When $a=1$, the equation becomes

$$
\begin{array}{ll}
& y-x-y^{3}+x^{3} y^{2}+x^{2} y^{3}=0 \\
\text { i.e. } \quad & \left(y^{2}+x y-1\right)\left(x^{2} y-y+x\right)=0
\end{array}
$$

In this case therefore the curve consists of the hyperbola $y^{2}+x y=1$ and the cubic $x^{2} y-y+x=0$, and is shown in Fig. 2.
R. J. T. Bell

Graphical Trisection of Circular Arc.-Let O be the centre of a given circle of radius a; and $O A, O B$ the containing radii of the arc which is to be trisected.

Along OA set off $\overrightarrow{O E}=\frac{1}{4} \mathrm{OA}$, and draw BF parallel to OA and equal to $\frac{5}{4} a$.

Then a line EP parallel to $O F$ will pass through a point P on the circumference such that arc $\mathrm{AP}=\frac{1}{3} \operatorname{arc} \mathrm{AB}$ approximately.

For, supposing $\mathrm{AOB}=3 \phi$, the equation to EP is

$$
y(5+4 \cos 3 \phi)=4 \sin 3 \phi\left(x-\frac{1}{4} a\right)
$$

This will be exactly satisfied by $x=a \cos \phi, y=a \sin \phi$
if
or if $\quad 5 \sin \phi-4 \sin 2 \phi+\sin 3 \phi=0$.
Now
if

$$
\begin{aligned}
5\left(\phi-\frac{1}{6} \phi^{3}+\frac{1}{12} \phi^{5} \phi^{5}\right) & -4\left(2 \phi-\frac{8}{6} \phi^{3}+\frac{32}{120} \phi^{5}\right) \\
& +\left(3 \phi-\frac{27}{6} \phi^{3}+\frac{243}{120} \phi^{5}\right)=0 \\
\phi^{5} & =0 .
\end{aligned}
$$

Therefore the error is of the fifth order of small quantities if ϕ be small.

For an arc of 60° the error amounts to 2^{\prime}; and for an arc of 45° or less the error is less than 1^{\prime}.
[The above was suggested by a construction given by C. S. Bingley, Esq., F.C.I.S., in "Knowledge," November 1911.]
R. F. Davis

