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Abstract

Sofic entropy is an invariant for probability-preserving actions of sofic groups. It was introduced
a few years ago by Lewis Bowen, and shown to extend the classical Kolmogorov–Sinai entropy
from the setting of amenable groups. Some parts of Kolmogorov–Sinai entropy theory generalize
to sofic entropy, but in other respects this new invariant behaves less regularly. This paper explores
conditions under which sofic entropy is additive for Cartesian products of systems. It is always
subadditive, but the reverse inequality can fail. We define a new entropy notion in terms of
probability distributions on the spaces of good models of an action. Using this, we prove a general
lower bound for the sofic entropy of a Cartesian product in terms of separate quantities for the two
factor systems involved. We also prove that this lower bound is optimal in a certain sense, and use
it to derive some sufficient conditions for the strict additivity of sofic entropy itself. Various other
properties of this new entropy notion are also developed.
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1. Introduction

Let G be a discrete sofic group, (X, µ) a standard probability space and
T : G y X a measurable action which preserves µ. The triple (X, µ, T ) is called
a G-system or just a system.

Fix a sofic approximationΣ = (σn)n>1 to the group G. For a system (X, µ, T )
which has a finite generating partition, Lewis Bowen defined the ‘sofic entropy
relative to Σ’, denoted by hΣ(µ, T ) [4]. An alternative definition which does not
require a finite generating partition, and so generalizes Bowen’s, was given by
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Kerr and Li in [15]. That definition was in terms of operator algebras, but they
later gave a more elementary construction of the same invariant: [16, Section 3].

If G is amenable, then sofic entropy agrees with the classical Kolmogorov–
Sinai entropy hKS for any choice of sofic approximation (see [7, 16]). If G
is not amenable, then sofic entropy can serve as a substitute for Kolmogorov–
Sinai entropy for some purposes. Bowen’s original motivation was to show that
isomorphic Bernoulli shifts over a sofic group G must have one-dimensional
distributions of equal Shannon entropy: this was accomplished for shifts with
finite alphabet in [4] and then completed in [14]. (The sufficiency of that condition
is also known in many cases, including for any G that contains an infinite
amenable subgroup.) However, it is still uncertain how much of classical entropy
theory generalizes to sofic groups, or what modifications are necessary.

This paper considers how hΣ behaves under forming Cartesian products of
systems. If G is amenable, then Kolmogorov–Sinai entropy is additive under
Cartesian products:

hKS(µ× ν, T × S) = hKS(µ, T )+ hKS(ν, S).

Sofic entropy is subadditive for Cartesian products, and indeed for arbitrary
joinings; the easy proof of this is given in Subsection 3.3. However, strict
additivity can fail: examples showing this will also be given in that subsection.

Suppose that (X, µ, T ) is a G-system. The main innovation of this paper is a
new quantity, denoted by hdq

Σ (µ, T ), with the property that

hΣ(µ× ν, T × S) > hdq
Σ (µ, T )+ hΣ(ν, S)

whenever (Y, ν, S) is another G-system for which hΣ(ν, S) has a certain regularity
(it is equal to the ‘lower’ sofic entropy hΣ(ν, S), which is recalled below).

The sofic entropy of (X, µ, T ) is obtained from a certain family of metric
spaces consisting of ‘finitary models’ for (X, µ, T ). The new quantity hdq

Σ (µ, T )
is also defined in terms of these spaces, but together with another kind of structure:
sequences of probability measures µn on those model spaces.

Model spaces and sofic entropy. In order to formulate our main results
precisely, we first recall the construction of model spaces and the definition of
sofic entropy.

Our definition is very close to that in [16, Section 3] but it is adapted slightly
better to the purposes of this paper. The following is only a sketch; full details
are given in Section 3. The equivalence with the Kerr–Li definition is shown in
Subsection 3.2.
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First, a G-process is a G-system in which X = X G for some other standard
measurable space X and S is the right-shift action of G on X :

Sg((xh)h∈G) := (xhg)h∈G .

This is close to the probabilistic notion of a ‘G-stationary process’: formally, that
would be the collection of coordinate projections X G

−→ X , regarded as a G-
indexed family of X -valued random variables on the probability space (X G, µ).

When we deal with isomorphism-invariant properties of systems, no generality
is lost by confining our attention to G-processes. Indeed, for any system
(X, µ, T ), the map

Φ : X −→ X G
: x 7→ (T h x)h∈G (1)

intertwines T with the right-shift action S on X G , and converts µ into the shift-
invariant measure Φ∗µ. This map is clearly injective, so it defines a measure-
theoretic isomorphism from (X, µ, T ) to the G-process (X G, Φ∗µ, S).

If (X G, µ, S) is a G-process and F ⊆ G, then µF denotes the marginal of µ
on X F . Also, whenever F ⊆ F ′ ⊆ G, we let π F ′

F denote the coordinate projection
X F ′
−→ X F . Thus,

µF = (π
F ′
F )∗µF ′ = (π

G
F )∗µ.

If x ∈ X F ′ then we often write x |F as a shorthand for π F ′
F (x).

Next, since X is standard, its σ -algebra may be generated as the Borel sets for
some compact metric d . We refer to such a d as a compact generating metric
for X . Although this metric is far from unique, it is a key auxiliary object in
the constructions that follow. A metric G-process is a quadruple (X G, µ, S, d)
in which (X G, µ, S) is a G-process and d is such a metric on X . Sofic entropy
is initially defined for metric G-processes, and then one shows that it does not
depend on the choice of metric. One can extend this fact to allow more general
Polish generating metrics on X [12], but we do not do so here. Once a metric d has
been chosen, it is always implicit that X G has the resulting compact metrizable
product topology, and similarly for other products of standard spaces for which
we have chosen compact generating metrics.

Now let V be a nonempty finite set. The space X V carries an associated metric
defined by

d (V )(x, x′) =
1
|V |

∑
v∈V

d(xv, x ′v) for x = (xv)v∈V , x′ = (x ′v)v∈V .

We call this the Hamming average of d over V . It generalizes the classical
normalized Hamming metrics, which arise in this way when (X , d) is a finite
set with the discrete metric.
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Now consider again a sofic approximation Σ = (σn)n>1 to G, where each σn

is a map from G to Sym(Vn) for some finite set Vn (see Section 3 for a complete
definition). Given (X G, µ, S, d) and Σ , we define a sequence of subsets

Ω(O, σn) ⊆ X Vn , n ∈ N,

for each choice of a weak∗-neighbourhood O of µ in Prob(X G). Note that the
weak∗ topology invoked here depends on the topology of X G , which in turns
depends on the choice of d . The elements of Ω(O, σn) are the ‘O-good models
of µ over σn’: the elements of X Vn whose empirical distributions lie in O,
hence ‘close’ to µ. Empirical distributions are defined in Section 3. The ‘quality’
required of these models improves as O is reduced, and it is clear that

O′ ⊆ O H⇒ Ω(O′, σ ) ⊆ Ω(O, σ )

for any finite V and map σ : G −→ Sym(V ).
For any compact metric space (Y, dY ), subset Z ⊆ Y , and δ > 0, we let

covδ(Z , dY ) be the minimum cardinality among δ-dense subsets of Z . The sofic
entropy hΣ(µ) is defined to be

sup
δ>0

inf
O

lim sup
n−→∞

1
|Vn|

log covδ(Ω(O, σn), d (Vn)),

where O ranges over all weak∗-neighbourhoods of µ. Heuristically, this is
approximately the exponential growth rate of the covering numbers

covδ(Ω(O, σn), d (Vn))

as n −→∞, for sufficiently small δ and then for sufficiently small O depending
on δ.

In general, this sequence of covering numbers need not grow at a well-defined
exponential rate, so one takes the supremum of those rates over subsequences. It
can be important to know when the covering numbers have different asymptotics
along other subsequences. To capture this possibility, one also defines the lower
sofic entropy

hΣ(µ) := sup
δ>0

inf
O

lim inf
n−→∞

1
|Vn|

log covδ(Ω(O, σn), d (Vn)).

It can happen that hΣ(µ) < hΣ(µ): see the end of Subsection 3.1. If hΣ(µ) =
hΣ(µ), then this asserts the following: for every ε > 0 there is a δ0 > 0 such
that for every δ ∈ (0, δ0) there is a weak∗-neighbourhood Oδ such that for every
weak∗-neighbourhood O ⊆ Oδ we have∣∣∣∣ 1

|Vn|
log covδ(Ω(O, σn), d (Vn))− hΣ(µ)

∣∣∣∣ < ε
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for all sufficiently large n. More heuristically: if δ is sufficiently small and then
O is sufficiently small depending on δ, the covering numbers do grow at an
approximately well-defined exponential rate. Since it suffices to check this for
rational δ and for a countable basis of neighbourhoods O, a simple diagonal
argument can always provide a subsequence of (σn)n>1 for which this is the case.

The quantity hΣ(µ) generally depends on the choice of sofic approximation Σ .
But, crucially, it does not depend on the compact metric d that one uses to generate
the σ -algebra of X . In fact, hΣ(µ) and likewise hΣ(µ) are invariants of the system
(X G, µ, S) up to measure-theoretic isomorphism, for a fixed choice of the sofic
approximationΣ . One may therefore define hΣ(µ, T ) and similarly hΣ(µ, T ) for
an arbitrary G-system (X, µ, T ), for instance by using the isomorphism (1).

Measures on model spaces. Our new invariant is defined in terms of sequences
of measuresµn on X Vn which are asymptotically supported on these model spaces
and which locally resemble µ at most points of Vn , which we refer to as ‘vertices’.

Section 5 will consider three senses in which a sequence of probability
measures µn on X Vn can converge to a measure µ on X G : local weak∗

convergence, quenched convergence, and doubly quenched convergence. All
three senses are relative to a particular choice of sofic approximation Σ ; we refer
to convergence ‘over Σ’ if we need to make that choice explicit. They are also
relative to a particular choice of compact generating metric d for X .

Local weak∗ convergence asserts that, once n is large, the marginals of µn

around most points of Vn resemble the corresponding marginal of µ in the weak∗

topology. Here we use that the sofic approximation σn gives a way to copy a fixed
finite subset of G to a corresponding ‘patch’ around any vertex of Vn , perhaps
with errors for a few vertices. This convergence is denoted by µn

lw∗
−→ µ. This

notion already has an important role in the study of various statistical physics
models on random graphs.

Quenched convergence strengthens local weak∗ convergence by imposing
a second condition: that µn be mostly supported on individual good models
of µ. The term ‘quenched’ is also taken from statistical physics, where it
indicates a property that holds among most instances in an ensemble, not just
on average. This convergence is denoted by µn

q
−→ µ. Quenched convergence

is strictly stronger than local weak∗ convergence in general, and the difference
between them has a simple characterization in terms of certain random measures
constructed from the µn (Lemma 5.5). However, using this characterization, it
follows that the two notions are equivalent if µ is ergodic (Corollary 5.7).

A closely related notion of convergence for a sequence of measures on model
spaces already appears in [6]. Using this notion, that paper gives a new formula
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for sofic entropy for certain special examples of probability-preserving systems
and sofic approximations.

For any compact metric space (Y, dY ), Borel probability measure ν on Y , and
ε, δ > 0, we write

covε,δ(ν, dY ) := min{|F | : F ⊆ Y, ν(Bδ(F)) > 1− ε},

where Bδ(F) is the δ-neighbourhood of F according to the metric dY . Using this
quantity in place of the covering numbers of spaces themselves, we define the
following analogue of hΣ :

hq
Σ(µ) := sup

{
sup
δ,ε>0

lim sup
i−→∞

1
|Vni |

log covε,δ(µi , d (Vni )) :

ni ↑ ∞ and µi
q
−→ µ over (σni )i>1

}
.

The outer supremum here is over all subsequences (σni )i>1 of the sofic
approximation Σ , and over all sequences of measures µi on X Vni that quenched-
converge to µ over that subsequence. We must allow this supremum over
subsequences, because it may be that there is no sequence of measures µn such
that µn

q
−→ µ over the original sofic approximation at all. This will be explained

more carefully at the beginning of Section 6.
We call hq

Σ(µ) the model-measure sofic entropy of µ rel Σ . Like sofic
entropy, it is an isomorphism-invariant of the G-process (Theorem 6.4), and
so in fact it does not depend on the choice of the generating metric d . As a
result, its definition can be extended unambiguously to arbitrary G-systems. Since
quenched convergence µn

q
−→ µ requires that µn be mostly supported on good

models for µ once n is large, it follows easily that hΣ > hq
Σ (see Lemma 6.1).

This inequality can be strict.
Like sofic entropy, hq

Σ is always subadditive under Cartesian products, but may
not be strictly additive. However, this defect can be repaired by further restricting
the sequences of measures on model spaces that we allow.

If µn
lw∗
−→ µ, then it follows easily that µn × µn

lw∗
−→ µ × µ. However, the

same implication may fail for quenched convergence: even if µn is asymptotically
mostly supported on good models for µ, the product µn × µn may not be mostly
supported on good models for µ × µ. This phenomenon is responsible for cases
in which hq

Σ(µ
×2) < 2hq

Σ(µ). However, if we simply require the convergence of
Cartesian squares

µn × µn
q
−→ µ× µ,

then it turns out that this implies good behaviour for all other Cartesian products
with the measures µn .
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THEOREM A. Suppose that µn
q
−→ µ over Σ . The following are equivalent:

(i) µn × µn
q
−→ µ× µ;

(ii) if (YG, ν, S, dY) is another metric G-process and N is a weak∗

neighbourhood of µ × ν, then there is a weak∗ neighbourhood O of ν
such that

inf
y∈Ω(O,σni )

µni {x ∈ X Vni : (x, y) ∈ Ω(N , σni )} −→ 1 as i −→∞

for any subsequence ni ↑ ∞ such that Ω(O, σni ) 6= ∅ for all i (we regard
this as vacuously true if there is no such subsequence ni );

(iii) if (YG, ν, S, dY) is another metric G-process, ni ↑ ∞, and νi ∈ Prob(YVni )

is a sequence such that νi
q
−→ ν over (σni )i>1, then µni × νi

q
−→ µ× ν over

(σni )i>1.

Under any of the above equivalent conditions, we say that (µn)n>1 doubly
quenched-converges to µ, and denote this by µn

dq
−→ µ.

Theorem A is analogous to the equivalence among various standard
characterizations of weak mixing. Furthermore, since local weak∗ convergence
implies quenched convergence when µ is ergodic, one can deduce that quenched
convergence implies doubly quenched convergence when µ is weakly mixing
(Lemma 5.15).

Doubly quenched convergence finally leads to the new invariant we need:

hdq
Σ (µ) := sup

{
sup
δ,ε>0

lim sup
i−→∞

1
|Vni |

log covε,δ(µi , d (Vni )) :

ni ↑ ∞ and µi
dq
−→ µ over (σni )i>1

}
.

This is called the doubly quenched model-measure sofic entropy of µ rel Σ .
One sees easily that hdq

Σ 6 hq
Σ (Lemma 6.1). The proof that hq

Σ is isomorphism-
invariant (and hence independent of the choice of d) gives the same result for hdq

Σ ,
and so the definition of hdq

Σ can be extended unambiguously to any G-system.
We can now state our main result for Cartesian products.

THEOREM B. Suppose that (X, µ, T ) and (Y, ν, S) are G-systems such that

hΣ(ν, S) = hΣ(ν, S). (2)

Then
hΣ(µ× ν, T × S) > hdq

Σ (µ, T )+ hΣ(ν, S). (3)
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This follows fairly easily from conclusion (ii) of Theorem A.
Of course, by symmetry, one also has the analogous conclusion with the roles

of (X, µ, T ) and (Y, ν, S) reversed.
One cannot hope for anything like (3) without some assumption such as (2),

since in general the relevant entropies hdq
Σ (µ, T ) and hΣ(ν, S) could be obtained

as limit suprema along disjoint subsequences.
Since hdq

Σ 6 hΣ and hΣ is always subadditive, the following is an immediate
corollary.

COROLLARY B′. If (X, µ, T ) and (Y, ν, S) satisfy

hdq
Σ (µ, T ) = hΣ(µ, T ) and hΣ(ν, S) = hΣ(ν, S),

or vice versa, then

hΣ(µ× ν, T × S) = hΣ(µ, T )+ hΣ(ν, S).

For instance, this condition on (X, µ, T ) is satisfied by Bernoulli systems, so
we recover the known result [4, Section 8] that forming products with Bernoulli
systems always makes the obvious additive contribution to sofic entropy.

It can happen that hq
Σ > hdq

Σ , and there are cases in which one cannot replace
hdq
Σ (µ, T ) with hq

Σ(µ, T ) in Theorem B; see Example 6.3. However, this cannot
occur if (X, µ, T ) is weakly mixing, simply because quenched convergence itself
implies doubly quenched convergence for weakly mixing systems.

Unlike the other notions, doubly quenched model-measure sofic entropy does
enjoy a general additivity result for Cartesian products. The only caveat is that
we must still assume some analogue of condition (2) in Theorem B. This is
conveniently expressed in terms of a ‘lower’ version of doubly quenched model-
measure sofic entropy, denoted hdq

Σ .
The additivity result for hdq

Σ has an analogue for hq
Σ under an additional

ergodicity assumption.

THEOREM C. For any G-systems (X, µ, T ) and (Y, ν, S), it holds that

hdq
Σ (µ× ν, T × S) 6 hdq

Σ (µ, T )+ hdq
Σ (ν, S),

and similarly with hdq
Σ replaced by hq

Σ .
If hdq

Σ (ν, S) = hdq
Σ (ν, S), then in fact

hdq
Σ (µ× ν, T × S) = hdq

Σ (µ, T )+ hdq
Σ (ν, S), (4)

where we interpret the right-hand side as −∞ if either of its terms is −∞.
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If µ×ν is ergodic, then the analogous result holds with hdq
Σ and hdq

Σ replaced by
hq
Σ and hq

Σ throughout. In particular, this is the case if both µ and ν are ergodic
and one of them is weakly mixing.

Theorems B and C will be proved in Section 7. The first conclusion
of Theorem C (subadditivity) actually holds for arbitrary joinings; see
Proposition 7.1.

By applying Theorem C to copies of a single system (X, µ, T ), we can show
that hdq

Σ is stable under Cartesian powers:

hdq
Σ (µ

×k) = k · hdq
Σ (µ) ∀k > 1

(see Corollary 7.3). In this case we can do without the assumption that hdq
Σ (µ, T )

= hdq
Σ (µ, T ).

Processes with finite state spaces. In case X is a finite set and (X G, µ, S) is
a G-process, we are able to prove another relation between the new invariant hdq

Σ

and sofic entropies. In view of isomorphism invariance, this will actually apply
to any system (X, µ, T ) which has a finite generating partition. For an ergodic
system, this, in turn, is equivalent to finiteness of the Rokhlin entropy hRok(µ, T ),
by the results of [23].

For a general system (X, µ, T ), consider the sequence of values

1
k

hΣ(µ×k, T×k), k > 1.

Since hΣ is subadditive, the sequence (hΣ(µ×k, T×k))k>1 is subadditive.
Therefore the limit

hps
Σ(µ, T ) := lim

k−→∞

1
k

hΣ(µ×k, T×k)

exists and satisfies hps
Σ(µ, T ) 6 hΣ(µ, T ), by Fekete’s lemma. We call it the

power-stabilized sofic entropy rel Σ . It is clearly an isomorphism-invariant. If
hps
Σ(µ, T ) < hΣ(µ, T ), then this gap quantifies the failure of additivity of sofic

entropy among the Cartesian powers of (X, µ, T ) itself.

THEOREM D. It is always the case that

hps
Σ(µ, T ) > hdq

Σ (µ, T ),

and this is an equality if (X, µ, T ) has a finite generating partition.
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It is fairly easy to prove that hps
Σ > hdq

Σ , so most of the work goes into proving
the reverse inequality. This will be done by showing that individual good models
for large Cartesian powers (µ×k, T×k) can be converted into measures that doubly
quenched-converge to µ.

Theorem D leads to the following sense in which Theorem B is optimal for
systems that have finite generating partitions.

COROLLARY D′. If (X, µ, T ) has a finite generating partition and hΣ(µ×k, T×k)

= hΣ(µ
×k, T×k) for all k, then

hdq
Σ (µ, T ) = inf{hΣ(µ× ν, T × S)− hΣ(ν, S) :

(Y, ν, S) another G-system with hΣ(ν, S) = hΣ(ν, S)}.

Thus, if (X, µ, T ) has a finite generating partition and hΣ(µ×k, T×k) =

hΣ(µ
×k, T×k) for all k, then no other quantity which depends only on (X, µ, T )

can improve on hdq
Σ (µ, T ) in Theorem B.

Equality in the case of co-induced systems. For an infinite sofic group G and
a Bernoulli process (X G, ν×G, S), it is fairly easy to show that hΣ(ν×G), hq

Σ(ν
×G)

and hdq
Σ (ν

×G) are all just equal to the Shannon entropy of ν. (In the case of hΣ ,
this is the calculation that gives the classification of Bernoulli systems in [4, 14].)
This supplies some examples for which the three entropy notions coincide.

The final topic of this paper is a generalization of this result to a class of co-
inductions. Suppose now that G and H are two sofic groups, and let

Σ = (σn : G −→ Sym(Vn))n>1 and T = (τn : H −→ Sym(Wn))n>1

be respective sofic approximations for them. Then G × H has a product sofic
approximation Σ × T = (σn × τn)n>1, where

(σn × τn)
(g,h)
:= σ g

n × τ
h
n ∈ Sym(Vn ×Wn).

Let (X, µ, T ) be a G-system. Then co-induction gives a functorial way to
construct from it a (G× H)-system: the new probability space is (X H , µ×H ), and
the action CIndG×H

G T is defined by setting

(CIndG×H
G T )g

:= (T g)×H for g ∈ G

and
(CIndG×H

G T )h((xk)k∈H ) := (xkh)k∈H for h ∈ H
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(so H acts simply by the right shift on X H ). Since these commute, they define
an action of G × H . See [13, Subsection II.10.(G)] or [9] for a more general
discussion and some previous uses of co-induction in ergodic theory.

If G is the trivial group, then this just produces an H -Bernoulli shift. The
following result therefore generalizes our observation about Bernoulli shifts.

THEOREM E. Let G, H, Σ , T, and (X, µ, T ) be as above. Assume that H is
infinite. Then

hΣ×T(µ
×H ,CIndG×H

G T ) = hq
Σ×T(µ

×H ,CIndG×H
G T ) = hdq

Σ×T(µ
×H ,CIndG×H

G T ).

For a G-system (X, µ, T ), a different condition which is sufficient for
hΣ(µ, T ) = hq

Σ(µ, T ) has appeared previously as [6, Theorem 4.1].
Combining Theorem E with Theorems B and D immediately yields the

following.

COROLLARY E′. Consider again the setting of Theorem E.

(1) If (Y, ν, S) is another (G × H)-system such that

hΣ×T(ν, S) = hΣ×T(ν, S),

then

hΣ×T(µ
×H
× ν,CIndG×H

G T × S) = hΣ×T(µ
×H ,CIndG×H

G T )+ hΣ×T(ν, S).

(2) If (X, µ, T ) has a finite generating partition, then

hΣ×T((µ
×H )×k, (CIndG×H

G T )×k) = k · hΣ×T(µ
×H ,CIndG×H

G T )

for all k > 1.

Overview of the paper. The rest of this paper is divided into two parts.
Part I concerns the spaces of good models for a G-process. After collecting

some background material in Section 2, model spaces and sofic entropy are
defined carefully and studied in Section 3.

The most substantial results of this part are in Section 4, which describes
how a factor map between G-processes can be converted into ‘approximately
Lipschitz’ maps between their model spaces, endowed with suitable Hamming-
like metrics. This is delicate, because an arbitrary measurable factor map must
first be approximated by ‘almost continuous’ maps, and then these can be
modified to act on the model spaces.
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Part II introduces measures on the spaces of models of a G-process. Section 5
defines locally weak∗, quenched and doubly quenched convergence, and
establishes some basic properties, including Theorem A. Then Section 6 uses
such convergent sequences of measures to define the associated entropy notions
and prove some preparatory results for them. These then lead to proofs of all
the main theorems stated above: Theorems B and C in Section 7; Theorem D in
Section 8; and Theorem E in Section 9.

When a factor map between G-processes is converted into maps between
the model spaces, those can then be used to convert a convergent sequence of
measures for the domain process into a convergent sequence of measures for the
target process. This construction is crucial for many of the proofs in Part II, but,
as might be expected from Part I, it requires careful control of several different
approximations. This is the most technical aspect of the paper.

Section 10 collects some open questions about this new notion of entropy.
Many of the ideas in Part I are just small variations on [4, 14–16]. Certainly

none of Section 3 is really original. The principal difference from those works
is our explicit development of maps between model spaces corresponding to
factor maps between systems. This gives us some very versatile tools for passing
between model spaces, as illustrated by their use in the proofs of the main
theorems. We develop the somewhat new formalism for sofic entropy in Section 3
in order to make this analysis of maps simpler and more natural, and to have
the same effect on our definitions of model-measure sofic entropies in Part II.
This is why we include this new formalism, rather than just using the definitions
from [16], for example.

Part I
Model spaces and maps

2. Some notation and preliminaries

2.1. Elementary analysis. We use Landau (‘big-O’ and ‘little-o’) notation
without further comment. Among real numbers, we sometimes write ‘a ≈ε b’ in
place of ‘|a−b| < ε’. The notation ‘εn ↓ 0’ means that (εn)n>1 is a nonincreasing
sequence of strictly positive real numbers which tends to 0.

Now let P be a property that holds for some nondecreasing sequences of
nonnegative integers (that is, a subset of the set of nondecreasing members of NN).
We will say that P holds whenever m1 6 m2 6 · · · grows sufficiently slowly if
there is a fixed nondecreasing sequence (m◦n)n>1 with m◦n ↑ ∞ such that, for any
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other nondecreasing sequence (mn)n>1 ∈ NN, we have

[mn −→∞ and mn 6 m◦n ∀n] H⇒ (mn)n>1 has P.

The following nomenclature from probabilistic combinatorics will be very
convenient. If (Ωn,Pn)n>1 is a sequence of probability spaces, and P is a property
that holds for some elements ofΩn for each n, then P holds with high probability
(‘w.h.p.’) if

Pn{ω ∈ Ωn : P holds for ω} −→ 1 as n −→∞.

If P is written out explicitly in terms of ω, then we may also write that P holds
w.h.p. inω. If eachΩn is finite and Pn is not specified, then this is to be understood
with Pn equal to the uniform measure on Ωn .

2.2. Metric spaces and almost-Lipschitz maps. Let (X, dX ) and (Y, dY ) be
metric spaces, let ε > 0, and let L < ∞. A map ϕ : X −→ Y is ε-almost L-
Lipschitz if it is Borel measurable and satisfies

dY (ϕ(x), ϕ(x ′)) 6 ε + LdX (x, x ′) ∀x, x ′ ∈ X.

A map is ε-almost Lipschitz if it is so for some L .
The following requires only an immediate check.

LEMMA 2.1. If ϕ : X −→ Y is ε-almost L-Lipschitz and f : Y −→ R is K -
Lipschitz, then f ◦ ϕ is (K ε)-almost (K L)-Lipschitz.

Maps that are η-almost Lipschitz for arbitrarily small η have the following
simple characterization.

LEMMA 2.2. If (X, dX ) and (Y, dY ) are compact and f : X −→ Y , then f is
continuous if and only if it is η-almost Lipschitz for every η > 0.

Proof. The reverse implication is simple, so we focus on the forward implication.
Suppose for simplicity that dY has diameter at most 1. Given η > 0, let δ > 0

be so small that if x, x ′ ∈ X then

dX (x, x ′) < δ H⇒ dY ( f (x), f (x ′)) < η.

Now define L := 1/δ. For any x, x ′ ∈ X , we obtain

dY ( f (x), f (x ′)) 6
{
η if dX (x, x ′) < δ

1 < η + Lδ if dX (x, x ′) > δ

}
6 η + LdX (x, x ′).
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For a general target space, an ε-almost-Lipschitz map need not be close to a
truly Lipschitz map, even if ε is very small. However, this does hold among R-
valued maps.

LEMMA 2.3. If (X, d) is a metric space, U ⊆ X is nonempty, and f : X −→ R
is a function such that f |U is ε-almost L-Lipschitz, then there is an L-Lipschitz
map g : X −→ R such that | f (x)− g(x)| 6 ε for all x ∈ U.

Proof. The following standard construction gives a suitable approximant:

g(x) := inf
x ′∈U

( f (x ′)+ Ld(x, x ′)).

As in the Introduction, if V is a nonempty finite set and (X, d) is a metric space,
then d (V ) denotes the Hamming-average metric on X V defined by

d (V )(x, x ′) :=
1
|V |

∑
v∈V

d(xv, x ′v).

If V ⊆ U with V nonempty and finite, then d (V )(x, x ′) is still well defined for
pairs x, x ′ ∈ XU . It defines a pseudometric on XU . In particular, if G is a group,
then this gives a pseudometric d (F) on X G for every nonempty finite F ⊆ G.

Probability measures on metric spaces will always be defined on their Borel
σ -algebras. The set of Borel probability measures on a metric space X is denoted
by Prob(X). If X is compact then Prob(X) is given the weak∗ topology.

2.3. Approximating Borel maps by almost-Lipschitz maps. In order to
study factor maps between systems, we will need to approximate Borel maps
by maps that have a fairly explicit kind of ‘approximate continuity’. For our
purposes, the best-adapted approximants seem to be almost-Lipschitz maps. In
this subsection we prove the existence of such approximants using Lusin’s
theorem.

The following definition is not standard, but will be very convenient. It is a
prelude to Definition 4.2, which is a dynamical version.

DEFINITION 2.4. Let (X, dX ) and (Y, dY ) be compact metric spaces, let µ ∈
Prob(X), let ϕ : X −→ Y be Borel, and let η > 0. Then an η-almost Lipschitz (or
η-AL) approximation to ϕ rel µ is a Borel map ψ : X −→ Y with the following
properties:

(i) the map ψ approximates ϕ in the sense that∫
dY (ϕ(x), ψ(x)) µ(dx) < η;
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(ii) there is an open subset U ⊆ X such that µ(U ) > 1 − η, and such that ψ |U
is η-almost Lipschitz from dX to dY .

LEMMA 2.5. Let (X, dX ) and (Y, dY ) be compact metric spaces, let µ ∈ Prob(X),
and let ϕ : X −→ Y be Borel. Then ϕ has η-AL approximations relµ for all η > 0.

Proof. We may assume for simplicity that dY has diameter at most 1.
Lusin’s theorem gives a compact subset K ⊆ X such that µ(K ) > 1 − η and

ϕ|K is continuous. Then Lemma 2.2 gives L <∞ such that ϕ|K is (η/3)-almost
L-Lipschitz.

Now choose ε so small that Lε < η/3, and let U := Bε(K ). Certainly µ(U ) >
1− η. Let ξ : X −→ K be a Borel map such that ξ |K = idK and dX (x, ξ(x)) < ε
for all x ∈ U , and define ψ := ϕ ◦ ξ . This gives ϕ(x) = ψ(x) for all x ∈ K , and
hence ∫

dY (ϕ(x), ψ(x)) µ(dx) 6 µ(X\K ) < η.

Finally, for any x, x ′ ∈ U , we have ξ(x), ξ(x ′) ∈ K , and therefore

dY (ψ(x), ψ(x ′)) = dY (ϕ(ξ(x)), ϕ(ξ(x ′))) 6 η/3+ LdX (ξ(x), ξ(x ′))
6 η/3+ 2Lε + LdX (x, x ′) < η + LdX (x, x ′).

So ψ |U is η-almost L-Lipschitz.

REMARK. The key difference between Lusin’s theorem itself and Lemma 2.5 is
that ψ is almost Lipschitz on an open set of large measure. This tweak will be
important for some applications of the Portmanteau theorem later. �

2.4. Covering and packing numbers. If (X, d) is a metric space and δ > 0,
then a subset F ⊆ X is δ-separated if any distinct x, y ∈ F satisfy d(x, y) > δ.
The δ-covering and δ-packing numbers of the space are defined by

covδ(X, d) := min{|F | : Bδ(F) = X}

and
packδ(X, d) := max{|F | : F is δ-separated in (X, d)},

where either value may be +∞. More generally, if Y ⊆ X then we abbreviate

covδ(Y, d|Y × Y ) =: covδ(Y, d) and packδ(Y, d|Y × Y ) =: packδ(Y, d).

These definitions lead quickly to the standard inequalities

covδ/2(Y, d) > packδ(Y, d) > covδ(Y, d) ∀δ > 0. (5)
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Now suppose in addition that µ ∈ Prob(X). For ε, δ > 0, the (ε, δ)-covering
number of µ according to d is

covε,δ(µ, d) := min{covδ(V, d) : V ⊆ X such that µ(V ) > 1− ε}.

Similarly, the (ε, δ)-packing number of µ according to d is

packε,δ(µ, d) := min{packδ(V, d) : V ⊆ X such that µ(V ) > 1− ε}.

From these definitions, the inequalities (5) translate immediately into

covε,δ/2(µ, d) > packε,δ(µ, d) > covε,δ(µ, d) ∀ε, δ > 0. (6)

Now let (X, dX ) and (Y, dY ) be metric spaces and let µ and ν be Borel
probabilities on X and Y , respectively. Assume that X and Y are separable, so
that the Borel σ -algebra of X × Y agrees with the product of their separate Borel
σ -algebras. Let d be the Hamming average on X × Y of the metrics dX and dY :

d((x, y), (x ′, y′)) := 1
2 dX (x, x ′)+ 1

2 dY (y, y′).

The following is quite close to standard results for covering and packing numbers,
but the switch to the setting of probability measures requires a little extra work.

LEMMA 2.6. The following hold for all ε, δ > 0:

(i) any coupling λ of µ and ν satisfies

covε,δ(λ, d) 6 covε/2,δ(µ, dX ) · covε/2,δ(ν, dY );

(ii) the product measure satisfies

packε,δ/2(µ× ν, d) > pack√ε,δ(µ, dX ) · pack√ε,δ(ν, dY ).

Proof. (i) If E ⊆ X and F ⊆ Y are such that µ(Bδ(E)) > 1 − ε/2 and
ν(Bδ(F)) > 1 − ε/2 (where these neighbourhoods are taken according to the
metrics dX and dY , respectively), then Bδ(E × F) ⊇ Bδ(E)× Bδ(F), and so

λ((X × Y )\Bδ(E × F)) 6 λ((X × Y )\(Bδ(E)× Bδ(F)))
6 λ((X\Bδ(E))× Y )+ λ(X × (Y\Bδ(F)))
= µ(X\Bδ(E))+ ν(Y\Bδ(F))
< 2(ε/2) = ε.

(ii) Let m := pack√ε,δ(µ, dX ) and n := pack√ε,δ(ν, dY ).
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Suppose that V ⊆ X × Y has (µ× ν)(V ) > 1− ε. For each x ∈ X let

Vx := {y ∈ Y : (x, y) ∈ V }.

Fubini’s theorem and Chebyshev’s inequality imply that the set

U := {x : ν(Vx) > 1−
√
ε}

has µ(U ) > 1−
√
ε. The latter inequality implies that there is some F ⊆ U with

cardinality m and which is δ-separated according to dX . On the other hand, for
each x ∈ F , the inequality ν(Vx) > 1 −

√
ε implies that there is some Ex ⊆ Vx

with cardinality n and which is δ-separated according to dY . Now the set of pairs

{(x, y) : x ∈ F and y ∈ Ex}

is contained in V , has cardinality nm, and is (δ/2)-separated according to d .

Combining Lemma 2.6 with the inequalities in (6) gives the following.

COROLLARY 2.7. For all ε, δ > 0 one has

covε,δ/4(µ× ν, d) > cov√ε,δ(µ, dX ) · cov√ε,δ(ν, dY ).

The next lemma gives some control over the covering numbers of the
pushforward of a measure under an almost-Lipschitz map. After that, Lemma 2.9
shows that the covering numbers of pushforward measures are somewhat stable
under small changes to the maps. These results will be used for the proofs that
our new entropy notions are isomorphism-invariant in Subsection 6.1.

LEMMA 2.8. Let (X, dX ) and (Y, dY ) be metric spaces, let µ ∈ Prob(X), and let
ϕ : X −→ Y be η-almost L-Lipschitz. Then

covε,η+Lδ(ϕ∗µ, dY ) 6 covε,δ(µ, dX ).

Proof. Choose F ⊆ X such that µ(Bδ(F)) > 1 − ε. Since ϕ is η-almost
L-Lipchitz, we have

Bη+Lδ(ϕ(F)) ⊇ ϕ(Bδ(F)),

and hence
ϕ−1(Bη+Lδ(ϕ(F))) ⊇ Bδ(F).

Therefore

(ϕ∗µ)(Bη+Lδ(ϕ(F))) = µ(ϕ−1(Bη+Lδ(ϕ(F)))) > µ(Bδ(F)) > 1− ε.
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LEMMA 2.9. Let (X, µ) be a probability space, let (Y, d) be a separable metric
space, and let ϕ,ψ : X −→ Y be measurable functions. Also let ε, ε′, δ > 0. If

µ{d(ϕ(·), ψ(·)) > δ/2} < ε′

then
covε+ε′,δ(ϕ∗µ, d) 6 covε,δ/2(ψ∗µ, d).

As before, the separability of Y ensures that the Borel σ -algebra of Y × Y
agrees with the product σ -algebra, and hence that d is measurable with respect to
the latter. This is needed for the first displayed inequality above to make sense.

Proof. Let U := {d(ϕ(·), ψ(·)) 6 δ/2}, and let F ⊆ Y be such that

µ{x : ψ(x) ∈ Bδ/2(F)} = ψ∗µ(Bδ/2(F)) > 1− ε.

Then

ϕ∗µ(Bδ(F)) > µ{x : x ∈ U and ϕ(x) ∈ Bδ(F)}
> µ{x : x ∈ U and ψ(x) ∈ Bδ/2(F)} > 1− ε − ε′.

3. Empirical distributions, good models, and sofic entropy

3.1. Definitions. Suppose that G is a countable discrete group. Suppose
further that V is a finite set and that σ : G −→ Sym(V ) is any map. Think of
this σ as an ‘attempt’ at a representation of G by permutations of V . Given g,
h ∈ G and v ∈ V , it may not be the case that

σ g(σ h(v)) = σ gh(v). (7)

The ‘quality’ of σ as an attempt at a representation can be quantified by the
number of v at which (7) holds, say for some finite list of groups elements g,
h of interest.

A sofic approximation to G is a sequence of finite sets Vn and maps

σn : G −→ Sym(Vn), n > 1,

such that
[σ g

n (σ
h
n (v)) = σ

gh
n (v) w.h.p. in v] ∀g, h ∈ G (8)

and
[σ g

n (v) 6= v w.h.p. in v] ∀g ∈ G\{eG}, (9)
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both as n −→∞. Note the order of the quantifiers: we certainly do not ask that

[σ g
n (σ

h
n (v)) = σ

gh
n (v) ∀g, h ∈ G] w.h.p. in v.

The group itself is sofic if it has a sofic approximation. This definition essentially
follows Weiss [24] and (with a different nomenclature) Gromov [11].

Now consider also a compact metric space (X , d), and let V and σ be as above.
Elements of X V will be denoted by boldface letters, to distinguish them from
elements of shift spaces such as X G . For x = (xv)v∈V ∈ X V and v ∈ V , the
pullback name of x at v is defined by

Πσ
v (x) := (xσ g(v))g∈G ∈ X G .

This defines a map Πσ
v : X V

−→ X G for each v. Let S be the right-shift action
of G on X G . Properties (8) and (9) have the following simple but important
consequence.

LEMMA 3.1. If (σn)n>1 is a sofic approximation to G, F ⊆ G is finite, and g ∈ G,
then the following holds w.h.p. in v ∈ Vn:

Π
σn

σ
g
n (v)
(·)|F = (Sg(Πσn

v (·)))|F .

More fully, this conclusion asserts that

[Π
σn

σ
g
n (v)
(x)|F = Πσn

v (x)|Fg ∀x ∈ X Vn ] w.h.p. in v,

where we identify elements of X Fg with elements of X F in the obvious way.

Proof. It suffices to prove this when F is an arbitrary singleton, say {h}. Then it
holds w.h.p. in v that

σ h
n (σ

g
n (v)) = σ

hg
n (v).

If v satisfies this, and x ∈ X Vn , then

(Π
σn

σ
g
n (v)
(x))h = xσ h

n (σ
g
n (v))
= x

σ
hg
n (v)
= (Πσn

v (x))hg.

REMARK. The map σ also gives rise to an ‘adjoint’ map ρ : G −→ Sym(X V ):

ρg((xv)v∈V ) := (xσ g−1
(v)
)v∈V .

Similarly to the proof above, one can show that, if (σn)n>1 is a sofic
approximation, then for most v the pullback-name map Πσn

v approximately
intertwines ρg

n with the left-shift action S̃ of G on X G , defined by

S̃g((xh)h∈G) := (xg−1h)h∈G .
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This observation does not seem to be useful unless our measure µ on X G is
invariant under S̃ as well as S. In that case, each S̃g defines an isomorphism from
the system (X G, µ, S) to itself, and the above relationship to ρg

n becomes a special
case of a result for general factor maps; see Lemma 4.8 below. �

Each x ∈ X Vn has an associated probability measure on X G called its empirical
distribution:

Pσ
x :=

1
|V |

∑
v∈V

δΠσ
v (x). (10)

Lemma 3.1 will mostly be used through the following consequence, which
asserts an approximate invariance for empirical distributions.

LEMMA 3.2. Let F ⊆ G be finite and g ∈ G. Then

sup
x∈X Vn

‖(Pσn
x )F − (Sg

∗
Pσn

x )F‖TV −→ 0 as n −→∞.

Proof. Lemma 3.1 gives that

(SgΠσn
v (·))|F = Π

σn

σ
g
n v
(·)|F w.h.p. in v,

and therefore

(Pσn
x )F − (Sg

∗
Pσn

x )F =
1
|Vn|

∑
v∈Vn

(δΠσn
v (x)|F − δ(SgΠ

σn
v (x))|F )

=
1
|Vn|

∑
v∈Vn

(δΠσn
v (x)|F − δΠσn

σ
g
n v
(x)|F )+ o(1).

But the sum on this last line vanishes, because σ g
n is a permutation of Vn .

Now suppose that µ is a right-shift-invariant probability measure on X G . For
any F ⊆ G, let µF denote the marginal of µ on X F , as previously.

For G and σ as above, and for any O ⊆ Prob(X G), let

Ω(O, σ ) := {x ∈ X V
: Pσ

x ∈ O}. (11)

In case O is a w∗-neighbourhood of µ, elements of Ω(O, σ ) are called O-good
models for µ over σ .

This definition is easiest to visualize in case O is of the form {ν : νF ∈ O′} for
some finite F ⊆ G and some w∗-neighbourhood O′ of µF . Neighbourhoods O
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of this form are a basis of neighbourhoods around µ, so this assumption does not
lose much generality. For this O we can write

Ω(O, σn) =

{
x ∈ X Vn :

1
|Vn|

∑
v∈Vn

δΠσn
v (x)|F ∈ O′

}
.

Given the finite set F , it follows from conditions (8) and (9) that the mapping

g 7→ σ g
n (v)

defines a map from F to a corresponding ‘window’ σ F
n (v) around v in Vn , and

this map is a bijection w.h.p. in v. Consequently, one may regard the map x 7→
Πσn
v (x)|F as restricting x to x|σ F

n (v)
, and then making a copy of this restriction

indexed by F itself. The good modelsΩ(O, σn) are those x such that, on average
over v, the frequency with which one sees a particular restriction through this
window is close to the F-marginal of µ itself. This is the sense in which x is
‘modelling’ µ.

In many examples X is a finite alphabet. In that case one can instead work with
total-variation neighbourhoods of finite-dimensional marginals of µ. Specifically,
if X is finite then the (F, ε)-good models for µ over σ are the elements of

Ωµ(F, ε, σ ) :=
{

x ∈ X V
:

∥∥∥∥ 1
|V |

∑
v∈V

δΠσ
v (x)|F − µF

∥∥∥∥
TV

< ε

}
.

Finally, as in the Introduction, we define the sofic entropy of a metric G-process
(X G, µ, S, d) to be

hΣ(µ) := sup
δ>0

inf
O

lim sup
n−→∞

1
|Vn|

log covδ(Ω(O, σn), d (Vn)),

where O ranges over w∗-neighbourhoods of µ. Similarly, the lower sofic entropy
is

hΣ(µ) := sup
δ>0

inf
O

lim inf
n−→∞

1
|Vn|

log covδ(Ω(O, σn), d (Vn)).

We do not record d in the notation for these quantities because it turns out that
they depend only on the measure-theoretic structure of the process (X G, µ, S), as
will be shown in the next subsection.

Examples in which hΣ(µ) < hΣ(µ) can be obtained from examples in which
hΣ(µ) 6= hΣ ′(µ) for two different sofic approximations Σ and Σ ′ to G.
Interleaving Σ and Σ ′ into a single sofic approximation then gives the former
inequality. For instance, [5, Subsection 8.3] includes examples of free-group
Markov chains whose f-invariant is finite and negative. Since (i) sofic entropies
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can take values only in {−∞} ∪ [0,+∞], and (ii) the f-invariant can be
expressed as a kind of average of sofic entropies over randomly chosen
sofic approximations [3], it follows that these systems must have some sofic
approximations which give nonnegative real values for the sofic entropy, and
others which give −∞.

However, it is an important open problem whether one can obtain two different
finite real values for hΣ(µ) and hΣ ′(µ) using two different sofic approximations.

3.2. Agreement with the Kerr–Li definition. Bowen defined sofic entropy
for systems with finite generating partitions in [4]. Kerr and Li give a new
definition in [15] in terms of approximate homomorphism between commutative
von Neumann algebras, and showed that it gives the same values as Bowen’s
if there is a finite generating partition. Then, in [16, Section 3], Kerr and Li
gave another, more elementary definition of general sofic entropy, and proved
its equivalence to their previous definition.

In this subsection we show that our definition gives the same values as the
entropy of [16, Definition 3.3]. We refer to that paper for a careful introduction to
their definition. If (X, µ, T ) is a G-system, let us write h̃Σ(µ, T ) for the entropy
defined there.

It suffices to show that any metric G-process (X G, µ, S, d) satisfies

hΣ(µ) = h̃Σ(µ, S).

That is, rather than analyse a G-action on an arbitrary probability space (X, µ), we
may restrict our attention to the case of processes, so X = X G for another standard
measurable space X which is equipped with a particular compact generating
metric d . We may also assume that d has diameter at most 1.

On X = X G , define the pseudometric

ρ(x, y) = d(xe, ye) for x = (xg)g, y = (yg)g ∈ X G .

LetΣ= (σn:G−→ Sym(Vn))n>1 be the sofic approximation. If F is a finite subset
of G, L is a finite subset of C(X), and ε > 0, then define Mapµ(ρ, F, L , ε, σn)

to be the set of those x ∈ X Vn such that:

(i) we have √
1
|Vn|

∑
v∈Vn

ρ(xσ g
n (v)
, Sg(xv))2 < ε ∀g ∈ F;

(ii) and
1
Vn

∑
v∈Vn

f (xv) ≈ε

∫
f dµ ∀ f ∈ L .
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The pseudometric ρ is clearly dynamically generating (see [16, Section 2] or
[17, Section 4]). Therefore [16, Proposition 3.4] gives that

h̃Σ(µ, S) = sup
δ>0

inf
F,L ,ε

lim sup
n−→∞

1
|Vn|

log packδ(Mapµ(ρ, F, L , ε, σn), ρ
2,(Vn)), (12)

where F , L and ε are as above, and ρ2,(Vn) is the `2-analogue of the Hamming-
average metric on X Vn :

ρ2,(Vn)(x, y) :=

√
1
|Vn|

∑
v∈Vn

ρ(xv, yv)2 for (xv)v, (yv)v ∈ X Vn .

(I have adjusted some of the notation from [16] to match the present paper.)

PROPOSITION 3.3. In the setting above we have hΣ(µ) = h̃Σ(µ, S).

Proof. Step 1. Let

ρ1,(Vn)(x, y) :=
1
|Vn|

∑
v∈Vn

ρ(xv, yv) for (xv)v, (yv)v ∈ X Vn .

Since ρ is bounded by 1, we have

ρ1,(Vn) 6 ρ2,(Vn) 6
√
ρ1,(Vn).

Since the right-hand side of (12) takes a supremum over δ > 0, we may therefore
replace ρ2,(Vn) with ρ1,(Vn) in that equation. Also, recalling the inequalities (5), the
same reasoning lets us replace packδ with covδ in (12).

Step 2. For each n, define

Φn : X Vn −→ X Vn : ((xv,g)g∈G)v∈Vn 7→ (xv,e)v∈Vn .

This is an isometry from the pseudometric ρ1,(Vn) to the true metric d (Vn).
Now suppose that O is a w∗-neighbourhood of µ. Then there are a finite

L ⊆ C(X), say consisting of [0, 1]-valued functions, and ε1 > 0 such that

O ⊇ O′ :=
{
ν ∈ Prob(X) :

∫
f dν ≈3ε1

∫
f dµ ∀ f ∈ L

}
.

Since L is finite, there are a finite set F ⊆ G and an ε2 > 0 such that, for any
x, y ∈ X , we have

[d(xg, yg) < ε2 ∀g ∈ F] H⇒ [ f (x) ≈ε1 f (y) ∀ f ∈ L].
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Given ε2, we may now choose ε ∈ (0, ε1) so small that the following holds. If

x = ((xv,g)g∈G)v∈Vn ∈ Mapµ(ρ, F, L , ε, σn),

then condition (i) implies that

|{v ∈ Vn : d(xσ g
n (v),e, xv,g) < ε2 ∀g ∈ F}| > (1− ε1)|Vn|.

It follows that∫
f d Pσn

Φn(x) =
1
|Vn|

∑
v∈Vn

f ((xσ g
n (v),e)g∈G) ≈2ε1

1
|Vn|

∑
v∈Vn

f ((xv,g)g∈G),

and now condition (ii) gives that this is within ε1 of
∫

f dµ. This shows that

Φn(Mapµ(ρ, F, L , ε, σn)) ⊆ Ω(O′, σn) ⊆ Ω(O, σn).

Since Φn is an isometry, it preserves covering numbers. Taking infima over O
(on the right-hand side) or F , L and ε (on the left-hand side), this shows that

h̃Σ(µ, S) 6 hΣ(µ).

Step 3. The proof of the reverse inequality is very similar. Now we define

Ψn : X Vn −→ X Vn : x 7→ (Πσn
v (x))v∈Vn ,

which is an isometry from d (Vn) to ρ1,(Vn). For any F , L , and ε > 0, there is a
w∗-neighbourhood O of µ such that

Ψn(Ω(O, σn)) ⊆ Mapµ(ρ, F, L , ε, σn).

This O can be obtained by reversing the construction in Step 2. The only point
worth remarking is that condition (ii) in the definition of Mapµ(ρ, F, L , ε, σn) is
obtained as a consequence of Lemma 3.1.

Taking infima, this leads to

hΣ(µ) 6 h̃Σ(µ, S).

Since Kerr and Li have already proved isomorphism invariance of sofic entropy
using their definitions (see [15]), that property follows for ours. This justifies
the omission of d from the notation hΣ(µ). A proof of this invariance using
our definition would be similar to the proof that model-measure sofic entropy
is isomorphism-invariant, which is given in Subsection 6.1 below.
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REMARK. The proof of Proposition 3.3 uses a particular generating
pseudometric on X = X G , obtained from a metric on the single coordinate
space X . However, it turns out that for any abstract G-system (X, µ, T ), any
totally bounded and Borel measurable pseudometric ρ on X arises in this way,
up to isomorphism. Indeed, letting (X0, d0) be the quotient of X by the relation
{ρ = 0}, and letting (X , d) be the completion of (X0, d0), it is easy to check that
the quotient map q : X −→ X is Borel, and now this can be extended to a factor
map qG

: X −→ X G similarly to (1). If ρ is dynamically generating, then qG is
an isomorphism, and ρ is now obtained by pulling back the identity-coordinate
metric d through this isomorphism. �

3.3. Subadditivity and failure of additivity.

PROPOSITION 3.4. Let (X G, µ, S) and (YG, ν, S) be two G-processes, and let λ
be a joining of them. Then

hΣ(λ) 6 hΣ(µ)+ hΣ(ν).

Proof. Let dX and dY be compact generating metrics on X and Y respectively,
and let d be their Hamming average on X × Y . All subsequent topologies are
those determined by these metrics.

For any w∗-neighbourhood O1 of µ and O2 of ν, there is a w∗-neighbourhood
N of λ such that every θ ∈ N has first marginal in O1 and second marginal in
O2. This implies that

Ω(N , σn) ⊆ Ω(O1, σn)×Ω(O2, σn) ∀n > 1,

and now the inequality

covδ(Ω(N , σn), d (Vn)) 6 covδ(Ω(O1, σn), d (Vn)

X ) · covδ(Ω(O2, σn), d (Vn)

Y )

completes the proof.

In particular,
hΣ(µ× ν) 6 hΣ(µ)+ hΣ(ν).

We now describe examples in which this inequality is strict.

EXAMPLE 3.5. Some standard probabilistic estimates are required to justify this
example carefully, but we omit these for brevity.

Let H = 〈a, b〉 be the free group on two generators, let H ′ = 〈a′, b′〉 be a copy
of H , and let G = H ∗H ′. Then G is a free group on four generators, and we may
regard H as a subgroup of G.
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Let T0 be the trivial H -action on the set X = {0, 1}, and endow this set with its
discrete metric. Let

µ0 :=
3
4δ0 +

1
4δ1 ∈ Prob(X ).

(It will be clear in what follows that ‘ 3
4 ’ could be replaced with any value in

(1/2, 1).)
Now co-induce T0 to the G-action CIndG

H T0 on the space

(X, µ) := (X H\G, µ
×H\G
0 ).

This co-induced system is isomorphic to a G-process (X G, ν, S) where ν is
defined by the following three properties:

• every one-dimensional marginal of ν equals µ0;

• if Hg = Hg′ for some g, g′ ∈ G, then xg = xg′ for ν-a.e. x ;

• if the cosets Hg1, . . . , Hgk are distinct, and x is drawn at random from ν, then
the coordinates xg1, . . . , xgk are independent.

See [13, Subsection II.10.(G)] or [9] for the definition and basic properties of
co-induction.

Now for each n let Un := {1, . . . , 3n}, Wn := {3n + 1, . . . , 4n} and Vn :=

Un ∪Wn . Choose four elements of Sym(Vn) in the following randomized way:

• Let σ a′
n and σ b′

n be independent, uniformly random elements of Sym(Vn).

• Let τ a
n,0 and τ b

n,0 be uniformly random elements of Sym(Un) and let τ a
n,1

and τ b
n,1 be uniformly random elements of Sym(Wn), all independent. Let

σ a
n := τ

a
n,0 ∪ τ

a
n,1 and σ b

n := τ
b
n,0 ∪ τ

b
n,1. Thus, σ a

n and σ b
n are chosen uniformly

and independently from among those elements of Sym(Vn) that preserve the
partition {Un,Wn}.

For each n, the four permutations σ a
n , σ b

n , σ a′
n and σ b′

n generate a random
homomorphism σn : G −→ Sym(Vn). Standard arguments show that the resulting
sequence Σ = (σn)n>1 is a sofic approximation to G with high probability.

For each n, let xn ∈ X Vn be the indicator function 1Wn . It is now easily

checked that Pσn
xn

weak∗
−→ ν, and so for every w∗-neighbourhood O of ν we have

Ω(O, σn) 6= ∅ for all sufficiently large n. Therefore, hΣ(ν, S) > 0.
The random Schreier graph on Vn generated by the random permutations σ a

n and
σ b

n is an expander within each of Un and Wn with high probability; this follows
by the usual counting argument (see, for instance, [18, Proposition 1.2.1]). In this
case, any other partition of Vn with small edge boundary in this Schreier graph
must be very close to the partition {Un,Wn}. This implies that any other good
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model y ∈ X Vn of ν must be very close to xn in normalized Hamming distance as
n −→∞. It follows that in fact hΣ(ν, S) = 0.

(Note that at this point, we are using the fact that the atom sizes of the measure
µ0 correspond to the ratios |Un|/|Vn| and |Wn|/|Vn|. If these were all equal to 1/2,
instead of 3/4 and 1/4, then both xn and 1Un would be good models of ν, and all
other good models would lie close to one of these two in normalized Hamming
distance. In this case, the rest of the argument below can still be completed, but
there would be slightly more work to do.)

However, we can now show that hΣ(ν×ν, S×S) = −∞. If (y, y′) ∈ (X×X )Vn

were a good model for ν×ν, then both y and y′ would be good models for ν, hence
close to xn in Hamming distance. But this would imply that

Pσn
(y,y′){(1, 0)} =

1
4n
|{v ∈ Vn : yv = 1 and y′v = 0}|

is close to 0, whereas a good model for ν × ν should have this probability close
to 1

4 ·
3
4 . So Σ does not provide arbitrarily good models for ν × ν as n −→∞.

Note that this argument is really only about the H -subaction of S. The only
reason to co-induce to G is to make an example which is ergodic overall and free.
It would be interesting to know whether one can produce such an example which
is totally ergodic by starting with a more subtle choice of H -system.

If one replaces eachΣ withΣ ′ := (σ×k
n : G −→ V×k

n )n>1 for some fixed k > 1,
then similar reasoning shows that

hΣ(µ×`, S×`) =

{
0 for ` 6 k,
−∞ for ` > k.

�

EXAMPLE 3.6. Let us speculate about a second example. The details required for
its analysis are not available in full, but it would arguably be more natural than
Example 3.5.

Let H = 〈a, b〉 be the free group and let X = {0, 1}, as above. We start by
constructing some finite quotients of H as a variant of the ‘planted bisection
model’. This classical model has a long history in statistical physics and computer
science; see [21] for its definition and some references.

Let α ∈ (0, 1) be a small parameter. Let Vn = Un ∪ Wn be as in Example 3.5,
but now construct σ a

n , σ
b
n ∈ Sym(Vn) as follows.

First let Γn be a random 4-regular graph on Vn drawn uniformly from those
graphs that have roughly 6n(1− α) edges within Un , 2n(1− α) edges within Wn ,
and 8nα edges between Un and Wn .

Using this random graph Γn , one can construct the pair of permutations σ a
n

and σ b
n as follows. First, a simple greedy algorithm finds a disjoint union of
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cycles in Γn that contains all vertices in Vn . Choose an orientation for each
of these cycles, and let those directed edges define the permutation σ a

n . After
removing these edges from Γn , the remaining 2-regular graph decomposes into
another disjoint union of cycles; orienting those gives the permutation σ b

n . Let
σn : G −→ Sym(Vn) be the homomorphism generated by σ a

n and σ b
n . Now Γn is

the Schreier graph of the homomorphism σn and generating set {a±1, b±1
}.

As with other simple random-graph models, it should hold that Γn looks like a
tree in a large neighbourhood around most points of Vn , and this would imply that
Σ = (σn)n>1 is a sofic approximation to H .

Finally, let xn = 1Wn as in Example 3.5, and now use w∗-compactness to choose

a subsequence n1 < n2 < · · · such that P
σni
xni

weak∗
−→ µ for some µ ∈ Prob(X H ). Of

course, this guarantees that for any w∗-neighbourhood O of µ we have xni ∈

Ω(O, σni ) for all sufficiently large i , and so hΣ(µ) > 0.
On the other hand, our intuition is that, if α is extremely small, so the graph Γn

has sufficiently few of its edges crossing from Un to Wn , then any other partition
of Vn into subsets of sizes roughly 3n and n and with so few edges between
must be very close to {Un,Wn} (up to an error depending on α). Some hope for a
proof of this is offered by the recent work [21] on the original planted bisection
model, which shows that if the two edge densities in the model are sufficiently
well separated, then one can reconstruct the values of those edge densities with
high probability if one is given only the output graph Γn .

If this prediction is correct, then the same argument as for Example 3.5 will
show that hΣ(µ× µ) = −∞. �

4. Factor maps and maps between model spaces

Before introducing measures on model spaces, we need to consider how a factor
map between systems can be approximated by a sequence of somewhat ‘regular’
maps between their model spaces.

This section is rather technical, but it lays essential foundations for many of the
arguments that follow. In particular, it is the basis for the proof that hq

Σ and hdq
Σ are

isomorphism-invariant.

4.1. Approximating factor maps. Suppose that ϕ : X G
−→ Y is measurable,

so it gives rise to the measurable equivariant map

Φ := (ϕ ◦ Sg)g∈G : X G
−→ YG .

More generally, suppose that E, F ⊆ G and that ϕ : X E
−→ Y . Then one defines

ϕF
: X E F

−→ Y F
: (xg)g∈E F 7→ (ϕ((xhg)h∈E))g∈F;

in this notation, Φ = ϕG .
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In order to study such equivariant maps, we need the ability to approximate ϕ
by a map which is ‘roughly continuous’. This can be done in two steps. The first
is to replace ϕ with a map depending on only finitely many coordinates.

DEFINITION 4.1. If ϕ : X G
−→ Y and D ⊆ G is finite, then ϕ is D-local if it is

measurable with respect to πD. A function is local if it is D-local for some D.
Similarly, a subset U ⊆ X G is D-local if it equals π−1

D (V ) for some V ⊆ X D.

If a function is described as ‘D-local’, then it is always implied that D is finite.
We now introduce a choice of metrics on X and Y . The next definition is a

simple adaptation of Definition 2.4.

DEFINITION 4.2. Let (X , dX ) and (Y, dY) be compact metric spaces, let
µ ∈ ProbS(X G), let ϕ : X G

−→ Y be a measurable function, and let η > 0. An
η-almost Lipschitz (or η-AL) approximation to ϕ rel (µ, dX , dY) is a
measurable map ψ : X G

−→ Y with the following properties.

(i) The map ψ approximates ϕ in the sense that∫
dY(ϕ(x), ψ(x)) µ(dx) < η. (13)

(ii) There is a finite D ⊆ G such that ψ is D-local.

(iii) There is a D-local open subset U ⊆ X G such that µ(U ) > 1 − η and such
that ψ |U is η-almost Lipschitz from d (D)X to dY .

In this definition, since ψ and U are both D local, we may regard ψ |U as
a function on X D. Part (iii) of the definition can be understood this way, or by
considering almost-Lipschitz functions with respect to the pseudometric d (D)X on
X G .

Definition 4.2 really does depend on the measure µ and on the specific metrics
dX and dY . However, we may sometimes drop the qualifier ‘rel (µ, dX , dY)’ when
these data are clear from the context.

Formally, the ψ in this definition is a D-local function on the whole space X G .
We sometimes commit the abuse of writing ψ(x |D) in place of ψ(x) when the
local nature of the function is important.

LEMMA 4.3. There exist η-AL approximations to ϕ for all η > 0.
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Proof. Let η > 0. Standard measure theory gives some finite D ⊆ G and a
measurable function ϕ′ : X D

−→ Y such that∫
dY(ϕ(x), ϕ′(x |D)) µ(dx) < η.

Since η is arbitrary, it now suffices to approximate ϕ′ instead of ϕ; or, equivalently,
to assume that ϕ itself is a function on X D. Having done so, we apply Lemma 2.5
to this map and the metric spaces (X D, d (D)X ) and (Y, dY).

In case X is a finite set, all finite-dimensional Cartesian powers of X are finite,
and so one can use a simplified form of Definition 4.2. In that case, an η-AL
approximation to ϕ : X G

−→ Y is simply a local map ψ : X G
−→ Y such that

µ{ϕ = ψ} > 1− η.
It will be helpful to know that Definition 4.2 behaves well in relation to

Hamming averages. The next lemma describes this.

LEMMA 4.4. Suppose that dY has diameter at most 1. If ψ is an η-AL
approximation to ϕ rel (µ, dX , dY) for some η ∈ (0, 1), then ψ F is a (3

√
η)-AL

approximation to ϕF
: X G

−→ Y F rel (µ, dX , d (F)Y ) for every finite F ⊆ G.

Proof. Let ψ be D-local, and in this proof let us regard ψ as a function on X D

itself. Let U ⊆ X D be an open subset with µD(U ) > 1− η and such that ψ |U is
η-almost L-Lipschitz from d (D)X to dY .

Firstly, the shift invariance of µ and inequality (13) imply that∫
d (F)Y (ϕF(x), ψ F(x)) µ(dx) =

1
|F |

∑
g∈F

∫
dY(ϕ(Sgx), ψ(Sgx)) µ(dx) < η.

(14)
Next, it is clear that ψ F is (DF)-local. Let

UF := {x ∈ X DF
: |{g ∈ F : x |Dg 6∈ U }| <

√
η|F |}.

This set is open, and∫
|{g ∈ F : x |Dg 6∈U }|µ(dx)=

∑
g∈F

µ{x : x |Dg 6∈U } = |F |·µD(X D
\U ) < η|F |,

so Chebyshev’s inequality proves that µDF(UF) > 1−
√
η.
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Finally, if x, x ′ ∈ UF , then

d (F)Y (ψ F(x), ψ F(x ′)) =
1
|F |

∑
g∈F

dY(ψ(x |Dg), ψ(x ′|Dg))

6
|{g ∈ F : x |Dg 6∈ U or x ′|Dg 6∈ U }|

|F |

+
1
|F |

∑
g ∈ F,

x |Dg , x ′|Dg ∈ U

(η + Ld (D)X (x |Dg, x ′|Dg))

6 3
√
η + L

1
|D||F |

∑
g∈F, h∈D

dX (xhg, x ′hg).

Any point of DF can be represented as a product hg with h ∈ D and g ∈ G in no
more than |D| ways, and so the last line above is at most

3
√
η + L|D|d (DF)

X (x, x ′).

This shows that ψ F
|UF is (3

√
η)-almost (L|D|)-Lipschitz.

Sometimes it is preferable to use the approximation (14) through its
consequence that

µ
{

x : d (F)Y (ϕF(x), ψ F(x)) <
√
η
}
> 1−

√
η, (15)

which follows by Chebyshev’s inequality.
Now suppose that Φ = ϕG

: (X G, µ, S) −→ (YG, ν, S) is a factor map, and
that dX and dY are generating compact metrics on X and Y with diameter at
most 1. If ϕ is not continuous for the resulting topologies on X G and Y , then Φ∗ :
Prob(X G) −→ Prob(YG) cannot be w∗-continuous. However, the next lemma
shows that, if η is sufficiently small, then an η-AL approximation to ϕ rel (µ, dX ,

dY) acts approximately continuously on measures which are w∗-close to µ. This
fact will be used several times later.

LEMMA 4.5. For every w∗-neighbourhood N of ν there is an η > 0 with
the following property. For any η-AL approximation ψ to ϕ, there is a w∗-
neighbourhood O of µ such that

(ψG)∗(O) ⊆ N .

REMARK. It is very important that η can be chosen depending only on N . �
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Proof. It suffices to prove this for any subbasis of w∗-neighbourhoods of ν, so we
may assume that

N =
{
θ ∈ Prob(YG) :

∫
h dθ ≈κ

∫
h dν

}
,

where h : YG
−→ [0, 1] is F-local for some finite F ⊆ G and is 1-Lipschitz

according to d (F)Y , and κ > 0.
In this case we will show that any η < (κ/18)2 has the required property.

Let ψ be an η-AL approximation to ϕ, and let D ⊆ G and U ⊆ X G be as in
Definition 4.2 for thisψ . Let UF be the (DF)-local open subset ofX G constructed
in the proof of Lemma 4.4, so ψ F

|UF is (3
√
η)-almost Lipschitz according to

d (DF)
X . Let us abbreviate 3

√
η =: α.

The composition h ◦ ψG is (DF)-local. We may regard h as a map Y F
−→ R

and ψ F as a map X DF
−→ Y F . Applying Lemma 2.1, it follows that the

restriction (h ◦ ψ F)|UF is α-almost Lipschitz according to d (DF)
X . Therefore,

Lemma 2.3 gives a (DF)-local function f : X G
−→ [0, 1] which is truly

Lipschitz according to d (DF)
X and satisfies

‖(h ◦ ψ F
− f )|UF‖∞ 6 α.

Let

O :=
{
γ ∈ Prob(X G) : γ (UF) > 1− α and

∫
f dγ ≈α

∫
f dµ

}
.

Suppose that γ ∈ O. Then∣∣∣∣∫ h d(ψG
∗
γ )−

∫
h dν

∣∣∣∣ = ∣∣∣∣∫ h ◦ ψG dγ −
∫

h ◦ ϕG dµ
∣∣∣∣

6

∣∣∣∣∫ h ◦ ψG dγ −
∫

h ◦ ψG dµ
∣∣∣∣

+

∫
|h(ψG(x))− h(ϕG(x))|µ(dx).

We now bound these two terms separately. The first is at most∣∣∣∣∫ f dγ −
∫

f dµ
∣∣∣∣+ ∣∣∣∣∫ h ◦ ψG dγ −

∫
f dγ

∣∣∣∣+ ∣∣∣∣∫ f dµ−
∫

h ◦ ψG dµ
∣∣∣∣

< α + (α + γ (X G
\UF))+ (α + µ(X G

\UF)) < 5α,

using the definition of O. Since h is 1-Lipschitz according to d (F)Y , the second
term is at most∫

d (F)Y (ψ F(x), ϕF(x)) µ(dx) =
∫

dY(ψ(x), ϕ(x)) µ(dx),
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and this is at most α according to Definition 2.4. Adding these estimates gives∣∣∣∣∫ h d(ψG
∗
γ )−

∫
h dν

∣∣∣∣ < 6α < κ.

REMARK. The importance of AL approximations to Φ = ϕG is that we can
control their interactions with the w∗-neighbourhoods that appear in the definition
of good models. Almost-Lipschitz maps are not the only way to do this, but they
are very convenient. On the one hand, we cannot use truly continuous maps in
general, since there are choices of X and Y for which there are not enough
continuous maps X G

−→ Y . This is why we use mapsψ for which continuity can
fail, but only up to an additive error that we control. On the other hand, in the next
subsection we will use such approximants ψ to construct a family of maps acting
between model spaces, and it will be important to exert some uniform control over
the ‘approximate continuity’ of all these other maps. A simple way is to show that
they are all η′-almost L ′-Lipschitz for some common η′ and L ′; see Lemma 4.9
below. �

The following lemma and corollary give some simple ways of combining AL
approximations.

LEMMA 4.6. Let η > 0. Suppose that:

• (X G
i , µi , S, di) for i = 1, 2 are metric G-process;

• (Yi , d ′i ) for i = 1, 2 are compact metric spaces;

• ϕi : X G
i −→ Yi for i = 1, 2 are measurable functions;

• and ψi : X G
i −→ Yi is an η-AL approximation to ϕi rel (µ, di , d ′i ) for each

i = 1, 2.

Let d be the Hamming-average metric of d1 and d2 on X1 × X2, and similarly let
d ′ be the Hamming average of d ′1 and d ′2. Finally, let λ be any joining of µ1 and
µ2. Then the map

ψ1 × ψ2 : (X1 ×X2)
G
−→ Y1 × Y2

is a (2η)-AL approximation to ϕ1 × ϕ2 rel (λ, d, d ′).

Proof. For i = 1, 2, let Di ⊆ G be the finite subsets and Ui ⊆ X G
i the open

subsets promised by Definition 4.2 for the maps ψi . Then (13) and the definition
of d give
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d ′((ϕ1(x1), ϕ2(x2)), (ψ1(x1), ψ2(x2))) λ(dx1, dx2)

=
1
2

(∫
d ′1(ϕ1(x1), ψ1(x1)) µ1(dx1)+

∫
d ′2(ϕ2(x2), ψ2(x2)) µ2(dx2)

)
< η.

The map ψ1 × ψ2 is (D1 ∪ D2)-local, and so is the open set U := U1 ×U2. This
set U has

λ(U ) > 1− µ1(X G
1 \U1)− µ2(X G

2 \U2) > 1− 2η,

and the definition of d implies that (ψ1 × ψ2)|U is η-almost Lipschitz.

COROLLARY 4.7. Let η > 0. Suppose that:

• (X G, µ, S, d) is a metric G-process;

• (Yi , d ′i ) for i = 1, 2 are compact metric spaces;

• ϕi : X G
−→ Yi for i = 1, 2 are measurable functions;

• and ψi : X G
−→ Yi is an η-AL approximation to ϕi rel (µ, d, d ′i ) for each

i = 1, 2.

Let d ′ be the Hamming-average metric of d ′1 and d ′2 on Y1 × Y2. Then the map

(ψ1, ψ2) : X G
−→ Y1 × Y2

is a (2η)-AL approximation to (ϕ1, ϕ2) rel (µ, d, d ′).

Proof. This is the special case of Lemma 4.6 in which both processes
(X G

i , µi , S, di) are equal to (X G, µ, S, d) and λ is the diagonal joining.

4.2. Action of approximations on good models. Now suppose that ψ :
X G
−→ Y , that V is a finite set and that σ : G −→ Sym(V ). We define a

new mapping ψσ
: X V

−→ YV by

ψσ (x) := (ψ(Πσ
v (x)))v∈V .

This is easily visualized if ψ is F-local for some finite F ⊆ G, and if v is
such that the map F −→ V : g 7→ σ g(v) is injective. In this case the tuple
Πσ
v (x)|F may be regarded as a copy of the restriction x|σ F (v), ‘pulled back’ so that

it is labelled by F itself. Then ψσ (x) is simply the result of applying ψ to this
restriction around each v ∈ V . For a fixed finite F , sofic approximations give that
most points v ∈ Vn satisfy that injectivity requirement once n is large. A general
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measurable function X G
−→ Y may not be local, but it can be approximated

by local functions. As a result, the general definition of ψσ still resembles that
special case, up to some errors that we have to control from time to time.

The following lemma gives a useful compatibility between ψσ and Πσ
v .

LEMMA 4.8. Let Σ be a sofic approximation, let F ⊆ G be finite, and suppose
that ψ : X G

−→ Y is local. Then the following holds w.h.p. in v:

Πσn
v (ψ

σn (·))|F = ψ
F(Πσn

v (·)).

More fully, this conclusion asserts that

[Πσn
v (ψ

σn (x))|F = ψ F(Πσn
v (x)) ∀x ∈ X Vn ] w.h.p. in v.

Proof. This is similar to the proof of Lemma 3.1. It suffices to prove it when F is
an arbitrary singleton, say {h}. If ψ is D-local, then it holds w.h.p. in v that

σ g
n (σ

h
n (v)) = σ

gh
n (v) ∀g ∈ D.

For such v we have

(Πσn
v (ψ

σn (x)))h = (ψσn (x))σ h
n (v)
= ψ(Π

σn
σ h

n (v)
(x)) = ψ((xσ g

n (σ h
n (v))

)g∈G)

= ψ((x
σ

gh
n (v)

)g∈D) = ψ((Π
σn
v (x))|Dh) = ψ

{h}(Πσn
v (x)).

Now fix compact generating metrics dX and dY . The next result shows that the
maps ψσ inherit some regularity from ψ .

LEMMA 4.9. Suppose that D ⊆ G is finite, that ψ : X G
−→ Y is D-local, and

that U ⊆ X G is a D-local open set such that µ(U ) > 1− η and such that ψ |U is
η-almost L-Lipschitz from d (D)X to dY . Then there is a w∗-neighbourhood O of µ
such that

ψσn |Ω(O, σn)

is 3η-almost (L|D|)-Lipschitz from d (Vn)

X to d (Vn)

Y for all sufficiently large n.

Proof. This is similar to the almost-Lipschitz estimate in the proof of Lemma 4.4.
Assume that dY has diameter at most 1 for simplicity. Let

O = {θ ∈ Prob(X G) : θ(U ) > 1− η},

which is w∗-open by the Portmanteau theorem. Suppose that x, x′ ∈ Ω(O, σn) for
some n. Then the definition of O implies that

|{v ∈ V : Πσn
v (x) 6∈ U }| = Pσn

x (X G
\U ) < η,
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and similarly for x′. It follows that

d (Vn)

Y (ψσn (x), ψσn (x′))

6
1
|Vn|

∑
v ∈ Vn ,

Π
σn
v (x),Πσn

v (x′) ∈ U

dY(ψ(Π
σn
v (x)), ψ(Π

σn
v (x

′)))+ 2η

6
1
|Vn|

∑
v ∈ Vn ,

Π
σn
v (x),Πσn

v (x′) ∈ U

Ld (D)X (Πσn
v (x),Π

σn
v (x

′))+ 3η

6 L|D|d (Vn)

X (x, x′)+ 3η.

Now suppose that Φ = ϕG
: (X G, µ, S) −→ (YG, ν, S) is a factor map, and

that dX and dY are compact generating metrics on X and Y with diameter at
most 1. The next proposition shows that AL approximations to ϕ approximately
preserve good models. Related facts can be found within the proofs of [15,
Theorem 2.6] and [16, Proposition 3.4], which show that the Kerr–Li definition of
sofic entropy is independent of an underlying choice of a ‘dynamically generating’
sequence of bounded functions or of a ‘dynamically generating’ pseudometric.

PROPOSITION 4.10. For every w∗-neighbourhood N of ν there is an η > 0 with
the following property. If ψ is an η-AL approximation to ϕ rel (µ, dX , dY), then
there is a w∗-neighbourhood O of µ such that

ψσn (Ω(O, σn)) ⊆ Ω(N , σn)

for all sufficiently large n.

Proof. It suffices to prove this for a subbasis of w∗-neighbourhoods N of ν, so
we may assume that

N = {θ ∈ Prob(YG) : θE ∈ N1}

for some finite E ⊆ G and w∗-neighbourhood N1 of νE .
Now let N ′1 ⊆ N1 be another w∗-neighbourhood of νE with the property that

any measure which lies sufficiently close to N ′1 in total variation must lie inside
N1. This is possible because the total-variation norm is stronger than the w∗-
topology. Let

N ′ := {θ ∈ Prob(YG) : θE ∈ N ′1}.
Let η > 0 be given by Lemma 4.5 so that, for any η-AL approximation ψ to ϕ,

there is a w∗-neighbourhood O of µ such that

(ψG)∗(O) ⊆ N ′.
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We will show that this η also has the property required for the present proposition,
and that we can use the same O for the function ψ .

Indeed, since ψ is a local function, Lemma 4.8 gives that

Πσn
v (ψ

σn (·))|E = ψ
E(Πσn

v (·)) w.h.p. in v.

Using this, for any x ∈ X Vn the definition of empirical measures gives

(Pσn
ψσn (x))E =

1
|Vn|

∑
v∈Vn

δΠσn
v (ψσn (x))|E =

1
|Vn|

∑
v∈Vn

δψ E (Π
σn
v (x)) + o(1)

= (ψ E)∗Pσn
x + o(1)

as n −→ ∞, where this approximation is in total variation and is uniform in x.
Therefore, if x ∈ Ω(O, σn), then Pσn

x ∈ O, and so

(ψG)∗Pσn
x ∈ N ′, that is, (ψ E)∗Pσn

x ∈ N ′1.

Once (Pσn
ψσn (x))E lies close enough to (ψ E)∗Pσn

x in total variation, it lies inside N1.
Since the total-variation estimate above was uniform in x, this gives that Pσn

ψσn (x) ∈

N for all x ∈ Ω(O, σn), for all sufficiently large n.

We will sometimes need to compare different approximations to the same factor
map.

LEMMA 4.11. Fix η > 0, and let ψ and ψ ′ be two η-AL approximations to ϕ rel
(µ, dX , dY). Then there is a w∗-neighbourhood O of µ such that

d (V )Y (ψσ (x), (ψ ′)σ (x)) < 10η ∀x ∈ Ω(O, σ )

for any map σ : G −→ Sym(V ).

Proof. Recall that we assume dY has diameter at most 1.
Let D and U (respectively D′ and U ′) be as in Definition 4.2 for the map ψ

(respectivelyψ ′). By replacing each of D and D′ with their union, we may assume
they are equal. Having done so, both U and U ′ are D-local. Consider the function
h : X D

−→ R defined by

h(x) := dY(ψ(x), ψ ′(x)).

This is D-local, and an easy check shows that h|U ∩U ′ is (2η)-almost Lipschitz
according to d (D)X .
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Invoking Lemma 2.3, let f : X G
−→ [0, 1] be a D-local function which is

truly Lipschitz according to d (D)X and has the property that

‖(h − f )|U ∩U ′‖∞ 6 2η.

It follows that∫
f dµ 6 µ(X G

\(U ∩U ′))+ 2η +
∫

U∩U ′
h dµ

< 4η +
∫

dY(ϕ(x), ψ(x)) µ(dx)+
∫

dY(ϕ(x), ψ ′(x)) µ(dx) < 6η,

using (13), the definition of h and the triangle inequality for dY .
Now let

O :=
{
θ ∈ Prob(X G) : θ(U ∩U ′) > 1− 2η and

∫
f dθ < 6η

}
.

This is a w∗-open set which contains µ by construction. The function f was
introduced for the sake of defining O, since h itself may not be strictly continuous
and so cannot be used to define a w∗-open set in the same way. For x ∈ Ω(O, σ ),
it follows that

d (V )Y (ψσ (x), (ψ ′)σ (x)) =
∫

h d Pσ
x

6
∫

f d Pσ
x + 2η + Pσ

x (X G
\(U ∩U ′)) < 10η.

4.3. Formulations in terms of sequences. In many of the arguments in Part 2,
instead of working with a single AL approximation to a factor map, it will be
more convenient to work with a sequence of increasingly good approximations.
We therefore make the following relative of Definition 4.2.

DEFINITION 4.12. An almost Lipschitz (or AL) approximating sequence
for ϕ rel (µ, dX , dY) is a sequence (ψm)m>1 such that each ψm is an ηm-AL
approximation to ϕ rel (µ, dX , dY) for some sequence ηm ↓ 0. This situation
is denoted by

ψm
aL
−→ ϕ rel (µ, dX , dY).

As before, we sometimes drop the qualifier ‘rel (µ, dX , dY)’ when these data
are clear.
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We now reformulate a few of the results above in terms of AL approximating
sequences. This will assist in their application later in the paper. We will rely on
the standard fact that the w∗-topology on Prob(X G) is first countable, since it is
metrizable. This will be used again later without further explanation.

We start with the reformulation of Lemma 4.5.

COROLLARY 4.13. Let µ, ν and ϕ be as above, let (ψk)k>1 be an AL
approximating sequence to ϕ rel (µ, dX , dY), and let O1 ⊇ O2 ⊇ · · · and
N1 ⊇ N2 ⊇ · · · be bases for the w∗ topologies at µ and ν, respectively. Then
whenever the sequence (kn)n>1 grows sufficiently slowly, it holds that whenever
the sequence (mn)n>1 grows sufficiently slowly, we have

(ψG
kn
)∗(On) ⊆ Nmn

for all sufficiently large n.

REMARK. The conclusion here needs to be parsed carefully: both sequences
(kn)n>1 and (mn)n>1 must be chosen to grow sufficiently slowly, but the bound
on the growth of the second sequence may depend on the choice of the first
sequence. �

Proof. The desired conclusion is not disrupted if we change N1, so let us assume
that N1 = Prob(YG).

Eachψk is an ηk-AL approximation to ϕ for some parameters ηk ↓ 0. Therefore,
for each m, Lemma 4.5 gives some K (m) such that for every k > K (m) there is
an N (k,m) for which

(ψG
k )∗(On) ⊆ Nm ∀n > N (k,m).

Since N1 = Prob(YG), we may take K (1) = 1 and N (k, 1) = 1 for all k.
By replacing each N (k,m) with the value

max{N (k ′,m ′) : 1 6 k ′ 6 k, 1 6 m ′ 6 m},

we may also assume that

N (k1,m1) 6 N (k2,m2) whenever k1 6 k2 and m1 6 m2.

Now for each n define

sn := max{s : N (s, s) 6 n}.

This is well defined for all n > 1 because we have assumed that N (1, 1) = 1.
Clearly s1 6 s2 6 · · · and these values tend to∞.
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Finally, assume that (kn)n>1 is a sequence tending to∞ for which kn 6 sn for
all n. Having done so, assume that (mn)n>1 is a sequence tending to ∞ which
grows slowly enough that

mn 6 sn and K (mn) 6 kn ∀n.

Then for any n we have kn > K (mn) and also

kn,mn 6 sn H⇒ N (kn,mn) 6 N (sn, sn) 6 n.

Therefore
(ψG

kn
)∗(On) ⊆ (ψ

G
kn
)∗(ON (kn ,mn)) ⊆ Nmn .

Proposition 4.10 has an analogous reformulation in terms of AL approximating
sequences.

COROLLARY 4.14. Let µ, ν and ϕ be as above, let (ψk)k>1 be an AL
approximating sequence to ϕ rel (µ, dX , dY), and let O1 ⊇ O2 ⊇ · · · and
N1 ⊇ N2 ⊇ · · · be bases for the w∗ topologies at µ and ν, respectively. Then
whenever the sequence (kn)n>1 grows sufficiently slowly, it holds that whenever
the sequence (mn)n>1 grows sufficiently slowly, we have

ψ
σn
kn
(Ω(On, σn)) ⊆ Ω(Nmn , σn)

for all sufficiently large n.

Proof. This follows from Proposition 4.10 just as Corollary 4.13 follows from
Lemma 4.5.

It will also be convenient to have a version of Lemma 4.8 in terms of sequences.

COROLLARY 4.15. Let Σ be a sofic approximation, let F1 ⊆ F2 ⊆ · · · be finite
subsets of G, and let ψ1, ψ2, . . . be a sequence of local functions from X G to Y .
Then it holds that

Πσn
v (ψ

σn
kn
(·))|Fmn

= ψ
Fmn
kn
(Πσn

v (·)) w.h.p. in v as n −→∞

for any two sequences k1 6 k2 6 · · · and m1 6 m2 6 · · · which both grow
sufficiently slowly.

Proof. For each integer ` > 1, Lemma 4.8 gives some N (`) ∈ N such that

|{v ∈ Vn : Π
σn
v (ψ

σn
k (·))|Fm = ψ

Fm
k (Πσn

v (·)) ∀k,m ∈ {1, 2, . . . , `}}|
> (1− 2−`)|Vn| ∀n > N (`).
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Clearly we may assume that N (1) 6 N (2) 6 · · · . Now the desired conclusion
holds provided

kn,mn 6 max({1} ∪ {` : N (`) 6 n}) ∀n.

4.4. A categorial point of view. Section 3 has shown how a metric G-process
(X G, µ, S, d) may be converted into the sequences of good model spaces
Ω(O, σn) for n > 1 and w∗-neighbourhoods O of µ. Then, Section 4 has shown
how a factor map

Φ = ϕG
: (X G, µ, S, dX ) −→ (YG, ν, S, dY)

may be converted into the maps

ψσn : X Vn −→ YVn ,

where ψ is an η-AL approximation to ϕ for some small η. These maps respect the
subsets of good models in the sense of Proposition 4.10.

One can describe all this work as setting up a functor from the category
of metric G-processes to another category. The target category here should
have objects that are families of sequences of subsets X Vn , such as our sets
Ω(O, σn), or possibly equivalence classes of such families under a kind of
‘asymptotic equivalence’. The morphisms should be (equivalence classes of)
families of sequences of maps X Vn −→ YVn which respect those sequences of
subsets, such as the maps ψσn for the possible choices of η-AL approximation ψ
to ϕ as η −→ 0.

Part II
Measures on model spaces and associated entropies

5. Convergence of measures on model spaces

5.1. Local weak∗ convergence and distributions on measures. Let Σ =
(σn)n>1 be a sofic approximation to G, and let (X G, µ, S, d) be a metric G-
process. It will be clear that all the notions and results of this subsection depend
on d , as well as on the process (X G, µ, S).

Suppose also that µn ∈ Prob(X Vn ) for each n > 1.

DEFINITION 5.1. The sequence (µn)n>1 locally weak∗ converges to µ if for
every w∗-neighbourhood O of µ it is the case that

(Πσn
v )∗µn ∈ O w.h.p. in v as n −→∞.

This is denoted by µn
lw∗
−→ µ.
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That is, once n is large, the local marginals of µn resemble those of µ around
most vertices of Vn . This kind of convergence depends on d through the resulting
w∗ topology on Prob(X G).

Bernoulli shifts give the obvious examples.

LEMMA 5.2. If (X G, ν×G, S) is a Bernoulli process over G and d is any choice
of compact generating metric on X , then ν×Vn

lw∗
−→ ν×G .

Definition 5.1 and some relatives have an established role in statistical physics.
They appear naturally in analyses of the asymptotic behaviour of some classical
statistical physics models, such as the Ising model, over sequences of sparse
graphs. In case those underlying graphs converge to a limiting infinite graph
in a suitable sense, one can ask whether the Gibbs measures constructed
over them converge to a Gibbs measure over that infinite graph. See, for
instance, [20, Subsection 2.2], where local weak∗ convergence is called ‘[weak]
local convergence in probability’. Such convergence for sequences of measures is
in much the same spirit as Benjamini–Schramm convergence for sparse random
graphs themselves [2].

The next definition connects local weak∗ convergence and model spaces.

DEFINITION 5.3. The sequence (µn)n>1 quenched-converges to µ if

(i) µn
lw∗
−→ µ, and

(ii) µn(Ω(O, σn)) −→ 1 as n −→∞ for any w∗-neighbourhood O of µ.

This is denoted by µn
q
−→ µ.

One can strengthen Lemma 5.2 to show that ν×Vn
q
−→ ν×G . This can be proved

directly using the Law of Large Numbers, but we will deduce it after developing
some more general theory; see Corollary 5.8 below.

It is sometimes more convenient to replace Definition 5.1 or 5.3 with the
following variants. The proofs are immediate, and are omitted.

LEMMA 5.4. Let O1 ⊇ O2 ⊇ · · · be a fixed basis of w∗-neighbourhoods of µ.
Then µn

lw∗
−→ µ if and only if it holds that

(Πσn
v )∗µn ∈ Okn w.h.p. in v as n −→∞ (16)
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whenever the sequence k1 6 k2 6 · · · grows sufficiently slowly. Similarly, µn
q
−→

µ if and only if we have both (16) and

µn(Ω(Okn , σn)) −→ 1 as n −→∞

whenever the sequence k1 6 k2 6 · · · grows sufficiently slowly.

In general, it may happen that µn
lw∗
−→ µ as in Definition 5.1, but condition (ii)

of Definition 5.3 is not satisfied. In this case, consider the empirical-distribution
maps

Pσn : X Vn −→ Prob(X G) : x 7→ Pσn
x .

Pushing forward through these maps gives a sequence of distributions on
measures

Pσn
∗
µn ∈ Prob(Prob(X G)).

Since the weak∗ topology on Prob(X G) is compact and metrizable, this space
of distributions on measures carries a weak∗ topology of its own, which is also
compact and metrizable. In the sequel it should always be clear which of these
weak∗ topologies is being referred to.

The distributions on measures Pσn
∗
µn give the following useful characterization

of the difference between Definitions 5.1 and 5.3.

LEMMA 5.5. If µn
lw∗
−→ µ, then µn

q
−→ µ if and only if

Pσn
∗
µn

weak∗
−→ δµ.

Proof. For any w∗-neighbourhood O of µ, we have

µn(Ω(O, σn)) = µn{x ∈ X Vn : Pσn
x ∈ O} = (Pσn

∗
µn)(O).

By the Portmanteau theorem, the w∗-convergence of Pσn
∗
µn to δµ is equivalent to

the convergence (Pσn
∗
µn)(O) −→ 1 for every such O.

Given only that µn
lw∗
−→ µ, the distributions on measures Pσn

∗
µn converge to a

decomposition of µ into other invariant measures. The next lemma describes this.

LEMMA 5.6. If θ ∈ Prob(Prob(X G)) is a subsequential w∗-limit of the sequence
of distributions on measures (Pσn

∗
µn)n>1, then θ(ProbS(X G)) = 1, and the

barycentre of θ is equal to µ, meaning that∫
ν θ(dν) = µ.
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Proof. By passing to a subsequence we may simply assume that

Pσn
∗
µn

weak∗
−→ θ. (17)

Support. For each local function f ∈ C(X G) and each g ∈ G, Lemma 3.2 gives
that

sup
x∈X Vn

∣∣∣∣∫ f d Pσn
x −

∫
f ◦ Sg d Pσn

x

∣∣∣∣ −→ 0.

Since local functions are uniformly dense in C(X G), this implies that

(Pσn
∗
µn)

{
ν ∈ Prob(X G) :

∫
f dν ≈ε

∫
f ◦ Sg dν

}
−→ 1

for all f ∈ C(X G) and ε > 0. By the Portmanteau theorem, it follows that θ is
supported on ProbS(X G).

Barycentre. For any f ∈ C(X G), the weak∗ convergence in (17) gives∫∫
f (x) ν(dx) θ(dν) = lim

n−→∞

∫∫
f (x) ν(dx) (Pσn

∗
µn)(dν)

= lim
n−→∞

∫∫
f (x) Pσn

x (dx) µn(dx)

= lim
n−→∞

1
|Vn|

∑
v∈Vn

∫
f (Πσn

v (x)) µn(dx)

= lim
n−→∞

1
|Vn|

∑
v∈Vn

∫
f d((Πσn

v )∗µn),

and this converges to
∫

f dµ because µn
lw∗
−→ µ.

The two previous lemmas have the following immediate consequence.

COROLLARY 5.7. If (X G, µ, S, d) is ergodic then

µn
lw∗
−→ µ H⇒ µn

q
−→ µ.

Proof. Since µ is ergodic, it has no nontrivial representation as a barycentre of
other invariant measures. In view of Lemma 5.6, it follows that the only possible
subsequential limit of (Pσn

∗
µn)n>1 is the Dirac mass at µ itself. Now Lemma 5.5

completes the proof.

In light of Lemma 5.2, we can immediately deduce the following.
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COROLLARY 5.8. If (X G, ν×G, S) is a Bernoulli process over G and d is any
choice of compact generating metric on X , then ν×Vn

q
−→ ν×G .

This result is already implicit in the proofs of [4, Theorem 8] and [14, Lemma
2.2], which calculate the sofic entropies of Bernoulli processes.

REMARK. Another notion of convergence, also introduced in [20], is ‘local-on-
average weak∗ convergence’. It requires only that

1
|Vn|

∑
v∈Vn

(Πσn
v )∗µn

weak∗
−→ µ.

This is clearly weaker than local weak∗ convergence. Indeed, any sequence
of measures which satisfy only condition (ii) in Definition 5.3 must have this
property, and a variation of the proof of Corollary 5.7 shows that these are
equivalent if µ is ergodic. We do not use this kind of convergence in this paper. �

5.2. Doubly quenched convergence. For any µn ∈ Prob(X Vn ) we have

(Πσn
v )∗(µn × µn) = (Π

σn
v )∗µn × (Π

σn
v )∗µn ∀v ∈ Vn.

Therefore
µn

lw∗
−→ µ H⇒ µn × µn

lw∗
−→ µ× µ.

However, the analogous implication can fail for quenched convergence.

EXAMPLE 5.9. Let G be a residually finite group and let G > G1 > G2 > · · ·

be finite-index normal subgroups whose intersection is {e}. Let X be the compact
inverse limit of the tower of finite groups

· · ·� G/G2 � G/G1.

This X is a compact group. Let m be its Haar measure, and let T be the action
of G on X by left rotations. Let d be a left-invariant compact group metric on X .
The map (1) gives a metric G-process (X G, µ, S, d) isomorphic to the Kronecker
system (X,m, T ).

For each n, let µ(n) be the pushforward of the measure µ under the coordinate-
wise factor map X G

−→ (G/Gn)
G . Then µ(n) is supported on the Gn-periodic

elements of (G/Gn)
G .

Let Vn := G/Gn and let σn : G −→ Sym(Vn) be the left-rotation action of G
for each n. These together give a sofic approximation Σ to G.
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For each n we now construct a measure µn ∈ Prob(X Vn ) as follows. Let Sn ⊆ G
be a cross-section of Gn in G. The identity mapping Vn −→ G/Gn may be
regarded as an element zn ∈ (G/Gn)

Vn . Let µ◦n ∈ Prob((G/Gn)
Vn ) be the law

of a random rotate of zn: that is,

µ◦n :=
1
|Sn|

∑
g∈Sn

δzn◦σ
g
n
.

Finally, let µn be any lift of µ◦n to a measure on X Vn .
For each n, the measure µ◦n is the Haar measure on the G-orbit of zn . That

orbit is a free and transitive (G/Gn)-space. Therefore, the G-action on the finitely
supported measureµ◦n is isomorphic to the left-rotation action on G/Gn with Haar
measure. Composing with the map (1), this isomorphism converts the elements
zn ◦ σ

g
n ∈ (G/Gn)

Vn into the Gn-periodic elements of (G/Gn)
G . Therefore, the

points in the support of µ◦n have empirical distribution that actually equals µ(n),
and now the local marginals of µ◦n are also all equal to µ(n). It follows that
µn

q
−→ µ as n −→∞.

However, we also have

µ◦n × µ
◦

n =
1
|Sn|

2

∑
g,h∈Sn

δzn◦σ
g
n
× δzn◦σ h

n
=

1
|Sn|

2

∑
g,h∈Sn

δ(zn◦σ
g
n ,zn◦σ

g
n )◦(idVn×σ

h
n )
.

From this we can calculate that the distribution

Pσn
∗
(µ◦n × µ

◦

n) ∈ Prob(Prob((G/Gn × G/Gn)
G))

is the law of the random measure∫
δ(x,Sh x) µ(n)(dx),

where h is a uniform random element of Sn . This shows that Pσn
∗
(µn × µn) does

not converge weakly∗ to δµ×µ, but rather to the disintegration of µ × µ into the
ergodic components supported on the cosets of the diagonal subgroup in X × X .
Therefore, by Lemma 5.5, µn × µn does not quenched-converge to µ× µ.

This example is particularly striking if G has Kazhdan’s property (T). In that
case, the Schreier graphs of the quotients σn are expanders (see [18, Section 3.3] or
[1, Section 6.1]). Therefore, the sofic approximation Σ cannot support arbitrarily
good models for any nonergodic G-system; in particular, hΣ(µ × µ) = −∞. In
this case there can be no sequence of measures νn ∈ Prob(X Vn ) such that νn ×

νn
q
−→ µ× µ. �

To rule out examples like these, we make the following definition.
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DEFINITION 5.10. The sequence (µn)n>1 doubly-quenched-converges to µ if

µn × µn
q
−→ µ× µ.

This is denoted by µn
dq
−→ µ.

Once again, the obvious positive examples are Bernoulli processes. Indeed,
if (X G, ν×G, S) is a Bernoulli process, then ν×G

× ν×G may be identified with
(ν×ν)×G and ν×Vn ×ν×Vn may be identified with (ν×ν)×Vn . Therefore, applying
Corollary 5.8 directly to (ν × ν)×G gives the following.

LEMMA 5.11. If (X G, ν×G, S) is a Bernoulli process over G and d is any choice

of compact generating metric on X , then ν×Vn
dq
−→ ν×G .

The ‘quenched’ condition in Definition 5.1 asserts that, once n is large, µn is
mostly supported on individual models x whose empirical distribution is close
to µ. This is a kind of ‘equidistribution’ of the points that support µ, and is
an analogue of ergodicity in the setting of a locally weak∗ convergent sequence
of probability measures. With this in mind, doubly-quenched convergence is the
analogue of weak mixing.

The main result of this subsection is Theorem A, which gives two other

conditions that are equivalent to µn
dq
−→ µ. It shows that doubly-quenched

convergence is preserved by other Cartesian products as well. This is analogous
to some of the classical equivalent conditions for weak mixing of a probability-
preserving transformation; see, for instance, [22, Theorem 2.6.1].

The proof of Theorem A requires little more than a few applications of the
Cauchy–Bunyakovsky–Schwarz inequality, via the following easy consequence.

LEMMA 5.12. Let (X, µ) be a probability space, let H be a real Hilbert space
with inner product 〈·, ·〉, let a : X −→ H be strongly measurable, and let b ∈ H
have norm at most 1. Then∫

|〈a(x), b〉|µ(dx) 6

√∫∫
|〈a(x), a(x ′)〉|µ(dx) µ(dx ′).

Proof of Theorem A. (i) H⇒ (ii). It suffices to prove (ii) for a subbasis of
w∗-neighbourhoods of µ× ν, so suppose that

N =
{
λ ∈ Prob(X G

× YG) :

∫
f ⊗ h dλ ≈ε

∫
f dµ

∫
h dν

}
for some f ∈ C(X G) and h ∈ C(YG) with ‖ f ‖∞, ‖h‖∞ 6 1 and some ε > 0.
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Let

O :=
{
θ ∈ Prob(YG) :

∫
h dθ ≈ε/2

∫
h dν

}
.

We will show that this O suffices. Suppose that ni ↑ ∞ and Ω(O, σni ) 6= ∅ for
all i . By relabelling the subsequence, we may assume that ni = i for all i , and so
ignore the indexing by i . Now conclusion (ii) will follow if we prove that

µn

{
x ∈ X Vn :

1
|Vn|

∑
v∈Vn

f (Πσn
v x)h(Πσn

v yn) ≈ε

∫
f dµ

∫
h dν

}
−→ 1

for any sequence of models yn ∈ Ω(O, σn).
Since ‖ f ‖∞ 6 1, we have∣∣∣∣ 1

|Vn|

∑
v∈Vn

f (Πσn
v x)h(Πσn

v yn)−

∫
f dµ

∫
h dν

∣∣∣∣
6

∣∣∣∣ 1
|Vn|

∑
v∈Vn

(
f (Πσn

v x)−
∫

f dµ
)

h(Πσn
v yn)

∣∣∣∣
+

∣∣∣∣ 1
|Vn|

∑
v∈Vn

h(Πσn
v yn)−

∫
h dν

∣∣∣∣.
The last term here is less than ε/2 by the definition of O. It therefore remains to
prove that

µn

{
x ∈ X Vn :

∣∣∣∣ 1
|Vn|

∑
v∈Vn

f (Πσn
v x)h(Πσn

v yn)

∣∣∣∣ < ε/2
}
−→ 1

under the extra assumption that
∫

f dµ = 0. By Chebyshev’s Inequality, this will
follow if we prove that∫ ∣∣∣∣ 1

|Vn|

∑
v∈Vn

f (Πσn
v x)h(Πσn

v yn)

∣∣∣∣µn(dx) −→ 0

under that extra assumption.
To do this, consider the Hilbert spaces Hn := `

2(Vn) with the inner products

〈a, b〉n :=
1
|Vn|

∑
v∈Vn

avbv.

Let
b := (h(Πσn

v yn))v∈Vn
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and define
a : X Vn −→ Hn : x 7→ ( f (Πσn

v x))v∈Vn .

Now Lemma 5.12 gives∫ ∣∣∣∣ 1
|Vn|

∑
v∈Vn

f (Πσn
v x)h(Πσn

v yn)

∣∣∣∣µn(dx) =
∫
|〈a(x), b〉n|µn(dx)

6

√∫∫
|〈a(x), a(x′)〉n|µn(dx) µn(dx′).

However,∫∫
|〈a(x), a(x′)〉n|µn(dx) µn(dx′) =

∫∫ ∣∣∣∣∫ f ⊗ f d Pσn
(x,x′)

∣∣∣∣µn(dx) µn(dx′),

and this converges to∫
f ⊗ f d(µ× µ) =

(∫
f dµ

)2

= 0

as n −→∞, by assumption (i).

(ii)H⇒ (iii). We have seen that µni×νi
lw∗
−→ µ×ν; the only issue is to show that

µni × νi is asymptotically supported on good models for µ× ν. This now follows
from conclusion (ii) and Fubini’s theorem, since νi is asymptotically supported
on good models for ν.

(iii) H⇒ (i). Clearly (i) is a special case of (iii).

Conclusion (ii) of Theorem A has a corollary whose conclusion does not
involve measures on model spaces. It asserts that, asymptotically as n −→ ∞,
every sufficiently good model for ν in YVn can be lifted to a good model for µ×ν
in (X × Y)Vn .

COROLLARY 5.13. Let (X G, µ, S, dX ) and (YG, µ, S, dY) be metric G-

processes, and suppose that µn
dq
−→ µ over Σ . Let π : (X × Y)G

−→ Y
be the projection onto the Y-component of the identity coordinate, so that
πσn : (X × Y)Vn −→ YVn is the coordinate projection for each n. Then for every
w∗-neighbourhood N of µ× ν there is a w∗-neighbourhood O of ν such that

πσn (Ω(N , σn)) ⊇ Ω(O, σn)

for all sufficiently large n.
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The next theorem gives another equivalent characterization of the convergence

µn
dq
−→ µ. We separate it from Theorem A because it is not involved in the rest

of this paper.

THEOREM 5.14. Assume that µn
q
−→ µ. Then µn

dq
−→ µ if and only if

(Πσn
v ,Π

σn
v′ )∗µn

weak∗
−→ µ× µ w.h.p. in (v, v′) ∈ Vn × Vn as n −→∞.

Proof. (H⇒). Let f1, f2 ∈ C(X G), and suppose that
∫

f1 dµ = 0. Then

1
|Vn|

2

∑
v,v′∈Vn

(∫
f1(Π

σn
v x) f2(Π

σn
v′ x) µn(dx)

)2

=
1
|Vn|

2

∑
v,v′∈Vn

∫∫
f1(Π

σn
v x) f1(Π

σn
v x′) f2(Π

σn
v′ x) f2(Π

σn
v′ x′) µn(dx) µn(dx′)

=
1
|Vn|

∑
v∈Vn

∫∫
f1(Π

σn
v x) f1(Π

σn
v x′) µn(dx) µn(dx′)

×
1
|Vn|

∑
v′∈Vn

∫∫
f2(Π

σn
v′ x) f2(Π

σn
v′ x′) µn(dx) µn(dx′)

=

∫∫ (∫
f1 ⊗ f1 d Pσn

(x,x′)

)
µn(dx) µn(dx′)

×

∫∫ (∫
f2 ⊗ f2 d Pσn

(x,x′)

)
µn(dx) µn(dx′).

Doubly-quenched convergence implies that the first integral in this product tends
to ∫

f1 ⊗ f1 d(µ× µ) =
(∫

f1 dµ
)2

= 0.

Therefore, Chebyshev’s Inequality gives that∫
f1(Π

σn
v x) f2(Π

σn
v′ x) µn(dx) −→ 0 w.h.p. in (v, v′).

Finally, adjusting by constants as in the proof of (i) H⇒ (ii) in Theorem A, it
follows that∫

f1(Π
σn
v x) f2(Π

σn
v′ x) µn(dx) −→

∫
f1 ⊗ f2 d(µ× µ) w.h.p. in (v, v′)

for arbitrary f1, f2 ∈ C(X G).
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(⇐H). Let f1 := f2 := f ∈ C(X G) have mean zero according to µ. Reversing
the chain of equalities in the previous step, we see that the assumed weak∗

convergence implies that∫∫ (∫
f ⊗ f d Pσn

(x,x′)

)
µn(dx) µn(dx′) −→ 0 as n −→∞.

Also, it is clear that∫∫ (∫
f1 ⊗ f2 d Pσn

(x,x′)

)
µn(dx) µn(dx′)

=

∫∫ (∫
f2 ⊗ f1 d Pσn

(x,x′)

)
µn(dx) µn(dx′)

for any other f1, f2 ∈ C(X G), and so the Polarization Identity gives that these
integrals also tend to 0 if

∫
f1 dµ =

∫
f2 dµ = 0.

Finally, this convergence generalizes to∫∫ (∫
f1 ⊗ f2 d Pσn

(x,x′)

)
µn(dx) µn(dx′) −→

∫
f1 dµ

∫
f2 dµ

for arbitrary f1, f2 ∈ C(X G), because the assumption that µn
q
−→ µ handles the

case when either f1 or f2 is constant.

Theorem 5.14 continues the analogy between doubly-quenched convergence
and weak mixing: it corresponds to the classical fact that an ergodic probability-
preserving transformation (X, µ, T ) is weakly mixing if and only if

1
n

n∑
m=1

∣∣∣∣∫ f (x)g(T m x) µ(dx)−
∫

f dµ
∫

g dµ
∣∣∣∣ −→ 0 ∀ f, g ∈ L2(µ)

as n −→∞ (see again [22, Theorem 2.6.1]).
Doubly-quenched convergence is not only analogous to weak mixing, but also

logically related to it.

LEMMA 5.15. If (X G, µ, S) is weakly mixing, then

µn
q
−→ µ H⇒ µn

dq
−→ µ.

Proof. This follows from Corollary 5.7, since if µ is weakly mixing then µ × µ
is ergodic.
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REMARK. Another property which seems related to doubly-quenched
convergence is ‘replica symmetry’. In the study of spin glasses and other
disordered systems in statistical physics, the term ‘replica symmetry’ (or its
negation, ‘replica symmetry breaking’) is used for a variety of phenomena that
are expected to occur or fail together in most models of interest.

Often such a model consists of a special sequence of probability measures
µn on {±1}Vn for some finite sets Vn , for instance given by a particular
Hamiltonian. In spin glasses, the measures (and the Hamiltonians) are usually
random themselves. For such a sequence of measures, one popular meaning of
‘replica symmetry’ is that the sequence of ‘overlaps’

R(σ, σ ′) :=
1
n

n∑
i=1

σiσ
′

i , (σ, σ ′) ∈ {±1}n × {±1}n,

regarded as a sequence of random variables for the probabilities µn × µn , should
concentrate as n −→∞.

Clearly this holds in case the sets Vn are associated to some sofic approximation
of a group G andµn×µn

q
−→ µ×µ for some shift-invariant measureµ on {±1}G .

But doubly-quenched convergence could be stronger in general. We should be
careful about bringing the term ‘replica symmetry’ into ergodic theory, since it
does have several meanings for the physicists and it is not yet clear under what
conditions they coincide. However, it would be very interesting to know whether
such ideas or models can shed further light on doubly-quenched convergence.

An introduction to replica symmetry and replica symmetry breaking from a
physical point of view can be found in [19, Chs 8, 12 and 19]. �

5.3. Behaviour under factor maps. This subsection considers how local
weak∗ and quenched convergence behave under applying AL approximants to
factor maps.

PROPOSITION 5.16. Let Φ = ϕG
: (X G, µ, S, dX ) −→ (YG, ν, S, dY) be a

factor map of metric G-processes. Suppose that µn
lw∗
−→ µ, and let ψk

aL
−→ ϕ

rel (µ, dX , dY). Then
(ψ

σn
kn
)∗µn

lw∗
−→ ν

whenever the sequence k1 6 k2 6 · · · grows sufficiently slowly. The same holds
if both instances of ‘

lw∗
−→’ are replaced with ‘

q
−→’ or if both are replaced with

‘
dq
−→’.

Proof. First consider the case of quenched convergence. Suppose µn
q
−→ µ.
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Let N1 ⊇ N2 ⊇ · · · be a basis of w∗-neighbourhoods at ν. By shrinking each
Nm if necessary, we may assume that each of them has the form

Nm = {θ ∈ Prob(YG) : θFm ∈ N ′m}

for some finite set Fm ⊆ G and w∗-neighbourhood N ′m of νFm .
Using Lemma 5.4, we can choose a basis O1 ⊇ O2 ⊇ · · · of w∗-

neighbourhoods at µ for which

(Πσn
v )∗µn ∈ On w.h.p. in v as n −→∞ (18)

and
µn(Ω(On, σn)) −→ 1 as n −→∞. (19)

By the combination of Corollaries 4.13 and 4.14, if we now choose (kn)n>1

growing sufficiently slowly, then any choice of (mn)n>1 which grows sufficiently
slowly (depending on (kn)n>1) gives

(ψG
kn
)∗(On) ⊆ Nmn and ψ

σn
kn
(Ω(On, σn)) ⊆ Ω(Nmn , σn) (20)

for all sufficiently large n. In addition, by Corollary 4.15, if we choose (kn)n>1

and (mn)n>1 both growing slowly enough, then

((Πσn
v )∗(ψ

σn
kn
)∗µn)Fmn

= (ψ
Fmn
kn
)∗(Π

σn
v )∗µn w.h.p. in v as n −→∞.

Having chosen such sequences (kn)n>1 and (mn)n>1, we obtain from (18)
and (20) that the following all hold w.h.p. in v as n −→∞:

((Πσn
v )∗(ψ

σn
kn
)∗µn)Fmn

= ((ψG
kn
)∗(Π

σn
v )∗µn)Fmn

∈ ((ψG
kn
)∗(On))Fmn

⊆ {θFmn
: θ ∈ NFmn

} = N ′Fmn
,

and hence (ψσn
kn
)∗µn

lw∗
−→ ν. Similarly, from (19) and (20) we obtain that

((ψ
σn
kn
)∗µn)(Ω(Nmn , σn)) > ((ψ

σn
kn
)∗µn)(ψ

σn
kn
(Ω(On, σn)))

> µn(Ω(On, σn)) −→ 1

as n −→∞, so in fact (ψσn
kn
)∗µn

q
−→ ν, by Lemma 5.4.

For the case of local weak∗ convergence, we argue in the same way, except
ignoring the lower bounds on ((ψσn

kn
)∗µn)(Ω(Nmn , σn)) and omitting the appeal

to Corollary 4.14.
Finally, Lemma 4.6 gives that ψk × ψk

aL
−→ ϕ × ϕ rel µ × µ. Therefore, if

µn
dq
−→ µ, then we may apply the argument for the quenched case to µn×µn .
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If ϕ : X G
−→ Y is itself local and continuous, then by Lemma 2.2 we

may regard ϕ as an η-AL approximation to itself for every η > 0. Therefore,
Proposition 5.16 has the following special case.

COROLLARY 5.17. If Φ = ϕG is as in Proposition 5.16 with ϕ local and
continuous, and µn

lw∗
−→ µ, then

ϕσn
∗
µn

lw∗
−→ ν,

and similarly for quenched and doubly-quenched convergence.
In particular, suppose that λ is a joining of the metric G-processes (X G, µ, S,

dX ) and (YG, ν, S, dY), and that λn ∈ Prob((X × Y)Vn ) satisfies

λn
lw∗
−→ λ.

If µn and νn are the marginals of λn on X Vn and YVn respectively, then

µn
lw∗
−→ µ and νn

lw∗
−→ ν.

The same conclusions hold if locally weak∗ convergence is replaced with
quenched or doubly-quenched convergence throughout.

The mere existence of a convergent sequence of measures on model spaces
is a feature of a process that can be useful. Proposition 5.16 has the following
important consequence for this feature.

COROLLARY 5.18. For a given metric G-process (X G, µ, S, dX ) and sofic
approximation Σ , the property that there exists a sequence µn ∈ Prob(X Vn )

which locally weak∗ (respectively, quenched or doubly-quenched) converges to
µ is preserved by all factor maps, including all isomorphisms. In particular, it is
a property of the process (X G, µ, S), not depending on the choice of the metric
dX .

Therefore, the definitions of these properties may be extended unambiguously
to abstract G-systems.

Beware of the following distinction: this corollary tells us that the existence of
a sequence µn

lw∗
−→ µ is independent of dX , but whether a given sequence µn

satisfies this certainly does depend on dX .
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6. Model-measure sofic entropies

Let (X G, µ, S) be a G-process and d a compact generating metric on X . As in
the Introduction, we define the quenched model-measure sofic entropy to be

hq
Σ(µ) := sup

{
sup
δ,ε>0

lim sup
i−→∞

1
|Vni |

log covε,δ(µi , d (Vni )) :

ni ↑ ∞ and µi
q
−→ µ over (σni )i>1

}
,

and the doubly-quenched model-measure sofic entropy to be

hdq
Σ (µ) := sup

{
sup
δ,ε>0

lim sup
i−→∞

1
|Vni |

log covε,δ(µi , d (Vni )) :

ni ↑ ∞ and µi
dq
−→ µ over (σni )i>1

}
.

As for sofic entropy, it turns out that these do not depend on the choice of
compact generating metric, and so it is omitted from the notation.

In general, it could happen that there are

n1 < m1 < n2 < m2 < · · · ,

a w∗-neighbourhood O of µ, and a sequence of measure µi ∈ Prob(X Vni ) such
that

µni

q
−→ µ over (σni )i>1,

but on the other hand
Ω(O, σm j ) = ∅ ∀ j > 1. (21)

The first of these conditions implies thatΩ(O, σni ) 6= ∅ for all sufficiently large
i , and hence hΣ(µ) > 0. Thus, the presence of any sofic subapproximation along
which one can find good models gives a lower bound on the sofic entropy. We
wish to define the model-measure sofic entropies so that they have the analogous
property.

However, if (21) holds then there is no way to insert (µi)i>1 into a sequence
of measures which quenched-converges to µ over the whole of the original sofic
approximation. This is why we must explicitly allow a supremum over arbitrary
subsequences (ni)i>1 in the definitions of hq

Σ and hdq
Σ , in addition to taking a limit

supremum along those subapproximations.
Just as for sofic entropy, it is sometimes important to know whether a restriction

to sofic subapproximations is really necessary in computing hdq
Σ . This can be
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expressed by comparing with the lower doubly-quenched model-measure sofic
entropy:

hdq
Σ (µ) := sup

{
sup
δ,ε>0

lim inf
n−→∞

1
|Vn|

log covε,δ(µn, d (Vn)) : µn
dq
−→ µ over Σ

}
.

This time we do insist that µn
dq
−→ µ over the whole of the original sofic

approximation Σ , and then we take a limit infimum as n −→ ∞, rather than
a limit supremum.

The simplest relationship between sofic entropy and its model-measure variants
is as follows.

LEMMA 6.1. For any G-system (X G, µ, S, d) we have

hΣ(µ) > hq
Σ(µ) > hdq

Σ (µ).

Proof. Firstly, suppose that ni ↑ ∞ and that µi
q
−→ µ over (σni )i>1. For any

ε, δ > 0 and any w∗-neighbourhood O of µ, condition (ii) in Definition 5.3 gives
that

µi(Ω(O, σni )) > 1− ε and hence covε,δ(µi , d (Vni )) 6 covδ(Ω(O, σni ), d (Vni ))

for all sufficiently large i . This shows that hq
Σ(µ) 6 hΣ(µ).

Second, since doubly-quenched convergence implies quenched convergence,
the supremum defining hdq

Σ (µ) is over a subset of that defining hq
Σ(µ), so hdq

Σ (µ) 6
hq
Σ(µ).

EXAMPLE 6.2. Let X = {0, 1}, let G be the free group on four generators, and let
(X G, µ, S) be the G-process constructed in Example 3.5. We saw in that example
that hΣ(µ) = 0, but also that, once n is large, any sufficiently good model for
µ in X Vn must be very close to the particular model xn = 1Wn . Therefore, if
the measures µn ∈ Prob(X Vn ) are asymptotically supported on good models of
µ, then they must be mostly supported on smaller and smaller Hamming balls
around xn . Once n is large this has the following consequence: for most vertices
v ∈ Vn , the marginal of µn around v is close to either the Dirac mass at 0 or the
Dirac mass at 1. This violates the definition of local weak∗ convergence, and so
there are no subsequence n1 < n2 < · · · and measures satisfying µi

q
−→ µ over

(σni )i>1. Thus hq
Σ(µ) = −∞. �

Of course, Lemma 5.15 gives immediately that hq
Σ(µ) = hdq

Σ (µ) if (X G, µ, S)
is weakly mixing. Kronecker systems can be examples in which hq

Σ(µ) > hdq
Σ (µ).

https://doi.org/10.1017/fms.2016.18 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2016.18


Additivity properties of sofic entropy 57

EXAMPLE 6.3. If G is a group with Kazhdan’s property (T) in Example 5.9, then
we produced a sequence µn

q
−→ µ over the given sofic approximationΣ , but also

showed that there can be no sequence νn
dq
−→ µ. The latter argument still holds

over any sofic subapproximation. Therefore, hq
Σ(µ) > 0 (indeed, simple estimates

show that it equals 0) but hdq
Σ (µ) = −∞ in that example.

We also saw that hΣ(µ × µ) = −∞ for this system. Therefore, this is
an example in which one cannot replace hdq

Σ with hq
Σ in the conclusion of

Theorem B. �

6.1. Invariance under isomorphism.

THEOREM 6.4. For a fixed sofic approximation Σ , the quantities hq
Σ(µ) and

hdq
Σ (µ) are isomorphism invariants of the metric G-process (X G, µ, S, d). In

particular, they do not depend on the choice of d.

Proposition 5.16 is the key to this result, together with the following.

PROPOSITION 6.5. Suppose thatΦ = ϕG
: (X G, µ, S)−→ (YG, ν, S) is a factor

map, that dX and dY are compact generating metrics of diameter at most 1, that
µn

q
−→ µ, and that ψm

aL
−→ ϕ rel (µ, dX , dY). For any ε, δ ∈ (0, 1) there is a

δ′ > 0 for which the following holds. Provided m1 6 m2 6 · · · grows sufficiently
slowly, we have

covε,δ((ψσn
mn
)∗µn, d (Vn)

Y ) 6 covε/4,δ′(µn, d (Vn)

X )

for all sufficiently large n.

Proof. Suppose thatψm is an ηm-AL approximation to ϕ for each m, where ηm ↓ 0.
We may assume that (ηm)m>1 is nonincreasing. Then there are finite sets Dm ⊆ G,
Dm-local open sets Um ⊆ X G , and constants Lm < ∞ such that each ψm :

X G
−→ Y is ηm-almost Lm-Lipschitz from d (Dm )

X to dY .
For each m, Lemma 4.9 gives w∗-neighbourhoods Nm of µ such that

ψσn
m |Ω(Nm, σn)

is (3ηm)-almost (Lm |Dm |)-Lipschitz for all sufficiently large n. Choose m ′ large
enough that 3ηm′ < δ/1000. Now choose δ′ small enough that

3ηm′ + Lm′ |Dm′ |δ
′ < δ/2. (22)

Once n is sufficiently large, we have

µn(Ω(Nm′, σn)) > 1− ε/4 > 3/4.
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This implies that

cov3ε/4,δ/2((ψ
σn
m′ )∗µn, d (Vn)

Y ) 6 covε/2,δ/2((ψ
σn
m′ )∗(µn|Ω(Nm′ ,σn)), d (Vn)

Y ), (23)

where µn|Ω(Nm′ ,σn) is the measure µn conditioned on the subsetΩ(Nm′, σn). It also
implies that

covε/2,δ′(µn|Ω(Nm′ ,σn), d (Vn)

X ) 6 covε/4,δ′(µn, d (Vn)

X ), (24)

because if µn(F) < ε/4 then

µn|Ω(Nm′ ,σn)(F) 6
µn(F)

µn(Ω(Nm′, σn))
<

ε/4
1− ε/4

< ε/2.

For sufficiently large n, the fact that ψσn
m′ |Ω(Nm′, σn) is (3ηm′)-almost

(Lm′ |Dm′ |)-Lipschitz may be combined with Lemma 2.8 to conclude that

covε/2,3ηm′+Lm′ |Dm′ |δ
′((ψ

σn
m′ )∗ν, d (Vn)

Y ) 6 covε/2,δ′(ν, d (Vn)

X )

for any Borel probability measure ν supported onΩ(Nm′, σn). Applying this with
ν = µn|Ω(Nm′ ,σn) and using (22) and (24), we obtain

covε/2,δ/2((ψ
σn
m′ )∗(µn|Ω(Nm′ ,σn)), d (Vn)

Y ) 6 covε/4,δ′(µn, d (Vn)

X ) (25)

for all sufficiently large n.
Finally, since ηm decreases as m −→ ∞, Lemma 4.11 gives w∗-neighbour-

hoods Om of µ such that

d (Vn)

Y (ψσn
m (x), ψ

σn
m′ (x)) < 10ηm′ < δ/2 ∀x ∈ Om ∀m > m ′.

By forming running intersections, we may assume that O1 ⊇ O2 ⊇ · · · . Since
µn(Ω(Om, σn)) tends to 1 for every m, it follows that, if m1 6 m2 6 · · · grows
sufficiently slowly, then

µn{x : d (Vn)

Y (ψσn
mn
(x), ψσn

m′ (x)) > δ/2} −→ 0 as n −→∞.

Therefore, for such a slowly growing sequence, Lemma 2.9 gives

covε,δ((ψσn
mn
)∗µn, d (Vn)

Y ) 6 cov3ε/4,δ/2((ψ
σn
m′ )∗µn, d (Vn)

Y )

for all sufficiently large n. This completes the proof in combination with
inequalities (23) and (25).
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Proof of Theorem 6.4. Let Φ = ϕG
: (X G, µ, S) −→ (YG, ν, S) be an

isomorphism, choose compact generating metrics dX for X and dY for Y of
diameter at most 1, and suppose that Φ−1

= ϕ̃G . Let d be the Hamming average
of dX and dY , and let d (2)X be the Hamming average of two copies of dX .

We will show that hq
Σ(µ) 6 hq

Σ(ν); the reverse must also hold by symmetry. An
exactly analogous argument gives the proof for hdq

Σ .
If the left-hand side is −∞ then there is nothing to prove. So let ni ↑ ∞ be a

subsequence, suppose that µni

q
−→ µ over (σni )i>1, and let ε > 0 and δ > 0. We

will produce measures νni

q
−→ ν over (σni )i>1 and a δ′ > 0 such that

covε,δ(µni , d
(Vni )

X ) 6 covε/8,δ′(νni , d
(Vni )

Y )

for all sufficiently large i . To this end, it suffices to consider only the sofic
subapproximation (σni )i>1, so we may relabel this subapproximation and simply
assume that it equals (σn)n>1.

Now let ψk
aL
−→ ϕ rel (µ, dX , dY) and ψ̃m

aL
−→ ϕ̃ rel (ν, dY , dX ). In addition,

let ξ : X G
−→ X be the projection onto the e-indexed coordinate, so ξG

= idXG .
Finally, let

λ :=

∫
XG
δ(x,Φ(x)) µ(dx) and λ̂ :=

∫
XG
δ(x,x) µ(dx).

These are the graphical joining of µ and ν corresponding to the factor mapΦ, and
the diagonal joining of µ with itself, respectively.

Since ξ may be regarded as a constant AL approximating sequence to itself,
Lemma 4.6 and Corollary 4.7 give that

(ξ, ψk)
aL
−→ (ξ, ϕ) rel (µ, dX , d) (26)

and
ξ × ψ̃m

aL
−→ ξ × ϕ̃ rel (λ, d, d (2)X ). (27)

By Proposition 5.16 and (26), if we choose k1 6 k2 6 · · · growing sufficiently
slowly, then

λn := ((ξ, ψkn )
σn )∗µn

q
−→ λ. (28)

Fix such a sequence (kn)n>1, and define νn := (ψ
σn
kn
)∗µn , so this is the marginal of

λn on the space YVn . By Corollary 5.17 we also have νn
q
−→ ν.

We now apply Proposition 5.16 with (27) and (28), and also Proposition 6.5.
According to those propositions, if we choose m1 6 m2 6 · · · growing sufficiently
slowly, then we have

((ξ × ψ̃mn )
σn )∗λn

q
−→ (ξG

× Φ̃)∗λ = λ̂, (29)
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and also there is a δ′ > 0 such that

covε/2,δ/2((ψ̃σn
mn
)∗νn, d (Vn)

X ) 6 covε/8,δ′(νn, d (Vn)

Y ) (30)

for all sufficiently large n.
We finish the proof by comparing µn with its image measure

(ψ̃σn
mn
)∗νn = (ψ̃

σn
mn
)∗(ψ

σn
kn
)∗µn.

This is where we need the joining λ̂. On X G
× X G , let F be the continuous

function
F((xg)g∈G, (x ′g)g∈G) := dX (xe, x ′e).

Then by (29) and a simple calculation we have∫
d (Vn)

X (x, ψ̃σn
mn
(ψ

σn
kn
(x))) µn(dx) =

∫∫
F d Pσn

(x,ψ̃σn
mn (ψ

σn
kn (x)))

µn(dx)

=

∫∫
F d Pσn

(x,ψ̃σn
mn (y))

λn(dx, dy)

−→

∫
F dλ̂ = 0.

Therefore, Lemma 2.9 gives

covε,δ(µn, d (Vn)

X ) 6 covε/2,δ/2((ψ̃σn
mn
)∗νn, d (Vn)

X )

for all sufficiently large n. Combining with (30) completes the proof.

7. Entropy of Cartesian products

7.1. Proof of Theorem B.

Proof of Theorem B. Let (X G, µ, S, dX ) and (YG, ν, S, dY) be metric G-
processes, and suppose that η > 0. Let d be the Hamming average of dX
and dY on X × Y . Let h1 := hdq

Σ (µ) and h2 = hΣ(ν). We assume the latter is
equal to hΣ(ν), so there is a δ > 0 such that for any w∗-neighbourhood O of ν
we have

covδ(Ω(O, σn), d (Vn)

Y ) > e(h2−η)|Vn | (31)

for all sufficiently large n.
By shrinking δ further if necessary, and choosing ε > 0 sufficiently small, we

may also assume that there are a sequence ni ↑ ∞ and a sequence of measures

µi ∈ Prob(X Vni ) such that µni

dq
−→ µ over (σni )i>1 and

covε,δ(µi , d
(Vni )

X ) > e(h1−η)|Vni |

for all sufficiently large i .
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Let N be any w∗-neighbourhood of µ× ν. We will prove that

lim sup
n−→∞

1
|Vn|

log packδ/2(Ω(N , σn), d (Vn)) > h1 + h2 − 2η.

Since η > 0 is arbitrary, and recalling the inequalities (5), this will complete the
proof.

By conclusion (ii) of Theorem A, there is a w∗-neighbourhood O of ν such that

inf
y∈Ω(O,σni )

µi{x : (x, y) ∈ Ω(N , σni )} > 1− ε (32)

for all sufficiently large i (note that (31) guarantees that Ω(O, σni ) is nonempty
for all sufficiently large i).

Having chosen O, the inequalities (5) and the lower bound (31) let us choose
subsets Fn ⊆ Ω(O, σn) which are δ-separated according to the metrics d (Vn)

Y and
such that

|Fn| > e(h2−η)|Vn |

for all sufficiently large n.
For each y ∈ Fn , let

Gn,y := {x ∈ X Vn : (x, y) ∈ Ω(N , σn)},

so (32) implies that once i is sufficiently large we have µi(Gni ,y) > 1 − ε for all
y ∈ Fni . This requires that

covδ(Gni ,y, d
(Vni )

X ) > covε,δ(µi , d
(Vni )

X ) ∀y ∈ Fni

once i is sufficiently large.
Using the inequalities (5) again, we may therefore find further subsets Hn,y ⊆

Gn,y for each y ∈ Fn which are δ-separated according to the metrics d (Vn)

X and such
that

|Hni ,y| > e(h1−η)|Vni | ∀y ∈ Fni

for all sufficiently large i .
Finally, defining

Kn := {(x, y) : y ∈ Fn, x ∈ Hn,y}

for each n, it follows that these sets are (δ/2)-separated according to d (Vn); that
they are contained in Ω(N , σn); and that

lim sup
n−→∞

1
|Vn|

log|Kn| > lim sup
i−→∞

1
|Vni |

log|Kni | > h1 + h2 − 2η.
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REMARK. The above proof really shows that any G-systems (X, µ, T ) and
(Y, ν, S) satisfy

hΣ(µ× ν, T × S) > hdq
Σ (µ, T )+ hΣ(ν, S).

This conclusion may also be deduced formally from the statement of Theorem B,
by first restricting to a sofic subapproximation which nearly realizes the value
hdq
Σ (µ, T ), and then restricting to a further subapproximation along which the

sofic entropy and lower sofic entropy of (Y, ν, S) agree. �

7.2. Proof of Theorem C. The first assertion of Theorem C, that model-
measure sofic entropy is subadditive, holds for arbitrary joinings, similarly to sofic
entropy itself (see Proposition 3.4).

PROPOSITION 7.1. Let (X, µ, T ) and (Y, ν, S) be G-systems and let λ be a
joining of them. Then

hq
Σ(λ, T × S) 6 hq

Σ(µ, T )+ hq
Σ(ν, S),

and similarly if hq
Σ is replaced with hdq

Σ throughout.

Proof. It suffices to consider two metric G-processes (X G, µ, S, dX ) and
(YG, ν, S, dY). Let d be the Hamming average of dX and dY on X × Y .

Suppose (σni )i>1 is a sofic subapproximation, that ε, δ > 0, and that λi
q
−→ λ

over (σni )i>1. By relabelling the subapproximation, we may simply assume that it
equals (σn)n>1, and write λn

q
−→ λ.

Let µn and νn be the marginals of λn on X Vn and YVn , so Corollary 5.17 gives
that µn

q
−→ µ and νn

q
−→ ν. Part (i) of Lemma 2.6 gives

covε,δ(λn, d (Vn)) 6 covε/2,δ(µn, d (Vn)

X ) · covε/2,δ(νn, d (Vn)

Y ).

Taking logarithms and normalizing by |Vn|, this completes the proof, since ε, δ
and λn were arbitrary.

The argument is the same if quenched convergence is replaced with doubly-
quenched convergence.

The reverse inequality required for Theorem C relies on the following lemma,
which is another manifestation of the difference between quenched and doubly-
quenched convergence.
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LEMMA 7.2. If µn ∈ Prob(X Vn ) and νn ∈ Prob(YVn ) satisfy

both µn
dq
−→ µ and νn

dq
−→ ν over Σ,

then
µn × νn

dq
−→ µ× ν over Σ.

Proof. Repeatedly applying the implication (i) H⇒ (iii) in Theorem A gives

νn × νn
q
−→ ν × ν H⇒ µn × νn × νn

q
−→ µ× ν × ν

H⇒ µn × µn × νn × νn
q
−→ µ× µ× ν × ν,

and hence µn × νn
dq
−→ µ× ν.

Proof of Theorem C. Let (X G, µ, S, dX ), (YG, ν, S, dY) and d be as in the proof
of Proposition 7.1. That proposition has given subadditivity, so it remains to prove
the reverse inequality.

We need only consider the case in which hdq
Σ (µ), hdq

Σ (ν) > 0, for otherwise
subadditivity gives also that hdq

Σ (µ× ν) = −∞.
Since we assume that hdq

Σ (ν) = hdq
Σ (ν), for any η > 0 there are ε, δ > 0 and a

sequence νn ∈ Prob(YVn ) such that νn
dq
−→ ν over Σ and

cov√ε,δ(νn, d (Vn)

Y ) > e(h
dq
Σ (ν)−η)|Vn |

for all sufficiently large n. Of course, this remains true if we pass to any sofic
subapproximation.

After shrinking ε and δ if necessary, now let (σni )i>1 be a sofic

subapproximation and let µi ∈ Prob(X (Vni )) be a sequence such that µi
dq
−→ µ

over (σni )i>1 and
cov√ε,δ(µi , d

(Vni )

Y ) > e(h
dq
Σ (µ)−η)|Vni |

for all sufficiently large i .

Lemma 7.2 gives that µi ×νni

dq
−→ µ×ν over (σni )i>1, and Corollary 2.7 gives

covε,δ/4(µi × νni , d (Vni )) > cov√ε,δ(µi , d
(Vni )

X ) · cov√ε,δ(νni , d
(Vni )

Y ).

Taking logarithms and normalizing by |Vni |, this completes the proof.
If µ×ν is ergodic then we may argue in just the same way using only quenched

convergence, because in that case

µi
q
−→ µ and νni

q
−→ ν imply µi × νni

q
−→ µ× ν.
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Example 6.3 shows that the assumption that µ×ν is ergodic cannot be dropped.
The proof of Theorem C gives the following important special case.

COROLLARY 7.3. For any G-system (X, µ, T ) we have

hdq
Σ (µ

×k, T×k) = k · hdq
Σ (µ, T ) ∀k > 1.

Here we do not need the assumption that hdq
Σ = hdq

Σ . This is because we are
now combining (X, µ, T ) with itself, so there is no risk that two different sofic
subapproximations are needed to obtain the entropies of the ingredient systems.

Proof. If hdq
Σ (µ, T ) = −∞ then the result is trivial, so suppose otherwise.

Let (X G, µ, S, d) be a metric G-process. For any η > 0, there are ε, δ > 0, a

sofic subapproximation Σ ′ = (σni )i>1, and a sequence of measures µni

dq
−→ µ

over Σ ′ such that
covε,δ(µi , d (Vni )) > e(h

dq
Σ (µ)−η)|Vni |

for all sufficiently large i . It follows that

hdq
Σ (µ) > hdq

Σ ′(µ) > hdq
Σ ′(µ) > hdq

Σ (µ)− η.

Since η was arbitrary, a simple diagonal argument now gives a sofic
subapproximation Σ ′′ such that in fact

hdq
Σ ′′(µ) = hdq

Σ ′′(µ) > hdq
Σ (µ)− η.

A k-fold application of Theorem C with this sofic subapproximation gives that

hdq
Σ (µ

×k) > hdq
Σ ′′(µ

×k) = k · hdq
Σ ′′(µ) > k · (hdq

Σ (µ)− η).

Since η was arbitrary, this completes the proof.

8. Processes with finite state spaces

8.1. Alternative formulae for the entropies. Now let (X G, µ, S) be a G-
process with finite state space X . Let d be the discrete metric on X (all distances
are zero or one). For this process there are alternative, simpler formulae for the
sofic entropy and model-measure sofic entropy. These will be essential in the
proof of Theorem D.

PROPOSITION 8.1. For a G-process (X G, µ, S) with |X | <∞, we have

hΣ(µ) = inf
O

lim sup
n−→∞

1
|Vn|

log |Ω(O, σn)|,
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where O ranges over w∗-neighbourhoods of µ, and

hdq
Σ (µ) := sup

{
sup
ε>0

lim sup
i−→∞

1
|Vni |

log covε(µi) :

ni ↑ ∞ and µi
dq
−→ µ over (σni )i>1

}
,

where
covε(µi) = min{|F | : F ⊆ X Vni with µi(F) > 1− ε}.

This proposition is a consequence of the following bound on the volumes of
Hamming balls, which is implied by standard estimates in Information Theory:
see, for instance, [10, Section 5.4].

LEMMA 8.2. If (X , d) is a nonempty finite set with its discrete metric, then for
every η > 0 there is a δ > 0 such that the following holds. If V is a nonempty
finite set and x ∈ X V , then

|Bδ(x)| 6 eη|V |,

where Bδ(x) is the δ-ball around x for the metric d (V ).

Proof of Proposition 8.1. The formula for hΣ(µ) is easily seen to be equivalent
to Bowen’s original definition of sofic entropy for systems with finite generating
partitions [4]. Its agreement with hΣ(µ) is therefore contained in [14].

The reasoning for model-measure sofic entropy is very similar. Clearly we
always have

covε,δ(µi , d (Vni )) 6 covε(µi),

and so hdq
Σ (µ) is bounded from above by the right-hand side of the desired formula.

On the other hand, for any η > 0, Lemma 8.2 gives a δ > 0 such that all δ-balls
in the metric d (Vni ) have size at most eη|Vni |. This implies that

|Bδ(F)| 6 eη|Vni ||F | ∀F ⊆ X Vni ,

and hence that

1
|Vni |

log covε,δ(µi , d (Vni )) >
1
|Vni |

log covε(µi)− η ∀i > 1.

Since η can be made arbitrarily small, hdq
Σ (µ) is also bounded from below by the

right-hand side of the desired formula.
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8.2. Proof of Theorem D. One half of Theorem D is true for general systems.

LEMMA 8.3. Any G-system (X, µ, T ) satisfies

hdq
Σ (µ, T ) 6 hps

Σ(µ, T ).

Proof. Combining Lemma 6.1 and Corollary 7.3 gives

hdq
Σ (µ, T ) =

1
k

hdq
Σ (µ

×k, T×k) 6
1
k

hΣ(µ×k, T×k) ∀k > 1,

and hence hdq
Σ (µ) 6 hps

Σ(µ).

We prove the reverse half of Theorem D using the assumption that |X | is finite.
In this case we always endow X with the discrete metric d . As remarked in the
Introduction, this gives the result for any G-system that has a finite generating
partition, including any ergodic G-system for which hRok(µ, T ) <∞ (see [23]).

The proof relies on producing model measures for µ out of good models for
µ×k for large values of k. This is done using the following proposition.

PROPOSITION 8.4. Let V be any finite set and σ : G −→ Sym(V ) any map.
For any ε > 0 and w∗-neighbourhood O of µ× µ, the following holds for any

sufficiently large k > 1: there is a w∗-neighbourhood N of µ×k such that, if

x = (x1, . . . , xk) ∈ Ω(N , σ ),

then the measure

% :=
1
k

k∑
i=1

δxi ∈ Prob(X Vn )

satisfies

|{v : (Πσ
v )∗(% × %) ∈ O}| > (1− ε)|V | and (% × %)(Ω(O, σ )) > 1− ε.

We consider a neighbourhood O of µ × µ, rather than µ, to ensure that
the resulting model measures not only quenched-converge but doubly-quenched-
converge.

Proof. It suffices to prove this for a subbasic family of neighbourhoods O, so we
may assume that

O =
{
θ ∈ Prob(X G

×X G) :

∫
f ⊗ h dθ ≈2κ

∫
f dµ

∫
h dµ

}
for some h, f ∈ C(X G) with ‖ f ‖∞, ‖h‖∞ 6 1 and some κ > 0.
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Part 1. For each k, define two continuous functions (X G)k −→ R by

Fk(x1, . . . , xk) =
1
k

k∑
i=1

f (xi) and Hk(x1, . . . , xk) =
1
k

k∑
i=1

h(xi),

and let

Uk :=

{
(x1, . . . , xk) ∈ (X G)k : Fk(x1, . . . , xk) ≈κ

∫
f dµ

and Hk(x1, . . . , xk) ≈κ

∫
h dµ

}
.

This Uk is open, and the Law of Large Numbers gives that µ×k(Uk) −→ 1 as
k −→∞. Letting

N1,k := {ν ∈ Prob((X G)k) : ν(Uk) > 1− ε},

it follows that this is a w∗-neighbourhood of µ×k for all sufficiently large k.
If (x1, . . . , xk) ∈ Ω(N1,k, σ ), then this asserts that

Pσ
(x1,...,xk )

(Uk) > 1− ε,

and hence that the set

V good
k :=

{
v ∈ V : Fk(Π

σ
v (x1), . . . ,Π

σ
v (xk)) ≈κ

∫
f dµ

and Hk(Π
σ
v (x1), . . . ,Π

σ
v (xk)) ≈κ

∫
h dµ

}
has |V good

k | > (1− ε)|V |.
Now let % be as in the statement of the proposition, and observe that∫

f ⊗ h d((Πσ
v )∗(% × %)) =

∫
( f ◦Πσ

v ) d% ·
∫
(h ◦Πσ

v ) d%.

The first of these right-hand factors is equal to

∫
( f ◦Πσ

v ) d% =
1
k

k∑
i=1

f (Πσ
v (xi)) = Fk(Π

σ
v (x1), . . . ,Π

σ
v (xk)),
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and similarly the second is equal to Hk(Π
σ
v (x1), . . . ,Π

σ
v (xk)). Therefore any

v ∈ V good
k satisfies∫

f ⊗ h d((Πσ
v )∗(% × %))

= Fk(Π
σ
v (x1), . . . ,Π

σ
v (xk)) · Hk(Π

σ
v (x1), . . . ,Π

σ
v (xk)) ≈2κ

∫
f dµ

∫
h dµ,

where the last estimate by 2κ uses the fact that both of the factors here lie in
[−1, 1].

Hence
|{v : (Πσ

v )∗(% × %) ∈ O}| > |V
good

k | > (1− ε)|V |

once k is sufficiently large.

Part 2. The second part is simpler. The set

N2,k :=

{
ν ∈ Prob((X G)k) :

∫
f (xi)h(x j) ν(dx1, . . . , dxk) ≈2κ

∫
f dµ

∫
h dµ

whenever i, j ∈ {1, . . . , k} are distinct
}

is another a w∗-neighbourhood of µ×k for every k. If (x1, . . . , xk) ∈ Ω(N2,k, σ )

and i 6= j , then∫
f ⊗h d Pσ

(xi ,x j )
=

∫
f (xi)h(x j) Pσ

(x1,...,xk )
(dx1, . . . , dxk) ≈2κ

∫
f dµ

∫
h dµ :

that is, Pσ
(xi ,x j )

∈ O. Therefore

(ρ × ρ)(Ω(O, σ )) =
|{(i, j) ∈ {1, . . . , k}2 : Pσ

(xi ,x j )
∈ O}|

k2
>

k(k − 1)
k2

,

and this is greater than 1− ε once k is large enough.

Completion. Choose k large enough to satisfy both parts above, and set

N := N1,k ∩N2,k .

Proof of Theorem D. One inequality is already given by Lemma 8.3, so we focus
on the other.

Let ε > 0. Let O1 ⊇ O2 ⊇ · · · be a basis of w∗-neighbourhoods of µ. By
Proposition 8.4, there are integers 1 6 k1 6 k2 6 · · · tending to ∞ and w∗-
neighbourhoods N j of µ×k j for every j such that the following holds. If

Ex := (x1, . . . , xk j ) ∈ Ω(N j , σn) for some j and n,
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then the measure

%
n, j
Ex :=

1
k j

k j∑
i=1

δxi

satisfies

|{v ∈ Vn : (Π
σn
v )∗(%

n, j
Ex × %

n, j
Ex ) ∈ O j }|

> (1− 2− j)|Vn| and (%
n, j
Ex × %

n, j
Ex )(Ω(O j , σn)) > 1− 2− j . (33)

Next, by the definition of hps
Σ , we may also choose a subsequence n1 < n2 < · · ·

such that
|Ω(N j , σn j )| > exp(k j(h

ps
Σ(µ)− ε)|Vn j |) > 1 (34)

for all j . Now set

µ j :=
1

|Ω(N j , σn j )|

∑
Ex∈Ω(N j ,σn j )

%
n j , j
Ex for j > 1.

Since the sets O j form a basis of neighbourhoods aroundµ×µ, the bounds (33)
imply that for any sequence of single k j -tuples Ex j ∈ Ω(N j , σn j ), we have

ρ
n j , j
Ex j

dq
−→ µ along (σn j ) j>1.

We can quickly strengthen this conclusion as follows: if Ey j ∈ Ω(N j , σn j ) is any
other sequence of k j -tuples, then the implication (i) H⇒ (iii) of Theorem A gives
that

ρ
n j , j
Ex j
× ρ

n j , j
Ey j

q
−→ µ× µ.

By simply averaging this last assertion, it follows that

µ j × µ j =
1

|Ω(N j , σn j )|
2

∑
Ex,Ey∈Ω(N j ,σn j )

%
n j , j
Ex × %

n j , j
Ey

q
−→ µ× µ,

and hence µ j
dq
−→ µ.

Finally, let

H(2ε′, 1− 2ε′) := −2ε′ log(2ε′)− (1− 2ε′) log(1− 2ε′) for ε′ ∈ (0, 1/2),

and choose ε′ so small that

2ε′ log |X | + H(2ε′, 1− 2ε′) < ε.
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Consider the covering numbers covε′(µ j). For each j , let F j ⊆ X Vn j be a
minimum-size subset for which µ j(F j) > 1 − ε′. By the definition of µ j and
Chebyshev’s Inequality, this implies that at least half of the tuples (x1, . . . ,

xk j ) ∈ Ω(Nn j , σn j ) satisfy

%
n j , j
(x1,...,xk j )

(F j) =
|{i ∈ {1, . . . , k j } : xi ∈ F j }|

k j
> 1− 2ε′.

On the other hand, a simple estimate using volumes of Hamming balls (see [10,
Section 5.4]) gives∣∣∣∣{(x1, . . . , xk j ) ∈ (X Vn j )k j :

|{i ∈ {1, . . . , k j } : xi ∈ F j }|

k j
> 1− 2ε′

}∣∣∣∣
6 |F j |

k j · |X |2ε′·k j ·|Vn j | · 2H(2ε′,1−2ε′)k j ,

where the last factor estimates the number of ways of choosing at most 2ε′k j

coordinates i ∈ {1, . . . , k j } at which to allow xi 6∈ F j .
Therefore

1
2 |Ω(Nn j , σn j )| 6 |F j |

k j · |X |2ε′·k j ·|Vn j | · 2H(2ε′,1−2ε′)k j

= (covε′(µ j))
k j · |X |2ε′·k j ·|Vn j | · 2H(2ε′,1−2ε′)k j .

Combining this with (34) and rearranging, we obtain

1
|Vn j |

log covε′(µ j)> hps
Σ(µ)−ε−2ε′ log |X |−H(2ε′, 1− 2ε′) · log 2

|Vn j |
−O

(
1
|k j |

)
,

and this lower bound is greater than hps
Σ(µ)− 2ε for all sufficiently large j . Since

ε was arbitrary, this shows that hdq
Σ (µ) > hps

Σ(µ).

Proof of Corollary D′. Theorem B has already proved that

hdq
Σ (µ, T ) 6 hΣ(µ× ν, T × S)− hΣ(ν, S)

for any other G-system (Y, ν, S) satisfying hΣ(ν, S) = hΣ(ν, S).
On the other hand, if (X, µ, T ) has a finite generating partition, then

Theorem D shows that

1
k

hΣ(µ×k, T×k) −→ hdq
Σ (µ, T ).

In particular, for any ε > 0, there must be infinitely many k for which

hΣ(µ×(k+1), T×(k+1)) 6 hΣ(µ×k, T×k)+ hdq
Σ (µ, T )+ ε.
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Letting (Y, ν, S) := (X k, µ×k, T×k) and rearranging, this becomes

hΣ(µ× ν, T × S)− hΣ(ν, S) 6 hdq
Σ (µ, T )+ ε.

Since we also have hΣ(ν, S) = hΣ(ν, S) for this system (Y, ν, S) by assumption,
these examples complete the proof.

Another corollary seems worth including at this point. For any G-system
(X, µ, T ), the definition of hps

Σ gives that

hps
Σ(µ

×k, T×k) = lim
n−→∞

1
n

hΣ(µ×kn, T×kn) = k · hps
Σ(µ, T ) ∀k > 1.

If (Y, ν, S) is another system with the property that

hΣ(ν×k, S×k) = hΣ(ν
×k, S×k) ∀k > 1, (35)

then we may take kth Cartesian powers of both systems in Theorem B to obtain

1
k

hΣ((µ× ν)×k, (T × S)×k) > hps
Σ(µ, T )+

1
k

hΣ(ν×k, S×k) ∀k > 1.

Letting k −→∞, we conclude that hps
Σ is strictly additive.

COROLLARY 8.5. If (X, µ, T ) has a finite generating partition and (35) is
satisfied then

hps
Σ(µ× ν, T × S) = hps

Σ(µ, T )+ hps
Σ(ν, S).

8.3. Some remarks on systems without finite generating partitions. I do
not know whether hps

Σ = hdq
Σ for arbitrary systems. If this is so, then Corollaries D′

and 8.5 can be extended to them. Also, Theorem B could be rewritten with hdq
Σ

replaced by hps
Σ , so that model measures are not needed to give a meaningful lower

bound on the sofic entropy of a Cartesian product.
The difficulty in the general case seems to be the following. Written out in full,

the power-stabilized entropy for a metric G-process (X G, µ, S, d) is

hps
Σ(µ) := lim sup

k−→∞

1
k

sup
δ>0

inf
Int(O)3µ×k

lim sup
n−→∞

1
|Vn|

log covδ(Ω(O, σn), (d (k))(Vn)).

If this is nonnegative, then for every k > 1 and ε > 0 there is a δk > 0 such that

inf
Int(O)3µ×k

lim sup
n−→∞

1
|Vn|

log covδk (Ω(O, σn), (d (k))(Vn)) > k(hps
Σ(µ)− ε).
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However, as far as I know, it could happen that we must choose smaller and
smaller values of δk as k −→ ∞. On the other hand, in order to make contact
with hdq

Σ , we must find fixed ε, δ > 0 and measures satisfying µi
dq
−→ µ along

(σni )i>1 such that covε,δ(µi , d (Vni )) grows fast enough as i −→ ∞. If the choice
of δk tends to 0 as k −→ ∞, and then we construct the measures µ j as in the
proof of Theorem D, we do not obtain control over covε,δ(µ j , d (Vn j )) for any fixed
δ > 0.

To get around this problem, one could simply redefine hps
Σ so that the supremum

over δ appears on the outside: let us set

h̃ps
Σ(µ) := sup

δ>0

[
lim sup

k−→∞

1
k

inf
Int(O)3µ×k

lim sup
n−→∞

1
|Vn|

log covδ(Ω(O, σn), (d (k))(Vn))

]
.

Using this quantity, the construction used to prove Theorem D does generalize
quite easily, leading to the inequality

h̃ps
Σ(µ) 6 hdq

Σ (µ).

However, now the argument of Lemma 8.3 seems to run into difficulty, and I
cannot show that

h̃ps
Σ(µ) > hdq

Σ (µ).

Thus, Theorem D will hold for arbitrary systems if the supremum over δ may
be exchanged with the limit supremum over k in the formula for hps

Σ(µ). If X is
finite and d is the discrete metric, then Proposition 8.1 lets one switch to counting
individual models, so that δ disappears altogether from hps

Σ(µ) and hdq
Σ (µ). This is

why the proofs above could be completed when X is finite.

9. Co-induced systems

Consider the setting of Theorem E. In view of Lemma 6.1, that theorem will
follow if we show that

hΣ×T(µ
×H ,CIndG×H

G T ) 6 hdq
Σ×T(µ

×H ,CIndG×H
G T ). (36)

As usual, we can assume that we start with a metric G-process (X G, µ, S, d).
After co-induction this simply becomes (X G×H , µ×H , S̃, d), where S̃ is the right-
shift action of G × H .

To prove Theorem E, we also need to use the left action T̃ of H on X G×H :

T̃ h((xg,k)(g,k)∈G×H ) = (xg,h−1k)(g,k)∈G×H .
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The product measure µ×H is invariant under this action, as well as under S̃: this
special feature of the measure is crucial for the proof. Since H is infinite, the
H -system (X G×H , µ×H , T̃ ) is weakly mixing.

The action T̃ commutes with S̃, and so each transformation T̃ h is an
automorphism of (X H , µ×H , S̃). Therefore, the results of Section 4 apply to
each of these transformations. Each T̃ h is already defined coordinate-wise by the
{(eG, h−1)}-local map

X G×H
−→ X : (xg,k)g,k 7→ xeG ,h−1,

which is 1-Lipschitz from d ({(eG ,h−1)}) to d . Therefore, there is no need to introduce
other AL approximations to these maps.

For each σn , τn and h ∈ H , the map

idVn × τ
h
n : Vn ×Wn −→ Vn ×Wn

has an ‘approximate adjoint’ defined by setting

ρh
n : X Vn×Wn −→ X Vn×Wn : (xv,w)v∈Vn , w∈Wn 7→ (x

v,σ h−1
n (w)

)v∈Vn , w∈Wn .

Such maps were already discussed in the remark following Lemma 3.1: as
explained there, they become useful only now that our measure µ×H is also
left-shift-invariant. In terms of these, a special case of Lemma 4.8 translates as
follows.

LEMMA 9.1. If F ⊆ G× H and E ⊆ H are finite, then the following holds w.h.p
in (v,w) ∈ Vn ×Wn:

Π
σn×τn
(v,w) (ρ

h
n (·))|F = (T̃

h(Π
σn×τn
(v,w) (·)))|F ∀h ∈ E .

LEMMA 9.2. Let E1, E2, . . . be any sequence of finite subsets of H satisfying
|Em | −→∞. Also, suppose that θn ∈ Prob(X Vn×Wn ) is any sequence of measures
satisfying

θn(Ω(O, σn × τn)) −→ 1 as n −→∞ (37)

for any w∗-neighbourhood O of µ×H .
Provided the sequence m1 6 m2 6 · · · grows sufficiently slowly, the sequence

of measures

µn :=
1
|Emn |

∑
h∈Emn

(ρh
n )∗θn

doubly-quenched-converges to µ×H over Σ × T.
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Proof. It suffices to show that µn
lw∗
−→ µ×H ; since the co-induced system is

weakly mixing, this implies doubly-quenched convergence.
Also, it suffices to consider a subbasic w∗-neighbourhood of µ×H , so let

O :=
{
ν ∈ Prob(X G×H ) :

∫
f dν ≈κ

∫
f dµ×H

}
for some local function f ∈ C(X G×H ) and κ > 0.

Now for each m let

Um =

{
x ∈ X G×H

:
1
|Em |

∑
h∈Em

f (T̃ h x) ≈κ

∫
f dµ

}
.

Since |Em | −→ ∞, the Law of Large Numbers gives that µ×H (Um) −→ 1 as
m −→ ∞ (note that this works even if there is no ergodic theorem over the sets
Em for general H -systems). Choose real values αm < µ×H (Um) which still tend
to 1, and for each m let

Nm := {ν ∈ Prob(X G×H ) : ν(Um) > αm}.

Each Nm is a w∗-neighbourhood of µ×H , and so (37) implies that

θn(Ω(Nmn , σn × τn)) −→ 1 as n −→∞

provided m1 6 m2 6 · · · grows sufficiently slowly. In terms of empirical
distributions, this implies that∫

|{(v,w) ∈ Vn ×Wn : Π
σn×τn
(v,w) (x) ∈ Umn }|

|Vn ×Wn|
θn(dx)

=
1

|Vn ×Wn|

∑
(v,w)∈Wn×Wn

θn{x : Πσn×τn
(v,w) (x) ∈ Umn } −→ 1 (38)

as n −→∞.
Finally, we have∫

f d((Πσn×τn
(v,w) )∗µn) =

∫
X Vn×Wn

(
1
|Emn |

∑
h∈Emn

f (Πσn×τn
(v,w) (ρ

h
n (x)))

)
θn(dx).

Since f is a local function, another appeal to Lemma 9.1 gives that, w.h.p. in
(v,w), this is equal to∫

X Vn×Wn

(
1
|Emn |

∑
h∈Emn

f (T̃ h(Π
σn×τn
(v,w) (x)))

)
θn(dx).
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Recalling the definition of Umn and the inequality (38), this, in turn, lies within κ
of
∫

f dµ w.h.p. in (v,w). That is,

(Π
σn×τn
(v,w) )∗µn ∈ O w.h.p. in (v,w),

as required.

Proof of Theorem E. We need only prove the inequality (36) for the co-induced
process. If hΣ×T(µ

×H ) = −∞ then the result is trivial, so suppose otherwise, let
h1 < hΣ×T(µ

×H ) be arbitrary, and let h2 lie strictly between these two values.
Let d be a compact generating metric on X , and let E1, E2, . . . be finite subsets

of H with |Em | −→ ∞.
From the definition of hΣ×T(µ

×H ), it follows that there are δ > 0 and a sequence
of subsets An ⊆ X Vn×Wn such that:

(i) each An is δ-separated according to d (Vn×Wn);

(ii) for every w∗-neighbourhood O of µ×H we have

An ⊆ Ω(O, σn × τn)

for all sufficiently large n; and

(iii) |An| > exp(h2|Vn||Wn|) for infinitely many n.

By passing to a subsequence n1 < n2 < · · · , we may now assume that (iii) holds
for all sufficiently large n, and in particular that An 6= ∅ for every n.

Let θn be the uniform measure on An for each n. Then condition (ii) above
shows that these satisfy the hypotheses of Lemma 9.2, and so

µn :=
1
|Emn |

∑
h∈Emn

(ρh
n )∗θn

dq
−→ µ×H

for some m1 6 m2 6 · · · tending slowly to∞.
Finally, for each n let Bn ⊆ X Vn×Wn be a subset of minimal cardinality such that

µn(Bδ/2(Bn)) > 1/2.

From the definition of µn , this requires that

θn((ρ
h
n )
−1(Bn)) =

|An ∩ (ρ
h
n )
−1(Bn)|

|An|
>

1
2

for some h ∈ Fmn .

Since each ρh
n is an isometry of the metric d (Vn×Wn), this and property (i) require

that
|Bn| > |An|/2.
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Therefore, since property (iii) now holds for all sufficiently large n, we have

cov1/2,δ/2(µn, d (Vn×Wn)) = |Bn| > exp(h1|Vn||Wn|)

for all sufficiently large n, and thus

hdq
Σ×T(µ

×H ) > h1.

Since h1 < hΣ×T(µ
×H ) was arbitrary, this completes the proof.

In case G is trivial, Theorem E just asserts that all our sofic entropy notions
coincide for Bernoulli H -systems. However, in that case one could give a
much simpler proof: if (X H , ν×H , S) is a Bernoulli H -process and d a compact

generating metric on X , then Lemma 5.11 gives that ν×Wn
dq
−→ ν×H , and this

sequence of measures achieves the full sofic entropy of the process, which just
equals the Shannon entropy of ν.

It is worth comparing Theorem E with [6, Theorem 4.1], which gives other
sufficient conditions for a G-system (X, µ, T ) to satisfy hΣ(µ, T ) = hq

Σ(µ, T ).
Bowen’s assumptions are that G is residually finite and that Σ consists of
quotients by finite-index normal subgroups of G. This looks quite different
from Theorem E: in the first place, Theorem E assumes that the system is of a
special kind, whereas Bowen’s condition is mostly about the sofic approximation.
However, the proofs do have a similar flavour. A key point in the proof of
Theorem E is that the left-shift action of H on X H commutes with the co-induced
(G × H)-action and is weakly mixing. Bowen’s proof also requires that there be
a ‘sufficiently large’ group commuting with a given action: in his case, that the
G-actions on the sofic approximations Vn commute with some transitive actions
from the other side. In both cases, the proof uses this large centralizer for some
auxiliary averaging, which converts single good models into measures. It would
be interesting to find some way of unifying these two sufficient conditions. It
would also be worth knowing whether Bowen’s condition can be generalized in
such a way that every sofic group has some sofic approximation which satisfies it.

In light of the role played by the left-shift H -action in the proof of
Theorem E, I suspect it might have a far-reaching generalization as follows. Let
(X, µ, T ) be a G-system. Let Aut(X, µ) denote the group of all measure-
preserving automorphisms of the probability space (X, µ), up to agreement
µ-almost everywhere. This is a Polish group in its coarse topology. The G-action
T defines a homomorphism G −→ Aut(X, µ), and we define the centralizer of
T to be the subgroup of elements of Aut(X, µ) which commute with the image
of that homomorphism.
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CONJECTURE 9.3. If the centralizer of T is ergodic, then hΣ(µ, T ) = hq
Σ(µ, T ).

If the centralizer is weakly mixing, then hΣ(µ, T ) = hdq
Σ (µ, T ).

For example, the centralizer of the co-induced (G × H)-system (X H , µ×H ,

CIndG×H
G T ) includes the left-shift action of H , which is Bernoulli and therefore

weakly mixing.
On the other hand, I do not believe that the conditions in Conjecture 9.3 are

necessary. On the contrary, if G is amenable, then one should always have

hΣ(µ, T ) = hq
Σ(µ, T ) = hdq

Σ (µ, T ) = hKS(µ, T )

for any sofic approximation Σ . The equality of the first and last values here is
shown in [7], and I think similar methods are able to prove the others.

10. Some directions for further study

Just as for sofic entropy itself, the following basic fact is not known for
the model-measure sofic entropies. It suggests a major gap in our present
understanding.

QUESTION 10.1. Are there a sofic group G, a G-system (X, µ, T ), and two
different sofic approximations Σ and Σ ′ to G such that

0 6 hq
Σ(µ, T ) < hq

Σ ′(µ, T ),

or similarly with hq replaced by hdq? What if G is a free group?

There are cases in which some sofic approximations give a nonnegative value,
while others give −∞, just as there are for sofic entropy itself.

The following related questions are also open.

QUESTION 10.2. Are there a sofic group G, a G-system (X, µ, T ), and a sofic
approximation Σ such that at least two of the quantities

hΣ(µ, T ), hq
Σ(µ, T ) and hdq

Σ (µ, T )

are nonnegative, but are not equal? What if G is a free group?

QUESTION 10.3. Are there a sofic group G, a G-system (X, µ, T ), and a sofic
approximation Σ such that the sequence

1
k

hΣ(µ×k, T×k), k > 1,
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contains at least two distinct nonnegative values? How about for hq
Σ? Are there

examples in which

0 6 hps
Σ(µ, T ) < hΣ(µ, T )?

What if G is a free group?

Another possibility that might be worth pursuing is that certain choices of sofic
approximation give some simplification of the entropy theories.

QUESTION 10.4. Let G be a sofic group. Is there a sofic approximation Σ to G
such that

hΣ(µ, T ) = hdq
Σ (µ, T )

for all G-systems (X, µ, T )?

In this case, I think an obvious candidate is to start with an arbitrary sofic
approximation Σ0 = (σn : G −→ Sym(Vn))n>1, and then let Σ be the sequence

σ×mn
n : G −→ Sym(V mn

n )

for some slowly growing sequence m1 6 m2 6 · · · . It might be that for this Σ ,
some variation of the averaging argument used to prove Theorem E would answer
the above question positively. I have not pursued this idea very far.

In case G is a free group, Bowen introduced another entropy-like invariant
called the ‘ f -invariant’ in [8], and denoted it by f (µ, T ). In [3], he then showed
that f (µ, T )may be expressed as a kind of average of sofic entropies over random
sofic approximations. As a result, the f-invariant may have better behaviour than
the sofic entropy along any given sofic approximation. It would be interesting to
study its additivity properties using the method of the present paper.
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Fisher, Alex Lubotzky and Brandon Seward. After the first versions of this paper
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