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Abstract
The glycaemic and insulin indices assess postprandial glycaemic and insulin response to foods, respectively, which may not reflect the long-
term effects of diet on insulin response. We developed and evaluated the validity of four empirical indices to assess the insulinaemic potential
of usual diets and lifestyles, using dietary, lifestyle and biomarker data from the Nurses’ Health Study (NHS, n 5812 for hyperinsulinaemia,
n 3929 for insulin resistance). The four indices were as follows: the empirical dietary index for hyperinsulinaemia (EDIH) and the empirical
lifestyle index for hyperinsulinaemia (ELIH); the empirical dietary index for insulin resistance (EDIR) and the empirical lifestyle index for
insulin resistance (ELIR). We entered thirty-nine FFQ-derived food groups in stepwise linear regression models, and defined indices as
patterns most predictive of fasting plasma C-peptide, for the hyperinsulinaemia pathway (EDIH and ELIH), and of theTAG:HDL-cholesterol
ratio, for the insulin-resistance pathway (EDIR and ELIR). We evaluated the validity of indices in two independent samples from NHS-II and
Health Professionals Follow-up Study (HPFS) using multivariable-adjusted linear regression analyses to calculate relative concentrations of
biomarkers. The EDIH is comprised of eighteen food groups; thirteen were positively associated with C-peptide and five were inversely
associated. The EDIR is comprised of eighteen food groups; ten were positively associated with TAG:HDL-cholesterol and eight were
inversely associated. Lifestyle indices had fewer dietary components, and included BMI and physical activity as components. In the validation
samples, all indices significantly predicted biomarker concentrations – for example, the relative concentrations of the corresponding
biomarkers comparing extreme index quintiles in the HPFS were EDIH, 1·29 (95% CI 1·22, 1·37); ELIH, 1·78 (95% CI 1·68, 1·88); EDIR, 1·44
(95% CI 1·34, 1·55); and ELIR, 2·03 (95% CI 1·89, 2·19); all Ptrend< 0·0001. The robust associations of these novel hypothesis-driven indices
with insulin response biomarker concentrations suggest their usefulness in assessing the ability of whole diets and lifestyles to stimulate and/or
sustain insulin secretion.

Key words: Hypothesis-driven indices: Dietary patterns: Lifestyle indices: Hyperinsulinaemia: Insulin resistance: C-peptide:
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Hyperinsulinaemia and insulin resistance are considered
important underlying mechanisms linking poor dietary and
lifestyle behaviours to the development of multiple chronic
diseases and conditions. For example, studies suggest that
hyperinsulinaemia is associated with higher risk of colorectal
adenomas(1) and colorectal cancer independent of adiposity(2,3),
and insulin resistance has been consistently linked to
obesity, inflammation, heart disease and type 2 diabetes(4–6).

Although specific dietary factors have been shown to influence
insulin resistance and secretion(7,8), dietary patterns or indices
that include multiple dietary factors and account for the
complex interactions among nutrients and foods may be more
predictive of diet–disease associations(9,10). Other lifestyle
factors that have been linked to hyperinsulinaemia and insulin
resistance are body weight and physical activity (PA)(11–14).
PA plays an important role in the prevention of insulin

Abbreviations: EDIH, empirical dietary index for hyperinsulinaemia; EDIR, empirical dietary index for insulin resistance; ELIH, empirical lifestyle index for
hyperinsulinaemia; ELIR, empirical lifestyle index for insulin resistance; GI, glycaemic index; HPFS, Health Professionals Follow-up Study; NHS, Nurses’ Health
Study; PA, physical activity.
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insensitivity(14), whereas increased body weight has a direct
association with insulin resistance(11). Therefore, combining diet,
exercise and body weight in a lifestyle index would likely be
more predictive of hyperinsulinaemia and insulin resistance than
each of these factors considered separately.
At present, the most common dietary index used to assess the

ability of diets to stimulate insulin secretion is the glycaemic
index (GI). The GI classifies carbohydrate-containing foods by
their ability to raise postprandial blood glucose concentration
relative to glucose or white bread(15), and therefore indirectly
assesses immediate insulin responses to food intake. However,
it neglects dietary factors such as proteins and fats that are also
important in insulin secretion. Moreover, the GI does not
quantify the long-term effects of diet on glycaemia. As an
improvement on the GI, our group previously developed a
food insulin index to directly quantify postprandial insulin
response(16). However, this index was not predictive of
C-peptide concentrations(16). The lack of predictive ability may
be because the insulin index, similar to the GI, assesses post-
prandial insulin response to the intake of specific foods, and
therefore is limited to quantifying short-term insulin response
rather than the long-term effects of whole diets on insulinaemia.
Hence, we developed dietary and lifestyle patterns that assess
the insulinaemic potential of usual diets and lifestyles to reflect
long-term insulin exposure and overall insulin resistance, the
more relevant exposure for chronic disease prevention.
Previously, our group derived a dietary pattern associated

with hyperinsulinaemia and found this pattern to be
significantly associated with colorectal cancer risk(17). However,
the sample size used to derive this pattern was small (n 833),
and the pattern was applied in the same cohort. The objectives
of our current study were 3-fold: first, we updated the pre-
viously developed dietary pattern using the currently available
larger sample of women and additionally developed separate
dietary and lifestyle patterns predictive of hyperinsulinaemia, as
well as insulin resistance; second, in validation studies, we
evaluated how well these patterns predicted concentrations of
insulin response biomarkers in independent samples of men
and women; and, third, we examined the joint influence of diet,
body weight and PA on clinically relevant hyperinsulinaemia
and insulin resistance.

Methods

Study populations

The Nurses’ Health Study (NHS), the Nurses’ Health Study-II
(NHS-II) and the Health Professionals Follow-up Study (HPFS)
are ongoing prospective cohorts established in 1976, 1989 and
1986, respectively. The NHS (n 121 701) enrolled female
registered nurses aged 30–55 years, whereas the NHS-II
(n 116 430) enrolled younger female registered nurses aged
25–42 years(18). The HPFS (n 51 529) enrolled male health
professionals aged 40–75 years. Blood samples were collected
from subpopulations of the NHS (n 32 826) in 1989–1990, of the
NHS-II (n 29 611) between 1996 and 1999 and of the HPFS
(n 18 225) from 1993 to 1994(19). Blood sample collection
was conducted using similar protocols for all cohorts.

The procedures including collection, handling and storage have
been previously summarised(20). In the current study, we used
data from previous matched case–control studies nested within
each of the three cohorts that measured fasting concentrations
of plasma C-peptide, TAG and HDL-cholesterol. In the NHS,
5812 women with C-peptide data and 3929 women with data
on TAG and HDL-cholesterol were included in the develop-
ment of the dietary and lifestyle indices. For the validation
studies, there were 4002 men with C-peptide data and 3559
men with TAG and HDL data in the HPFS cohort, and there
were 1717 women with C-peptide data and 1008 women with
TAG and HDL data in the NHS-II cohort. The Institutional
Review Boards at Brigham and Women’s Hospital and at
Harvard T.H. Chan School of Public Health approved this study.

Biomarker assessment

For the current analysis, we utilised fasting plasma C-peptide
concentrations to assess hyperinsulinaemia. Compared with
insulin, C-peptide has proven to be a better measure of
β-cell secretory activity as it is not extracted by the liver, has a
slower metabolic clearance rate and does not cross-react with
antibodies of insulin(21). To assess insulin resistance, we utilised
the ratio of fasting TAG:fasting HDL-cholesterol, which has
been shown to be significantly correlated with insulin
resistance(22). TAG:HDL-cholesterol is also a simple and
clinically useful measure to identify apparently healthy indivi-
duals who are insulin resistant(23–25).

Procedures for the measurement of fasting plasma insuli-
naemic markers (C-peptide, TAG and HDL) in the NHS, NHS-II
and HPFS have previously been described(26,27). C-peptide was
measured by ELISA (Diagnostic Systems Laboratories/Beckman
Coulter). HDL-cholesterol and TAG were measured by
standard methods with reagents from Roche Diagnostics and
Genzyme(26,27). The intra-assay CV from blinded quality control
samples were <12% for C-peptide and <1·8% for TAG and
HDL across batches.

In nested case–control studies in which these biomarkers
were measured, samples from cases and their matched controls
were analysed in the same batch. Quality control samples were
randomly interspersed among case–control samples, and
laboratory personnel were blinded to quality control and
case–control status for all assays. Biomarkers were measured in
multiple batches over several years. There may be differences
in mean biomarker levels by batch due to different reagents,
technicians or laboratories, but also due to differences in the
participants in each batch. We therefore used a three-step
method, previously described by Rosner et al.(28), to re-calibrate
biomarker concentrations across several batches to the value of
an ‘average batch’, accounting for true variability across bat-
ches, because of different distributions of predictors of the
biomarker across batches: (i) we constructed a linear regression
model with biomarker levels as the dependent variables and
batch indicators as well as variables that may vary by biomarker
levels and by batch (regular aspirin/non-steroidal anti-
inflammatory drugs (NSAID) use, age at blood sample
collection, PA, smoking status, diabetes, other chronic diseases/
conditions and case–control status, as well as menopausal
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status and postmenopausal hormone use in women) as the
independent variables; (ii) next, we calculated the average
batch β coefficient by summing the batch indicator β and
dividing by the total number of batches; and (iii) finally, we
calculated the difference between each batch β and the
average β and re-calibrated biomarker concentrations by
subtracting this difference from the original biomarker
concentration. The re-calibrated biomarkers were then used in
the analyses. The correlation between the re-calibrated and the
uncalibrated TAG:HDL-cholesterol was 0·96 and 0·85 for
C-peptide in the NHS; therefore, we used the uncalibrated
TAG:HDL-cholesterol and calibrated C-peptide in the primary
analyses and conducted sensitivity analyses with the
re-calibrated TAG:HDL-cholesterol and uncalibrated C-peptide.

Assessment of dietary and non-dietary data

Dietary data are updated every 4 years in the NHS (since 1980),
the NHS-II (since 1991) and in the HPFS (since 1986) with a
validated, semi-quantitative FFQ that assessed diet intake during
the previous 1 year(29–31). We used dietary data from the ques-
tionnaires closest to the blood draw – that is, the 1990 FFQ for the
NHS, the 1999 FFQ for the NHS-II and the 1994 FFQ for the HPFS.
Participants with excessive missing items (≥70) in the FFQ or with
implausibly low or high energy intakes (<2510 or >14 644kJ/d
(<600 or >3500kcal/d) for women and <3347 or >17 573kJ/d
(<800 or >4200 kcal/d) for men) were excluded(32).
All three cohorts collected non-dietary data (e.g. medical

history and health practices) and updated the data through
biennial, self-administered questionnaires. We calculated parti-
cipants’ BMI (kg/m2) using height (metres) reported at baseline
for each cohort and weight (kg) reported in the questionnaire
closest to blood draw. Participants reported their smoking status
(never, former, current), and we calculated PA, expressed in
metabolic equivalent (MET)-h/week, by summing the average
MET-h/week for the following activities: tennis/squash/
racquetball, rowing, calisthenics, walking, jogging, running,
bicycling and swimming. The reproducibility and validity of the
PA questionnaire have been evaluated previously(33,34). Regular
use of aspirin or other NSAID was defined as use of ≥2 standard
tablets (325-mg) of aspirin or ≥2 tablets of NSAID/week. We
derived a chronic disease co-morbidity score by summing the
presence= 1/absence= 0 of the following chronic diseases/
conditions: hypercholesterolaemia, cancer, high blood pres-
sure, heart disease and rheumatoid/other arthritis.

Development of the indices of lifestyle and dietary
insulinaemic potential

We developed four indices to assess the insulinaemic potential
of whole diets and lifestyles: the empirical dietary index for
hyperinsulinaemia (EDIH) and the empirical lifestyle index for
hyperinsulinaemia (ELIH), which also include BMI and PA as
components; the empirical dietary index for insulin resistance
(EDIR) and the empirical lifestyle index for insulin resistance
(ELIR), which also include BMI and PA as components.
Of the three cohorts, the NHS had the largest sample of

participants with biomarker data; therefore, we used dietary,

lifestyle and biomarker data (C-peptide, TAG and HDL) in the
NHS to develop the indices, and based the scores on food
groups rather than on nutrients to approximate how people
perceive dietary intake. We first calculated daily intakes
per 4184 kJ (1000 kcal) of thirty-nine previously defined food
groups(32) from the 1990 FFQ. The grouping scheme was
based on the similarity of the nutrient profiles or culinary usage
among the foods(32). We then used four separate stepwise
multivariable-adjusted linear regression analyses to identify the
most important component food groups and lifestyle factors
contributing to hyperinsulinaemia (with C-peptide concentra-
tions as the dependent variable) and to insulin resistance (with
TAG:HDL-cholesterol as the dependent variable), with the
thirty-nine food groups as independent variables, and a
significance level of P= 0·1 for entry into and retention in the
model. BMI and PA were added to the list of the thirty-nine food
group predictors in models to develop the lifestyle indices.
Intakes of the food groups identified in the stepwise linear
regression analyses were weighted by the regression coeffi-
cients derived from the final stepwise linear regression model
and then summed to constitute the indices. All four index scores
assess the insulinaemic potential of diet on a continuum from
maximally low insulinaemic potential to maximally high insulin-
aemic potential, with higher (more positive) scores indicating
higher insulinaemic diets or lifestyles (hyperinsulinaemia or
insulin resistance) and lower (more negative) scores indicating
low insulinaemic or insulin-sensitive diets or lifestyles.

Sensitivity analyses

In the sensitivity analyses, we created three potential alternative
versions of both the EDIH and the EDIR by (i) using uncali-
brated C-peptide and calibrated TAG:HDL-cholesterol, (ii) using
unweighted components, thus assuming that all components
contribute equally to the total score, and (iii) by constructing
indices only for control subjects of the nested case–control
studies (although all the nested case–control studies that
generated data for the current study used pre-diagnostic blood
samples from chronic disease-free participants).

In addition, we compared the predictive ability of the
previously developed C-peptide dietary pattern. This pattern
was high in red meat, high-energy beverages, fish and creamy
soup intakes and low in coffee, high-fat dairy and wholegrain
intakes(17). Finally, we compared the predictive ability of the
EDIH and the EDIR with that of the previously developed
insulin index. The insulin index has been described previously;
its values compare the postprandial plasma insulin response
of a specific food relative to a reference food(16).

Statistical analysis

Where it is not explicitly stated, the analyses described for the
EDIH and the EDIR were also applied to their respective life-
style versions. We described participants’ characteristics using
mean values and standard deviations for continuous variables
or geometric means and CV for log-transformed variables and
frequencies (%) for categorical variables. Concentrations of
all biomarkers were back-transformed to their original units
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(ex, where x is the transformed biomarker value) because
biomarkers were log-transformed using natural logarithms
before analyses.
In the NHS, we calculated correlation coefficients between

the EDIH or the EDIR, their alternative versions and the
insulinaemic markers. We also assessed the distribution of the
absolute average concentrations of C-peptide across quintiles
of EDIH and TAG:HDL-cholesterol across quintiles of EDIR,
stratified by joint categories of BMI and PA as follows: lean and
active (BMI< 25 kg/m2 and PA≥median PA), lean and seden-
tary (BMI< 25 kg/m2 and PA<median PA), overweight/obese
and active (BMI≥ 25 kg/m2 and PA≥median PA), and over-
weight/obese and sedentary (BMI≥ 25 kg/m2 and PA<
median PA). The multivariable models were adjusted for the
following covariates: age at blood draw (years, continuous), PA
(MET-h/week, continuous), smoking status (never, former,
current), regular aspirin/NSAID use (yes/no), case–control
status, history of diabetes (yes/no), chronic disease
co-morbidity score and additionally for menopausal status and
postmenopausal hormone use. BMI was not controlled for in
the multivariable models because it has been shown to
mediate(35,36) and/or modify(17) the association between diet
and insulin markers; thus, controlling for BMI could result in
attenuation of true associations or loss of statistical power to
detect true associations.
In the validation studies in which we evaluated how well the

indices predicted concentrations of insulin response biomarkers
in the HPFS and NHS-II samples, we calculated scores for the
EDIH and EDIR and their potential alternative versions, as
well as estimated correlations among the index scores and
biomarkers (C-peptide for hypersinsulinaemia and TAG:HDL-
cholesterol for insulin resistance). In addition, we assessed the
distribution of the absolute average concentrations of C-peptide
across quintiles of EDIH and TAG:HDL-cholesterol across
quintiles of EDIR, stratified by joint categories of BMI,PA
described above. To determine whether there were clinically
relevant differences in the insulinaemic potential of diet
between these categories, we used clinically relevant cut-off
points – 1·8 ng/ml for C-peptide(37,38) and 3 for TAG:HDL-
cholesterol(25,39) (values considered to be the upper limit of
normal) to dichotomise the biomarkers. Participants with
values ≥1·8 ng/ml were classified as having high C-peptide
concentrations, whereas those with TAG:HDL-cholesterol >3
had high TAG:HDL-cholesterol ratio. We then calculated pro-
portions of participants with clinically high levels of biomarkers
across dietary index quintiles in each category of BMI,PA.
The associations between the EDIH or EDIR and their

respective outcome biomarkers were assessed in multivariable-
adjusted linear regression models using relative concentrations
of the biomarkers predicted in higher EDIH or EDIR quintiles,
with the lowest quintile as the reference (e.g., concentration in
quintile 5/concentration in quintile 1). We used the continuous
index adjusted for multiple covariates to assess the trend of
biomarker concentrations across quintiles of the categorised
index. All multivariable models were adjusted for the previously
described potential confounding variables.
In sensitivity analyses, we applied each of the three

alternative versions of the EDIH or EDIR (scores developed

using uncalibrated C-peptide and calibrated TAG:HDL-choles-
terol, scores developed using unweighted components, scores
developed in control subjects only) in multivariable-adjusted
linear regression models to predict relative concentrations of
the biomarkers. In addition, we compared the predictive ability
of the previously developed C-peptide dietary pattern and the
insulin index with that of the EDIH and EDIR. Although parti-
cipants were free from diabetes at blood sample collection, we
excluded participants identified to have diabetes during the
nested case–control studies, and compared findings with those
from all participants.

All analyses were conducted using SAS version 9.3 for UNIX.
All tests were two-sided, and 95% CI not including 1 were
considered to indicate statistically significant results.

Results

Of the thirty-nine food groups examined, eighteen were iden-
tified as significant contributors to the EDIH, with thirteen of
them positively associated and five of them inversely associated
with C-peptide concentrations (Table 1). The ELIH had fourteen
components: seven components including BMI were positively
associated with C-peptide, whereas the remaining seven
components including PA were inversely associated with
C-peptide concentrations. Common to both dietary and lifestyle
hyperinsulinaemia indices were red meat, margarine, creamy
soups and butter (positive associations) as well as high-fat dairy
products, wine, coffee and whole fruit (inverse associations).
The EDIR had eighteen components: ten were positively
associated with TAG:HDL-cholesterol, whereas eight were
inversely associated with TAG:HDL-cholesterol. The ELIR had
seventeen components: eleven including BMI were positively
associated with TAG:HDL-cholesterol, whereas the remaining
six including PA were inversely associated with TAG:
HDL-cholesterol. Common to both dietary and lifestyle insulin-
resistance indices were margarine, red meat, refined grains,
processed meat, tomatoes, other vegetables and low-energy
beverages (positive associations) as well as coffee, wine, high-
fat dairy products, liquor and green leafy vegetables (inverse
associations) (Table 1). The potential alternative versions were
similar and mainly differed from the EDIH and the EDIR in the
number of components (online Supplementary Table S1).

In the NHS, the proportion of overweight women in the highest
quintile of both the EDIH and the EDIR was approximately
2 times higher than the proportion in the lowest quintile. Similarly,
the proportion of lean and active participants was highest in
quintile 1 and lowest in quintile 5. The proportion of participants
with ≥3 chronic diseases/conditions in the highest quintile was
>2 times higher than that in the lowest quintile (Table 2). Both
dietary indices showed moderate correlations with biomarkers.
For example, the Spearman’s correlation coefficient was 0·21 for
the EDIH and C-peptide and 0·32 for the EDIR and TAG:HDL-
cholesterol. The correlations were stronger for the two lifestyle
indices, with correlations coefficients of 0·47 between the ELIH
and C-peptide and 0·46 between the ELIR and TAG:HDL-
cholesterol (Table 3). In addition, the EDIH and the EDIR were
highly correlated with their potential alternative versions, but
correlations with the insulin index were low – for example,
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Table 1. Components of the indices to assess the insulinaemic potential of diet and lifestyle; the Nurses’ Health Study, 1990

Empirical dietary index for hyperinsulinaemia Empirical lifestyle index for hyperinsulinaemia Empirical dietary index for insulin resistance Empirical lifestyle index for insulin resistance

Food group* Weight† R 2
‡ Food group* Weight† R 2

‡ Food group* Weight† R 2
‡ Food group* Weight† R 2

‡

Positive associations Positive associations Positive associations Positive associations
Red meat 0·250 0·008 BMI (kg/m2) 0·051 0·187 Low-energy beverages 0·116 0·014 BMI (kg/m2) 0·047 0·151
Low-energy beverages 0·053 0·004 Margarine 0·041 0·001 Margarine 0·121 0·013 Refined grains 0·076 0·003
Cream soups 0·787 0·003 Liquor 0·072 0·001 Red meat 0·328 0·009 Red meat 0·181 0·003
Processed meat 0·199 0·002 Cream soups 0·536 0·001 Refined grains 0·102 0·006 Margarine 0·099 0·003
Margarine 0·054 0·002 Butter 0·058 0·001 processed meats 0·327 0·004 Tomatoes 0·135 0·002
Poultry 0·183 0·002 Red meat 0·089 0·001 Tomatoes 0·145 0·002 Low-energy beverages 0·051 0·002
Butter 0·094 0·001 Fruit juice 0·042 0·001 Other vegetables 0·126 0·001 Fruit juice 0·068 0·001
French fries 0·581 0·001 Inverse associations Other fish 0·155 0·001 Potatoes 0·160 0·001
Other fish 0·172 0·001 Coffee −0·020 0·002 Fruit juice 0·052 0·001 Processed meat 0·124 0·001
High-energy beverages 0·104 0·001 Whole fruit −0·029 0·002 Creamy soups 0·519 0·001 Other vegetables 0·070 0·001
Tomatoes 0·095 0·001 Wine −0·071 0·002 Inverse associations Tea 0·027 0·001
Low-fat dairy products 0·025 0·001 Physical activity (MET-h/week) −0·001 0·001 Coffee −0·070 0·018 Inverse associations
Eggs 0·124 0·001 High-fat dairy products −0·054 0·001 Wine −0·261 0·011 Coffee −0·041 0·007

Inverse associations Snacks −0·024 0·001 Liquor −0·204 0·006 Wine −0·171 0·004
Wine −0·165 0·009 Salad dressing −0·059 0·001 Beer −0·210 0·002 Liquor −0·122 0·002
Coffee −0·035 0·005 Green leafy vegetables −0·076 0·001 High-fat dairy products −0·064 0·001
Whole fruits −0·029 0·003 High-fat dairy products −0·066 0·001 Physical activity (MET-h/week) −0·001 0·001
High-fat dairy products −0·046 0·001 Dark yellow vegetables −0·103 0·001 Green leafy vegetables −0·064 0·001
Green leafy vegetables −0·055 0·001 Nuts −0·078 0·001

* The food groups (servings/d) retained were defined as follows: red meats (4–6 oz beef, 4–6 oz pork, 4–6 oz lamb, 1 patty hamburger); processed meat (1 piece or 1 slice processed meat, 2 slices bacon, 1 hot dog); low-energy
beverages (1 glass, 1 bottle or 1 can of low-energy cola, other low-energy carbonated beverages); cream soups (1 cup chowder or cream soup); 1 pat margarine; poultry (4–6 oz chicken or turkey with or without skin); high-energy
beverages (1 glass, 1 bottle or 1 can of cola with sugar, other carbonated beverages with sugar, fruit punch drinks); 1 pat butter; 4-oz French fries; other fish (3–5 oz canned tuna, shrimp, lobster, scallops, fish and other seafood other
than dark meat fish); low-fat dairy products (8-oz glass skimmed or low-fat milk, 1/2 cup sherbet or ice milk, 1 cup yogurt); tomatoes (1 fresh tomato, 1 small glass of tomato juice, 1/2 cup of tomato sauce); 1 egg; cruciferous vegetables
(1/2 cup of broccoli, coleslaw and uncooked cabbage; cooked cabbage; cauliflower; Brussels sprouts; kale, mustard and chard greens; sauerkraut); wine (4-oz glass of red wine, white wine); 1 cup coffee; high-fat dairy products (8-oz
glass whole milk, cream, 1 tablespoon sour cream, 1/2 cup ice cream, 1oz cream cheese, 1 oz or 1 slice other cheese); green leafy vegetables (1/2 cup spinach, serving of iceberg or head lettuce, serving of romaine or leaf lettuce);
whole fruit (1-oz or small-pack raisins, 1/2 grapes, 1 avocado, 1 banana, 1/4 melon cantaloupe, 1 slice watermelon, 1 fresh apple or pear or 1/2 cup canned, 1 orange, 1/2 grapefruit, 1/2 cup strawberries, 1/2 cup blueberries, 1 fresh or
1/2 canned peaches, 1 fresh or 1/2 canned apricots or plums); dark yellow vegetables (1/2 cup carrots, 1/2 cup yellow (winter) squash, 1/2 cup yams, 1/2 cup sweet potatoes); snacks (1 small bag or 1-oz potato chips, corn chips or
popcorn, 1 crackers); 1 pat butter; fruit juice (1 small glass of apple juice or cider, orange juice, grapefruit juice, other fruit juice); liquor (1 drink or 1 shot whiskey, gin, etc.); salad dressing ( 1 tablespoon oil and vinegar salad dressing);
refined grains (1 slice white bread, 1 English muffins, 1 bagel or roll, 1 muffin or biscuit, 1 cup white rice, 1 cup pasta, 1 serving of pancakes or waffles); beer (1 glass, 1 bottle or 1 can); 1 cup coffee; 1 cup tea (not herbal tea); potatoes
(1 baked or boiled, 1 cup mashed); other vegetables (4-inch stick celery, 1 fresh, cooked or canned mushroom, 1/2 green pepper, 1 ear or 1/2 cup frozen or canned corn, 1/2 cup mixed vegetables, eggplant, 1/2 cup zucchini, 1/2 alfalfa
sprouts, 1/4 cucumber); whole grains (1 cup cooked oatmeal, 1 cup other cooked breakfast cereal, 1 slice dark bread, 1 cup brown rice, 1 cup other grains, 1 tablespoon bran added to food, 1 tablespoon wheat germ).

† Weights are regression coefficients derived from the final step of the stepwise linear regression models. Each weight represents the contribution of the corresponding index component to the total weighted index score.
‡ The partial R 2 represents the proportion of variance in biomarkers explained by the index component.
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although the EDIH had a correlation coefficient of 0·90 with the
version developed in control subjects, its correlations with
the insulin index was –0·07. Corresponding correlations for the
EDIR were 0·89 and 0·14, respectively (online Supplementary
Table S2).
In multivariable-adjusted models in the NHS, the EDIH and

the EDIR were significantly associated with C-peptide and TAG:
HDL-cholesterol. The C-peptide concentration of women in the
highest quintile of the EDIH was 40% (95% CI 34, 46%;
Ptrend< 0·0001) higher than that of women in the lowest
quintile. Similarly, women in the highest quintile of the EDIR
had a 67% (95% CI 55, 80%; P< 0·0001) higher concentration
of TAG:HDL-cholesterol than women in the lowest quintile. The
corresponding contrasts for the ELIH and the ELIR were 97%
(95% CI 89, 106%) and 127% (95% CI 111, 145%), respectively
(Table 4). Multivariable-adjusted analyses excluding women
with diabetes were not materially different (online Supple-
mentary Table S3). In stratified analyses, there were large
differences in C-peptide concentrations in EDIH quintiles
across combinations of BMI,PA. Women in the overweight/
obese and sedentary categories had the highest concentrations

of C-peptide, whereas those in the lean, active category had the
lowest concentrations. In addition, there were significant trends
of increasing TAG:HDL-cholesterol concentrations within joint
strata of BMI and PA (Fig. 1).

In the validation studies using HPFS and NHS-II data, we
observed similar trends in participant characteristics as in the
NHS. Concentrations of C-peptide and TAG:HDL-cholesterol
increased monotonically across quintiles of their respective
dietary and lifestyle indices. For example, between extreme
index quintiles in the HPFS, there was a 25 and 82% increase in
C-peptide for the EDIH and the ELIH respectively, and a 60 and
132% increase in TAG:HDL-cholesterol for the EDIR and the
ELIR, respectively (online Supplementary Table S4 for the EDIH
and the EDIR and online Supplementary Table S5 for the ELIH
and the ELIR). Moreover, we found similar correlation patterns
for the indices and biomarkers in the HPFS and NHS-II samples
as in the NHS – that is, moderate correlations between dietary
indices and biomarkers, stronger correlations between lifestyle
indices and biomarkers (Table 3) and very strong correlations
between dietary indices and potential alternative versions, but
low-to-moderate correlations with the insulin index and the

Table 2. Participant characteristics in quintiles (Q) of the insulin response dietary patterns; the Nurses’ Health Study, 1990
(Mean values and standard deviations; numbers and percentages)

Empirical dietary index for hyperinsulinaemia (n 5812) Empirical dietary index for insulin resistance (n 3929)

Q1 (n 1162)
(−0·57 to <0·09)

Q3 (n 1162)
(0·16 to <0·21)

Q5 (n 1162)
(0·28 to 0·75)

Q1 (n 785)
(−1·15 to <0·06)

Q3 (n 786)
(0·19 to <0·28)

Q5 (n 786)
(0·39 to 1·25)

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

Fasting C-peptide (ng/ml)* 1·8 0·9 2·2 0·9 2·6 0·9 NA NA NA NA NA NA
Fasting TAG:HDL-cholesterol* NA NA NA NA NA NA 1·62 1·0 2·29 1·0 3·19 1·1
Insulin index 42·5 5·8 43·0 4·8 41·8 4·3 40·4 6·3 43·4 4·3 42·9 4·1
Age (years) 59·3 6·5 58·2 6·9 56·2 7·4 59·2 6·1 59·6 6·3 58·8 6·7
Physical activity (MET-h/week) 18·6 18·7 17·5 30·5 12·9 21·4 17·4 18·7 15·2 19·7 13·5 18·4
Alcohol (servings/d)† 0·7 1·0 0·4 0·7 0·3 0·7 1·1 1·3 0·3 0·5 0·1 0·3
BMI (kg/m2) 24·0 3·6 25·7 4·3 27·7 5·6 24·3 3·9 26·3 5·1 29·3 6·0

n % n % n % n % n % n %

Overweight/obese (≥25 kg/m2) 373 32·1 570 49·1 728 62·7 279 35·5 396 50·4 578 73·5
Current smokers 125 10·8 116 10·0 146 12·6 247 31·5 165 21·0 123 15·7
Regular aspirin/NSAID users 393 33·8 436 37·5 484 41·7 277 35·3 289 36·8 321 40·8
BMI–physical activity combinations‡

Lean and active 479 41·2 334 28·7 203 17·5 281 35·8 198 25·2 102 13·0
Lean and sedentary 310 26·7 258 22·2 231 19·9 225 28·7 192 24·4 106 13·5
Overweight/obese and active 211 18·2 272 23·4 259 22·3 165 21·0 188 23·9 229 29·1
Overweight/obese and sedentary 162 13·9 298 25·7 469 40·4 114 14·5 208 26·5 349 44·4

Chronic disease/conditions
co-morbidity score§
No chronic disease/condition 517 44·5 521 44·8 517 44·5 356 45·4 283 36·0 218 27·7
1 chronic disease/condition 415 35·7 376 32·4 374 32·2 261 33·3 260 33·1 238 30·3
2 chronic diseases/conditions 184 15·8 183 15·8 199 17·1 116 14·8 173 22·0 191 24·3
≥3 chronic diseases/conditions 46 4·0 82 7·1 72 6·2 52 6·6 70 8·9 139 17·7

Diabetes (yes) 6 0·5 17 1·5 23 2·0 46 5·9 108 13·7 259 33·0
Postmenopausal women 1024 88·1 974 83·8 889 76·5 726 92·5 714 90·8 697 88·7
Postmenopausal hormone user 679 58·4 633 54·5 535 46·0 490 62·4 455 57·9 424 53·9

NSAID, non-steroidal anti-inflammatory drugs.
* Geometric means (CV) are presented for the biomarkers (fasting plasma samples) because all biomarkers were log-transformed before analyses; the Quan-Zhang formula;

CV= (eSD− 1)1/2(40) was used to calculate CV.
† Alcohol intake was the sum of wine (4 oz glass), beer (1 bottle, can or glass) or liquor (1 drink or shot) intakes.
‡ Categories of BMI and physical activity (PA) combinations were created as follows: lean and active (BMI< 25kg/m2 and PA≥median PA), lean and sedentary (BMI< 25kg/m2 and

PA<median PA), overweight/obese and active (BMI≥25 kg/m2 and PA≥median PA) and overweight/obese and sedentary (BMI≥25 kg/m2 and PA<median PA). Median
PA=10·2 MET-h/week for women with C-peptide data and 9·10 MET-h/week for those with TAG:HDL-cholesterol data.

§ Chronic diseases/conditions included in the score were hypercholesterolaemia, cancer, diabetes, high blood pressure, heart disease and rheumatoid/other arthritis.
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previously developed C-peptide dietary pattern (online
Supplementary Table S2). The insulin index was inversely
correlated with C-peptide and with the EDIH. In the HPFS, the
correlation between the EDIH and the EDIR was 0·63.
All four indices were significantly associated with their

respective biomarkers in HPFS and NHS-II, with stronger
associations observed for the two lifestyle indices than their
diet-only counterparts (Table 4). For example, in the HPFS, the
relative concentration of C-peptide was 29% (95% CI; 22%,
27%; Ptrend< 0·0001) higher in the highest quintile of the EDIH
compared with the lowest quintile, whereas the concentration
of TAG:HDL-cholesterol was 44% (95% CI; 34%, 55%;
Ptrend< 0·0001) higher in quintile 5 of the EDIR compared with
quintile 1. Corresponding associations for the lifestyle indices
were as follows: 78% (95% CI 68, 88%; P< 0·0001 for the ELIH
and 103% (95% CI 89, 119%; Ptrend< 0·0001) for the ELIR
(Table 4). Excluding participants with diabetes did not materi-
ally change these findings (online Supplementary Table S3). In
the HPFS, there were differences in concentrations of C-peptide
and TAG:HDL-cholesterol across index quintiles and in cate-
gories of BMI,PA, with overweight/obese and sedentary men
having the highest biomarker levels compared with over-
weight/obese and active men or lean, active or sedentary men
(Fig. 2). The proportion of participants with clinically
high C-peptide concentrations across each EDIH quintile was
1·5–2 times higher among overweight/obese and sedentary
men than among lean and active men, whereas the proportion
with high TAG:HDL-cholesterol levels was 2 to 3 times higher

across each EDIR quintile among overweight/obese and
sedentary men than among lean and active men. Among men
classified as lean and active, a higher proportion of those
consuming diets with high insulinaemic potential had clinically
high biomarker levels than those consuming insulin-sensitive
diets (Fig. 3).

Results from the sensitivity analyses in both men and women
showed that the associations between dietary patterns devel-
oped only in control subjects and those with uncalibrated
C-peptide and uncalibrated TAG:HDL-cholesterol with bio-
markers were reasonably similar to the associations obtained
with the EDIH or the EDIR. However, associations for the
unweighted versions and the previously developed C-peptide
pattern were smaller in magnitude. In contrast, the insulin index
was not predictive of C-peptide concentrations in both men
and women. The relative concentrations were as follows: 0·94
(95% CI 0·89, 1·00; Ptrend= 0·03) for men and 0·99 (95% CI 0·91,
1·09; Ptrend< 0·90) for women, comparing extreme index
quintiles, although there was a trend towards an inverse asso-
ciation in men. The insulin index, however, had a direct (but
smaller compared with the EDIR) association with TAG:HDL-
cholesterol in men, 1·20 (95% CI 1·11, 1·29; Ptrend< 0·0001), but
not in women, 1·12 (95% CI 0·99, 1·26; Ptrend= 0·06), comparing
extreme index quintiles. The previously developed C-peptide
dietary pattern also had direct associations (although smaller in
magnitude) with C-peptide concentrations in both men and
women (online Supplementary Table S6).

Discussion

We developed two dietary and two lifestyle indices in a large
cohort of women and evaluated their validity in two large
independent cohorts of men and women. In all cohorts, the
indices were predictive of both the absolute and the relative
concentrations of the insulin response biomarkers, although the
lifestyle indices were more predictive than the dietary indices.
When we applied cut-off points that have been shown to dis-
criminate between clinically high and low biomarker con-
centrations in adults, we found a consistently higher proportion
of participants with high biomarker concentrations across index
quintiles within subgroups defined by joint categories of BMI,
PA and across BMI,PA categories within index quintiles. These
dietary indices assess the long-term insulinaemic potential of
whole diets, which is in contrast to the assessment of the acute
postprandial glycaemic or insulinaemic potential of specific
foods, as has been carried out previously. In addition, the use of
the TAG:HDL-cholesterol ratio to derive the insulin-resistance
dietary pattern is novel. Although our group previously used
C-peptide concentrations to derive a hyperinsulinaemia dietary
pattern(17), in the current study, we updated and strengthened
this pattern by validating it in two independent cohorts of men
and women. Several sensitivity analyses supported the robust-
ness of the EDIH and the EDIR.

The dietary patterns, although empirical, align well with
current knowledge. In concordance with the inverse associa-
tions found for whole fruits, green leafy vegetables and coffee
with hyperinsulinaemia, other studies have shown that higher
intakes of coffee as well as a plant-based diet that is high in

Table 3. Spearman’s correlations coefficients among the insulinaemic
dietary and lifestyle patterns and fasting plasma biomarker concentrations
in the three cohorts

C-peptide

Empirical dietary indices for hyperinsulinaemia NHS NHS-II HPFS

C-peptide 1 1 1
EDIH 0·21 0·20 0·14
ELIH 0·47 0·43 0·36
Unweighted EDIH 0·16 0·16 0·09
Unweighted ELIH 0·28 0·24 0·19
EDIH in controls 0·20 0·19 0·14
EDIH with unadjusted C-peptide 0·20 0·21 0·13
Previously developed C-peptide dietary pattern 0·11 0·12 0·09
Insulin index −0·03 −0·03* −0·06

TAG:HDL-cholesterol

Empirical dietary indices for insulin resistance NHS NHS-II HPFS

TAG:HDL-cholesterol 1 1 1
EDIR 0·32 0·16 0·21
ELIR 0·46 0·35 0·39
Unweighted EDIR 0·28 0·10 0·19
Unweighted ELIR 0·27 0·24 0·16
EDIR in controls 0·28 0·16 0·18
EDIR with adjusted TAG, HDL 0·31 0·18 0·21
Insulin index 0·06 0·07 0·05

NHS, Nurses’ Health Study, 1990; NHS-II, Nurses’ Health Study-II, 1999; HPFS,
Health Professional Follow-up Study, 1994; EDIH, empirical dietary index for
hyperinsulinaemia; ELIH, empirical lifestyle index for hyperinsulinaemia; EDIR,
empirical dietary index for insulin resistance; ELIR, empirical lifestyle index for
insulin resistance.

* P >0·05.
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Table 4. Adjusted* relative concentrations† of biomarkers in quintiles of insulinaemic dietary and lifestyle patterns in the three cohorts
(Relative concentration and 95% confidence intervals)

Quintile 2 Quintile 3 Quintile 4 Quintile 5

Quintile 1
(Ref.)

Relative
concentration 95% CI

Relative
concentration 95% CI

Relative
concentration 95% CI

Relative
concentration 95% CI Ptrend‡

Empirical dietary index for hyperinsulinaemia
C-peptide (NHS, n 5812)
Age-adjusted 1 1·09 1·04, 1·15 1·20 1·14, 1·25 1·28 1·23, 1·35 1·44 1·38, 1·51 <0·0001
Multivariable-adjusted 1 1·09 1·04, 1·14 1·18 1·13, 1·24 1·27 1·21, 1·32 1·40 1·34, 1·46 <0·0001

C-peptide (HPFS, n 4002)
Age-adjusted 1 1·13 1·07, 1·20 1·16 1·09, 1·23 1·21 1·14, 1·29 1·29 1·22, 1·37 <0·0001
Multivariable-adjusted 1 1·12 1·06, 1·19 1·16 1·09, 1·23 1·22 1·15, 1·29 1·29 1·22, 1·37 <0·0001

C-peptide (NHS-II, n 1717)
Age-adjusted 1 1·05 0·96, 1·15 1·15 1·05, 1·26 1·19 1·09, 1·30 1·37 1·25, 1·50 <0·0001
Multivariable-adjusted 1 1·05 0·96, 1·15 1·13 1·04, 1·24 1·16 1·06, 1·27 1·32 1·21, 1·45 <0·0001

Empirical lifestyle index for hyperinsulinaemia
C-peptide (NHS, n 5812)
Age-adjusted 1 1·10 1·06, 1·15 1·26 1·21, 1·32 1·54 1·48, 1·60 2·04 1·96, 2·13 <0·0001
Multivariable-adjusted 1 1·10 1·05, 1·14 1·25 1·19, 1·30 1·51 1·44, 1·57 1·97 1·89, 2·06 <0·0001

C-peptide (HPFS, n 4002)
Age-adjusted 1 1·20 1·13, 1·27 1·31 1·24, 1·38 1·46 1·38, 1·54 1·83 1·73, 1·94 <0·0001
Multivariable-adjusted 1 1·19 1·12, 1·25 1·29 1·22, 1·36 1·43 1·35, 1·51 1·78 1·68, 1·88 <0·0001

C-peptide (NHS-II, n 1717)
Age-adjusted 1 1·16 1·06, 1·26 1·31 1·21, 1·43 1·41 1·29, 1·54 1·96 1·80, 2·14 <0·0001
Multivariable-adjusted 1 1·16 1·06, 1·26 1·31 1·21, 1·43 1·41 1·29, 1·54 1·90 1·74, 2·08 <0·0001

Empirical dietary index for insulin resistance
TAG:HDL-cholesterol (NHS, n 3929)
Age-adjusted 1 1·19 1·11, 1·28 1·41 1·32, 1·52 1·56 1·45, 1·67 1·98 1·84, 2·12 <0·0001
Multivariable-adjusted 1 1·18 1·10, 1·26 1·34 1·25, 1·44 1·43 1·33, 1·54 1·67 1·55, 1·80 <0·0001

TAG:HDL-cholesterol (HPFS, n 3559)
Age-adjusted 1 1·09 1·01, 1·18 1·24 1·15, 1·34 1·35 1·25, 1·45 1·59 1·48, 1·72 <0·0001
Multivariable-adjusted 1 1·11 1·03, 1·19 1·21 1·13, 1·30 1·29 1·20, 1·39 1·44 1·34, 1·55 <0·0001

TAG:HDL-cholesterol (NHS-II, n 1008)
Age-adjusted 1 1·02 0·90, 1·14 1·12 0·99, 1·26 1·32 1·17, 1·49 1·32 1·17, 1·49 <0·0001
Multivariable-adjusted 1 0·98 0·87, 1·10 1·08 0·96, 1·22 1·23 1·09, 1·38 1·19 1·05, 1·34 0·001

Empirical lifestyle index for insulin resistance
TAG:HDL-cholesterol (NHS, n 3929)
Age-adjusted 1 1·24 1·15, 1·32 1·57 1·46, 1·68 1·98 1·85, 2·12 2·60 2·43, 2·78 <0·0001
Multivariable-adjusted 1 1·24 1·16, 1·33 1·54 1·44, 1·65 1·84 1·72, 1·98 2·27 2·11, 2·45 <0·0001

TAG:HDL-cholesterol (HPFS, n 3559)
Age-adjusted 1 1·28 1·19, 1·37 1·58 1·47, 1·70 1·92 1·79, 2·06 2·34 2·18, 2·52 <0·0001
Multivariable-adjusted 1 1·23 1·15, 1·32 1·49 1·39, 1·60 1·76 1·64, 1·89 2·03 1·89, 2·19 <0·0001

TAG:HDL-cholesterol (NHS-II, n 1008)
Age-adjusted 1 1·12 1·00, 1·26 1·29 1·15, 1·44 1·64 1·46, 1·83 1·90 1·69, 2·13 <0·0001
Multivariable-adjusted 1 1·06 0·95, 1·19 1·21 1·08, 1·36 1·49 1·32, 1·68 1·67 1·48, 1·89 <0·0001

Ref., referent values; NHS, Nurses’ Health Study, 1990; NHS-II, Nurses’ Health Study-II, 1999; HPFS, Health Professional Follow-up Study, 1994.
* Multivariable-adjusted models were adjusted for regular aspirin/non-steroidal anti-inflammatory drugs use, age, physical activity, smoking status, diabetes, other chronic diseases/conditions and case–control status; NHS and NHS-II

models were additionally adjusted for menopausal status and postmenopausal hormone use.
† Values are relative concentrations of fasting plasma biomarkers (i.e. ratio of concentration in higher index quintiles to concentration in the lowest quintile 1 as reference). All values were back-transformed (ex, where x is the transformed

biomarker value) as all biomarkers were transformed using natural log before analyses.
‡ The P-value for trend was the P-value of the index as a continuous variable, adjusted for all covariates listed in footnote*.
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fibre, fruits and wholegrains are associated with lower con-
centrations of C-peptide(7,8,41). The dietary pattern predictive of
insulin resistance is simultaneously influenced by factors that
affect both TAG and HDL-cholesterol. We found margarine,
refined grains, processed meats, creamy soups and fruit juice to
be positively associated with insulin resistance, whereas nuts,
alcohol and green leafy vegetables were inversely associated
with insulin resistance. Similarly, in previous studies, diets
consisting of refined carbohydrates and sweeteners as well

as large amounts of SFA and trans fats (as in many cream-based
sauces) have been associated with higher TAG concentrations,
whereas higher intake of n-3-fats such as in nuts and the
moderate use of alcohol have been linked to higher levels of
HDL-cholesterol(7,42).

We found clinically relevant differences in biomarker con-
centrations both across dietary index quintiles and across BMI,
PA categories. For example, 73% of overweight/obese and
sedentary men consuming the most pro-insulinaemic diets had
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Fig. 1. Multivariable-adjusted biomarker concentrations across quintiles (Q) of (a) the empirical dietary index for hyperinsulinaemia (EDIH) and (b) the empirical
dietary index for insulin resistance (EDIR), stratified by joint categories of BMI and physical activity (PA) in the Nurses’ Health Study (NHS), 1990. Values are back-
transformed (ex, where x is the transformed biomarker value) predicted mean fasting plasma biomarker concentrations, obtained from linear regression models,
adjusted for regular aspirin/non-steroidal anti-inflammatory drugs (NSAID) use, age at blood draw, smoking status, PA, menopausal status, postmenopausal hormone
use, diabetes, other chronic diseases/conditions and case–control status. The P-value for trend was the P-value of the dietary index as a continuous index variable
adjusted for all covariates. Categories of BMI and PA combinations were created as follows: lean and active (lean,act; BMI< 25 kg/m2 and PA≥median PA), lean and
sedentary (lean,sed; BMI< 25 kg/m2 and PA<median PA), overweight/obese and active (owt/ob,act; BMI≥ 25 kg/m2 and PA≥median PA) and overweight/obese and
sedentary (owt/ob,sed; BMI≥25 kg/m2 and PA<median PA). Median PA= 10·2 MET-h/week for women with C-peptide data and 9·10 MET-h/week for those with TAG:
HDL-cholesterol data. a: , Lean,act (Ptrend< 0·0001); , lean,sed (Ptrend< 0·0002); , owt/ob,act (Ptrend< 0·0001); , owt/ob,sed (Ptrend<0·0001);
b: , Lean,act (Ptrend< 0·0001); , lean,sed (Ptrend< 0·0001); , owt/ob,act (Ptrend< 0·0001); , owt/ob,sed (Ptrend< 0·0001).

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

C
-p

ep
tid

e 
co

nc
en

tr
at

io
n 

(n
g/

m
l)

Quintiles of EDIH, HPFS (n 4002)

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5

T
A

G
:H

D
L-

ch
ol

es
te

ro
l r

at
io

EDIR quintiles , HPFS (n 3559)

(a) (b)

Fig. 2. Multivariable-adjusted biomarker concentrations across quintiles (Q) of (a) the empirical dietary index for hyperinsulinaemia (EDIH) and (b) the empirical
dietary index for insulin resistance (EDIR), stratified by joint categories of BMI and physical activity (PA) in the Health Professional Follow-up Study (HPFS), 1994.
Values are back-transformed (ex , where x is the transformed biomarker value) predicted mean fasting plasma biomarker concentrations, obtained from linear
regression models, adjusted for regular aspirin/non-steroidal anti-inflammatory drugs (NSAID) use, age, smoking status, PA, diabetes, other chronic diseases/
conditions and case–control status. The P-value for trend was the P-value of the dietary index as a continuous index variable adjusted for all covariates. Categories of
BMI and PA combinations were created as follows: lean and active (lean,act; BMI< 25 kg/m2 and PA≥median PA), lean and sedentary (lean,sed; BMI< 25 kg/m2 and
PA<median PA), overweight/obese and active (owt/ob,act; BMI≥ 25 kg/m2 and PA≥median PA) and overweight/obese and sedentary (owt/ob,sed; BMI≥ 25 kg/m2

and PA<median PA). Median PA= 28·1 MET-h/week for men with C-peptide data and 24·8 MET-h/week for men with TAG:HDL-cholesterol data. a: , Lean,act
(Ptrend< 0·09); , lean,sed (Ptrend< 0·0002); , owt/ob,act (Ptrend< 0·001); , owt/ob,sed (Ptrend< 0·0001); b: , Lean,act (Ptrend< 0·0001);

, lean,sed (Ptrend< 0·0001); , owt/ob,act (Ptrend< 0·001); , owt/ob,sed (Ptrend< 0·0001).

Diet and lifestyle indices of insulin response 1795

https://doi.org/10.1017/S0007114516003755  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0007114516003755


high C-peptide concentrations (≥1·8 ng/ml) compared with
only 37% of lean and active men consuming the least
pro-insulinaemic diets. In addition, 72% of overweight/obese
and sedentary men consuming the most insulin-resistant diets
had high TAG:HDL-cholesterol levels (>3) compared with only
19% of lean and active men consuming the most insulin-
sensitive diets. These differences further strengthen the idea
that these dietary indices can be useful in identifying popula-
tions at risk of hyperinsulinaemia or insulin resistance. Our
approach to create lifestyle indices (ELIH and ELIR) is com-
plementary to the stratification of the diet-only indices (EDIH
and EDIR) by BMI,PA combinations. Lifestyle indices assess the
joint influence of diet, body weight and PA on hyper-
insulinaemia and insulin resistance, which is important for
public health interventions. The indices assess the insulinaemic
potential of diet/lifestyle on a continuum from maximally low
insulinaemic to maximally high insulinaemic potential with no
optimal cut-off point for classifying individuals as absolutely
high or low. Stratifying the diet-only indices by BMI,PA com-
binations according to established clinically relevant biomarker
cut-off points provides further insight on subgroups to target
with specific dietary and/or lifestyle interventions to reduce
hyperinsulinaemia and/or insulin resistance.
Differences between participants with clinically high and low

biomarker levels within quintiles of the dietary indices were
observed, despite the low-to-moderate correlations between
the indices and the biomarkers. In previous studies, hypothesis-
driven dietary patterns have shown low-to-moderate correla-
tions with the biomarkers used to derive the patterns; however,
these dietary patterns have shown robust associations with
disease risk in independent populations(43,44). For example,
Fung et al.(17) reported a correlation coefficient of 0·23 between
the dietary pattern predictive of C-peptide and the C-peptide
concentrations in NHS, although the pattern showed a
significant positive association with colon cancer risk.

In addition, a dietary inflammatory index showed low correla-
tions with inflammatory markers, yet strong associations with
chronic diseases including cancer(45–47). This suggests that
correlations with biomarkers may not be a direct assessment of
the performance of the dietary pattern in disease prediction or
clinical significance. For example, among lean and active men,
comparing the highest quintile of EDIR to the lowest, the pre-
valence of clinically high TAG:HDL-cholesterol levels can
potentially be reduced by >50% through diet interventions,
even though the EDIR had a low correlation (r 0·15) with TAG:
HDL-cholesterol. A low/moderate correlation may also be due
to the dietary patterns not capturing other lifestyle behaviours
that are associated with the biomarker. Interestingly, when
lifestyle factors such as BMI and PA were included, the corre-
lations between the lifestyle indices and the biomarkers were
>2 higher than that between the diet-only indices and the
biomarkers.

Our group previously created the dietary insulin index to
quantify the short-term (postprandial) insulin-secreting ability of
specific foods(16). This index was associated with higher TAG
and lower HDL levels, with an indicative inverse association
with C-peptide concentrations(16). In the current study, we
compared the predictive ability of the four indices with the
insulin index in sensitivity analyses. The insulin index was
directly associated with TAG:HDL-cholesterol, which is expec-
ted in the context of prevalent insulin resistance, but the cor-
relation was much lower than that of our empirical indices with
TAG:HDL-cholesterol. Moreover, the index also showed an
inverse trend of association with C-peptide concentrations,
which at first seemed counterintuitive but may be understood in
the context of our cross-sectional study design using fasting
plasma samples – for example, in participants who may usually
be consuming a high EDIH/high GI diet; such a diet will elicit
higher insulin secretion to reduce the acute postprandial
glycaemia. The lowered glucose level will down-regulate

P
ro

po
rt

io
n 

(%
) 

of
 p

ar
tic

ip
an

ts
 w

ith
 h

ig
h

(≥
1.

8 
ng

/m
l) 

C
-p

ep
tid

e 
va

lu
e

P
ro

po
rt

io
n 

(%
) 

of
 p

ar
tic

ip
an

ts
 w

ith
 h

ig
h

(>
3)

 T
A

G
:H

D
L-

ch
ol

es
te

ro
l r

at
io

Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5

EDIH quintiles, HPFS EDIR quintiles, HPFS

80

70

37

44

58

43

50

60

74

41

48

65

54

35

19

33

45

52

25
20

33

65

24

37

52

66

37

47

66

72

29

46

54

46

51

66

7373 74 73

60
60

50

40

30

20

10

0

80

70

60

50

40

30

20

10

0

59

(a) (b)

Fig. 3. Distribution of participants (%) with clinically high levels of biomarkers in quintiles (Q) of dietary indices and in joint categories of BMI/physical activity (PA)
combinations in the Health Professionals Follow-up Study (HPFS), 1994. Categories of BMI and PA combinations were created as follows: lean and active (lean,act;
BMI< 25 kg/m2 and PA≥median PA), lean and sedentary (lean,sed; BMI< 25 kg/m2 and PA<median PA), overweight/obese and active (owt/ob,act; BMI≥ 25 kg/m2

and PA≥median PA) and overweight/obese and sedentary (owt/ob,sed; BMI≥ 25 kg/m2 and PA<median PA). Median PA=28·1 MET-h/week for men with C-peptide
data and 24·8 MET-h/week for men with TAG:HDL-cholesterol data. a: , Lean,act (n 965); , lean,sed (n 775); , owt/ob,active (n 1038); , owt/ob,sed (n 1224);
b: , Lean,act (n 746); , lean,sed (n 660); , owt/ob,active (n 830); , owt/ob,sed (n 1166).

1796 F. K. Tabung et al.

https://doi.org/10.1017/S0007114516003755  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0007114516003755


further insulin secretion(48), and blood drawn a couple of
hours into the fasting period will therefore show an
inverse association (temporarily) between the insulin index
(postprandial insulinaemia) and insulin secretion (C-peptide
concentration), which may not persist longitudinally.
Our study is not without limitations. We only had one mea-

surement of the insulin markers, which may underestimate
validity assessed by correlation coefficients(49). Given that food
intake was self-reported, some measurement error is inevitable,
although the validation data showed reasonably good correla-
tions between FFQ and diet records, suggesting that dietary
intake is generally well measured in our cohorts(29–31). The
composition of food groups may not be uniform across studies,
which would limit the ability to apply the indices across studies
in a standardised manner, although investigators may be able to
create unified food groups in pooled analyses of primary data or
in multi-centre studies, and thus enhance the usefulness of these
hypothesis-driven dietary patterns in large-scale epidemiological
studies. Study participants in all three cohorts are mostly
Caucasian health professionals, but the distributions of most
participant characteristics in the three cohorts are generally
similar to that of the larger US multi-racial/ethnic population. It is
important, however, to further apply the indices in multi-racial/
ethnic populations. Other lifestyle factors include smoking and
exogenous hormone use, but we focused mainly on BMI and PA
in the lifestyle indices because these have been shown to be
strongly associated with circulating insulin markers(11–14). We
adjusted for a large number of potential confounding variables
including a history of diabetes and other chronic diseases/
conditions, but these variables were self-reported, thus allowing
the possibility of residual confounding. However, results from
the age-adjusted and multivariable-adjusted models were very
similar in all cohorts, suggesting that any confounding would
have been very minimal.

Conclusion

These novel hypothesis-driven empirically derived dietary and
lifestyle indices assess dietary and lifestyle quality on the basis
of insulinaemic potential. Their robust associations with the
insulin response biomarkers in independent samples suggest
their usefulness in assessing the ability of whole diets and
lifestyles to stimulate and/or sustain insulin secretion. These
indices can be useful in identifying populations at high risk for
hyperinsulinaemia or insulin resistance. In addition, the indices
may be calculated in a standardised and reproducible manner
across different populations, thus circumventing a major limi-
tation of dietary patterns derived from the same study in which
they are applied. Moreover, studies without insulin markers
data may calculate the index scores to investigate associations
between dietary and lifestyle insulinaemic potential and
disease outcomes.
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