
AFFINE SUBPLANES OF FINITE 
PROJECTIVE PLANES 
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I n t r o d u c t i o n . Let T be a finite projective plane of order n containing a 
finite projective subplane 7r* of order u < n. Bruck has shown (1, p . 398) 
t h a t if 7T contains a point t h a t does not lie on any line of 7r*, then n > u2 + u, 
while if every point of T lies on a line of 7r* then n = u2. 

Let T be a finite projective plane of order n containing a finite affine sub-
plane 7T0 of order m < n. Ostrom and Sherk have shown (5, p . 551) t h a t if 
7T contains a point t h a t does not lie on any line of 7r0, then n > m2 — 1, while 
if every point of T lies on a line of 7r0, then m2 — l > w > m 2 — m + 1, 
except for the special case m — 3, n = 4. 

In this paper we deal only with the case in which every point of T lies on 
a line of 7r0, except in § 6. If we write n = m2 — 1 — k, the above result 
s ta tes t h a t 0 < k < m — 2, except when m — 3, n = 4. We prove here t h a t 

k + 1 < \{m + 1) except when m = 3, k — 4, n = 4, 

and 

k + 1 > (m + 1)* except when m = 2, & = 0, n = 3. 

We also slightly improve this second inequality in certain cases, after a deeper 
investigation of the s t ructure of T (cf. § 1). 

Examples of planes of this type are known to exist when m = 3, n = 4 
and when m = 3, n = 7 (§ 1, and 5, p . 556), also in the trivial case m = 2, 
^ = 3. We find no new examples of such planes in this paper. However, the 
above inequalities show t h a t n cannot be a square and the results of § 6 
(quoted in the next paragraph) , show tha t T cannot be Desarguesian, except 
in the examples already known. This restricts the choice of IT in any search 
for new examples. 

In § 6 we assume tha t T is Desarguesian (finite or infinite) and we drop 
the restriction t ha t every point of T lies on a line of 7r0. We show t h a t if T0 

has order greater than 3, then 7r0 also is Desarguesian, t h a t the lines of a 
parallel-class in 7r0 all meet a t a common vertex in ir, t h a t the vertices of 
all parallel-classes are collinear in x, and t h a t in the finite case n is a power 
of m. Ostrom and Sherk have shown (5, p . 556) t h a t these results are no t 
always t rue if m = 3 (except t h a t 7r0 mus t of course be Desarguesian). 
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For ease of reference, results will be numbered consecutively, irrespective 
of whether they are called theorems or lemmas. 

I should like to thank F. A. Sherk and the referee for their helpful sug­
gestions. 

1. Basic definitions and theorems. A projective plane is a system of 
elements called points and lines, together with a relation of incidence, satis­
fying the following axioms: 

(i) Any two distinct points are incident with just one line, 
(ii) Any two distinct lines are incident with just one point. 

(iii) There exist four points, no three of which are incident with the same 
line. 

An affine plane is a system of elements called points and lines, together with 
a relation of incidence, satisfying the following axioms: 

(i) Any two distinct points are incident with just one line, 
(ii) Given a line I and a point P not incident with /, there exists exactly 

one line V incident with P which does not meet I (two lines meet if 
they are incident with the same point), 

(iii) There exist three points not all incident with the same line. 
We shall use the usual terminology of incidence, namely "lies on," "passes 

through," "collinear," "concurrent," etc. With this terminology the axioms 
assume a more familiar look. 

Two lines of an affine plane that do not meet are called parallel. 
A projective or affine plane is finite if it contains only a finite number of 

points and lines. 
Axiom (iii) in each case is used to exclude trivial uninteresting planes, such 

as that represented diagrammatically in Figure 1, which satisfies axioms (i) 
and (ii) for projective planes. 

FIGURE 1 

THEOREM 1.1 (1, p. 348). 

(a) If one line of a finite projective plane w contains n + 1 points, then 
n > 2 and: 

Every line of -K contains n + 1 points. 
Through every point of ir there pass n + 1 lines. 
The plane w contains n2 + n + 1 points and n2 + n + 1 lines. 
(b) If one line of a finite affine plane T0 contains m points, then m > 2 and: 
Every line of TO contains m points. 
Through every point of 7r0 there pass m + 1 lines. 
The plane ir0 contains m2 points and m2 + m lines. 
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The lines of 7r0 can be divided into m + 1 mutually exclusive parallel-classes 
containing m lines each, two lines belonging to the same parallel-class if and only 
if they are parallel. 

Only (a) is proved in (1), but (b) can be proved similarly. 
If n and m are defined as in the above theorem, we call T a projective plane 

of order n and 7r0 an affine plane of order m. In an affine plane, a parallel class 
consists of a set of lines, every pair of which are parallel. Lines from distinct 
parallel-classes intersect. 

Theorem 1.1 plays a fundamental part in any discussion of finite planes. I t 
will not be quoted explicitly each time it is used. 

An important question about finite planes is this. Given an integer n, how 
many types of projective or affine planes of order n exist (if any)? All the 
planes known at present have prime-power order, but the only restriction on 
the order up to now is given by 

THEOREM 1.2 (The Bruck-Ryser Theorem, 1, p. 394). If there exists a pro­
jective or affine plane of order n, and if n = 1 or 2 (mod 4), then n is expressible 
as the sum of the squares of two integers. 

It follows that there are no finite planes of order 6, but it is not known 
whether or not a finite plane of order 10 exists (10 = 2 (mod 4), but 
10 = l2 + 32). 

One method of trying to construct planes is to investigate subplanes. A sub-
plane (projective or affine) of a plane ir is a system consisting of a subset of 
the points of w and a subset of the lines of ir which itself forms a projective 
or affine plane with respect to the incidence already defined in ir. 

It is well known that if we take a projective plane T of order n and remove 
a single line I and all the points on it, then the resulting system 7r0 is an affine 
plane of order n, a subplane of ir. Lines of ir (other than /) concurrent in a 
point of I form a parallel class in ITQ. 

Conversely, if we take an affine plane T0 of order n and add to it n + 1 
new points, each new point being incident with every line of a given parallel-
class and with no other line of 7r0, distinct new points being incident with 
distinct parallel-classes, and if we also add one new line incident with all the 
new points but with no point of 7r0, then the resulting system is a projective 
plane T of order n ; 7r0 is a subplane of ir. Let us call this plane T the projective 
extension of ir0. We shall use this term in § 6. 

The following result is due to R. H. Bruck (1, p. 398): 

THEOREM 1.3. Let ir be a projective plane of order n, containing a projective 
subplane 7r* of order u < n. If w contains a point that does not lie on any line 
of 7T*, then n > u1 + u. If every point of ir lies on a line of 7r*, then n = u2. 

Bruck also raised the question of what can be said in the case of affine 
subplanes. This question was first considered by Ostrom and Sherk, but 

https://doi.org/10.4153/CJM-1965-093-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1965-093-1


980 J. F. RIGBY 

before quoting their results we shall consider some examples. These examples 
will help to clarify the situation we shall be considering, and will give some 
indication of the type of diagram to be used later on. 

Table I gives an affine plane of order 3 consisting of the nine points A, B, 
C, D, E, F, G, H, K. The twelve lines have not been labelled, but the table 
signifies that there is a line containing just the three points A, B, C, etc. The 
lines have been divided into the four parallel-classes. 

TABLE I TABLE II 

ABC ABCXY AMRVZ 
DEF DEFXZ BLQUZ 
GHK GHKYZ CNPWZ 
ADG ADGPQ DNRUY 
BEH BEHPR EMQWY 
CFK CFKQR FLPVY 
BDK BDKVW GLRWX 
CEG CEGUV HNQVX 
AFH AFHUW KMPUX 
BFG BFGMN 
AEK AEKLN 
CDH CDHLM 

Figure 2 gives an incomplete representation of this plane. I t is impossible 
to give a complete representation of the abstract points and lines of the plane 
by Euclidean points and lines. In fact A lies on FH, C on DH, G on BF, and 
K on BD. The other eight lines are completely represented. Do not be misled 
by the diagram. For instance, AE and BD meet at K, not at a non-existent 
point ''inside the square ABED." 

FIGURE 2 

We can embed this affine plane of order 3 in a projective plane of order 3 
as described above. The result is illustrated in Figure 3, where the four new 
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points are denoted by Jh J2, Jz, / 4 . Note that A still lies on the line HFJ3i 

etc. 

J, 

FIGURE 3 

Table II gives a projective plane of order 4, consisting of 42 + 4 + 1 = 2 1 
points and 21 lines. If we consider only the nine points A, B, C, D, E, F, G, 
H, K and the first twelve lines of the plane, we obtain Table I. Thus our 
affine plane of order 3 is a subplane of our projective plane of order 4. This 
is illustrated in Figure 4. All 21 points are shown, but we have given up 

FIGURE 4 

using straight Euclidean lines, and no attempt has been made to show the 
last nine lines of Table II. Note that A still lies on HFUW, etc. 
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Suppose now that the projective plane IT of order n contains an affine sub-
plane 7To of order m. If m = n, then T can be obtained from 71-0 only by the 
method already described. Clearly we cannot have m > n. Hence we shall 
assume from now on that m < n. Ostrom and Sherk (5, p. 551) have proved 

THEOREM 1.4. If w contains a point that does not lie on any line of 7r0, then 
n > m2 — 1. If every point of w lies on a line of 7r0, then either m — 3 and 
n = 4 (the example considered above) or m2 — 1 > w > ra2 — ra + 1. 

As we remarked in the Introduction, in this paper we deal only with the 
case in which every point of T lies on a line of T0, except in § 6. 

We shall write n = m2 — 1 — k. Theorem 1.4 states that either m = 3, 
k = 4 , n = 4 o r 0 < i < w - 2 . We shall prove the following results: 

Either m = 3, k = 4, n = 4 or k + 1 < \{m + 1), in § 2. 
Either m = 2, k = 0, n=3ork + l^(nt + 1)% in § 3. 

After further investigations of the structure of T in § 4, we improve the 
results of § 3 in § 5, showing that: 

Either m = 2, k = 0, n = 3, or m = 3, k = 1, n — 7, or 7 < m < 12, 
k > (m — 3)^, or m > 13, k > (m — 4 ) i 

In § 6 we prove the result about Desarguesian planes mentioned in the 
first paragraph of the paper. The results of § 5 serve to increase by 1 the 
lower bound obtained for k in § 3, for most but not all values of m. One is 
tempted to say that the extra information obtained does not justify the 
amount of extra calculation used to obtain it, but these calculations do show, 
in the absence of examples for m > 3, that if any significant improvement is 
possible in the lower bound for k, it must be obtained by using much stronger 
inequalities than we have used here. 

I t is useful to bear in mind that when n — 2, 3, 4, 5, 7, 8 there is just one 
type of projective (or affine) plane of order n, to within isomorphism, namely 
that which can be co-ordinatized by using the Galois field GF(n) of n elements 
(2; 3; 4). There is no projective or affine plane of order 6 (by the Bruck-
Ryser theorem, 1.2) or of order 1. 

The symbol T — T0 denotes the set of those points and lines of ir that are 
not points or lines of x0. 

2. Initial results. If m = 2, then n = 3 by 1.4. When m = 2, ir0 consists 
of a quadrangle and its six sides. This configuration is contained in every 
projective plane, so the case m = 2, n = 3 certainly exists. We shall assume 
henceforth that m > 2. 

We can draw a diagram showing the m2 points of 7r0 arranged in a square 
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and the m2 + m lines of TT0 in m + 1 parallel-classes of m lines each. The 
remaining points of w all lie on the lines of TT0 (since this is our assumption 
throughout §§ 2-5). Each line of TT0 contains n + 1 points of T, and so con­
tains n + 1 — m points of -K — TT0. The total number of points of w — TT0 lying 
on the lines of a particular parallel-class depends on how these lines intersect 
in IT. (Parallel lines of T0 must meet in T, since T is a projective plane.) The 
m lines of a parallel-class may all meet in a single point of TT, as in Figure 3, 
in which case we shall say that they form a pencil in w, or they may meet 
by twos in \m(m — 1) points of TT, as in Figure 4, or an intermediate situation 
may occur. Various possibilities are shown in Figure 5 with m = 5. Only 
three of the six parallel-classes are shown there. Figure 5 and some of the 
subsequent figures are intended only as helpful illustrations of various situa­
tions and should not be taken too literally. We shall show that m = 5 is 
impossible in planes of the type under discussion, and in Figure 9, for example, 
which shows m = 5, we must in fact have m > 11. 

FIGURE 5 

LEMMA 2.1. n < m2 — 1, with equality if and only if each parallel-class of 
TO forms a pencil in T. 

Proof. Consider the m lines of a parallel-class. The first contains n + 1 — m 
points of 7T — 7To. The second (which must intersect the first in a point P 
of 7T — 7ro) contains (n + 1 — m) ~ 1 = n — m new points of TT — TT0. The 
third (which must intersect the first two) contains at most n — m new points, 
and contains exactly n — m if and only if it passes through P. This last 
statement is also true for the remaining lines of the parallel-class. Hence the 
number of points of ir — T0 in a parallel-class is less than or equal to 
m(n — m) + 1, with equality if and only if the parallel-class forms a pencil 
in 7T. 
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Lines of distinct parallel-classes have no point of iv — TO in common. Hence 
the number of points of ir is less than or equal to 

(m + l)[m(n — m) + 1] + ^ 2 , 

with equality if and only if every parallel-class forms a pencil. But the number 
of points of 7T is n2 + n + 1. Hence 

n2 + n + 1 < (m + l)[m(n — m) + 1] + w2, 

which reduces to 

{n — m)[n — (m2 — 1)] < 0. 

Since n > m, this gives n < w2 — 1, with equality if and only if each parallel-
class forms a pencil. 

LEMMA 2.2. If m > 2, w^ ez/ery parallel-class can form a pencil; hence 
n 7* m2 — 1. 

Proof. Suppose the parallel-classes all form pencils, with vertices P 0 , 
P i , . . . , Pm , say. Suppose there exists a line of T through P 0 not containing 
any point of 7r0 and not passing through Pi , P2 , . . . , or Pm . This line will 
meet the m2 lines of iro through Pi , P 2 , . . . , Pm in m2 distinct points of x, all 
distinct from P0 . The line will thus contain at least m2 + 1 points, that is, 
n + 2 points (by 2.1). This is impossible since a line of w contains just n + 1 
points. Thus every line of IT through P 0 must be one of the m lines of 7r0 

through P0 , or must pass through Pi , P 2 , . . . , or Pm. Thus there are at most 
m + m lines of x through P0 . But there are just n + 1 lines of 7r through 
P0 . Hence by 2.1 

2m > 7Z + 1 = m2, so m < 2. 

The result now follows by 2.1. 

Note. The other case, besides m = 2, n = 3, when every parallel-class can 
and does form a pencil is the trivial case m = n mentioned in § 1. 

COROLLARY. If m > 2, then n < m2 — 2 (i.e., k > 1). 

THEOREM 2.3. Either m = 3, 7z = 4, or k + 1 < \{m + 1) so / t o 

w > m2 — | w — J. 

Proof. (Cf. the proof of 2.1) Consider the m lines of a parallel-class. The 
first contains n + 1 — m points of TT — x0. The second (which must inter­
sect the first in a point of -K — 7r0) contains (^ + 1 — m) — 1 new points 
of 7T — 7To. The third contains at least (n + 1 — m) — 2 newr points (since 
it has at most two points in common with the previous lines). The rth line 
(r = 4, 5, . . . , m) contains at least (n + 1 — m) — (r — 1) new points. Hence 
the m lines contain at least 

m(n + 1 — m) — \mirn — 1) 
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points of 7T — 7T0. Hence w contains at least 

(m + l)[m(n + 1 — m) — \rn(yn — 1)] + m2 

points. But 7T contains n2 + n + 1 points. Hence 

n2 + w + 1 > (m + l)[m(w + 1 — m) — |m(m — 1)] + w2, 

which reduces to 

(1) n2 - (m2 + m - l)n + \(m2 - l)(3m - 2) > 0. 

Hence 

(2) n < |{ (m + m — 1) — \ / [ (m -

or 

(3) n > |{ (w2 + m - 1) + Vl(m2 -

We are assuming that m > 2, so 

m" — 2m — | > 0 and 

Hence from (2) 

n < J{ (w2 + m — 1) — (m2 — 2w — |){ = | w — | , 

which is impossible since we have w > m2 — m + 1 (by 1.4), unless m = 3, 
w = 4. 

Alternatively, from (3) 

w > \(m2 + m — 1) + (m2 — 2m — | ) = m2 — |m — f. 

Since n is an integer, we deduce that 

n > m2 — \m — \. 

Note. Although we have neglected the term 2m — -3- in (2) and (3) it is 
easy to check that the final inequality is the best that can be obtained from (1). 

3. The structure of parallel-classes. A point of TT where just s + 1 lines 
of 7T0 meet will be called a point of valency s or an s-point. (The standard 
name here would be a point of valency 5 + 1, but I feel that the gain in 
compactness produced in many of the subsequent expressions justifies this 
departure from the standard name.) We see that the points of 7r0 are m-points, 
the vertex of a pencil of parallels is an (m — 1)-point, and a point lying on 
just one line of 7r0 is a 0-point. 

We define the valency of a line as the sum of the valencies of the points 
of that line. 

LEMMA 3.1. Every line of IT — TO has valency m + k. 

2m - | ) 2 + (2m - -'f )]} 

2 m - i ) 2 + (2m--1!-)]}. 

2m - - T > 0. 
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Proof. Consider a line / of T which is not a line of 7r0. Each of the n + 1 
points of / lies on a line of 7r0. Each of the m2 + m lines of WQ meets /, and 
s + 1 lines of T0 pass through an s-point on I. Let As denote the number 
of s-points on /. Then 

£ 0 + l)A8 = m2 + ra, 
and 

2^ 4̂ s = n + 1 = m2 — k. 

Hence ^2 sAs = m + k. 

Note. A better geometrical insight can perhaps be obtained by presenting 
the above proof in a more informal way. If I met all the m2 + m lines of TO 
in distinct points, then I would contain m2 + m points. But / contains only 
n + 1 = m2 — k points, so somehow we have to "lose" m + k points. We 
lose 5 points whenever I passes through an s-point, since the 5 + 1 lines meet 
/ in one point instead of s + 1 points. Thus the total number of points lost 
is the valency of /. Hence the valency of / is m + k. 

This result does not apply to lines of ITQ, which are easily seen to have 
valency m2 + m — 1. 

LEMMA 3.2. If m > 3, then at most one parallel-class of TO can be a pencil in T. 

Proof. Suppose we have two pencils with vertices P 0 and Pi , each of valency 
m — 1. The line PoPi has valency at least 2m — 2. But PoPi is clearly not 
a line of T. Hence 2m — 2 < m + k (by 3.1). Thus k > m — 2. But 
k < \m — \ (by 2.3), so \m — \ > m — 2. Thus m < 3. 

LEMMA 3.3. A parallel-class of T0 that is not a pencil in T cannot contain 
points of T — TO of valency greater than k (i.e., if the parallel-class contains an 
s-point of T — 7T0, then s < k). 

Proof. Let S be an s-point of T — T0 belonging to a parallel-class that is 
not a pencil. Then there is a point Q of TO not lying on any of the 5 + 1 lines 
of TO through S. (See Figure 6.) The valencies of S and Q are 5 and m respec-

FIGURE 6 

tively, so SQ has valency 5 + m at least. But SQ is clearly not a line of T0. 
Hence 5 + m < m + k (by 3.1). Hence 5 < k. 

Notes, (a) Since, in a parallel-class that is not a pencil, there must exist 
an s-point with s > 1, 3.3 shows that k > 1, so we have an alternative proof 
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of the corollary to 2.2, when m > 3 (by 3.1). But we still need 2.2 to show 
that when m = 3 not every parallel-class is a pencil. 

(b) Unless m = 3, n = 4, we have k < m — 1 (by 2.3) so a &-point cannot 
be the vertex of a pencil. 

LEMMA 3.4. If the points of intersection (in -K — 7r0) o/Z/ze m lines of a parallel-
class consist of Bs s-points (s = 1,2, . . . , m — 1), then 

Zs(s + 1 )5 , = w(w - 1). 

Proof. If the m lines met by twos, they would have \m(m — 1) points of 
intersection, but if s + 1 lines meet together (at an s-point), then §s(s + 1) 
of these points of intersection are absorbed into a single point. Thus 

Zhs(s + 1)B, =\m(m- 1). 

Note. This formula is true for any m lines, each of which meets every other. 

For a given value of k, the number of points of T — 7r0 in a parallel-class 
depends on how the lines of the parallel-class intersect, as we remarked in 
§ 2. From the results of § 2 it seems reasonable to suppose that the lower 
the valencies of the intersections, the fewer the number of points in the 
parallel-class. This turns out to be so. 

In the proof of 2.1 we found an upper bound for the number of points of 
IT — 7To in a parallel-class^. We shall now decrease this upper bound (except 
for pencils) by using 3.3. In § 5 we shall decrease the upper bound still further. 

LEMMA 3.5. The lines of a parallel-class that is not a pencil contain at most 

m{m2 — m — k) — m(m — 1)/ (k + 1) 
points Of T — 7T0. 

Proof. Each line of such a parallel-class contains n -\- 1 — m = m2 — m — k 
points of 7T — 7T0. Using two different ways to count the number of point-line 
pairs (P, /), where P is a point of ir — TO lying on a line / of the parallel-class, 
we have (with the notation of 3.4) 

(4) m(m2 — m — k) = X) (s + 1)BS. 

Hence the number of points in the parallel-class is 

(5) X Bs = m(m2 — m — k) — 2 s^s 

where the summation goes from 0 to k only (by 3.3). (As in 3.1, we can 
obtain this expression in a more informal way. If the lines of the parallel-class 
did not meet, they would contain a total of m(m2 — m — k) points of -K — 7r0; 
but for each s-point we must subtract 5 from this total. Hence the parallel-
class contains 

m(m2 — m — k) — ]L S^S 

p o i n t s Of 7T — 7To.) 
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Now 
k 

m(m - 1) = 2 J S(S + 1)BS (by 3.4 and 3.3) 
6 = 0 

k k 

<Y,s(k + l)Bs= (k + 1) £,sBs. 
Hence 

it,sB8>m(fn- l)/(k + l). 
5=0 

The result now follows from (5). 

Note. This inequality is the best possible one at present, since for suitable 
values of m and k (e.g., m = 7, k = 2) there seems to be no reason why the 
lines of a parallel-class should not meet entirely in ^-points. If this occurs, 
the above inequality becomes an equality. We shall show in 4.1, however, 
that when m > 3 we cannot have equality occurring in every parallel-class 
that is not a pencil. 

THEOREM 3.6. Either m = 2, k = 0, n = 3, or k + 1 > (m + 1)* so that 

n < m2 — (m + 1)*. 

Proof. We have already dealt with m = 2. When m = 3 the result follows 
from the corollary to 2.2. Assume then that m > 3. 

By 3.2, m of the parallel-classes are not pencils. By 3.5, these contain at 
most m[m(m2 — m — k) — m(m — l)/(k + 1)] points of ir — 7r0. The re­
maining parallel-class, which may be a pencil, contains at most 

m(n — ni) + 1 = m(w2 — 1— k — m) + 1 

points of T — 7T0. (See proof of 2.1.) 
Since 7r0 contains m2 points and w contains n2 + n + 1 points, we deduce 

that 

(6) w2 + n + 1 < m2 + m[m(m2 — m — k) — m(m — l)/(k + 1)] 
+ w(w2 — 1— k — m) + 1 

= (ra + l)m(m2 — m — k)+m2 — m + 1— m2(m — l)/(k + 1). 

Putting ^ = m2 — 1 — &, we obtain 

(7) mz - m2Qz2 + 2k + 2) + m(k + l ) 2 + k(k + l ) 2 < 0. 

The last two terms on the left-hand side are strictly positive (since k > 1 by 
the corollary to 2.2), so m3 - m2(k2 + 2k + 2) < 0. Hence k + 1 > {m - 1)*. 

There is no integer strictly between (w — 1)¥ and w^, and k + 1 is an 
integer, so & + 1 > ra*. 

If we put k + 1 = m^ on the left-hand side of (7) we obtain 

m3 — m2(m + 1) + m2 + m (ni* — 1) = m (ni* — 1), 
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which is greater than zero, so the inequality is not satisfied. Hence 

k + 1 > m\ 

Again, there is no integer strictly between m* and (m + 1)^, so 

k + 1 > (m + 1)*. 

This is the best we can do, since (7) is satisfied if k + 1 = (m + 1)*. 

Note. It is worth considering whether we can improve this inequality if 
none of the parallel-classes forms a pencil. In this case, instead of (6) we 
obviously get 

n2 + w + 1 < m2 + (m + l)[m(m2 — m — k) — m(m — l)/(k + 1)]. 

We deal with this as with (6), but it turns out that we can still obtain nothing 
better than k + 1 > (m + 1)\ 

LEMMA 3.7. If m > 3, then m > 7. 

Proof. If m = 4, then (by 2.3 and 3.6), 5/2 > k + 1 > V5, which is 
impossible since k must be an integer. If m = 5, then 3 > & + 1 > \ / 6 , so 
k = 2. This gives w = 22, which is impossible by the Bruck-Ryser Theorem 
(1.2). Also m = 6 is impossible by the Bruck-Ryser Theorem. 

4. Further structure of parallel-classes. Let Cs denote the number of 
s-points in the whole plane ir. Then Cm = m2 (the points of 7r0 are the only 
w-points) and Cm-i = 0 or 1 (by 3.2). Apart from these two cases, Cs = 0 
iî s > k (by 3.3). We can easily show that 0-points (points lying on only one 
line of 7ro) must exist on every line of 7r0, except when m = 3 , n = 4 . 

By 2.3 and 3.6 we see that if m = 3 then n = 4 or 7. Ostrom and Sherk (5) 
have shown that both these cases exist. We shall assume from now on that 
m > 7 {using 3.7). It follows by 3.6 that k > 2. 

LEMMA 4.1. There exists a point of positive valency less than k (i.e., there 
exists an s, 0 < s < k, such that Cs > 0). Furthermore, if there exists a pencil 
(i.e., if Cm-i = 1) and if there exists a k-point, then there exists a 1-point. 

Proof. We deal first with the last part. Suppose w contains P, the vertex 
of a pencil, of valency m — 1, and K, a &-point, of valency k. (See Figure 7.) 
Then P and K, which are distinct since m — 1 ^ k (by 2.3), contribute 
m + k — 1 to the valency of PK. But PK is clearly not a line of 7r0, SO its 
valency is m + k (by 3.1). Hence PK must contain a 1-point, to contribute 
the extra 1 to the total valency. 

We have now only to exclude the case when there is no pencil and where 
the lines of every parallel-class meet entirely in ^-points. In this case (see 
3.5 and the notes following 3.5 and 3.6) we have 

n2 + n + 1 = m2 + (m + l)[m(m2 — m — k) — m(m — l)/(k + 1)], 
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FIGURE 7 

which reduces to f(k + 1) = 0 , where 

f(x) = x3 — (m2 — m + l)x2 — (m — l)x + (mz — m). 

Now /(0) > 0, 

f((m + 1)*) = (w + 1)*[2 - (w + 1)*] < 0 since m > 7, 

/ ( J (w + 1)) = - i O + 1 ) 0 - l)(2w2 - 7m + 3) < 0 since m > 7, 
/(x) —> ±oo a s x - ^ zb°o. 

Hence /(x) = 0 has three roots, one negative, one between 0 and (m + 1)% 
and one greater than \{m + 1). Hence it has no root between (m + 1)* and 
\{m + 1) or equal to either, so f(k + 1) is never zero in the possible range 
of values for k + 1. This excludes the case under discussion. 

Let g denote the least positive value of 5 for which Cs > 0. Thus ir contains 
no points with valency between 0 and g. We can restate 4.1 as follows: 

LEMMA 4.1*. g < k, and if Cm-i = 1 and Ck > 0, then g = 1 . 

LEMMA 4.2. g < \k. 

Proof. Let 5 be a g-point, and let Q be a point of 7r0 not lying on any of the 
g + 1 lines of 7r0 through S. (See Figure 6.) The line SQ is clearly not a line 
of 7To, so its valency is m + & (by 3.1). The points 5 and Q contribute g + m 
to this valency. The remaining contribution to the valency, namely k — g, 
must come from the other points of SQ. Now k — g > 0 (by 4.1*) and no 
point can have positive valency less than g; hence k — g > g. 

LEMMA 4.3. There exist no s-points if k > s > k — g (i.e., Cs — 0 for values 
of s in this range). 

Proof. Let 5 be an s-point, where s < k, and let Q be a point of 7r0 not 
lying on any of the s + 1 lines of 7r0 through S. (See Figure 6.) The line SQ 
is not a line of 7r0, SO its valency is m + k (by 3.1). The points 5 and Q con­
tribute 5 + w to this valency. The remaining contribution to the valency, 
namely k — s, must come from the other points of SQ. Now k — s > 0 (by 
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our assumption) and no point can have positive valency less than g; hence 
k — s > g. Hence if s < &, then 5 < k — g. 

Note. We can use 4.3 to prove 4.2, putting s = g. 
This last lemma does not imply the existence of (k — g) -points. 

Denote by k — z the greatest value of s(< k) for which there actually 
exists an s-point. 

LEMMA 4.4. g < z < k — g. 

Proof. The first inequality is simply a restatement of 4.3. For the second, 
observe that k — z > g by the definition of g. 

LEMMA 4.5. If g > \k, then z = g. 

Proof. Using the notation of 4.2, the points of SQ other than S and Q must 
have total valency k — g. If z > g, there are no (k — g)-points, so this 
valency cannot come from a single (k — g) -point. Hence it must come from 
at least two points, each of valency greater than or equal to g. Hence 
k — g > 2g, so g < \k. Hence if g > \g, we must have z = g. 

The situation now is this, lî k — z ^ s ^ g, then s-points can exist, and 
there exist at least one g-point and at least one (k — z)-point. Apart from 
such points, it contains only 0-points, ^-points (perhaps), at most one 
(m — 1)-point, and m2 w-points. Conditions and inequalities satisfied by g 
and z are given by 4.1, 4.2, 4.4, and 4.5. 

LEMMA 4.6. g ^ \k, unless g = 1, k = 2. 

Proof. If k = 2g, then w contains only 0-points, g-points, 2g-points, at most 
one (m — 1)-point, and w-points. 

If there exists a pencil and if there exists a 2g-point (i.e., a &-point), then 
g = 1 by 4.1*. 

If there exists a pencil with vertex P , but no 2g-point, let / be any line 
of T — 7To through P. Apart from P , / can contain only g-points and 0-points. 
The total valency of points of I other than P is 

(m + k) - (m-1) =2g+l (by 3.1). 

But we cannot obtain a total valency 2g + 1 from g-points if g > 1. Hence 

If there is no pencil, the lines of every parallel-class contain 

m(m2 — m — 2g) — gBg — 2gB2g 

points of 7T — 7T0, using equation (5) of 3.5 and the notation of 3.4. Summing 
this expression over the m + 1 parallel-classes and adding the m2 points of 
7To to obtain the number of points of x, we obtain 

n2 + n + 1 = (m + l)m(m2 — m — 2g) — gCQ — 2gC2g + m2. 
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Putting n = m2 — 1 — 2g and simplifying, we obtain 

(8) gCg + 2gC2g = 2gm2 - 2gm - 4g2 - 2g + m2 - 1. 

Also in a parallel-class we have (by 3.4) 

(9) g(g + 1 )5 , + 2g(2g + l)B2g = m{m - 1). 

Summing over the m + 1 parallel-classes, we obtain 

(10) g(g + l)C9 + 2g(2g + l)C2g = (m + l)m(m - 1). 

Now any line of 7r0 is met by the remaining m — 1 lines of the same parallel-
class in g-points or 2g-points. Hence g divides m — 1. Write m — \ = rg. 
Dividing (8) and (10) by g, we have 

Cg + 2C2g = 2m2 - 2m - 4g - 2 + (m + l)r 
and 

(£ + DC, + 2(2£ + 1)C2, = w(w + l)r. 

Converting these to congruences modulo g, we have, since w = 1, 

C, + 2C2, = - 2 + 2r and C, + 2C2, = 2r. 

Hence 0 = 2. So g divides 2, giving g = 2 or g = 1. 
If g = 2 , then (8) and (10) become 

2C2 + 4C4 = 5m2 - 4m - 21 and 6C2 + 20C4 = w3 - m. 

Hence 8C4 = mz — 15m2 + 11m + 63, so 

0 = m3 + m2 + 3m — 1 (mod 8). 

Hence m must be odd ; m = 2p + 1 say. But 

(2£ + l ) 3 + (2p + l ) 2 + 3(2£ + 1) - 1 = 8p* + Up2 + 16^ + 4 
= 4 (mod 8). 

Hence 0 = 4 (mod 8), which is impossible. So g ^ 2 and hence g = 1. 
This exhausts all possible cases, leaving us with g = 1 each time. 

LEMMA 4.7. We cannot have g = 1, k = 2. 

Proof. Suppose g = 1, k = 2. From the inequalities 

(m + 1)*<* + 1 < | (m + l) 

we see that 5 < m < 8, so that w = 7 or 8 (by 3.7). When m = 7, 

w = 72 - 1 - 2 = 46, 

which is impossible by the Bruck-Ryser Theorem (1.2). We are left with 
w = 8, w = 8 2 - l - 2 = 6 1 ( = 62 + 52). 
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If T contains no pencil, then equations (8) and (10) of 4.6 apply. Putting 
g = 1, m = 8 we obtain 

d + 2C2 = 169, 2Ci + 6C2 = 504, 

giving C± = 3, C2 = 83. 
If 7T contains a single pencil, this pencil contains 425 points of T — T0 

(see proof of 2.1). The remaining eight parallel-classes each contain (as in 
4.6) 

m(m2 -m-k) - gBg- 2gB2g = 432 - Bx - 2B2 

points of 7T — 7T0. Thus T contains 

8 X 432 - d - 2C2 + 425 + 82 

points. But 7T contains 612 + 61 + 1 points. Hence 

3945 - G - 2C2 = 3783, so G + 2 G = 162. 

Summing (9) over the m parallel-classes that are not pencils, we have 

g(g + l)Cg + 2g(2g + l)C2g =?n2(rn-l) or 2 d + 6C2 = 448. 

Solving the two equations, we find that C\ = 38, C2 = 62. 
Finally we show that both values for C\ are impossible. Let S be a 1-point 

(see Figure 8). There are 6 X 8 = 48 points of 7r0 such as Q, of valency 8, 

I I I I I I I l > 3 

I 1 1 1 1 1 1 é  

FIGURE 8 

not lying on a line of 7r0 through S. Each line such as SQ has valency m-\-k = 10 
(by 3.1) and S and Q contribute 9 to this valency. Hence each line such as 
SQ must contain a single 1-point apart from 5, to bring the valency up to 
10. The 48 lines such as SQ are all distinct, so ir must contain at least 49 
1-points (counting S as well). Thus G > 49, so we cannot have G = 3 or 
C\ = 38. Hence we cannot have g = 1, k = 2. 

We can combine 4.2, 4.6, 4.7 into a single result, namely 

LEMMA 4.8. g < \k. 

LEMMA 4.9. If g > \k, there cannot be a pencil, except possibly when g = 
\{k + 1). 
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Proof. If g = 1, then g > \k implies that k = 2. This is impossible (by 
4.7). Hence we may assume that g > 1. 

Suppose P is the vertex of a pencil. Then P is an (w — 1)-point. Let G 
be a g-point (see Figure 7, with K replaced by G). PG is not a line of T0, SO 
its valency is m -\- k (by 3.1). P and G contribute m — 1 + g to this valency, 
so the remaining points of PG must have total valency 

(m + k) — (m — 1 + g) = k — g + 1. 

Now k > k — g + 1 > k — g (since g > 1), so there can be no single point 
of valency k — g + 1 (by 4.3). Thus the valency k — g + 1 must come from 
at least two points of positive valency, each of which must have valency g 
or more. Thus k — g + 1 > 2g, so g < |(& + !)• Since g > |& and g and & 
are integers, we must therefore have g = \{k + 1). 

LEMMA 4.10. If g — \{k + 1) £/^re cannot be a pencil, except possibly when 
g = 2 . 

Proof. We may assume that g > 1; for if g = 1, then k = 2, which is 
impossible (by 4.7). Suppose there is a pencil, with vertex P. We show first 
that a line of 7r — 7r0 through a point of 7r0 cannot contain more than two 
other points of positive valency, nor can a line of TT — 7r0 through P , except 
in the case of three points of valency g. For if a line of w — 7r0 through a point 
7To contained three or more other points of positive valency (i.e., of valency g 
at least) the valency of this line would be at least m + 3g = m + k + 1, 
which is impossible by 3.1. A similar argument holds for lines through P , 
except when we have three g-points on the line, when the valency is 

(m — 1) + Sg = m + k. 

Next we show that there must be at least one point of valency 5 for every 
5 such that g < s < & — g = 2g — 1. Let A0 be a g-point (such a point cer­
tainly exists). Let Ço be a point of 7r0 not lying on a line of wo through A0 

(see Figure 9, with i = 0). On A0 Qo there must be just one more point B0 

FIGURE 9 
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of positive valency. The valency of B0 is (m + k) — g — m = 2 g — 1. On 
Bo P there must be just one more point Ai of positive valency (2g — 1 > g, 
since g > 1). The valency of Ai is (m + &) — (2g — 1) — (ra — 1) = g + 1. 
Let Qi be a point of 7r0 not lying on a line of TT0 through A i. On A i Qi there 
is a point i?i of valency 2g — 2. On B\ P there is a point A2 of valency g + 2; 
and so on. Continuing in this way (by induction) we obtain the required 
result. 

Now let S be a (2g — 1 — r)-point, where 0 < r < g — 1. There are 2g — r 
lines of w0 through S, so there are m(m — 2g + r) points of 7r0, such as Q in 
Figure 6, not lying on these lines. Joining these points to 5, we obtain 
m{m — 2g + r) distinct lines through S that are not lines of T0. Each of 
these lines must contain another point of positive valency 

(m + k) — (2g — 1 — r) — m = g + r 

distinct from S. (We must say "distinct from 5 " here, since g + r = 2g— 1 — r 
if r = J(g — 1).) Hence -K contains at least m(rn — 2g + r) points of valency 
g + r, so 

(11) Cg+r > m(m -2g + r). 

We now show that there are too many points in the plane. There are no 
^-points (by 4.1*). Through P there are n -\- \ — m = m2 — m — k lines of 
7T — 7T0. Every point of valency g, g + 1, . . . , 2g — 1 must lie on exactly 
one such line, and as we saw earlier, each such line contains (in addition 
to P) just three points of valency g or just two points of valency greater 
than g. Thus 

1 1 g~1 

ôcs + Ô X) co+r = m2 - m - k. 
6 A r=i 

Hence from (11) 

1 1 g~1 

-m(m — 2g) + Ô ] C w(m — 2g + r) < m — m — k = m" — m — (3g — 1). 

This reduces to 

(12) (3g - 7)m2 - K9g2 - g ~ 12)m + 6(3g - 1 ) < 0. 

Now k = 3g — 1 and k + 1 < J(w + 1), so m > 6g — 1. Denote the left-
hand side of (12) by f(m). Then 

f(6g - 1) = 2(3g - 7)(6£ - 1) - |(9g2 - g - 12) 

= M63g(s - 3) + 10g + 40] > 0 if g > 3. 

Also/"(ra) = 2(3g — 7) > 0 if g > 3, so tha t / ' (m) is an increasing function. 
Hence f (m) > 0 if m > 6g — 1 and g > 3. Hence f(m) is an increasing 
function if m > 6g — 1 and g > 3. 
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Finally 
/(6g - 1) = K162g3 - 561g2 + 281g - 38) 

= Ml62g2(g - 4) + 87g2 + 281^ - 38] 
> 0 if g > 4 
> 0 if g = 3 by direct calculation. 

Hence f(m) > 0 if m > 6g — 1 and g > 3. This contradicts (12). Since g > 1, 
we are left with the case g = 2. 

LEMMA 4.11. 7/ g = 2 and & = 3g — 1 = 5, then there cannot be a pencil. 

Proof. Suppose there is a pencil, with vertex P. As in 4.10 there exist 2-
points and 3-points but no 5-points. Each of the m2 — m — 5 lines of -K — ir0 

through P contains either three 2-points or two 3-points since each such line 
has valency (m — 1) + 6. Moreover, each 2-point and 3-point lies on one 
such line. Thus 

(13) \Ci + \CZ = m2 — m — 5. 

Through every 2-point there pass m(m — 3) lines of ir — ir0 containing a 
point of 7T0, such as SQ in Figure 10. Each such line contains a single 3-point 

(\ 
\ 

\ 

\ \ Q 
\ \ 

\ 
\ \ 

\ \ 

~ ~ ^ - ^ 

_ ^ - " 

T 

FIGURE 10 

such as T (by consideration of valencies). Moreover (considering such lines 
through every 2-point), every 3-point occurs in this manner, on just m{m — 4) 
of the lines (since through every 3-point there pass m{m — 4) lines of T — TT0 

containing a point of 7r0, and each such line contains a 2-point). Thus 

Hence from (13) 
m{m — 3)C2 = m{m — 4)C3. 

IC2 + \(m - 3)C2/(w - 4) = m2 
m — o. 
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Thus 

(14) C2 = 6 (m - 4) (m2 - m - 5)/(5m - 17). 

Furthermore, every line of T — T0 through a point of ir0 must contain a 
2-point (and a 3-point). There are m2(n — m) = m2{m2 — m — 6) such lines, 
and m(m — 3) of them pass through each 2-point. Hence 

m{m — 3)C2 = m2(m2 — m — 6) 
so 

(15) C2 = m{m + 2). 

From (14) and (15) we obtain 

0(m)(say) = m3 - 23m2 + 28m + 120 = 0. 

0(0) > 0, so the equation has a negative root. 0(3) > 0, 0(4) < 0; 0(21) < 0, 
0(22) > 0. Hence the equation has no positive integral roots. This proves 
the result. 

We can combine 4.7, 4.9, 4.10, 4.11 into a single result, namely 

THEOREM 4.12. If g > |&, there cannot be a pencil. 

We end this section with a lemma which gives another upper bound for 
g in terms of k. The method of proof is essentially the same as that used in 
2.3 and 3.5, but it is convenient to use the formulae given in 5.1 at the begin­
ning of the next section. 

LEMMA 4.13. 

m(m — 1)  
g + < (m2 - 1) + k(m2 - m - 1) - k" ' 

Proof. Condensing the formulae of 5.1, we have 
m—l 

(16) E sCs = R, 
m—l 

(17) E s(s + 1)CS = m(m2 - 1). 

From (17) 

(g + 1) E sC, = Zs(g + 1)C8 <Zs(s + 1)C, = m(m2 - 1) 
s o (g + 1 )^ ^ m{m2 — 1). Dividing both sides by R (which is certainly 
positive, we have the result. 

If we put k = \m — \ (the largest possible value), the right-hand side of 
4.13 is less than 2 + 1/m. Thus g = 1. This is only to be expected since in 
the proof of 2.3 we had to allow points of valency 1 in order to obtain the 
upper bound for k. 

If we put k = (m + l ) 5 — 1 (the smallest possible value), we obtain an 
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inequality from which we can deduce only g < k, which again is what we 
should expect. 

Thus for "large" values of k, 4.13 gives a new upper bound for g, while 
for "small" values of ky 4.8 gives a better upper bound. 

5. Further restrictions on k. The technique of this section is to decrease 
our present upper bound for the number of points of ir + ir0 in a parallel-
class (for given values of m, k, g, and z) by finding as many points of low 
valency as we can. (See the remarks before 3.5.) This is a refinement of the 
method used in 3.5. We then use this upper bound to obtain inequalities as 
in 3.6. We shall in fact consider all the parallel-classes together, and the 
technique is somewhat obscured by the quick methods used to obtain the 
inequalities. 

We shall write R = (m2 — 1) + k(m2 — m — 1) — k2. It is useful in some 
of the calculations to note that R — m + 1 = (fe + l)(m2 — k — m). 

LEMMA 5.1. 

Jc—z 

(a) X) sCs + kCk + {m - l)Cm_i = R, 
s=g 

fc-z 

(b) £ s(s + \)C, + k(k + 1)C» + m(m - l)Cm_! = m(m2 - 1). 
s=g 

Proof, (a) Summing equation (5) of 3.5 over the m + 1 parallel-classes we 
see that the total number of points in w — 7r0 is 

X) Cs = (m + X)m(m2 — m — k) — J^ sCs, 

the summation being taken from 0 to m — 1, since a pencil may occur. Thus 
the number of points of T is 

m—l m—l 

m2 + ^ Cs = m2 + (m + l)tn(n + 1 — m) — ^ sCs. 
6 = 0 s = 0 

Equating this to n2 + n + 1, putting n = m2 — 1 ~ k} and remembering the 
restrictions on the values of 5 for which s-points can occur, we obtain the 
result. 

(b) We obtain this result by summing 3.4 over the m + 1 parallel-classes. 

The next two lemmas give information about the number of points of 
valency less than k. 

LEMMA 5.2. 
Jc—z 

J2 sCs > m(m - g - l)(k - g) + g. 
S=Q 

Proof. Let 5 be a g-point, and let Q be a point of T0 not lying on any of the 
g + 1 lines of 7r0 through S. (See Figure 6.) There are m (m — g — 1) choices 
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for Q, giving m (m — g — 1) distinct lines such as SQ. (If SQi and SQ2 were 
to coincide, then the line SQ1Q2, joining Qi and Q2, would be a line of w0, 
contradicting the fact that SQi is not a line of 7r0.) On a typical line SQ the 
points other than 5 and Q must have total valency k — g (to bring up the 
total valency of the line to m + k). No s-point, where s > k — g, can con­
tribute to this total, so each line contributes a term k — g to the sum on the 
left-hand side. All the lines together contribute m(m — g — 1) (k — g) and 
S itself contributes a term g. This gives the result. 

LEMMA 5.3. If z < \k, then 

z 

Y^j sCs > m{m — k + z — l)z. 
s=g 

Proof. The inequality for z implies that z < k — z. We use the method 
of 5.2, but we take S to be a (k — z)-point. There are now m(m — k + z — 1) 
choices for <2, and on each line SQ the points other than S and Q must have 
total valency (m + k) — m — (k — z) = z. No s-point, where s > z, can 
contribute to this total. Using an argument similar to that of 5.2, we deduce 
the result. 

Note. If 2 > ^ - s we can only take the summation as far as k — z and 
the result is simply an inequality which is weaker than 5.2. 

We now consider separately four cases. Using the results of § 4 we see 
that they exhaust all possibilities. 

Al . g < Ik, Cw_! = 0. 
A2. g < \k, Cw_! = 1, Ck > 0, g = 1. 
A3, g < \k, Cm_i = 1, Ck = 0. 
B. \k < g < \k, Cm_i = 0. 

Case A\. It is convenient not to put Cm-i = 0 at this stage. Multiplying 
5.1(a) by k + 1 and subtracting 5.1(b) we eliminate Ck and obtain 

E s(k - s)Cs + (k + 1 - m)(m - l)Cm_i = (* + 1)2? - m(m2 - 1) 
or 

Jc—z 

(18) (k + 1)R + im - k - \){m - l)Cm_i - m(m2 - 1) = J X * - s)Cs. 
s=g 

If we simply use the fact that the right-hand side of (18) is greater than 
or equal to zero, we obtain 3.6; but we can now say more than this. It is 
possible to obtain the ensuing inequalities by a method that appears to use 
the fact that Ck > 0, but we have now eliminated Ck so we never really use 
this information either in 3.6 or anywhere else. We shall, however, use the 
fact that Ck = 0 in the discussion of the case A3. 

Now 

(19) £ * ( * - S)C* > zJ^sC8 > z[m(m - g - l)(k - g) + g] (by 5.2). 
s=g s—g 
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Furthermore, if s < \k we have 

(20) Y,s{k - s)Cs = È,s(k- s)Cs + f,s(k - s)Cs 
s=g s=gF 2+1 

z Tc—z 

> (k - z) X) sCs + z]T) sCs 

= (k — z)^2 sCs + z 

2+1 

Jc-z 

J2 sCs — X) *c* 

= (ft - 2s) X ) sCs + z ]T sCs 

> (ft — 2z)m(m — k -\r z — l)z 

+ z[m(m - g - l)(ft - g) + g] (by 5.2 and 5.3) 

= m[-2z 3 - (2m - 3ft - 2)z2 + (mk - ft2 - ft)z] 

+ z[mg — (m + mft — m— l ) g + ( m f t — mft)] 

= m0(z) + ztf>(g), say. 

Denote by \p(z) the function that is equal to md(z) + 20(g) when s < \k 
and equal to s<£(g) when z > |ft. These two expressions are equal when z=\k 
so, regarding z as a continuous variable, ^(z) is a continuous function. By 
(19) and (20) we have 

(21) E % ( f t - * ) C S > *(*). 

We wish to find the minimum value of yj/{z) in the interval [g, ft — g]. In the 
interval [g, Jft], ^(z) = mB(z) + z<j>(g). \[/f (z) need not have constant sign, but 
^"(z) = m[ — 12z — 2 (2m — 3ft — 2)], which is negative. Hence the mini­
mum value of \f/(z) occurs when z = g or z = |ft. Now 

*(£) ~ *(!*) = wô(g) + g*(g) - |ft<Kg), since d(\k) = 0, 
= M2m^(g) - (ft - 2g)4>(g)] 
= l(& - 2g)[2mg(m - ft + g - 1) - m(m - g - 1) (ft - g) - g] 
= |(ft — 2g)[mg2 + (3m2 — mft — 3m — l)g — m2ft — mft]. 

The derivative with respect to g of the expression in square brackets is 
2mg + (3m2 — mk — 3m — 1), which is positive. Hence the expression itself 
is an increasing function of g. Its value when g = \k is — |mft2 — |ft, so the 
expression is always negative (in the possible range of values for g). Hence 
^(&) < *K|ft)- Hence the minimum value of \p(z) in the interval [g, §ft] is 
^(g). Moreover, when z > Jft, ^(z) is an increasing function. Hence, in the 
interval [g, ft — g], 

(22) *(*) > *(g) = m0(g) + 
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Combining (18), (21), and (22) we see that 

(23) (k + 1)R + (m - k - l)(m - l)Cw_i - m(m2 - 1) 
>m6{g) + g4>(g). 

Now 

™>6(g) + g<t>(g) = — mg3 — (3m2 — 2mk — 3m — l)g2 

+ (2m2k — mk2 — 2mk)g, 
whose derivative is 

— 3mg2 — 2 (3m2 — 2mk — 3m — l)g + (2m2& — mk2 — 2mk). 

This is decreasing, since the second derivative is clearly negative. The value 
of the derivative when g = \k is §&. Hence the derivative is always positive, 
so the right-hand side of (23) is an increasing function. Hence 

mB{g) + g(t>(g) > md(l) + 10(1) = m(k - 2)(m - k) 
+ m(m - 2)(k - 1) + 1, 

and so from (23) 

(24) (k + 1)R + (m - k - l)(m - l)Cm_i - m{m2 - 1) 
> m(k - 2)(m - k) + mint - 2) (k - 1) + 1. 

Substituting the value for i? in (24) and putting Cm_i = 0 we obtain 

(25) m3 - m2(k2 + 4) + m(& + 1) + ( P + 2ŷ 2 + 2k + 2) < 0. 

Hence m3 — m2(k2 + 4) < 0, so m < &2 + 4, Hence m < &2 + 3. Putting 
m = k2 + 3 in the left-hand side of (25) we obtain 

-(k*-2k* + 3k2 - 5& + 4). 

This is negative since k > 3 (by 4.7), so m = k2 + 3 satisfies the inequality. 
Hence we cannot improve the result m < k2 + 3. Thus in the case Al we 
have 
(26) k > (m - 3)1 

Case A2. We still have (18), with Cm_i = 1, and the calculations of case 
Al up to the inequality (23) are still valid, except that now g = 1. Thus we 
have (24), but now we must put Cm-i = 1 and (24) becomes 

(27) m3 - m2(k2 + 5) + m(2& + 3) + ( P + 2k + k + 1) < 0. 

Hence m3 — m2{k2 + 5) < 0, so m < k2 + 5. Hence m < k2 + 4. Putting 
m = &2 + 4 in the left-hand side of (27), we obtain 

-(k4 - 3k* + 3k2 - 9k + 3). 

This is negative since k > 3 (by 4.7) so m = k2 + 4 satisfies the inequality. 
Hence we cannot improve the result m < &2 + 4. Thus in the case A2 we 
have 

(28) k > (m - 4)1 
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Case A3. Putting Ck = 0, Cm_i = 1 in 5.1, we obtain 

(29) J^sCs = R-m+l, 
=Q 

k-z 

(30) X) s(s + 1)C, = m2(m - 1). 

By (30), 
ft—2 

(& - z + 1) ^ sCs > m2(m — 1), 
s=g 

so, by (29), (& — z + l)(R — m + 1) > w2(w — 1), which gives 

(31) (k + l)(R~ m + 1) - m2(m - 1) > z(R - m + 1). 

Furthermore, if z < |& we have, by (29), 

2 k—z 

R - m + 1 = ]T) sCs + X) sC,. 
S=0 Z + l 

Hence 

(*-* + i)(ie-m + i) > (*-* + i)X)sc,+ £*(* + i)c,. 
S=ff 2 + 1 

Also, by (30), 

m\m - 1) = ^ s(s + 1)C, + £ s ( s + 1)C.. 
5=0 2+1 

Hence, by subtraction, 

2 

(jfe - 2 + 1)(R - m+ 1) - m\m - 1) > £ s ( f e - z - S)CS 
s=g 

> (k - 2z) É sCs 

> (& — 2z)m(m — k — z — l)z 
(by 5.3). 

Thus 

(32) (& + 1) CR - w + 1) - m2(m - 1) > (jfe - 2s)m(m - * - z - l )s 
+ z(2? - w + 1) 

= mO(z) + z(R — m + 1), 

using the notation of (20). 
Denote by x(s) the function that is equal to md(z) + z{R — m + 1) when 

z <\k and equal to z (R — m + 1) when z > J&. These two expressions are 
equal when z = J& so, regarding s as a continuous variable, %(s) 1S a con­
tinuous function. By (31) and (32) 

(33) (Jk + \){R - m + 1) - m2(w - 1) > x(z) . 
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Now x(z) — ^(s) = z[R — m + 1 — 0(g)], using the notation of (20) and 
(21). Hence 

x'(s) - * ' ( * ) = 2 î - m + l - * ( g ) 
= [m2 - &(& + 1)] + mg[m - g - 1] + [m(*g - 1) - g], 

which is positive. Thus x(z) "~ ^( s) is an increasing function. But the mini­
mum value of \p(z) in the interval [g, k — g] occurs when z = g. Hence the 
minimum value of x(z) occurs when z = g also. Hence x(z) > x(g) so, by 
(33), 

(34) (k + l)(R- m + 1) - m2(m - 1) > m0(g) + g(2î - m + 1). 

The derivative of the right-hand side with respect to g is 

m[-6g2 - 2(2m - 3k - 2)g + (mk - k2 - k)] + (R - m + 1). 

This is a decreasing function of g. When g = \k, its value is 

\m2k + \mk2 — \mk + m2 — k2 — k — m, 

which is positive. Hence the derivative is always positive, so the right-hand 
side of (34) is an increasing function of g. Its least value therefore occurs 
when g = 1, so 

w0(g) + g(R - m + 1) > m0(l) + l(-R - w + 1). 

Combining this with (34), we have 

(k + 1)(R- m + 1) - m2(m - 1) > m(k - 2) (m - k) + (R - m + 1). 

This simplifies to 

(35) w3 - (k2 + 3)m2 + 3km + (kz + k2) < 0. 

Hence mz - (k2 + 3)m2 < 0, m < k2 + 3, so m < k2 + 2. 
Putting m = k2 + 2 on the left-hand side of (35) we obtain 

- (É* - 4 P + 3&2 - 6 * + 4). 

This is positive when & = 3 and negative when k > 4. Thus, if 

w > 42 + 2 = 18, 

m = k2 + 2 satisfies the inequality (33), so we cannot improve the result 
m < k2 + 2. But if m < 18, we cannot have m = k2 + 2 (since this implies 
k = 3, for we are considering only & > 3), so m < k2 + 2 and hence 
m < k2 + 1. Putting m = &2 + 1, on the left-hand side of (33), we have 

-(2ft4 - 4 P + 3&2 - 3k + 2), 

which is negative since k > 3. Hence we cannot improve upon the result 
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m < k2 + 1. Thus in the case A3 we have 

,«fiN ( * > ( m - 2 ) * if m > 18, 
^ ; \k> (m - 1)* if m < 17. 

iVfl/e. We have not used 5.2 in these calculations. The reason for this is 
that (29) gives us more information than 5.2, since 

R — m + 1 > m (m — g — l)(k — g) + g 

as may easily be shown. 

Case B. Let 5 be a g-point. There are m {m — g — 1) points of 7r0, such 
as Q in Figure 6, not lying on any of the g + 1 lines of T0 through S. The 
m(m — g — 1) lines such as 5<2 are all distinct, and apart from S and Q each 
such line must contain points of total valency (m + k) — g — m = k — g. 
Since k — g < 2g, this extra valency must come from a single (k — g) -point. 
Hence there are at least m (m — g — 1) points of valency k — g. Thus 

Ck-g > m(m — g — 1). 

Similarly, starting with a (& — g)-point, we can show that 

Cg > m(m — k + g — 1). 

Since & — g ^ g (by 4.8), (fe — g) -points are not the same as g-points. 
Thus, substituting these inequalities in (18) and putting Cm_i = 0, we have 

(37) (k + 1)R - m{m2 - 1) > g{k - g)m[m - g - l + m - k + g-1] 
= g(k — g)m(2m — k — 2). 

Now g> \k and g and k are integers, so g > f̂e + J. Also g(k — g) is an 
increasing function of g if g < \k, so the minimum value of g{k — g) in the 
range \k + f < g < \k is 

(P + i ) ( * - i * - i ) = 5(2*2 + ife - i). 
Thus from (37) we deduce that 

(k + 1)2? - m(m2 - 1) > !(2&2 + * - l)w(2w - k - 2). 

This simplifies to 

(38) 9m3 - m2(5k2 + 16k + 11) - m(2kz - 4&2 - 8k +7 ) 
+ (9P + 18&2 + 18^ + 9) < 0. 

Suppose k2 < 2m. Then (38) can be written 

9w3 - m2(5k2 + 20k + 11) + 2mk(2m - k2) + m(4k2 + 8& - 7) 

+ (9&3 + 18&2 + 18* + 9) < 0. 

Hence 9m3 - m2(5k2 + 20* + 11) < 0, so 9(m + 1) < 5(k + 2)2. 
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If k2 > 2m, then certainly 9 (m + 1) < 5(k + 2)2. Hence in any case 

(39) k + 2 > [9(w + l)/5]*. 

The results for the cases Al, A2, A3 are, by (26), (28), and (36), 
Al . k> (m- 3)*, 
A2. k > (m - 4)*, 

| * > (m - 2)* if m > 18, 
\& > (m - l ) è if m < 17. 

Combining these results, we can say that if g < \k, then k > (m — 4)^. Since 
we cannot have k = 2, we cannot have & = (m — 4)^ if m < 12, so 
k > (m — 4)* and thus 

(40) * > (w - 3)* if m < 13. 

In case B, we have \k < g < \k, which is impossible unless k > 5. Then 
i (w + 1) > * + 1 > 6 (by 2.3) so m > 11. If m = 11 or 12, both (39) and 
(40) give & > 3. If w > 13 we may easily verify that 

[9(w + l)/5]* - 2 > (m - 4)*. 

Hence the inequalities obtained in case A are also valid in case B. 
Since we are now considering m > 7, our new inequalities are better than 

* + 1 > (w + 1)* 

obtained in 3.6. We have now proved 

THEOREM 5.4. Either m = 2, k = 0, w = 3; or m = 3, k = 4, w = 4; or 
w = 3, & = 1, w = 7; or 7 < m < 12 awd -|ra — J > & > (m — 3)* ze;WcA 
implies that m2 — 1 — (m — 3)* > w > w2 — ^w — J; or w > 13 and 

\m — \ > k > (w — 4)* 

which implies that m2 — 1 — (m — 4 ) * > ? £ > r a 2 — Jm — J. Moreover, k ^ 2. 

6. The Desarguesian case. A projective plane is Desarguesian if it satis­
fies the axiom of Desargues, i.e., if any two triangles in central perspective 
are also in axial perspective. 

An affine plane is Desarguesian if its projective extension (as defined in 
§ 1 )is Desarguesian. 

It is well known that a Desarguesian plane (projective or affine) may be 
co-ordinatized using elements of a unique skew field (e.g., 1, p. 374). The 
characteristic of a Desarguesian plane is the characteristic of the skew field 
of co-ordinates. 

An affine plane and its projective extension have the same skew field of 
co-ordinates, so they have the same characteristic. 

Ostrom and Sherk (5, p. 556) have investigated the conditions under which 
an affine plane of order 3 can be embedded in a Desarguesian projective plane 
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of finite order. The proof of their result can easily be adapted to the infinite 
case, using a skew field, and with a little extra calculation we can extend their 
result to 

THEOREM 6.1. The Desarguesian projective plane -K, co-ordinatized by the skew 
field k, contains an affine subplane wo of order 3 if and only if k contains an 
element t such that t2 + t + 1 = 0 . This means that either (a) k has charac­
teristic 3 and t = 1 or (b) k contains a primitive cube root of unity, which, if k 
is finite, occurs if and only if the order of k is congruent to 1 (mod 3). 

The bundles of parallels in 7r0 form pencils of concurrent lines in IT if and 
only if k has characteristic 3, in which case the four vertices of these pencils are 
collinear in TT, SO that T contains the projective extension of 7r0. 

I t is natural to ask what happens if the order of 7r0 is greater than 3. We 
shall prove 

THEOREM 6.2. Let T be a Desarguesian projective plane containing an affine 
subplane ir0 of order greater than 3. Then 

(a) 7To is Desarguesian, 
(b) each bundle of parallels in 7r0 forms a pencil of concurrent lines in T, 
(c) the vertices of all these pencils are collinear in T, SO that T contains the pro­

jective extension of TO, 
(d) 7To has the same characteristics as T. 
(e) If ir is finite, the order of T is a power of the order of 7r0. 

Before giving the proof, we need a lemma. 

LEMMA 6.3. Let L, M be two points of an affine plane 7r0, and let f be a line 
through L and g a line through M, both distinct from the line h = LM. Let 
I —> Z* be a one-one mapping of the pencil of lines through L onto the pencil of 
lines through M such that h—*h and f —> g. If this mapping has the property 
that I and Z* are parallel whenever l 7e f and I 9^ h, then f and g are parallel. 

Proof. Suppose/ and g are not parallel. Let Z0 be the line through L parallel 
to g. Then Z0 9^ h and Z0 ^ / . Hence Z0* is parallel to Z0, and Z0* ^ g (since the 
mapping is one-one). Thus we have two distinct lines through M parallel 
to Z0, namely Z0* and g, a contradiction. Hence / and g are parallel. 

Proof of 6.2. Let a, b, c be any three parallel lines of 7r0. Let A, B, C be 
any three non-collinear points on a, b, c (Figure 11). Since T0 has order greater 
than 3, there exists a point L on BC, L ^ B, C, and L not lying on a. Let the 
line h through L parallel to a, b, c meet AB, AC at N, M. (The line h cannot 
be parallel to AB or AC, so M, N exist in 7r0.) 

Let X be a general point of a, and let NX meet b at Y. Write LY = I, 
MX = Z*. Then the mapping h-*h, I —> Z* is a one-one mapping of the 
pencil of lines through L onto the pencil of lines through M, with the pro­
perty f-*g, where / = LB, y = MA (taking X = A). By 6.3, if Z were 
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parallel to Z* whenever X ^ A, t h e n / a n d g would be parallel, a contradiction 
since / and g meet at C. Hence there exists a point X 9e A on a, and a corre­
sponding point Y y£ B on b (N, X, Y being collinear) such that LY and ilOT 
are not parallel. (The symbol X will now denote this particular point rather 
than a general point of a; similarly for F.) Let LY P MX = Z, where 
Z Ç 7T0. 

Suppose Z does not lie on c. Then CZ is not parallel to a, so CZ meets a 
at P , say, where P G 7r0. Then the triangles LCZ, NAX are in central per­
spective from M. Also CZ C\ AX = P , ZL P XN = F, and LC C\ NA = B. 
Hence by the axiom of Desargues in x, P , F, J5 are collinear. Thus BY = b 
meets a at P G 7r0, a contradiction since b and a are parallel. Hence Z Ç £. 

Now let P denote the point of T where the parallel lines CZ, AX meet. By 
the above argument, P , F, J3 are collinear in ir. Hence a, b, c are concurrent 
in 7T. 

It follows that all the lines of any bundle of parallels are concurrent in T. 
Thus we have proved (b). 

Now let P , Ç, R be the vertices, in ir, of three distinct bundles of parallels 
in 7T0, and let ABC be any triangle in TT0 such that PC, CA, AB pass through 
P , Q, R respectively (Figure 12). Let 0 be a point of T0 not on a side of the 
triangle, and let A*, B* be points of TT0 on OA, OB such that A*B* and AB 
are parallel. Then A*B* passes through R. 

Let C be a point of TO on OC such that .4*C is not parallel to AC. If C is 
distinct from 0 and C, let , 4 * C ' P , 4 C = Q'. Let P C meet the line Q'R 
parallel to AB in P'. Then P ' £ 7r0 since P C and AB are not parallel. Apply­
ing the axiom of Desargues in T to triangles BCO, RQ'A*, in central per­
spective from A, we see that C, B*, P' are collinear. Thus B*C and P C are 
not parallel. Also if C = 0 or (7 = C, then P * C and P C are not parallel. 

Hence if C* is the point on OC such that A*C* is parallel to AC, then 
B*C* must be parallel to BC. Thus ^4*C* passes through Ç and B*C* passes 
through P . Applying the axiom of Desargues in T to the triangles ABC, 
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FIGURE 12 

A*B*C*, in central perspective from 0, we see that P , Q, R are collinear 
in 7T. It follows that the vertices of all bundles are collinear. Thus we have 
proved (c). 

Now the projective extension TT* of TT0, being a projective subplane of the 
Desarguesian projective plane TT, must be Desarguesian. Hence TT0 is Desar-
guesian by definition. Thus we have proved (a). 

A Desarguesian plane of given characteristic is characterized by an inci­
dence theorem giving rise to a configuration which occurs only in such planes. 
If such a configuration occurs in 7r*, then it will occur in T. Thus TT, 7r* have 
the same characteristic. Hence T, X0 have the same characteristic. Thus we 
have proved (d). 

I t is easily shown that the skew field of co-ordinates of TT0 is a sub-skew-
field of the skew field of co-ordinates of x. Hence if TT is finite, the order of 
7r is a power of the order of ir0. Thus we have proved (e). 

From Theorems 6.1 and 6.2 we see that the planes TT of the type considered 
in §§ 2-5 cannot be Desarguesian, except in the examples already considered 
0 = 2 , n = 3; m = 3, # = 4; and m = 3, n = 7). Also the number 
n = m2 — 1 — k, where k < \m — \, cannot be a square, since it lies between 
m2 and (m — l)2 . Thus TT cannot be a Hughes plane (1, p. 416), nor can it 
be a plane co-ordinatized by a Hall system (1, p. 364). 
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