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CHARACTERIZING CONTINUA
BY DISCONNECTION PROPERTIES

E.D. TYMCHATYN AND CHANG-CHENG YANG

ABSTRACT. We study Hausdorff continuain which every set of certain cardinality
contains a subset which disconnects the space. We show that such continua are rim-
finite. We give characterizations of this class among metric continua. Asan application
of our methods, we show that continuain which each countably infinite set disconnects
are generalized graphs. This extends aresult of Nadler for metric continua.

1. Introduction. The idea of characterizing spaces by using disconnection prop-
erties goes back at least to Janiszewski [Ja] who in 1912 characterized simple arcs as
continua with exactly two non-separating points. Later, A. J. Ward [Wa] in 1936 char-
acterized the real line topologically as a connected, locally connected, separable metric
space which is separated by each of its points into exactly two components. Bing [Bi]
in 1946 characterized the 2-sphere as a locally connected metric continuum which is
not separated by any pair of points, but which is separated by each of its simple closed
CUrves.

Nadler [Nal] defined the disconnection number D(X) of a connected space X to be
the smallest cardinal number « such that X becomes disconnected upon removal of any
set Awith |A| = & (i.e, cardinality of Ais k) provided x exists. Otherwise, D(X) is not
defined.

Shimrat [Sh, Theorem 2] extended Ward's result by characterizing locally connected,
separable, metric spaces X with D(X) = 1 as connected, separable, metric spaceswhich
have no endpoints, contain no simple closed curves and are locally arc connected.
Stone [St] gave a characterization of the class of locally connected, connected, sepa-
rable, metric spaces X with D(X) < R,. Examples of Gladdines [GI], Pierce [Pi] and
Martin [Ma] show that separability, local connectednessand metrizability, respectively,
are all necessary in Stone's theorem. Nadler [Nal] proved that every metric continuum
Xwith D(X) < X isagraph. Nadler’s proof depends on second countability.

Wewrite X € E; if each set of cardinality x contains a subset which disconnects X. It
is clear that if each non-empty open set in X is uncountable then X € Ey, if and only if
D(X) < Rg. Further, E, C E, for & < 7. We show that if X isacontinuum in E, where
k isan infinite cardinal number then each connected subset of X isin E,. Compactness
is necessary in the above as is shown by the wedge of countably many lines. We show
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that each continuum X in E. is rim-finite and all but countably many of its points are
local separating points. Among metric continua the latter property characterizes E¢. As
an application we extend Nadler's theorem to the non-metric case by proving that a
Hausdorff continuum in Ey, is a generalized graph.

We recall that a compact and connected Hausdorff space is called a continuum. A
generalized arc is a continuum with exactly two non-separating points. A continuum is
called a generalized graph if it is a union of finitely many generalized arcs any two of
which intersect only in a subset of their sets of endpoints. A generalized arc Y can be
linearly ordered in such away that the order topology and the original topology coincide.
We will denote Y by [a,b] where a and b are the two non-separating points of Y. A
Hausdorff continuum isindecomposableif it is non-degenerate and if it is not the union
of two of its proper subcontinua. If X isacontinuumand p € X, then the set of all x € X
such that {p, x} is contained in a proper subcontinuum of X is called a composant of X.

The reader may look up the definitions of continuum theory terms in Whyburn [Wh]
or Kuratowski [Ku].

2. MainResults. Inthissection, unlessstated otherwise, X denotesanon-degenerate
continuum.
We are going to use the following two theorems.

BELLAMY'S THEOREM ([BE], COROLLARY 5). If X isa non-degenerateindecompos-
able continuum, then X contains an indecomposable subcontinuum Y with at least ¢
composants.

GORDH’S THEOREM ([GOR], THEOREM 2.8). If X isa continuumwhichisirreducible
between a pair of points and contains no indecomposable subcontinuum with interior,
then there exists a monotone continuous map f of X onto a generalized arc such that
each point inverse under f has empty interior.

LEMMA 1. If X € E, and Y is a non-degenerate connected subset of X, then the
cardinality of the set of components of X \ cl(Y) islessthan .

PrROOF. Let Y be aproper connected subset of X. If K is acomponent of X \ Y then
KUY is connected by the Boundary Bumping Theorem [Nal, Theorem 5.4, p. 73]. Also,
if x € K suchthat K \ {x} isconnected then (K \ {x})UY is connected. If the cardinality
of the set of components of X\ cl(Y) is not less than « then we could choose x distinct
components, {Cq }o<x, Of X\ cl(Y). Since C, U cl(Y) is a continuum for each «, by
the Non-Separating Point Existence Theorem [Wh1, (6.1), p. 54], no proper connected
subset of C,, U cl(Y) contains the set of all non-separating points of C, U cl(Y). For each
« let p, be anon-separating point of C, U cl(Y) suchthat p, € C,. Then X\ U{Pa}a<s
is connected and dense and, hence, no subset of |J{p } o< Separates X. This contradicts
that X € E, and the lemmais proved.

LEMMA 2. If X € E, for k an infinite cardinal number and Y is a non-degenerate
connected subset of X, thenY € E,..
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PROOF. LetY beaproper connected subset of X, andlet A C Y with |A| = . Suppose
that no subset of A separatesY. In particular, A hasno interior in Y.

For each component C of X \ cl(Y) let xc € cl(Y)Ncl(C) and A’ = A\ {xc : Cisa
component of X\ cl(Y)}. By Lemmal, |A'| = . Since

Y\ACcdV)\AC (cI(Y) \A) U {xc : Cisacomponentof X\ cl(Y)}
C c(Y) =cl(Y\ A),

we have
(cl(Y) \ A) U {xc : Cisacomponent of X \ cl(Y)}

is connected. Hence,

X\ A = J{CU{xc} : Cisacomponent of X\ cl(V)} J(cl(Y) \ A)

is connected and no subset of A’ separates X. This contradictsthat X € E, and Lemma2
is proved.

LEMMA 3. If X € E, then X is hereditarily decomposable.

PrOOF. If there exists an indecomposable subcontinuum Y in X, by Bellamy’s the-
orem, Y contains an indecomposable subcontinuum Z with at least ¢ composants. By
Lemma2Z € E. Let L be acomposant of Z. Then |L| > ¢ but no subset of L separates
Z. Thisis contrary to Z € E,; and the lemmais proved.

LEMMA 4. If X € E, then every non-degenerate subcontinuum of X is connected by
generalized arcs.

PrOOF. It suffices to show that if Y is a subcontinuum of X which is irreducible
between a pair of points, then Y is a generalized arc. By Lemma 2 and Lemma 3 we
know that Y € E. and Y is a hereditarily decomposable continuum. Using Gordh's
theorem, let f be a monaotone continuous map from Y onto a generalized arc [a, b] with
aand b two non-separating points of [a. b] such that Int(f~*(t)) = () for eacht € [a. b].
We only need to show that for eacht € [a, b] f~(t) isasingleton. If not, there exists a
to € [a, b] suchthat f ~%(to) is non-degenerate and connected and, hence, uncountable. If
to = a (or tp = b) then f~1(a. b] (or f ~[a. b)) is a connected dense subset in Y sincef is
monotone and Int(f ~(t)) = () for eacht & [a. b]. Hence, if Aisasubset of f ~(to) with
|A] = c, thesubset Y\ Aisstill connected. Thisiscontraryto Y € Ec. If a < to < bthen

(c|(f—l[a, to)) mf—l(to)) U(d(f—l(to. bl) mf—l(to)) = f1(to) since Int(f~X(to)) = 0.
Without loss of generality we assume cl (f*l[a. to)) N f~1(to) is uncountable. Since
f~![a. to) is connected and densein cl(f~[a. to)), cl(f~[a.to)) N f~(to) is a subset of
cardinality > c which does not separatescl(f~*[a. to)). Thisis contrary to Lemma2 and
the proof of Lemma4 is completed.

A connected space is hereditarily locally connected if each of its connected subsets
islocally connected.
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LEMMA 5. If X € E, then X is hereditarily locally connected.

ProOOF. If Xisnot hereditarily locally connectedthen, by [Si, Theorem 3], thereexists
aconvergence continuum K in X with anet of continua{Kj },ca such that LimK, =K,
Ky NKy =K, or KyNKy, =0 for M.\ € Aand Ky, NK = § for each \. SinceK is
non-degenerate, by Lemma 3, K = AU B where A and B are two proper subcontinua of
K. By Lemma 4, for each A € A, let L, be anirreducible generalized arc from K, to a
point a, of K suchthat Ly, NK = {a, }. Since J{a, }»en C AU B, either A or B contains
asubnet of {a, })ea. We assume by passing to asubnet if necessary that (J{a, }ren C A
ThenY = cl(KUU)en KyUUyen L) isasubcontinuumof X with AUUyen Ky UUyen La
connected and densein Y. Let C € B\ Awith |C| = c. Then Y\ Cis connected. Thisis
contrary to Y € E. and Lemma5 is proved.

THEOREM 6. If k isan infinite cardinal, k < ¢, and X is a continuumin E, then the
set of non-local separating points of X has cardinality lessthan .

PrROOF. Let
Ao = {x € X: xisnot alocal separating point of X}.

If |Ag| > k, thenthereis Ay C Ao which separates X. Since X is locally connected,
by Mazurkiewicz's Theorem [Ku, Section 49, Theorem 3, p. 244], we may assumeA; is
anirreducible separator of X between sometwo pointsaand b in X and A; is closed. We
shall consider two cases.

If A; contains an isolated point, let d € A; be an isolated point of A; and let U be a
connected open neighborhood of d suchthat UM A; = {d}. Then {d} separatesU which
isacontradiction. If A; contains no isolated point, then A, is perfect, so |A;| > c. Let U
be the component of X\ A containing a. Then Bd(U) = A;. By Lemma 1 the cardinality
of the set of componentsof X\ cl(U) islessthan . For each component C of X\ cl(U)
let xc € BA(C) and A} = A1 \ {xc : Cisacomponent of X\ cl(U)}. Then|A’| > «x and
no subset of A] separates X which is again a contradiction. The theorem is proved.

The proof of Theorem 6 servesto prove the following.

THEOREM 7. Let x be an infinite cardinal, x < ¢, and X a continuumin E,.. If Ais
an irreducible separator between two points of X, then |A| < .

Let X be a continuum. A subset Y of X is said to be a cyclic element of X if Y is
connected and maximal with respect to the property of containing no separating point of
itself. We shall say that X is cyclic if X has no separating point. A subset A of X is said
tobeaT-setin X if Aisclosed and | Bd(J)| = 2 for each component J of X \ A. For the
space X a property is cyclicly extensible provided that if each cyclic element of X has
this property then X itself hasthis property.

A space X is said to be rimHfinite if it has a basis B such that | Bd(U)| < X, for each
U € B. A point p of aspace X is said to have order lessthan or equal tonin X provided
that for each open neighborhood U of p there exists an open neighborhood V of p such
that V C U and | Bd(V)| < n. If pisof order lessthan or equal to n but not of order less
thanor equal ton— 1in X, pissaid to be of order nin X.
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THEOREM 8. If Xisa continuumin Ec, then X is rim-finite.

PrOOF. Since rim-finiteness is a cyclicly extensible property (the proof in [Wh,
Theorem 11.5, p. 83] works also in the non-metric setting) we may suppose X is cyclic.
Let aand b be two points of X. It sufficesto show since X is compact that thereis afinite
set which separatesaand b in X. Let C be a closed set which separatesa and b in X. We
may suppose by Mazurkiewicz's Theorem [Ku, Section 49, Theorem 3, p. 244] that Cis
an irreducible separator of X between a and b. By Lemma5 and [Ni2, Theorem 3.4] X
is acontinuous image of an arc and, hence, by [GNST, Theorem 1], C is metrizable. By
[Ni1, Theorem 4.9] there is a metrizable T-set A such that {a,b} U C C A. Then each
component of X \ A has two point boundary. Note that no component of X \ A contains
bothaand binitsclosuresinceC C A.

If a and b lie in different components of A, let A = BU D, where B and D are
separated setswith b € Band a € D. Since X is localy connected there exist at most
finitely many componentsCy, ..., C, of X\ A which meet both B and D. For eachi let

a €cl(C)\ (Ciu{ab}).Then{ay,...,a} separatesaandbin X.

Now suppose a and b lie in the same component E of A. Since E is metrizable and
E € E: by Lemma 2, by Theorem 6, all but countably many points of E are local
separating pointsof E. By [Wh, (9.2), p. 61] al but countably many of these pointsare of
order 2in E. Let F bean irreducible separator of E between a and b such that all points
of F are local separating points of E and of order 2 in E. We claim that F is finite. Just
supposexg € Fisalimit point of F. Let {x } beasequencein F\ {xo} converging to Xo.
SinceF\ {Xo} does not separate a and b, by [GNST, Theorem 4], thereisanarc P from a
tobin A\ (F\ {x0}). Sincetheorder of xo in Eis2 and xg isalocal separating point of the
locally connected continuum E there is a connected neighborhood U of xg in E such that
UNPisconnectedand U NP\ {Xo} meetstwo componentsof U \ {Xo}. Sincethe order
of E at Xo is 2 there does not exist an arc Ag in Ewith Ag NP = {xo}. Let G (respectively,
H) be the component of E \ F which contains a (respectively, b). Since cl(G) and cl(H)
arelocally connected continua, let A; and B; be arcsin cl(G) (respectively, cl(H)) which
areirreducible fromx; to P and such that Lim; A; = Lim; B; = {xo}. Thenxo ¢ AjUB; for
i > 0. Thus, for each sufficiently largei Aj UB;j isanarcin U \ {Xo} which meets both
componentsof P M U. Thisis acontradiction and the proof of the claim is completed.

Since A is closed and metric and X is compact and locally connected, it follows that
X\ A hasat most countably many components. Let Cy, C,, . . . bethe componentsof X\ A.
For eachi, cl(C) N A = {a, b }. For eachi, let fi: cl(C;) — [0, 1] x {i} be a continuous
function such that fi(a;) = 0 and fi(by) = 1. Let X = (AU U ([0, 1] x {i}))/ ~, where
~ isthe smallest equivalencerelation on AU |2, ([0, 1] x {i}) which identifies a with
(0,i) and by with (1. i) for eachi. Definef: X — X by setting

X ifxeA

) = fix) if x € G for somei.

Let X havethe topology induced by f. Then X isametric continuum and X € E. By the
argument of the previous paragraph applied to X in place of E, afinite set F separates
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aand binX. Then X \ F = WUV where W and V are separated sets with a € W and
b € V. Now it followsthat only finitely many components, say Ci,, . . . . G, of X\ Ameet
bothWand V. Foreachi =iq,..., in, let ¢ € {&, b} \ {a b}. Then as in the second
paragraph of the proof we have (FNA) U {ci,,. ... G, } isafinite set which separates a

and b in X. The theoremis proved.

THEOREM 9. Let X be a Peano continuum. Then X € E; if and only if the set of
non-local separating points of X is countable.

PROOF. Suppose first that X is a Peano continuum in E.. Let Ay denote the set of
non-local separating points of X. It is well-known (see [Wh, p. 63]) that since X is a
Peano continuum Ag is a Gs-set in X. If Ag were uncountable it would contain a Cantor
set contrary to Theorem 6.

To prove the sufficiency we assume X is a Peano continuum and the set of non-local
separating points of X is countable but X ¢ E.. Then there is a set A of X such that
|A] = c and no subset of A separates X. Since X is a metric continuum, by [Wh (9.21),
p. 62] and by the hypothesis, we may assume each point of A isalocal separating point
and is of order 2 relativeto A. Let a € A. Then there is a neighborhood U of a such that
Bd(U) C Aand |Bd(U)| = 2. But Bd(U) separates X. This contradicts the assumption
that no subset of A separates X and Theorem 9 is proved.

A dendriteis alocally connected metric continuum which contains no simple closed
curve. A dendrite minusits endpointsis connected. The Gehman dendriteis the topolog-
ically unigue dendrite whose endpoints form a Cantor set and whose branch points are
all of order 3. For aspace X let C (X) denote the set of all nonempty subcontinuaof X.

THEOREM 10. Let Xisa metric continuum. Then X € E. if and only if
(1) Xislocally connected and
(2) X contains no Gehman dendrite.

PROOF. The necessity follows by Lemma 2 and Lemma 5. To prove the sufficiency
we suppose X satisfies (1) and (2) but X ¢ E.. Asin the proof of Theorem 9, the set A of
non-local separating points of X containsa Cantor set C. We shall consider the following
two cases.

Casel. Xis hereditarily locally connected. Let X = Ug and let pp € X\ C and let Ug
and Ug 1 be connected open sets with disioint closures such that py  cl(Ugo U Ug1),
Uo1 N C # 0 and Bd(Uoi) N C = @ for i = 0, 1. Since the points of C are not local
separating points of X we may suppose Uy \ cl(UgoUUg 1) isconnected. Fori =0, 1, let
Li be an irreducible arc joining po to Bd(Ug;) and Li C Ug \ cl(Uo ;) for j # i. We may
supposethat Lo N Ly is connected. Let poi € Li N Bd(Ug;) fori = 0, 1. Note cl(Uo;) is
locally connected by our assumption and pg;i is an accessible point of Ug;.
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Supposenisapositiveinteger andfor 1 <j < n; {Uo;,
are open connected sets with pairwise disjoint closures,

Cl(UQil«,uuij) C UOAil.....ij,ls
Bd(Uo,,...;;) NC =10,
UO.I1 ..... ij nc # Q)

and

irreducible from poj, i, , € Bd(Uo,,....i;_,) to Bd(Uo,,....i;) with

Liy....i; 1.0 M Liy,.._jij ;.1 @connected set

Liy..ijak N Uojy. iy ym) =0 fork#m.

cl(Uojis,...in. 1) C Yojiy,...ins
Bd(Uo,,....i..j)) NC =0,
Uoiy....inj NC # 0.
Uois..in \ (€l(Uois...in0) U Cl(Uoy....i,.1)) CONNeCted,

and construct arcs Li,__i,.j, ] = 0,1 in Ugj,,. i, U {Pois,...in} \ Cl(Uoj,....ink) fOr K #

Li

iLeeming

oNLi,. i1 aconnected set.

Let M = cl(Up2y U{Liy i, T i1yeees in =0, 1}). Then M contains a Gehman dendrite.

Casell. Xisnot hereditarily locally connected. Then there exists a convergence con-
tinuum in X, i.e,, there is a sequence {K;i}>X, of pairwise digoint continua such that
LimK; = Kq. Since X is locally connected we may suppose K; is locally connected for
eachi > 1.

Let U be a connected open set in X of diameter < 1 suchthat KoNU # (. Let Hp €
C (Ko)n Limsup C (K;) with Hg C U and diam (Ho) > 0. By passing to a subsequence
if necessary we may suppose Ho € LimC (K;). For each i sufficiently large let H; €
C (Ki nU) and H; locally connected such that LimH; = Ho. Let i; > 1 be an integer so
that UNKi, # 0. Let x; € H;,. Let L} bean arcin U irreducible from x; to Ho. Let Ug
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and U; be open connected sets of diameter < % with closures digjoint from L and from
each other, cl(U;) € U and Ug and U; each meet Hy. Let i, be an integer so large that
Ki,NU; # B fori=0,1andthereisanarcL; inU\ cl(UpUU,) irreduciblefrom x; to H;,.
Let M; bean arc or simpletriod with M1 C L3 UH;, suchthat x; € M1, MyNUg # () and
M1NU;p # 0. Let Ho; € C(HoNUj)NLimsup C (H;). Wemay supposeHo; € LimC (H;).
LetH,;i ; € C(H;NU;) forj sufficiently largesuchthat LimHy; j = Hoj. Wemay suppose
H,,.j isalocally connected continuum for each j and that My N Hy;;, # 0 fori =0, 1.

Repeat the above argument in Ho; with apoint of Hyj i, in place of x; to get continua
M4i C Ui which are arcs or simple triods and meet M; and K;, and so on inductively.
Then M = cl(Up21 U{Mi,...i, : ij = 0,1}) contains a dendrite D with an uncountable
set of endpoints. Every dendrite with an uncountable set of endpoints, it is easy to see,
contains a Gehman dendrite.

THEOREM 11. If Xisametric continuumin E. then X isthe union of countably many
arcs.

PROCF. Let Ay be the set of non-local separating points of X. By Lemma 5 and
Theorem 9 A, is countable. Let {a; };2, be a countable dense subset of X and let {U;}2;
be a countable basis for X with each U; connected. For each x € X'\ Ag, by [Wh1, (9.1),
p. 61] there exists an integer k such that x € Uy and {x} disconnects Uy. Since | {a; }{=;
is dense there exist a;, g € Uy which are separated by x in Uy. Put

LK = {x € Uy : x separatesa; and & in Uy} U {a;. &}

Since Uy is connected and locally connected, L}j is contained in each arc A,!j in Uy
from g to &. Since A is countable, this completes the proof of Theorem 11.

Anarc Aissaid to be freein acontinuum X if A C X and Bd(A) is exactly the set of
endpointsof A. A continuum X is said to be afree arc continuumif every subcontinuum
of X hasafreearcin X. A free arc continuum is rim-finite. Example 1 is acontinuum in
E. which is not a free arc continuum. By Theorem 11 and the Baire Category Theorem
every metric continuum in E. contains a free arc. We can prove from the following
theorem that every continuum in E; containsa free arc.

THEOREM 12. If Xisa cyclic continuumin E; then X is a free arc continuum.

ProOF. The proof isby contradiction. Suppose Aisan arcin X with nointerior. Then
the set of branch pointsof X in Aisdensein A. Since X is rim-finite and cyclic, for each
x € A and each neighborhood U of x, there is an arc B C U which meets A exactly
in the set of endpoints of B. Give A a natural order. Thereis an arc Cy in X such that
CoNA={ap, by} with ag < bg since X iscyclic.

Suppose n is an integer and we have constructed pairwise digjoint arcs

Coiy..ii»ik=0,1 and j=0,....n

with endpoints
Cois....i; VA ={aoj,....i;» oiy....i }
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wherefor1 <j <n

A0iy....ij1 < A0jiy,ij1.0 < Pojiy..ij1.0 < Q0,11 < Bojiy..ij01 < Boiy..ij g

Now foriy, ..., in there exist points

A0j,.in < A0, nin0 < B0z, ind < 80i1,minl < Pojis,..in < Dojig,..iin

and arcs Cojj,,....i,,0 and Coji,...ji,,1 With
Coiy,...inj VA= {04y, i j» Pojp..inj b fOrj=0.1
and
Coiy..ines N Comy,..m, =0 foreachk < n+1if (0,i1,....in+1) # (0. My, ..., M.

Let C = N2 U{[@0is,....ic- Pojs,..i,] :1j =0.1andj = 1,... ,k}. Then Cis asecond
countable, perfect and O-dimensional subset of the arc A since X is hereditarily locally
connected. Let

B=AU(J{Coj,.i, :ij=0.1andj=1.....k}.
k=0
Then B is a subcontinuum of X. By Lemma 2, B € E., but B contains C as a set
of non-local separating points of B contrary to Theorem 6. Therefore, X is a free arc
continuum.

In the following we give an application of the above theorems to extend Nadler's
Theorem [Nal, Theorem 9.24, p. 153] in metric continua to the class of Hausdorff
continua.

LEMMA 13. If X is a Hausdorff continuumand X € Ey,, then ord(x, X) < 2 for all
but finitely many x € X.

PrROOF. Suppose there exists an infinite subset C of X such that for each x €
Cord(x, X) > 3. Without loss of generality, we assume the set C is countable and
contains no cluster point of itself. We shall define a subcontinuum L of X such that the
set of endpoints of L is infinite which is contrary to L € Ey,, and, hence, completes the
proof.

Suppose first that there exists a generalized arc A such that A contains an infinite
subset {X1,...,%, ...} of C. Sincefor each i, ord(x, X) > 3, ord(x,A) < 2and X is
rim-finite, let U; be an open connected neighborhood of x; and p; € U; \ A such that
UiNU; =0 fori #j andlet L bean irreducible generalized arc in U; from p; to A. Then
L = cl(AU UZ, L) isasubcontinuumwith (2 {pi} in its set of endpoints.

We assume now that no generalized arc containsinfinitely many pointsof C. Let Xp be
alimit point of C. Let U; be a connected open neighborhood of X and takex; € Uy N C.
Let L1 beageneralized arc in U; from x; to Xo. By induction, suppose we have defined
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X1s.-+5%, U1, ..., UqpandLy, ..., Lysuchthat each U; isaconnected open neighborhood
of x, cl(Ui+1) C Uj, Li isageneralizedarcin U; fromx; toXo andx; ¢ cl(U;) forj <. Let
Un+1 be a connected open neighborhood of X such that cl(Un.1) C U and i  cl(Une1)
for eachi < n. Take Xp+1 € Unes NC\ UL Li and let Lnsg be ageneralized arcin Upyg
from Xq+1 t0 Xo. With this construction we have that for eachi, x; ¢ cl (Ui Lj)- Thenthe

subcontinuum L = cl (U, Li) has {x; }2, contained in its set of endpoints as required.
THEOREM 14. AHausdorff continuumXisageneralizedgraphif andonlyif X € Ey,.

PROOF. The necessity is clear. To prove sufficiency let X be a Hausdorff continuum
and X € Ey,. By Lemma 13, let {p1..... pn} be the points of order > 3. Then each
component of X\ {ps, ..., pn} isageneralized ray or generalized half-line, i.e., an open
connected set in which each subcontinuum is a generalized arc. Let T be a finite tree
which contains{py, . . . . pn}. Then X\ T hasfinitely many componentsby Lemma1 and

by Lemma5 each of theseis aray or a half-line whose closure meets T in either one or
two points. Therefore, X is afinite graph. This completes the proof of Theorem 14.

ExAMPLE 1. A metric continuum in E. which is not afree arc continuum.
In the plane %2, for g and nintegers with 0 < q < 2", let Lqn = {55} x [0, %]. Let

oo 2"

X =[0.1] x {0} U J U Lan.

n=00=0
Then X is ametric continuum in E; which is not a free arc continuum.

ExAMPLE 2. A metric continuumin E. which containsan infinite irreducible cutting.

In the plane 2 we denote O = (0.0), A = (5.0) and B = (. %) for i > 0. For two
points P and Q we denote PQ the segment from Pto Q. Let X = OA; U OBy U U2, AiB;.
Then X isametric continuum in E¢; which contains an infinite irreducible cutting.

The following question seemsto be of some interest.

QUESTION. If X is a cyclic continuum in E, where x is an uncountable cardinal
number < ¢, doesthereexist A C X suchthat X\ A| < x and each point of Aisof order
2in X?

(Comment: If X isametric continuumin E¢ thenthereisaset A C Xwith | X\ Al <Xg
and each point of Aisof order 2in X.)
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