When a = 1, the equation becomes

$$y - x - y^3 + x^3y^2 + x^2y^3 = 0,$$

i.e. $(y^2 + xy - 1)(x^2y - y + x) = 0.$

In this case therefore the curve consists of the hyperbola $y^2 + xy = 1$ and the cubic $x^2y - y + x = 0$, and is shown in Fig. 2.

R. J. T. Bell

Graphical Trisection of Circular Arc.—Let O be the centre of a given circle of radius a; and OA, OB the containing radii of the arc which is to be trisected.

Along OA set off $\vec{OE} = \frac{1}{4}OA$, and draw BF parallel to OA and equal to $\frac{5}{4}a$.

Then a line EP parallel to OF will pass through a point P on the circumference such that $\operatorname{arc} AP = \frac{1}{3}\operatorname{arc} AB$ approximately.

For, supposing $AOB = 3\phi$, the equation to EP is

 $y(5+4\cos 3\phi)=4\sin 3\phi(x-\frac{1}{4}a).$

This will be exactly satisfied by $x = a\cos\phi$, $y = a\sin\phi$

if $5\sin\phi + 4\sin\phi\cos^2\phi = 4\sin^2\phi\cos\phi - \sin^2\phi$,

or if $5\sin\phi - 4\sin 2\phi + \sin 3\phi = 0$.

Now

$$5(\phi - \frac{1}{6}\phi^3 + \frac{1}{120}\phi^5) - 4(2\phi - \frac{8}{6}\phi^3 + \frac{32}{120}\phi^5) + (3\phi - \frac{27}{6}\phi^3 + \frac{243}{120}\phi^5) = 0 \phi^5 = 0.$$

if

Therefore the error is of the fifth order of small quantities if ϕ be small.

For an arc of 60° the error amounts to 2'; and for an arc of 45° or less the error is less than 1'.

[The above was suggested by a construction given by C. S. Bingley, Esq., F.C.I.S., in "Knowledge," November 1911.]

R. F. DAVIS