:
(i) $k=n$. Then A is a permutation matrix and all eigenvalues lie on the unit circle. Then it is easily seen that

$$
E_{r}(A)=\binom{n}{r}
$$

implies all the eigenvalues are equal and the only permutation matrix with this property is I_{n}.
(ii) $k<n$. We shall show this is impossible. If $k=1$, then $r=1$ and $E_{1}(A)=\operatorname{tr}(A)=n$. But I_{n} is the only matrix satisfying this and this is a contradiction. On the other hand, if $k \geqslant 2$ then

$$
E_{r}(A) \leqslant\binom{ k}{r} k^{-r} n^{r}<\binom{n}{r}=E_{r}(A)
$$

and the proof is complete.
Lemma 4.2. If $S \in S_{3}$ and $n \geqslant 4$ then S either interchanges (i, j) and (j, i) for $i \neq j$ or leaves them fixed.

Proof. Since

$$
E_{3}\left(S\left(I_{n}\right)\right)=\binom{n}{3}
$$

we have $S\left(I_{n}\right)=I_{n}$ by Lemma 4.1. Thus we may modify S to obtain

$$
\sigma: A \rightarrow P S(A) P^{\prime}
$$

where $P \in M_{n}$ is such a permutation matrix that σ holds the main diagonal elements fixed. Now let

$$
N_{0}=0_{n-2} \oplus J_{2}
$$

where

$$
J_{2}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

We show first that $\sigma\left(N_{0}\right)=N_{0}$. If this were not the case we have two possible alternatives:
(i) $\sigma\left(N_{0}\right)$ has a 1 at some position (k, l) such that $k<1$ and $(k, l) \neq$ ($n-1, n$).
(ii) $\sigma\left(N_{0}\right)$ has a 1 at some position (k, l) such that $k>1$ and $(k, l) \neq(n$, $n-1)$.
In (i) let D be a diagonal matrix in M_{n-2} with 1 at (k, k) and $(n-3)$ zero's elsewhere on the diagonal. Then

$$
E_{3}\left(D \oplus J_{2}\right)=-1
$$

However $\sigma\left(D \oplus J_{2}\right)$ has at most two non-zero rows and hence

$$
E_{3}\left(\sigma\left(D \oplus J_{2}\right)\right)=0 .
$$

In a similar way we eliminate the alternative (ii). Hence σ either interchanges or leaves fixed the entries at $(n-1, n)$ and $(n, n-1)$. A similar argument for the other pairs of symmetrically located entries completes the proof.

Lemma 4.3. If $S \in S_{r}, r \geqslant 2$ and

$$
S: A \rightarrow U A V
$$

or

$$
S: A \rightarrow U A^{\prime} V
$$

then U and V are permutation matrices.
We omit the proof.
Theorem 4.4. If $S \in S_{3}$ and $n=p+2, p \geqslant 1$ then either

$$
S: A \rightarrow P A P^{\prime} \quad \text { for all } \quad A \in M_{n}
$$

or

$$
S: A \rightarrow P A^{\prime} P^{\prime} \quad \text { for all } \quad A \in M_{n}
$$

where $P \in M_{n}$ is a permutation matrix.
Proof. The proof is by induction on the integer p. For $p=1$ the result in (1, Theorem 2) shows that S is a direct product (modulo taking the transpose), and Lemma 4.3 combined with argument used in the latter part of the proof of Theorem 3.1 establishes that S has the above form. Now we modify S as in Lemma 4.2 to obtain $\sigma \in S_{3}$ where σ holds diagonal elements fixed. Assume the result for all integers up to $p>1$. Then if $C \in M_{n-1}=M_{(p-1)+2}$ we have by Lemma 4.2 that

$$
\sigma(0 \oplus C)=0 \oplus \sigma(C)
$$

and

$$
\begin{aligned}
E_{3}(\sigma(C)) & =E_{3}(0 \oplus \sigma(C))=E_{3}(\sigma(0 \oplus C)) \\
& =E_{3}(0 \oplus C)=E_{3}(C) .
\end{aligned}
$$

By the induction hypothesis and the fact that σ holds the diagonal elements fixed we see that if we consider σ as a mapping of $M_{n-1} \rightarrow M_{n-1}$ in the obvious way then

$$
\sigma: C \rightarrow C \text { for all } C \in M_{n-1}
$$

or

$$
\sigma: C \rightarrow C^{\prime} \text { for all } C \in M_{n-1} .
$$

Now it is clear that if $A \in M_{n}=M_{p+2}$ and $C_{i} \in M_{n-1}$ is the principal submatrix obtained by deleting row and column i of A then the above argument shows that

$$
\sigma\left(C_{i}\right)=C_{i}
$$

or

$$
\sigma\left(C_{i}\right)=C_{i}{ }^{\prime}
$$

Thus for each $A \in M_{n}$ it follows that

$$
\sigma(A)=A
$$

or

$$
\sigma(A)=A^{\prime},
$$

and the proof is complete.
Theorem 4.5. If $C \in H_{3}$ then there exists $D \in M_{n}$ such that

$$
C: A \rightarrow \theta D A D^{-1} \text { for all } A \in M_{n}
$$

where D is a diagonal matrix and $\theta^{3}=1$.
Proof. It suffices to show that there exist diagonal U and V in M_{n} such that $C(A)=U A V$ or $C(A)=U A^{\prime} V$ for then it is clear that $U_{i i}=\theta^{-1} V_{i i}{ }^{-1}$ for $i=1, \ldots, n$ and $\theta^{3}=1$. Now for each $\omega \in Q_{3 n}$ it is clear that we may consider C as a mapping of $M_{3} \rightarrow M_{3}$ by restricting C to the principal submatrix of each $A \in M_{n}$ corresponding to the indices of ω. Call the restricted mapping $C_{\omega}: M_{3} \rightarrow M_{3}$; and since C_{ω} preserves determinant it is a direct product:

$$
C_{\omega}: A \rightarrow U_{\omega} A V_{\omega} \text { for } A \in M_{3} .
$$

It is easy to check that U_{ω} and V_{ω} are diagonal by examining the images of $E_{i i} \in M_{3}, i=1,2,3$ and using the fact that $C_{\omega}(A)$ is a Hadamard product. Thus on each 3 -square principal submatrix C has the desired form. It will clearly suffice to show that $C: A \rightarrow K \circ A$ has the property $\rho(K)=1$. For then K has the form $K_{i j}=a_{i} b_{j} i, j=1, \ldots, n$. We show that every 2 -square submatrix of K is singular. Let ($\alpha_{i} \beta_{j}$) denote the submatrix of K involving rows $\alpha_{1} \alpha_{2}$ and columns β_{1}, β_{2}. Suppose $\left\{\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}\right\}$ involves fewer than 4 distinct integers. Then it is clear that $\left(\alpha_{i} \beta_{j}\right)$ is a part of some principal 3square submatrix whose row and column indices we will designate by

$$
\theta=\left\{\gamma_{1} \gamma_{2} \gamma_{3}\right\} .
$$

By the above argument C_{θ} has the form

$$
C_{\theta}: A \rightarrow U_{\theta} A V_{\theta} ; A \in M_{3}
$$

where U_{θ} and V_{θ} are diagonal with diagonal elements u_{1}, u_{2}, u_{3} and v_{1}, v_{2}, v_{3} respectively. It follows that for some $i_{1}, i_{2}, j_{1}, j_{2}$ that

$$
K_{\alpha_{s} \beta_{t}}=u_{i_{s} v_{j t}} s, t=1,2
$$

and hence that $\left(\alpha_{i} \beta_{j}\right)$ is singular. In case $\left\{\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}\right\}$ consists of 4 distinct integers we consider the two 3 -square principal submatrices corresponding to

$$
\mu=\left\{\alpha_{1}, \alpha_{2}, \beta_{1}\right\} \quad \text { and } \quad \sigma=\left\{\alpha_{1}, \alpha_{2}, \beta_{2}\right\}
$$

Again we see that

$$
\begin{aligned}
& C_{\mu}: A \rightarrow U_{\mu} A V_{\mu}, A \in M_{3} \\
& C_{\sigma}: A \rightarrow U_{\sigma} A V_{\sigma}, A \in M_{3}
\end{aligned}
$$

where $U_{\mu}, U_{\sigma}, V_{\mu}$ and V_{σ} are diagonal with main diagonals

$$
\left(u_{1}, u_{2}, u_{3}\right),\left(u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime}\right),\left(v_{1}, v_{2}, v_{3}\right),\left(v_{1}^{\prime}, v_{2}^{\prime}, v_{3}^{\prime}\right)
$$

respectively. We then obtain for some i_{1}, j_{1}, i_{2}.

$$
\begin{array}{ll}
K_{\alpha_{1} \beta_{1}}=u_{i_{1} v_{j_{1}}} & K_{\alpha_{1} \alpha_{1}}=u_{i_{1} v} v_{i_{1}} \\
K_{\alpha_{2} \beta_{1}}=u_{i_{2}} v_{j_{1}} & K_{a_{2} a_{1}}=u_{i_{2}} v_{i_{1}}
\end{array}
$$

and for some n_{1}, n_{2}, m_{2},

$$
\begin{array}{ll}
K_{\alpha_{1} \beta_{1}}=u_{n_{1} v^{\prime} v_{m 2}} & K_{\alpha_{1} \alpha_{1}}=u_{n_{1}}^{\prime} v_{n_{1}}^{\prime} \\
K_{\alpha_{2} \beta_{2}}=u_{n_{2} v^{\prime} v_{2}} & K_{\alpha_{2} \alpha_{1}}=u_{n_{2}}^{\prime} v_{n_{1}}^{\prime} .
\end{array}
$$

From these equalities we see that

$$
K_{\alpha_{1} \beta_{1}} / K_{\alpha_{2} \beta_{1}}=K_{\alpha_{1} \beta_{2}} / K_{\alpha_{2} \beta_{2}}
$$

and again ($\alpha_{i} \beta_{j}$) is singular.

Reference

1. M. Marcus and B. N. Moyls, Linear transformations on algebras of matrices, Can. J. Math., 11 (1959), 61-6.

University of British Columbia

[^0]: Received October 17, 1958. The work of the first author was supported by United States National Science Foundation Grant NSF-G5416. The work of the second author was supported by the National Research Council of Canada.

