LINEAR TRANSFORMATIONS ON ALGEBRAS OF MATRICES: THE INVARIANCE OF THE ELEMENTARY SYMMETRIC FUNCTIONS

MARVIN MARCUS AND ROGER PURVES

1. Introduction. In this paper we examine the structure of certain linear transformations T on the algebra of *n*-square matrices M_n into itself. In particular if $A \in M_n$ let $E_r(A)$ be the *r*th elementary symmetric function of the eigenvalues of A. Our main result states that if $4 \le r \le n - 1$ and $E_r(T(A)) = E_r(A)$ for $A \in M_n$ then T is essentially (modulo taking the transpose and multiplying by a constant) a similarity transformation:

$$T: A \to SAS^{-1}.$$

No such result as this is true for r = 1, 2 and we shall exhibit certain classes of counterexamples. These counterexamples fail to work for r = 3 and the structure of those T such that $E_3(T(A)) = E_3(A)$ for all $A \in M_n$ is unknown to us. In **(1)** it is established that those T which preserve the rank (determinant) of every matrix in M_n are essentially of the form $T: A \to PAQ$ where P and Q are non-singular, (PQ is unimodular). In the first part of what follows, we shall improve this result by requiring only that T preserves non-singularity. We remark that *in general we do not assume that* T *is multiplicative or antimultiplicative anywhere in the paper*.

We shall collect here the notation to be used throughout. For $A \in M_n$ let A' = transpose of A, $\rho(A) = \text{rank}$ of A, tr(A) = trace of A, $A_{ij} = \text{the}$ element in position (i, j) of A, $O_n = \text{the } n$ -square zero matrix, and $E_{ij} = \text{the}$ n-square matrix with 1 at position (i, j), 0 elsewhere. In addition if $A \in M_p$ and $B \in M_q$ we define $A \oplus B \in M_{p+q}$ to be the direct sum of A and B. If $1 \leq p \leq n$ then Q_{pn} will be the set of all sequences of p-tuples $\omega = (i_1, \ldots, i_p)$ where $1 \leq i_1 < i_2 < \ldots < i_p \leq n$. A transformation $T: M_n \to M_n$ will be called a direct product if there exists a scalar c and fixed U and V in M_n such that

$$T(A) = c UA V$$

or

$$T(A) = c U A' V$$

for all $A \in M_n$. This is motivated by the fact that the mapping $T: A \to UAV$ has a matrix representation $V' \times U$, the direct product of V' and U, with a

Received October 17, 1958. The work of the first author was supported by United States National Science Foundation Grant NSF-G5416. The work of the second author was supported by the National Research Council of Canada.

proper choice of co-ordinate system for M_n . We remark that the mapping $T: A \to A'$ cannot be accomplished by pre- and post-multiplication by fixed matrices U and V for all A. We shall also denote by e.v.(A) the set of all n eigenvalues of A counting multiplicities.

2. Linear maps of GL_n into itself. As usual, GL_n is the group of *n*-square non-singular matrices in M_n . We shall determine all T such that $T(GL_n) \subseteq GL_n$.

LEMMA 2.1. If $0 \neq A \in M_n$ then A is similar to a matrix B with $B_{ii} \neq 0$, i = 1, ..., n.

Proof. We may assume A is in Jordan form. It is known in general that A is similar to a matrix with tr(A)/n in position $(i, i), i = 1, \ldots, n$. Hence we may assume tr(A) = 0. If $A = E_{12}$ let u_1 be the vector with all entries 1 and let u_2 be the vector with first entry 1 - n and the remaining entries 1. Normalize u_1 and u_2 and let u_3, \ldots, u_n be a completion to an orthonormal basis. Let U be the orthogonal matrix with u_i as column i. Then the (i, i) entry of $UE_{12}U'$ is $u_{i1}u_{i2} \neq 0$. The proof is now completed by induction on n. If $A \in M_{n+1}$ is in Jordan form with zero trace we consider first the case that A is diagonal. Since $A \neq 0$ we can assume $A_{11} \neq 0$ and moreover the matrix $C \in M_n$ obtained by deleting row and column 1 of A is not 0_n . By induction choose $V \in M_n$ such that $(VCV^{-1})_{ii} \neq 0$ for $i = 1, \ldots, n$. Then

$$(1 \oplus V) \operatorname{A}(1 \oplus V^{-1}) = \operatorname{A}_{11} \oplus V C V^{-1}$$

has all non-zero diagonal elements. If A is not diagonal we can clearly assume $A_{12} = 1$ and the submatrix C above is not 0_n . As before we select $V \in M_n$ such that

$$P = (1 \oplus V) A (1 \oplus V^{-1})$$

has all non-zero entries on the diagonal with the possible exception of P_{11} . If $P_{11} = 0$ and b_{11} is the (1, 1) entry of VCV^{-1} then select $U \in M_2$ such that

$$U \begin{pmatrix} 0 & * \\ 0 & b_{11} \end{pmatrix} U^{-1}$$

has non-zero diagonal entries. Then

$$B = (U \oplus I_{n-1}) P(U^{-1} \oplus I_{n-1})$$

is the required matrix.

LEMMA 2.2. If
$$0 \neq A \in M_n$$
 then there is a $Z \in M_n$ such that
e.v. $(A + Z) \cap e.v.(Z) = 0$.

Proof. By Lemma 2.1. choose $P \in M_n$ such that $(P^{-1}AP)_{ii\neq 0}$ for $i = 1, \ldots, n$. Let X be defined as follows:

LINEAR TRANSFORMATIONS

$$\begin{array}{ll} X_{ii} = 1, & i = 1, \dots, n \\ X_{ij} = - (P^{-1}AP)_{ij}, & i > j \\ X_{ij} = 0, & i < j. \end{array}$$

Then X has all *n* eigenvalues 1 and $P^{-1}AP + X$ has eigenvalues $1 + (P^{-1}AP)_{ii}$ i = 1, ..., n none of which are 1. Then $Z = PXP^{-1}$ has the required property.

LEMMA 2.3. If $T(GL_n) \subseteq GL_n$ then T is non-singular.

Proof. We have that if

$$\det (xI_n - [T(I_n)]^{-1} T(A)) = 0$$

for some *x* then

$$\det (xI_n - A) = 0$$

for that *x*. In other words the distinct elements of e.v. $([T(I)]^{-1}T(A))$ form a subset of the distinct eigenvalues of *A*. Now suppose $0 \neq A \in M_n$ and T(A) = 0. Choose $Z \in M_n$ by Lemma 2.2 such that

e.v.
$$(Z) \cap e.v.(A + Z) = 0$$

Then

$$[T(I_n)]^{-1} T(A + Z) = [T(I_n)]^{-1} T(Z)$$

and the distinct eigenvalues of $[T(I_n)]^{-1}T(Z)$ form a subset of the distinct eigenvalues of both A + Z and Z. This shows that A = 0 if T(A) = 0 and T is non-singular.

LEMMA 2.4. If $T(GL_n) \subseteq GL_n$ and $T(I_n) = I_n$ then e.v. (T(A)) = e.v.(A)for all $A \in M_n$.

Proof. As in the proof of Lemma 2.3, we know that if T(A) has a set of n distinct eigenvalues then

$$\mathbf{e.v.}(A) = \mathbf{e.v.}(T(A)).$$

Since T^{-1} exists we can say that if B has n distinct eigenvalues then

$$e.v.(B) = e.v.(T^{-1}(B)).$$

If T(A) has multiple eigenvalues choose a sequence B_j converging to T(A) such that B_j has distinct eigenvalues. The proof is completed using the fact that the eigenvalues depend continuously on the elements.

THEOREM 2.1. If $T(GL_n) \subseteq GL_n$ then there exist U and V in GL_n such that either

$$T: A \rightarrow UAV$$
 for all $A \in M_n$

or

$$T: A \rightarrow UA'V$$
 for all $A \in M_n$.

Proof. By Lemma 2.4 the map

 $\phi: A \rightarrow [T(I_n)]^{-1}T(A)$

satisfies

e.v.
$$(\phi(A)) = e.v.(A)$$

for all $A \in M_n$. But by (1: Theorem 2),

or

$$\phi(A) = UA'U^{-1}.$$

 $\phi(A) = UA U^{-1}$

Multiplication on the left by $T(I_n)$ completes the proof.

3. Linear maps preserving the symmetric functions. We now determine the structure of those linear T on M_n to M_n such that for each $A \in M_n$

$$E_{\tau}(A) = E_{\tau}(T(A)).$$

For each r let the class of all such T be denoted by \mathfrak{A}_r . It is clear that if T, $S \in \mathfrak{A}_r$ then $TS \in \mathfrak{A}_r$. Also if $T \in \mathfrak{A}_r$ and T^{-1} exists then $T^{-1} \in \mathfrak{A}_r$; for since any B is in the range of T we have

$$E_r(B) = E_r(TT^{-1}(B)) = E_r(T^{-1}(B)).$$

Our first result shows that \mathfrak{A}_r is actually a multiplicative group for $r \ge 2$.

LEMMA 3.1. If $r \ge 2$ and $T \in \mathfrak{A}_r$ then T^{-1} exists. Thus \mathfrak{A}_r is a multiplicative group for $r \ge 2$.

Proof. Suppose $T(A) = O_n$ and $A \neq O_n$. Then

$$E_r(A + X) = E_r(T(A + X)) = E_r(T(X)) = E_r(X)$$

for any $X \in M_n$. By Lemma 2.1 there exists $P \in GL_n$ such that $(P^{-1}AP)_{ii} \neq 0$ for i = 1, ..., n.

Define $X \in M_n$ as follows:

 $\begin{array}{ll} X_{ii} = x & i = 1, \dots, r-1 \\ X_{ii} = 0 & i = r, \dots, n \\ X_{ij} = 0 & i < j \\ X_{ij} = - (P^{-1}AP)_{ij} & i > j. \end{array}$

Then

$$f_{\tau}(x) = E_{\tau}(P^{-1}AP + X) = E_{\tau}(A + PXP^{-1}) = E_{\tau}(PXP^{-1}) = E_{\tau}(X) = 0.$$

Thus the coefficient of x^{r-1} in the polynomial $f_r(x)$ must be 0. This means that the sum of the last n - r + 1 entries on the main diagonal of $P^{-1}AP$ is 0. Similarly we can show that the sum of any n - r + 1 is 0. But since $r \ge 2$, n - r + 1 < n and it is clear that $(P^{-1}AP)_{ii} = 0$ (i = 1, ..., n). This completes the proof.

LEMMA 3.2. If $A \in M_n$ and $A \neq 0$ then

deg det
$$(xA + B) \leq 1$$
 for all $B \in M_n$

if, and only if, $\rho(A) = 1$.

Proof. We can clearly assume that A is in Jordan canonical form and the "if" part of the result is obvious.

In the other direction we show first that A has at most one non-zero eigenvalue. Suppose

$$\lambda_{i_1},\ldots,\lambda_{i_k}$$

are the non-zero eigenvalues of A in positions $(i_t, i_t), t = 1, ..., k$. Let B be a diagonal matrix with 0 at positions $(i_t, i_t) t = 1, ..., k$ and 1 elsewhere on the main diagonal. Then

$$\deg \det \left(x A + B \right) = k = 1.$$

Suppose now that A has the single non-zero eigenvalue λ which we may assume is in position (1, 1). To show that $\rho(A) = 1$ it will suffice to show that the elements along the superdiagonal of A are all 0. This is clear for n = 2. If n > 2 let α be the largest integer such that there is a 1 at position (α , $\alpha + 1$) of A. Define B as follows:

$$\begin{array}{ll} B_{ii} = 0 & i = \alpha, \alpha + 1 \\ B_{ii} = 1 & i \neq \alpha, \alpha + 1 \\ B_{\alpha+1,\alpha} = 1 & \\ B_{ij} = 0 & \text{elsewhere.} \end{array}$$

Then

$$\det (xA + B) = -\lambda x^2 - x.$$

Thus there must be a 0 at $(\alpha, \alpha + 1)$ and a repetition of this procedure shows that there are no 1's along the superdiagonal when $\lambda \neq 0$.

Now assume that $\lambda = 0$ and that the (1, 2) entry of A is 1. Define α as above and if $\alpha > 2$ define B as follows:

$B_{ii}=0$	$i = 1, 2, \alpha, \alpha + 1$
$B_{ii} = 1$	elsewhere on the main diagonal
$B_{21} = 1$	
$B_{ij}=0$	elsewhere off the main diagonal.

Then

$$\det (xA + B) = x^2$$

In this way all elements (i, i + 1) for 2 < i < n - 1 are shown to be 0. To settle position (2, 3) use the test matrix

$$B = E_{31} \oplus I_{n-3}.$$

for $E_{31} \in M_3$. This completes the proof.

LEMMA 3.3. If $3 \leq r < n$ and $A \in M_n$, $A \neq O_n$ then the condition deg E_r $(xA + B) \leq 1$

for all $B \in M_n$ implies that A has at most one non-zero eigenvalue.

Proof. We can again assume A is in Jordan canonical form with eigenvalues $\lambda_1, \ldots, \lambda_n$. Let z_1, \ldots, z_n be indeterminates and let B be the diagonal matrix with $B_{ii} = z_i$ $i = 1, \ldots, n$. Then

$$E_{\tau}(xA + B) = \sum_{\omega = (i, \dots, i_{\tau}) \in Q_{TR}} \prod_{k=1}^{r} (x\lambda_{i_{k}} + z_{i_{k}})$$
$$= \sum_{t=0}^{r} \left(\sum_{\omega \in Q_{TR}} \sum_{s_{t} \subseteq \omega} \prod_{\alpha \in s_{t}} \lambda_{\alpha} \prod_{\beta \in \omega - s_{t}} z_{\beta} \right) x^{t}$$

where

means the sum over all subsets s_t of ω with t members and

$$\prod_{\beta \in \omega - s_i}$$

 $\sum_{i \in W}$

means the product over those elements of ω not in s_t . Hence for $t \ge 2$ we have that the coefficient of x^t in the above sum must be 0 for any choice of z_1 , \ldots, z_n . From this it is not difficult to show that the *t*th elementary symmetric function of any n - r + t of the λ_j is 0. Choosing t = 2 we have that if all the λ_j are equal they must all be 0. Assume then that for some μ , σ , $\lambda_{\sigma} \neq \lambda_{\mu}$. Since $r \ge 3$ we have that k = n - r + 2 < n. Let

$$\lambda_{i_1},\ldots,\lambda_{i_{k-1}}$$

be a choice of k - 1 of the eigenvalues with $i_j \neq \sigma, \mu$ for j = 1, ..., k - 1. Then

 $0 = E_2 (\lambda_{\sigma}, \lambda_{i_1}, \ldots, \lambda_{i_{k-1}}) = \lambda_{\sigma} E_1(\lambda_{i_1}, \ldots, \lambda_{i_{k-1}}) + E_2 (\lambda_{i_1}, \ldots, \lambda_{i_{k-1}})$

and a similar relation holds for $\lambda_{\mu}.$ We then have

$$(\lambda_{\sigma} - \lambda_{\mu}) E_1 (\lambda_{i_1}, \ldots, \lambda_{i_{k-1}}) = 0.$$

If r > 3 then k - 1 < n - 2 and this last relation implies that $\lambda_i = 0$ for $i \neq \sigma, \mu$. In this case

$$\lambda_{\sigma}\lambda_{\mu} = 0$$

and A has at most one non-zero eigenvalue. To settle the case r = 3 let $E_i(\hat{\lambda}_j)$ denote the *t*th elementary symmetric function of all the λ_i for $i \neq j$. We first note that

$$E_2(\lambda_1,\ldots,\lambda_n) = \lambda_j E_1(\hat{\lambda}_j) + E_2(\hat{\lambda}_j) = \lambda_j E_1(\hat{\lambda}_j).$$

Summing on j we have

$$n E_2(\lambda_1, \ldots, \lambda_n) = 2 E_2(\lambda_1, \ldots, \lambda_n) = 0$$

Thus

$$\lambda_j E_1(\hat{\lambda}_j) = 0.$$

Setting

$$s = \sum_{j=1}^{n} \lambda_j$$

we have

$$\lambda_j^2 = \lambda_j s, \lambda_j (\lambda_j - s) = 0$$

and thus the non-zero eigenvalues of A are all equal to s. This completes r = 3.

LEMMA 3.4. Assume
$$4 \leq r \leq n+3$$
 and let $A \in M_{n+3}$, $A \neq O_n$. Then
 $\deg E_r(xA + B) \leq 1$ for all $B \in M_{n+3}$

if, and only if, $\rho(A) = 1$.

Proof. The "if" part of the theorem is clear. To prove the "only if" part we can assume A is in Jordan canonical form and proceed by induction on n. For n = 1 or r = n + 3 Lemma 3.2 gives the result. Thus assume r < n + 4 and by Lemma 3.3 we know that A has at most one non-zero eigenvalue λ which we can assume is in position (1, 1). Call the (2, 3) entry ϵ (either 1 or 0). Define B to be the matrix with 1 in position (3, 2) and r - 3 1's in any of the diagonal positions (i, i) for i > 3, 0's elsewhere. Then

$$E_r(xA + B) = \lambda \ \epsilon \ x^2.$$

Consider first the situation in which $\lambda \neq 0$. Then $\epsilon = 0$ and row 2 and column 2 of A are both zero. If we restrict B to those matrices with row 2 and column 2 zero we can apply the induction hypothesis to conclude that the submatrix of A obtained by deleting row 2 and column 2 has rank 1. Thus $\rho(A) = 1$ as well. In case $\lambda = 0$ let ϵ_1 and ϵ_2 be the (1, 2) and (n + 3, n + 4) entries of A respectively. Define B as follows:

Then

$$E_{\tau}(xA + B) = \epsilon_1 \epsilon_2 x^2$$

and we may assume without loss of generality that $\epsilon_2 = 0$. But then we can apply the induction argument as before to obtain $\rho(A) = 1$.

LEMMA 3.5. If $4 \leq r \leq n$ and $T \in \mathfrak{A}_r$ and $\rho(A) = 1$ for $A \in M_n$ then $\rho(T(A)) = 1$.

Proof. Consider the polynomial $f_{\tau}(x) = E_{\tau}(xT(A) + B)$. Since $T^{-1} \in \mathfrak{A}_{\tau}$

we have $f_r(x) = E_r(xA + T^{-1}(B))$. Since $\rho(A) = 1$, deg $f_r(x) \leq 1$ for all B, and by Lemma 3.4 $\rho(T(A)) = 1$.

LEMMA 3.6. If $4 \leq r \leq n$ and $T \in \mathfrak{A}_r$ then for every $A \in M_n$

$$\rho(T(A)) = \rho(A).$$

Proof. Let $\rho(A) = k$ and select $A_j j = 1, ..., k$ such that $\rho(A_j) = 1$ and $A = \sum_{j=1}^k A_j$.

Then by Lemmas 3.5 and 3.1

$$\rho(T(A)) \leqslant k = \rho(A) = \rho(T^{-1}(T(A)) \leqslant \rho(T(A)).$$

We are now in a position to prove our main result concerning the structure of \mathfrak{A}_r .

THEOREM 3.1. If $4 \leq r \leq n-1$ and $T \in \mathfrak{A}_r$ then there exist U and V in M_n such that either

(i) $T: A \to UAV \text{ for all } A \in M_n$

(ii) $T: A \to UA'V$ for all $A \in M_n$

where

(iii)
$$UV = e^{i \phi} \mathbf{I}_n, r \phi \equiv 0 \ (2 \pi).$$

Proof. The existence of U and V satisfying (i) and (ii) is an immediate consequence of Lemma 3.6 and Theorem 2.1. It is clear that it suffices to show that $E_r(PB) = E_r(B)$ for all $B \in M_n$ implies that $P = e^{i\phi}I_n$ with $r\phi \equiv 0(2\pi)$. Letting $C_r(B)$ denote the *r*th compound of B we have

tr
$$C_r(PB) = \text{tr } C_r(B)$$
 for all $B \in M_n$.

Hence

$$\operatorname{tr}\{[C_r(P) - I_{\binom{n}{r}}] C_r(B)\} = 0.$$

This implies immediately that

$$C_{\tau}(P) = I_{\binom{n}{\tau}}.$$

By the polar factorization theorem let P = UH where U is unitary and H is positive definite Hermitian (p. d. h.). Then

$$C_{\tau}(U)C_{\tau}(H) = I_{\binom{n}{\tau}}$$

implies that $C_r(U)$ is both unitary and p. d. h. Hence every eigenvalue of $C_r(U)$ is 1 and this in turn implies that every eigenvalue of U is $e^{i\phi}$ for $r\phi \equiv 0$ (2π). Similarly we show $H = I_n$ and the result is at hand.

4. The structure of \mathfrak{A}_j for j = 1, 2, 3. At this point Theorem 3.1 together with the results in (1) completely settle the question of the structure of \mathfrak{A}_r when $r \ge 4$. It is easy to construct singular $T \in \mathfrak{A}_1$ (map A into the diagonal matrix B with $B_{ii} = A_{ii}$). Thus not much can be said about \mathfrak{A}_1 . In examining \mathfrak{A}_2 we are led to two kinds of counterexamples: (i) those transformations $S \in \mathfrak{A}_2$ which permute the entries of every $A \in M_n$ in some fixed way; (ii) those transformations $C \in \mathfrak{A}_2$ which map A into $K \circ A$ where $K \in M_n$ and $K \circ A$ is the Hadamard product of K and A ($(K \circ A)_{ij} = K_{ij}A_{ij}i, j = 1, \ldots, n$). We shall show that there exist non-trivial examples of both types (i) and (ii) in \mathfrak{A}_2 but that no such examples exist in \mathfrak{A}_3 . We remark here that Lemma 3.4 fails for r = 3; for take $A = E_{12} + E_{34} \in M_4$ and note that although E_3 (x A + B) is at most linear in x for $B \in M_4$, $\rho(A) = 2$. Thus there is no hope for proving Theorem 3.1 via Lemma 3.4 for r = 3.

Denote by S_r that subset of \mathfrak{A}_r consisting of transformations that rearrange the elements of every $A \in M_n$ in some fixed way. Similarly, let H_r denote that subset of \mathfrak{A}_r consisting of transformations of the type $A \to K \circ A$, $K \in M_n$.

THEOREM 4.1. If $S \in S_2$ then $S = \sigma_1 \sigma_2 \sigma_3$ where

(i) σ_3 is a permutation of the main diagonal entries only.

(ii) σ_2 is a permutation of the set of pairs of entries symmetrically located across the main diagonal.

(iii) σ_1 interchanges symmetrically located entries.

The proof of Theorem 4.1 is a straightforward enumeration of the possibilities for images under S of matrices of the types $E_{ii} + E_{jj}$, i < j and $E_{ij} + E_{ji}$, i < j. We omit the details.

THEOREM 4.2. No element of S_2 of the types (i), (ii), (iii) in Theorem 4.1 is a direct product except the identity map and the transpose map.

Proof. This is done by showing that any map of the types σ_1 , σ_2 , σ_3 described in Theorem 4.1 maps some non-singular N into a singular matrix. First, suppose σ_3 maps the (j, j) entry into the (i_j, i_j) entry. Choose a permutation π of $1, \ldots, n$ such that $\pi(j) = j$ and $\pi(i) \neq i$ for $i \neq j$. Let N be the permutation matrix corresponding to π and observe that $\sigma_3(N)$ is singular. Next, suppose σ_2 maps (i, j) and (j, i) into (k, l) and (l, k) respectively. Let

$$N = E_{ij} + E_{ji} + \sum_{t \neq i, j} E_{tt}$$

and note that N is non-singular and $\sigma_2(N)$ is singular. Next, suppose σ_1 interchanges (i, j) and (j, i) and leaves fixed (k, l) and (l, k). It is not difficult to exhibit non-singular $N \in M_3$ or M_4 for which $\sigma_1(N)$ is singular and we proceed to show that the examples in M_n for n > 4 can be reduced to one of the cases n = 3 or n = 4. Suppose first that none of the equalities: i = k, i = l, j = k, j = l holds. Then set $N_1 = E_{ij} + E_{ji} + E_{ki} + E_{ik}$ and let the permutation π of $1, \ldots, n$ be (i j) (2 i) with corresponding permutation matrix P. Then $P \sigma(N_1) P' = E_{12} + E_{21} + E_{kl} + E_{lk}$. Similarly obtain a permutation matrix Q such that $QP\sigma_1(N_1)P'Q' = E_{12} + E_{21} + E_{34} + E_{43}$. We are then confronted essentially with the case n = 4. If any of the equalities i = k, i = l, j = k, j = l holds we can reduce the situation to the case n = 3 by a similar device.

We may describe the structure of H_2 as follows:

THEOREM 4.3. If $C \in H_2$, $C: A \to K \circ A$ then $K_{ij} = (K_{ji})^{-1}$ for $i \neq j$ and either $K_{ii} = 1$ (i = 1, ..., n) or $K_{ii} = -1$ for i = 1, ..., n.

We omit the proof which consists of a straightforward consideration of the possibilities for the 2-square sub-determinants of K.

We remark at this point that it seems plausible that \mathfrak{A}_2 is generated by taking only products of elements of S_2 , H_2 and maps of the form $A \to PAP^{-1}$, $P \in GL_n$. We have been unable to prove this, however.

The situations for S_3 and H_3 are somewhat more involved but we shall use a sequence of lemmas to show that:

 S_3 consists only of the identity map, the transpose map, and maps of the form $A \rightarrow PAP'$ for P a permutation matrix; H_3 consists only of the identity map and the map $A \rightarrow K \circ A = \theta DAD^{-1}$ where D is a diagonal matrix and θ is a cube root of 1. It is not known to us whether there exist other elements of \mathfrak{A}_3 which are not direct products.

LEMMA 4.1. If $A \in M_n$ and A has n elements 1, the rest 0, then for $n > r \ge 1$,

$$E_r(A) = \binom{n}{r}$$

if, and only if, $A = I_n$.

Proof. It is clear that since the rth order subdeterminants of A are integers that

$$E_r(A) \leq \operatorname{tr} \left\{ \left[C_r(A) \right] \left[C_r(A) \right]' \right\}.$$

Hence

$$E_{\tau}(A) \leq \operatorname{tr} C_{\tau}(AA') = E_{\tau}(\alpha_1^2, \ldots, \alpha_n^2)$$

where α_j^2 , j = 1, ..., n are the eigenvalues of AA'. If $\rho(A) = k$ and k < r it is clear that

$$0 = E_r(A) < \binom{n}{r}.$$

Otherwise if $k \ge r$

$$E_r(A) \stackrel{\P}{\underset{\sim}{\sim}} \leqslant E_r(\alpha_1^2, \dots, \alpha_n^2) = E_r(\alpha_1^2, \dots, \alpha_k^2)$$
$$\leqslant \binom{k}{r} k^{-r} \{E_1(\alpha_1^2, \dots, \alpha_k^2)\}^r$$
$$= \binom{k}{r} k^{-r} \{\operatorname{tr}(AA')\}^r = \binom{k}{r} k^{-r} n^r.$$

We consider two cases:

(i) k = n. Then A is a permutation matrix and all eigenvalues lie on the unit circle. Then it is easily seen that

$$E_r(A) = \binom{n}{r}$$

implies all the eigenvalues are equal and the only permutation matrix with this property is I_n .

(ii) k < n. We shall show this is impossible. If k = 1, then r = 1 and $E_1(A) = \text{tr } (A) = n$. But I_n is the only matrix satisfying this and this is a contradiction. On the other hand, if $k \ge 2$ then

$$E_r(A) \leqslant \binom{k}{r} k^{-r} n^r < \binom{n}{r} = E_r(A)$$

and the proof is complete.

LEMMA 4.2. If $S \in S_3$ and $n \ge 4$ then S either interchanges (i, j) and (j, i) for $i \ne j$ or leaves them fixed.

Proof. Since

$$E_3(S(I_n)) = \binom{n}{3}$$

we have $S(I_n) = I_n$ by Lemma 4.1. Thus we may modify S to obtain

$$\sigma: A \to PS(A)P'$$

where $P \in M_n$ is such a permutation matrix that σ holds the main diagonal elements fixed. Now let

$$N_0 = 0_{n-2} \oplus J_2$$

where

$$J_2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

We show first that $\sigma(N_0) = N_0$. If this were not the case we have two possible alternatives:

(i) $\sigma(N_0)$ has a 1 at some position (k, l) such that k < 1 and $(k, l) \neq (n - 1, n)$.

(ii) $\sigma(N_0)$ has a 1 at some position (k, l) such that k > 1 and $(k, l) \neq (n, n-1)$.

In (i) let D be a diagonal matrix in M_{n-2} with 1 at (k, k) and (n-3) zero's elsewhere on the diagonal. Then

$$E_3(D \oplus J_2) = -1.$$

However $\sigma(D \oplus J_2)$ has at most two non-zero rows and hence

$$E_3(\sigma(D \oplus J_2)) = 0.$$

In a similar way we eliminate the alternative (ii). Hence σ either interchanges or leaves fixed the entries at (n - 1, n) and (n, n - 1). A similar argument for the other pairs of symmetrically located entries completes the proof.

LEMMA 4.3. If $S \in S_r$, $r \ge 2$ and

 $S: A \rightarrow UAV$

or

 $S: A \rightarrow UA'V$

then U and V are permutation matrices.

We omit the proof.

THEOREM 4.4. If $S \in S_3$ and n = p + 2, $p \ge 1$ then either

 $S: A \rightarrow PAP'$ for all $A \in M_n$

or

 $S: A \rightarrow PA'P'$ for all $A \in M_n$

where $P \in M_n$ is a permutation matrix.

Proof. The proof is by induction on the integer p. For p = 1 the result in **(1**, Theorem 2) shows that S is a direct product (modulo taking the transpose), and Lemma 4.3 combined with argument used in the latter part of the proof of Theorem 3.1 establishes that S has the above form. Now we modify S as in Lemma 4.2 to obtain $\sigma \in S_3$ where σ holds diagonal elements fixed. Assume the result for all integers up to p > 1. Then if $C \in M_{n-1} = M_{(p-1)+2}$ we have by Lemma 4.2 that

$$\sigma(0 \oplus C) = 0 \oplus \sigma(C)$$

and

$$E_3(\sigma(C)) = E_3(0 \oplus \sigma(C)) = E_3(\sigma(0 \oplus C))$$

= $E_3(0 \oplus C) = E_3(C).$

By the induction hypothesis and the fact that σ holds the diagonal elements fixed we see that if we consider σ as a mapping of $M_{n-1} \to M_{n-1}$ in the obvious way then

$$\sigma: C \to C$$
 for all $C \in M_{n-1}$

or

$$\sigma: C \to C'$$
 for all $C \in M_{n-1}$.

Now it is clear that if $A \in M_n = M_{p+2}$ and $C_i \in M_{n-1}$ is the principal submatrix obtained by deleting row and column i of A then the above argument shows that

or

$$\sigma(C_i) = C_i'.$$

 $\sigma(C_i) = C_i$

Thus for each $A \in M_n$ it follows that

 $\sigma(A) = A$

or

$$\sigma(A) = A',$$

and the proof is complete.

THEOREM 4.5. If $C \in H_3$ then there exists $D \in M_n$ such that

$$C: A \rightarrow \theta \ DAD^{-1}$$
 for all $A \in M_n$

where D is a diagonal matrix and $\theta^3 = 1$.

Proof. It suffices to show that there exist diagonal U and V in M_n such that C(A) = UAV or C(A) = UA'V for then it is clear that $U_{ii} = \theta^{-1}V_{ii}^{-1}$ for $i = 1, \ldots, n$ and $\theta^3 = 1$. Now for each $\omega \in Q_{3n}$ it is clear that we may consider C as a mapping of $M_3 \rightarrow M_3$ by restricting C to the principal submatrix of each $A \in M_n$ corresponding to the indices of ω . Call the restricted mapping $C_{\omega}: M_3 \to M_3$; and since C_{ω} preserves determinant it is a direct product:

$$C_{\omega}: A \to U_{\omega}A V_{\omega}$$
 for $A \in M_3$.

It is easy to check that U_{ω} and V_{ω} are diagonal by examining the images of $E_{ii} \in M_3$, i = 1, 2, 3 and using the fact that $C_{\omega}(A)$ is a Hadamard product. Thus on each 3-square principal submatrix C has the desired form. It will clearly suffice to show that $C: A \to K \circ A$ has the property $\rho(K) = 1$. For then K has the form $K_{ij} = a_i b_j i, j = 1, ..., n$. We show that every 2-square submatrix of K is singular. Let $(\alpha_i \beta_j)$ denote the submatrix of K involving rows $\alpha_1 \alpha_2$ and columns β_1, β_2 . Suppose $\{\alpha_1, \alpha_2, \beta_1, \beta_2\}$ involves fewer than 4 distinct integers. Then it is clear that $(\alpha_i \beta_j)$ is a part of some principal 3square submatrix whose row and column indices we will designate by

$$\theta = \{\gamma_1\gamma_2\gamma_3\}.$$

By the above argument C_{θ} has the form

$$C_{\theta}: A \rightarrow U_{\theta}A V_{\theta}; A \in M_3$$

where U_{θ} and V_{θ} are diagonal with diagonal elements u_1 , u_2 , u_3 and v_1 , v_2 , v_3 respectively. It follows that for some i_1, i_2, j_1, j_2 that

$$K_{\alpha_s\beta_t} = u_{is}v_{jt} \ s, t = 1, 2$$

and hence that $(\alpha_i \beta_i)$ is singular. In case $\{\alpha_1, \alpha_2, \beta_1, \beta_2\}$ consists of 4 distinct integers we consider the two 3-square principal submatrices corresponding to

$$\mu = \{\alpha_1, \alpha_2, \beta_1\}$$
 and $\sigma = \{\alpha_1, \alpha_2, \beta_2\}$.

Again we see that

$$C_{\mu} : A \to U_{\mu} A V_{\mu}, A \in M_{3}$$
$$C_{\sigma} : A \to U_{\sigma} A V_{\sigma}, A \in M_{3}$$

where U_{μ} , U_{σ} , V_{μ} and V_{σ} are diagonal with main diagonals

$$(u_1, u_2, u_3), (u'_1, u'_2, u'_3), (v_1, v_2, v_3), (v'_1, v'_2, v'_3)$$

respectively. We then obtain for some i_1, j_1, i_2 .

$$K_{\alpha_{1}\beta_{1}} = u_{i_{1}}v_{j_{1}} \qquad K_{\alpha_{1}\alpha_{1}} = u_{i_{1}}v_{i_{1}}$$
$$K_{\alpha_{2}\beta_{1}} = u_{i_{2}}v_{j_{1}} \qquad K_{\alpha_{2}\alpha_{1}} = u_{i_{2}}v_{i_{1}}$$

and for some n_1 , n_2 , m_2 ,

$$\begin{aligned} K_{\alpha_1\beta_1} &= u'_{n_1}v'_{m_2} & K_{\alpha_1\alpha_1} &= u'_{n_1}v'_{n_1} \\ K_{\alpha_2\beta_2} &= u'_{n_2}v'_{m_2} & K_{\alpha_2\alpha_1} &= u'_{n_2}v'_{n_1}. \end{aligned}$$

From these equalities we see that

$$K_{\alpha_1\beta_1}/K_{\alpha_2\beta_1} = K_{\alpha_1\beta_2}/K_{\alpha_2\beta_2}$$

and again $(\alpha_i \beta_j)$ is singular.

Reference

1. M. Marcus and B. N. Moyls, Linear transformations on algebras of matrices, Can. J. Math., 11 (1959), 61-6.

University of British Columbia

.