
Canad. Math. Bull. Vol. 41 (3), 1998 pp. 348–358

CHARACTERIZING CONTINUA
BY DISCONNECTION PROPERTIES

E. D. TYMCHATYN AND CHANG-CHENG YANG

ABSTRACT. We study Hausdorff continua in which every set of certain cardinality
contains a subset which disconnects the space. We show that such continua are rim-
finite. We give characterizations of this class among metric continua. As an application
of our methods, we show that continua in which each countably infinite set disconnects
are generalized graphs. This extends a result of Nadler for metric continua.

1. Introduction. The idea of characterizing spaces by using disconnection prop-
erties goes back at least to Janiszewski [Ja] who in 1912 characterized simple arcs as
continua with exactly two non-separating points. Later, A. J. Ward [Wa] in 1936 char-
acterized the real line topologically as a connected, locally connected, separable metric
space which is separated by each of its points into exactly two components. Bing [Bi]
in 1946 characterized the 2-sphere as a locally connected metric continuum which is
not separated by any pair of points, but which is separated by each of its simple closed
curves.

Nadler [Na1] defined the disconnection number D(X) of a connected space X to be
the smallest cardinal number î such that X becomes disconnected upon removal of any
set A with jAj = î (i.e., cardinality of A is î) provided î exists. Otherwise, D(X) is not
defined.

Shimrat [Sh, Theorem 2] extended Ward’s result by characterizing locally connected,
separable, metric spaces X with D(X) = 1 as connected, separable, metric spaces which
have no endpoints, contain no simple closed curves and are locally arc connected.
Stone [St] gave a characterization of the class of locally connected, connected, sepa-
rable, metric spaces X with D(X) � @0. Examples of Gladdines [Gl], Pierce [Pi] and
Martin [Ma] show that separability, local connectedness and metrizability, respectively,
are all necessary in Stone’s theorem. Nadler [Na1] proved that every metric continuum
X with D(X) � @0 is a graph. Nadler’s proof depends on second countability.

We write X 2 Eî if each set of cardinality î contains a subset which disconnects X. It
is clear that if each non-empty open set in X is uncountable then X 2 E@0

if and only if
D(X) � @0. Further, Eî ² Eç for î Ú ç. We show that if X is a continuum in Eî where
î is an infinite cardinal number then each connected subset of X is in Eî. Compactness
is necessary in the above as is shown by the wedge of countably many lines. We show
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CHARACTERIZING CONTINUA BY DISCONNECTION PROPERTIES 349

that each continuum X in Ec is rim-finite and all but countably many of its points are
local separating points. Among metric continua the latter property characterizes Ec. As
an application we extend Nadler’s theorem to the non-metric case by proving that a
Hausdorff continuum in E@0

is a generalized graph.
We recall that a compact and connected Hausdorff space is called a continuum. A

generalized arc is a continuum with exactly two non-separating points. A continuum is
called a generalized graph if it is a union of finitely many generalized arcs any two of
which intersect only in a subset of their sets of endpoints. A generalized arc Y can be
linearly ordered in such a way that the order topology and the original topology coincide.
We will denote Y by [aÒ b] where a and b are the two non-separating points of Y. A
Hausdorff continuum is indecomposable if it is non-degenerate and if it is not the union
of two of its proper subcontinua. If X is a continuum and p 2 X, then the set of all x 2 X
such that fpÒ xg is contained in a proper subcontinuum of X is called a composant of X.

The reader may look up the definitions of continuum theory terms in Whyburn [Wh]
or Kuratowski [Ku].

2. Main Results. In this section, unless stated otherwise, X denotes a non-degenerate
continuum.

We are going to use the following two theorems.

BELLAMY’S THEOREM ([BE], COROLLARY 5). If X is a non-degenerate indecompos-
able continuum, then X contains an indecomposable subcontinuum Y with at least c
composants.

GORDH’S THEOREM ([GOR], THEOREM 2.8). If X is a continuum which is irreducible
between a pair of points and contains no indecomposable subcontinuum with interior,
then there exists a monotone continuous map f of X onto a generalized arc such that
each point inverse under f has empty interior.

LEMMA 1. If X 2 Eî and Y is a non-degenerate connected subset of X, then the
cardinality of the set of components of X n cl(Y) is less than î.

PROOF. Let Y be a proper connected subset of X. If K is a component of X n Y then
K[Y is connected by the Boundary Bumping Theorem [Na1, Theorem 5.4, p. 73]. Also,
if x 2 K such that K n fxg is connected then (K n fxg)[Y is connected. If the cardinality
of the set of components of X n cl(Y) is not less than î then we could choose î distinct
components, fCãgãÚî, of X n cl(Y). Since Cã [ cl(Y) is a continuum for each ã, by
the Non-Separating Point Existence Theorem [Wh1, (6.1), p. 54], no proper connected
subset of Cã [ cl(Y) contains the set of all non-separating points of Cã [ cl(Y). For each
ã let pã be a non-separating point of Cã [ cl(Y) such that pã 2 Cã. Then X n

S
fpãgãÚî

is connected and dense and, hence, no subset of
S
fpãgãÚî separates X. This contradicts

that X 2 Eî and the lemma is proved.

LEMMA 2. If X 2 Eî for î an infinite cardinal number and Y is a non-degenerate
connected subset of X, then Y 2 Eî.
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PROOF. Let Y be a proper connected subset of X, and let A ² Y with jAj = î. Suppose
that no subset of A separates Y. In particular, A has no interior in Y.

For each component C of X n cl(Y) let xC 2 cl(Y) \ cl(C) and A0 = A n fxC : C is a
component of X n cl(Y)g. By Lemma 1, jA0j = î. Since

Y n A ² cl(Y) n A ²
�
cl(Y) n A

�
[ fxC : C is a component of X n cl(Y)g

² cl(Y) = cl(Y n A)Ò

we have �
cl(Y) n A

�
[
n

xC : C is a component of X n cl(Y)
o

is connected. Hence,

X n A0 =
[n

C [ fxCg : C is a component of X n cl(Y)
o[�

cl(Y) n A
�

is connected and no subset of A0 separates X. This contradicts that X 2 Eî and Lemma 2
is proved.

LEMMA 3. If X 2 Ec, then X is hereditarily decomposable.

PROOF. If there exists an indecomposable subcontinuum Y in X, by Bellamy’s the-
orem, Y contains an indecomposable subcontinuum Z with at least c composants. By
Lemma 2 Z 2 Ec. Let L be a composant of Z. Then jLj ½ c but no subset of L separates
Z. This is contrary to Z 2 Eî and the lemma is proved.

LEMMA 4. If X 2 Ec, then every non-degenerate subcontinuum of X is connected by
generalized arcs.

PROOF. It suffices to show that if Y is a subcontinuum of X which is irreducible
between a pair of points, then Y is a generalized arc. By Lemma 2 and Lemma 3 we
know that Y 2 Ec and Y is a hereditarily decomposable continuum. Using Gordh’s
theorem, let f be a monotone continuous map from Y onto a generalized arc [aÒ b] with
a and b two non-separating points of [aÒ b] such that Int

�
f�1(t)

�
= ; for each t 2 [aÒ b].

We only need to show that for each t 2 [aÒ b] f�1(t) is a singleton. If not, there exists a
t0 2 [aÒ b] such that f�1(t0) is non-degenerate and connected and, hence, uncountable. If
t0 = a (or t0 = b) then f�1(aÒ b] (or f�1[aÒ b)) is a connected dense subset in Y since f is
monotone and Int

�
f�1(t)

�
= ; for each t 2 [aÒ b]. Hence, if A is a subset of f�1(t0) with

jAj = c, the subset Y n A is still connected. This is contrary to Y 2 Ec. If a Ú t0 Ú b then�
cl
�
f�1[aÒ t0)

�
\ f�1(t0)

�S�
cl
�
f�1(t0Ò b]

�
\ f�1(t0)

�
= f�1(t0) since Int

�
f�1(t0)

�
= ;.

Without loss of generality we assume cl
�
f�1[aÒ t0)

�
\ f�1(t0) is uncountable. Since

f�1[aÒ t0) is connected and dense in cl
�
f�1[aÒ t0)

�
, cl

�
f�1[aÒ t0)

�
\ f�1(t0) is a subset of

cardinality½ c which does not separates cl
�
f�1[aÒ t0)

�
. This is contrary to Lemma 2 and

the proof of Lemma 4 is completed.

A connected space is hereditarily locally connected if each of its connected subsets
is locally connected.
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LEMMA 5. If X 2 Ec, then X is hereditarily locally connected.

PROOF. If X is not hereditarily locally connected then, by [Si, Theorem 3], there exists
a convergence continuum K in X with a net of continua fKïgï2Λ such that Lim Kï = K,
Kï0 \ Kï = Kï or Kï0 \ Kï = ; for ï0Ò ï 2 Λ and Kï \ K = ; for each ï. Since K is
non-degenerate, by Lemma 3, K = A [ B where A and B are two proper subcontinua of
K. By Lemma 4, for each ï 2 Λ, let Lï be an irreducible generalized arc from Kï to a
point aï of K such that Lï \ K = faïg. Since

S
faïgï2Λ ² A[ B, either A or B contains

a subnet of faïgï2Λ. We assume by passing to a subnet if necessary that
S
faïgï2Λ ² A.

Then Y = cl(K[
S
ï2Λ Kï[

S
ï2Λ Lï) is a subcontinuum of X with A[

S
ï2Λ Kï[

S
ï2Λ Lï

connected and dense in Y. Let C ² B n A with jCj = c. Then Y n C is connected. This is
contrary to Y 2 Ec and Lemma 5 is proved.

THEOREM 6. If î is an infinite cardinal, î � c, and X is a continuum in Eî then the
set of non-local separating points of X has cardinality less than î.

PROOF. Let

A0 = fx 2 X : x is not a local separating point of Xg

If jA0j ½ î, then there is A1 ² A0 which separates X. Since X is locally connected,
by Mazurkiewicz’s Theorem [Ku, Section 49, Theorem 3, p. 244], we may assume A1 is
an irreducible separator of X between some two points a and b in X and A1 is closed. We
shall consider two cases.

If A1 contains an isolated point, let d 2 A1 be an isolated point of A1 and let U be a
connected open neighborhood of d such that U\A1 = fdg. Then fdg separates U which
is a contradiction. If A1 contains no isolated point, then A1 is perfect, so jA1j ½ c. Let U
be the component of X nA1 containing a. Then Bd(U) = A1. By Lemma 1 the cardinality
of the set of components of X n cl(U) is less than î. For each component C of X n cl(U)
let xC 2 Bd(C) and A0

1 = A1 n fxC : C is a component of X n cl(U)g. Then jA0j ½ î and
no subset of A0

1 separates X which is again a contradiction. The theorem is proved.
The proof of Theorem 6 serves to prove the following.

THEOREM 7. Let î be an infinite cardinal, î � c, and X a continuum in Eî. If A is
an irreducible separator between two points of X, then jAj Ú î.

Let X be a continuum. A subset Y of X is said to be a cyclic element of X if Y is
connected and maximal with respect to the property of containing no separating point of
itself. We shall say that X is cyclic if X has no separating point. A subset A of X is said
to be a T-set in X if A is closed and jBd(J)j = 2 for each component J of X n A. For the
space X a property is cyclicly extensible provided that if each cyclic element of X has
this property then X itself has this property.

A space X is said to be rim-finite if it has a basis B such that jBd(U)j Ú @0 for each
U 2 B. A point p of a space X is said to have order less than or equal to n in X provided
that for each open neighborhood U of p there exists an open neighborhood V of p such
that V ² U and jBd(V)j � n. If p is of order less than or equal to n but not of order less
than or equal to n� 1 in X, p is said to be of order n in X.
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THEOREM 8. If X is a continuum in Ec, then X is rim-finite.

PROOF. Since rim-finiteness is a cyclicly extensible property (the proof in [Wh,
Theorem 11.5, p. 83] works also in the non-metric setting) we may suppose X is cyclic.
Let a and b be two points of X. It suffices to show since X is compact that there is a finite
set which separates a and b in X. Let C be a closed set which separates a and b in X. We
may suppose by Mazurkiewicz’s Theorem [Ku, Section 49, Theorem 3, p. 244] that C is
an irreducible separator of X between a and b. By Lemma 5 and [Ni2, Theorem 3.4] X
is a continuous image of an arc and, hence, by [GNST, Theorem 1], C is metrizable. By
[Ni1, Theorem 4.9] there is a metrizable T-set A such that faÒ bg [ C ² A. Then each
component of X n A has two point boundary. Note that no component of X n A contains
both a and b in its closure since C ² A.

If a and b lie in different components of A, let A = B [ D, where B and D are
separated sets with b 2 B and a 2 D. Since X is locally connected there exist at most
finitely many components C1Ò    ÒCn of X n A which meet both B and D. For each i let
ai 2 cl(Ci) n (Ci [ faÒ bg). Then fa1Ò    Ò ang separates a and b in X.

Now suppose a and b lie in the same component E of A. Since E is metrizable and
E 2 Ec by Lemma 2, by Theorem 6, all but countably many points of E are local
separating points of E. By [Wh, (9.2), p. 61] all but countably many of these points are of
order 2 in E. Let F be an irreducible separator of E between a and b such that all points
of F are local separating points of E and of order 2 in E. We claim that F is finite. Just
suppose x0 2 F is a limit point of F. Let fxig be a sequence in F n fx0g converging to x0.
Since Fnfx0g does not separate a and b, by [GNST, Theorem 4], there is an arc P from a
to b in An (Fnfx0g). Since the order of x0 in E is 2 and x0 is a local separating point of the
locally connected continuum E there is a connected neighborhood U of x0 in E such that
U\P is connected and U\P n fx0gmeets two components of U n fx0g. Since the order
of E at x0 is 2 there does not exist an arc A0 in E with A0 \P = fx0g. Let G (respectively,
H) be the component of E n F which contains a (respectively, b). Since cl(G) and cl(H)
are locally connected continua, let Ai and Bi be arcs in cl(G) (respectively, cl(H)) which
are irreducible from xi to P and such that Limi Ai = Limi Bi = fx0g. Then x0 62 Ai[Bi for
i Ù 0. Thus, for each sufficiently large i Ai [ Bi is an arc in U n fx0g which meets both
components of P \ U. This is a contradiction and the proof of the claim is completed.

Since A is closed and metric and X is compact and locally connected, it follows that
XnA has at most countably many components. Let C1ÒC2Ò    be the components of XnA.
For each i, cl(Ci) \ A = faiÒ big. For each i, let fi: cl(Ci) ! [0Ò 1] ð fig be a continuous
function such that fi(ai) = 0 and fi(bi) = 1. Let X̃ =

�
A [

S1
i=1([0Ò 1] ð fig)

�
Û ¾, where

¾ is the smallest equivalence relation on A [
S1

i=1([0Ò 1] ð fig) which identifies ai with
(0Ò i) and bi with (1Ò i) for each i. Define f : X ! X̃ by setting

f (x) =
(

x if x 2 A
fi(x) if x 2 Ci for some i.

Let X̃ have the topology induced by f . Then X̃ is a metric continuum and X̃ 2 Ec. By the
argument of the previous paragraph applied to X̃ in place of E, a finite set F separates
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a and b in X̃. Then X̃ n F = W [ V where W and V are separated sets with a 2 W and
b 2 V. Now it follows that only finitely many components, say Ci1 Ò    ÒCin , of XnA meet
both W and V. For each i = i1Ò    Ò in, let ci 2 faiÒ big n faÒ bg. Then as in the second
paragraph of the proof we have (F \ A) [ fci1Ò    Ò cing is a finite set which separates a
and b in X. The theorem is proved.

THEOREM 9. Let X be a Peano continuum. Then X 2 Ec if and only if the set of
non-local separating points of X is countable.

PROOF. Suppose first that X is a Peano continuum in Ec. Let A0 denote the set of
non-local separating points of X. It is well-known (see [Wh, p. 63]) that since X is a
Peano continuum A0 is a Gé-set in X. If A0 were uncountable it would contain a Cantor
set contrary to Theorem 6.

To prove the sufficiency we assume X is a Peano continuum and the set of non-local
separating points of X is countable but X 62 Ec. Then there is a set A of X such that
jAj = c and no subset of A separates X. Since X is a metric continuum, by [Wh (9.21),
p. 62] and by the hypothesis, we may assume each point of A is a local separating point
and is of order 2 relative to A. Let a 2 A. Then there is a neighborhood U of a such that
Bd(U) ² A and jBd(U)j = 2. But Bd(U) separates X. This contradicts the assumption
that no subset of A separates X and Theorem 9 is proved.

A dendrite is a locally connected metric continuum which contains no simple closed
curve. A dendrite minus its endpoints is connected. The Gehman dendrite is the topolog-
ically unique dendrite whose endpoints form a Cantor set and whose branch points are
all of order 3. For a space X let C (X) denote the set of all nonempty subcontinua of X.

THEOREM 10. Let X is a metric continuum. Then X 2 Ec if and only if

(1) X is locally connected and
(2) X contains no Gehman dendrite.

PROOF. The necessity follows by Lemma 2 and Lemma 5. To prove the sufficiency
we suppose X satisfies (1) and (2) but X 62 Ec. As in the proof of Theorem 9, the set A0 of
non-local separating points of X contains a Cantor set C. We shall consider the following
two cases.

Case I. X is hereditarily locally connected. Let X = U0 and let p0 2 X n C and let U0Ò0

and U0Ò1 be connected open sets with disjoint closures such that p0 62 cl(U0Ò0 [ U0Ò1),
U0Ò1 \ C 6= ; and Bd(U0Òi) \ C = ; for i = 0Ò 1. Since the points of C are not local
separating points of X we may suppose U0 n cl(U0Ò0 [U0Ò1) is connected. For i = 0Ò 1, let
Li be an irreducible arc joining p0 to Bd(U0Òi) and Li ² U0 n cl(U0Ò j) for j 6= i. We may
suppose that L0 \ L1 is connected. Let p0Òi 2 Li \ Bd(U0Òi) for i = 0Ò 1. Note cl(U0Òi) is
locally connected by our assumption and p0Òi is an accessible point of U0Òi.
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Suppose n is a positive integer and for 1 � j � n; fU0Òi1ÒÒij : ik = 0Ò 1 for k = 1Ò    Ò jg
are open connected sets with pairwise disjoint closures,

cl(U0Òi1ÒÒij ) ² U0Òi1ÒÒij�1 Ò

Bd(U0Òi1ÒÒij ) \ C = ;Ò

U0Òi1ÒÒij \ C 6= ;

and
U0Òi1ÒÒij�1 n

�
cl(U0Òi1ÒÒij�1Ò0) [ cl(U0Òi1ÒÒij�1Ò1)

�
is connected.

Suppose Li1ÒÒij is an arc with

Li1ÒÒij ² U0Òi1ÒÒij�1 [ fp0Òi1ÒÒij�1g

irreducible from p0Òi1ÒÒij�1 2 Bd(U0Òi1ÒÒij�1) to Bd(U0Òi1ÒÒij ) with

Li1ÒÒij�1Ò0 \ Li1ÒÒij�1Ò1 a connected set

and
Li1ÒÒij�1Òk \ cl(U0Òi1ÒÒij�1Òm) = ; for k 6= m

Let p0Òi1ÒÒij 2 Li1ÒÒij \ Bd(U0Òi1ÒÒij ). As in Step 1 we construct connected open sets
U0Òi1ÒÒinÒ j, j = 0Ò 1 with disjoint closures and with

cl(U0Òi1ÒÒinÒ j) ² U0Òi1ÒÒin Ò

Bd(U0Òi1ÒÒinÒ j) \ C = ;Ò

U0Òi1ÒÒinÒ j \ C 6= ;Ò

U0Òi1ÒÒin n
�
cl(U0Òi1ÒÒinÒ0) [ cl(U0Òi1ÒÒinÒ1)

�
connected,

and construct arcs Li1ÒÒinÒ j, j = 0Ò 1 in U0Òi1ÒÒin [ fp0Òi1ÒÒing n cl(U0Òi1ÒÒinÒk) for k 6= j
irreducible from p0Òi1ÒÒin to Bd(U0Òi1ÒÒinÒ j) with

Li1ÒÒinÒ0 \ Li1ÒÒinÒ1 a connected set.

Let M = cl(
S1

n=1
S
fLi1ÒÒin : i1Ò    Ò in = 0Ò 1g). Then M contains a Gehman dendrite.

Case II. X is not hereditarily locally connected. Then there exists a convergence con-
tinuum in X, i.e., there is a sequence fKig1i=0 of pairwise disjoint continua such that
Lim Ki = K0. Since X is locally connected we may suppose Ki is locally connected for
each i ½ 1.

Let U be a connected open set in X of diameter Ú 1 such that K0 \ U 6= ;. Let H0 2
C (K0)\ Limsup C (Ki) with H0 ² U and diam (H0) Ù 0. By passing to a subsequence
if necessary we may suppose H0 2 Lim C (Ki). For each i sufficiently large let Hi 2
C (Ki \ U) and Hi locally connected such that Lim Hi = H0. Let i1 ½ 1 be an integer so
that U \ Ki1 6= ;. Let x1 2 Hi1 . Let L01 be an arc in U irreducible from x1 to H0. Let U0
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and U1 be open connected sets of diameter Ú 1
2 with closures disjoint from L01 and from

each other, cl(Ui) ² U and U0 and U1 each meet H0. Let i2 be an integer so large that
Ki2 \Ui 6= ; for i = 0Ò 1 and there is an arc L1 in Uncl(U0[U1) irreducible from x1 to Hi2 .
Let M1 be an arc or simple triod with M1 ² L1 [Hi2 such that x1 2 M1, M1 \U0 6= ; and
M1\U1 6= ;. Let H0Òi 2 C (H0\Ui)\Limsup C (Hj). We may suppose H0Òi 2 Lim C (Hj).
Let H2ÒiÒ j 2 C (Hj\Ui) for j sufficiently large such that Lim H2ÒiÒ j = H0Òi. We may suppose
H2ÒiÒ j is a locally connected continuum for each j and that M1 \H2ÒiÒi2 6= ; for i = 0Ò 1.

Repeat the above argument in H0Òi with a point of H2ÒiÒi2 in place of x1 to get continua
M1Òi ² Ui which are arcs or simple triods and meet M1 and Ki3 and so on inductively.
Then M = cl(

S1
n=1

S
fMi1ÒÒin : ij = 0Ò 1g) contains a dendrite D with an uncountable

set of endpoints. Every dendrite with an uncountable set of endpoints, it is easy to see,
contains a Gehman dendrite.

THEOREM 11. If X is a metric continuum in Ec then X is the union of countably many
arcs.

PROOF. Let A0 be the set of non-local separating points of X. By Lemma 5 and
Theorem 9 A0 is countable. Let faig1i=1 be a countable dense subset of X and let fUig1i=1

be a countable basis for X with each Ui connected. For each x 2 X n A0, by [Wh1, (9.1),
p. 61] there exists an integer k such that x 2 Uk and fxg disconnects Uk. Since

S
faig1i=1

is dense there exist aiÒ aj 2 Uk which are separated by x in Uk. Put

Lk
ij = fx 2 Uk : x separates ai and aj in Ukg [ faiÒ ajg

Since Uk is connected and locally connected, Lk
ij is contained in each arc Ak

ij in Uk

from ai to aj. Since A0 is countable, this completes the proof of Theorem 11.

An arc A is said to be free in a continuum X if A ² X and Bd(A) is exactly the set of
endpoints of A. A continuum X is said to be a free arc continuum if every subcontinuum
of X has a free arc in X. A free arc continuum is rim-finite. Example 1 is a continuum in
Ec which is not a free arc continuum. By Theorem 11 and the Baire Category Theorem
every metric continuum in Ec contains a free arc. We can prove from the following
theorem that every continuum in Ec contains a free arc.

THEOREM 12. If X is a cyclic continuum in Ec then X is a free arc continuum.

PROOF. The proof is by contradiction. Suppose A is an arc in X with no interior. Then
the set of branch points of X in A is dense in A. Since X is rim-finite and cyclic, for each
x 2 A and each neighborhood U of x, there is an arc B ² U which meets A exactly
in the set of endpoints of B. Give A a natural order. There is an arc C0 in X such that
C0 \ A = fa0Ò b0g with a0 Ú b0 since X is cyclic.

Suppose n is an integer and we have constructed pairwise disjoint arcs

C0Òi1ÒÒij Ò ik = 0Ò 1 and j = 0Ò    Ò n

with endpoints
C0Òi1ÒÒij \ A = fa0Òi1ÒÒij Ò b0Òi1ÒÒijg
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where for 1 � j � n

a0Òi1ÒÒij�1 Ú a0Òi1ÒÒij�1Ò0 Ú b0Òi1ÒÒij�1Ò0 Ú a0Òi1ÒÒij�1Ò1 Ú b0Òi1ÒÒij�1Ò1 Ú b0Òi1ÒÒij�1 

Now for i1Ò    Ò in there exist points

a0Òi1ÒÒin Ú a0Òi1ÒÒinÒ0 Ú b0Òi1ÒÒinÒ0 Ú a0Òi1ÒÒinÒ1 Ú b0Òi1ÒÒinÒ1 Ú b0Òi1ÒÒin

and arcs C0Òi1ÒÒinÒ0 and C0Òi1ÒÒinÒ1 with

C0Òi1ÒÒinÒ j \ A = fa0Òi1ÒÒinÒ jÒ b0Òi1ÒÒinÒ jg for j = 0Ò 1

and

C0Òi1ÒÒin+1 \ C0Òm1ÒÒmk = ; for each k � n + 1 if (0Ò i1Ò    Ò in+1) 6= (0Òm1Ò    Òmk)

Let C =
T1

k=0
S
f[a0Òi1ÒÒik Ò b0Òi1ÒÒik ] : ij = 0Ò 1 and j = 1Ò    Ò kg. Then C is a second

countable, perfect and 0-dimensional subset of the arc A since X is hereditarily locally
connected. Let

B = A [
1[

k=0
fC0Òi1ÒÒik : ij = 0Ò 1 and j = 1Ò    Ò kg

Then B is a subcontinuum of X. By Lemma 2, B 2 Ec, but B contains C as a set
of non-local separating points of B contrary to Theorem 6. Therefore, X is a free arc
continuum.

In the following we give an application of the above theorems to extend Nadler’s
Theorem [Na1, Theorem 9.24, p. 153] in metric continua to the class of Hausdorff
continua.

LEMMA 13. If X is a Hausdorff continuum and X 2 E@0
, then ord(xÒX) � 2 for all

but finitely many x 2 X.

PROOF. Suppose there exists an infinite subset C of X such that for each x 2
C ord(xÒX) ½ 3. Without loss of generality, we assume the set C is countable and
contains no cluster point of itself. We shall define a subcontinuum L of X such that the
set of endpoints of L is infinite which is contrary to L 2 E@0

, and, hence, completes the
proof.

Suppose first that there exists a generalized arc A such that A contains an infinite
subset fx1Ò    Ò xnÒ   g of C. Since for each i, ord(xiÒX) ½ 3, ord(xiÒA) � 2 and X is
rim-finite, let Ui be an open connected neighborhood of xi and pi 2 Ui n A such that
Ui \Uj = ; for i 6= j and let Li be an irreducible generalized arc in Ui from pi to A. Then
L = cl(A [

S1
i=1 Li) is a subcontinuum with

S1
i=1fpig in its set of endpoints.

We assume now that no generalized arc contains infinitely many points of C. Let x0 be
a limit point of C. Let U1 be a connected open neighborhood of x0 and take x1 2 U1 \C.
Let L1 be a generalized arc in U1 from x1 to x0. By induction, suppose we have defined
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x1Ò    Ò xn, U1Ò    ÒUn and L1Ò    ÒLn such that each Ui is a connected open neighborhood
of x, cl(Ui+1) ² Ui, Li is a generalized arc in Ui from xi to x0 and xj 62 cl(Ui) for j Ú i. Let
Un+1 be a connected open neighborhood of x0 such that cl(Un+1) ² Un and xi 62 cl(Un+1)
for each i � n. Take xn+1 2 Un+1 \ C n

Sn
i=1 Li and let Ln+1 be a generalized arc in Un+1

from xn+1 to x0. With this construction we have that for each i, xi 62 cl(
S

j6=i Lj). Then the
subcontinuum L = cl(

S1
i=1 Li) has fxig1i=1 contained in its set of endpoints as required.

THEOREM 14. A Hausdorff continuum X is a generalized graph if and only if X 2 E@0
.

PROOF. The necessity is clear. To prove sufficiency let X be a Hausdorff continuum
and X 2 E@0

. By Lemma 13, let fp1Ò    Ò png be the points of order ½ 3. Then each
component of X n fp1Ò    Ò png is a generalized ray or generalized half-line, i.e., an open
connected set in which each subcontinuum is a generalized arc. Let T be a finite tree
which contains fp1Ò    Ò png. Then X nT has finitely many components by Lemma 1 and
by Lemma 5 each of these is a ray or a half-line whose closure meets T in either one or
two points. Therefore, X is a finite graph. This completes the proof of Theorem 14.

EXAMPLE 1. A metric continuum in Ec which is not a free arc continuum.
In the plane <2, for q and n integers with 0 � q � 2n, let LqÒn = f q

2n g ð [0Ò 1
2n ]. Let

X = [0Ò 1] ð f0g [
1[

n=0

2n[
q=0

LqÒn

Then X is a metric continuum in Ec which is not a free arc continuum.

EXAMPLE 2. A metric continuum in Ec which contains an infinite irreducible cutting.
In the plane <2 we denote O = (0Ò 0), Ai = ( 1

2i Ò 0) and Bi = ( 1
2i Ò 1

2i ) for i ½ 0. For two
points P and Q we denote PQ the segment from P to Q. Let X = OA0 [OB0 [

S1
i=1 AiBi.

Then X is a metric continuum in Ec which contains an infinite irreducible cutting.
The following question seems to be of some interest.

QUESTION. If X is a cyclic continuum in Eî where î is an uncountable cardinal
number� c, does there exist A ² X such that jX nAj Ú î and each point of A is of order
2 in X?

(Comment: If X is a metric continuum in Ec then there is a set A ² X with jXnAj � @0

and each point of A is of order 2 in X.)

REFERENCES

[Be] David P. Bellamy, Composants of Hausdorff indecomposable continua; a mapping approach. Pacific J.
Math. (2) 47(1973), 303–309.

[Bi] R. H. Bing, The Kline sphere characterization problem. Bull. Amer. Math. Soc. 52(1946), 644–653.
[Gl] Helma Gladdines, A connected metrizable space with disconnection number @0. Preprint.
[Gor] G. R. Gordh, Jr., Monotone decompositions of irreducible Hausdorff continua Pacific J. Math. (3)

36(1971), 647–658.
[GNST] J. Grispolakis, J. Nikiel, J. N. Simone and E. D. Tymchatyn, Separators in continuous images of

ordered continua and hereditarily locally connected continua. Can. Math. Bull. (2) 36(1993), 154–163.

https://doi.org/10.4153/CMB-1998-047-0 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1998-047-0


358 E. D. TYMCHATYN AND C.-C. YANG
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