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A GENERAL FORMULA ON THE CONJUGATE OF THE 
DIFFERENCE OF FUNCTIONS 

BY 

J.-B. HIRIART-URRUTY 

ABSTRACT. Given an arbitrary function g :X —» (-2°, +00] and a lower-
semicontinuous convex function h:X -» (—°°, +00], we give the general 
expression of the conjugate (g — h)* of g - h in terms of g* and /i*. As 
a consequence, we get Toland's duality theorem: 

inf {g(x) - h(x)} = inf {/I*(JC*) - g*(x*)}. 
A e x v* e x* 

1. Introduction. The conjugacy operation which associates a function/* defined on 
X* with every function/defined on X is a key-tool in formulating variational principles 
in nonconvex optimization and calculus of variations as well as in deriving duality 
schemes for such problems. It has also been proved to be a useful device in other areas 
like statistics, through the Cramer transformation for example. More precisely, let |x 
be a probability measure on X and Z^:X* —» ]0, + <*>] its Laplace transform, that is: 

(1.1) VJC* EX* L^x*) = J e<v* v>d(x(jc). 

The Cramer transform C^ of |x is defined on X as: 

(1.2) V x G X C^x) = sup {<**,*> - Log L^(x*)}. 
j * ex* 

So, Cp. is nothing else than the conjugate function of Log L^. See [2] for a detailed 
account of the use of Cramer transforms in studying large deviations in statistics. 

Calculating/* in terms of/* when/has been constructed from other functions/ 
constitute the body of calculus rules on conjugate functions. As for example, the 
conjugate of the infimal convolution of/, and/2 is the sum of the conjugate functions 
of/] and/2. Our aim here is to give the exact expression of the conjugate of/ = 
g — h, h convex, in its most general setting. We thereby shed a new light on Toland's 
duality results associating 

inf {g(x) - h(x)} and inf {&*(**) - #*(**)}. 
x G X x* G X* 
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2. The conjugate of the difference of two functions. As is usual in the context of 
convex analysis, we work in the setting of two locally convex (real) topological vector 
spaces X and X* paired in separating duality by a bilinear form we denote by (, ) (cf., 
e.g. [6, §6], [5, §6.3], [8, §3]). Given/:X-> R (R denotes the extended set of real 
numbers), the conjugate function f* :X* —» U is defined as: 

(2.1) VJC* E X* /*(**) = sup {<JC,JC*> - f(x)}. 
xEX 

In particular, the infimum of/over X is nothing more than —/*(0). We recall that/is 
equal to its biconjugate/** (= (/*)*) whenever/is convex, lower-semicontinuous and 
proper (/proper means that/does not take the value — °° and is not constantly equal 
to +oo). The class of such functions sometimes is denoted by ro(X) in the literature 
([6, 3]). When dealing with difference of functions which possibly take the value +oo, 
we are confronted with ambiguities like (+°°) + (-°°). We adopt, as does Moreau 
([6]), the following rules on U: 

( + 00) ^ ( - 0 0 ) = ( - 0 0 ) + ( - 0 0 ) = ( + 00). 
1 ' } (-hoo) - ( + oo) = ( + oo) + (-oo). 

We assume throughout that both g and h are proper functions of X into (—oo5 +oo] and 
we set: 

(2.3) V x G I f(x) = g(x) - h(x). 

There is actually no loss of generality in supposing that g and h are proper. For the 
purposes of minimizing / , we note that: 

(2.4) in f / (* )= inf {g(x) - h(x)}, 
xEX xE domg 

where dom g denotes the set where g is finite. 

PROPOSITION 2.1. 

(2.5) VJC* E X* f*(x*) > sup {^*(JC* + y*) - h*(y*)}, 
h*(y*)EU 

with sup = — o° by convention. 

PROOF. 

/*(**) = sup {(x,x*) - [g(x) - h(x)]} > <*,** + y*) - g(x) 
x G dom g 

+ h(x) — (x,y*) for all x G dom g and all y* €E dom h*. 

Thus 

f*(x*) + {<x,y*) - h(x)} > (JC,JC* + y*) - g(jt) 

for all x E dom g and all y* E K*. 
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Whence 

/*(**) + h*(y*) ^ g*(jc* + y*) whenever /z*(y*) E U, 

and the announced inequality is proved. • 
To get equality in (2.5), we assume more on h, more precisely that h is convex, 

lower-semicontinuous and proper (h E ro(X)). 

THEOREM 2.2. If he. T0(X) then 

(2.6) VJC* E X* /*(**) = sup {g*(x* + y*) - h*(y*)}. 
y* G dom /?* 

PROOF, dom h* is nonempty since h E ro(X). Suppose now there is r E M such that 

(2.7) g*(jc* + j* ) — //*(}?*) < r for all y* E dom /i*. 

If not there is nothing to prove to get (2.6). 
We infer from (2.7): 

g*(jt* + y*) < h*(y*) + r for all y* E K*. 

Taking the conjugate of both sides of the above inequality yields: 

g**(y) - ()/,JC*)-> /i**(;y) — r = /i()0 - r for all j £ X . 

Now, since g** < g, we derive: 

(y,x*) — [g(}0 ~ /i(j)] — f" for all y E dom g. 

Whence (g - h)*(x*) < r. Q.E.D. D 
By just making x* = 0 in Proposition 2.1 and Theorem 2.2 we get Toland's results 

([9, Sections 2.1 and 3.1], [10, Section 2.1]). 

COROLLARY 2.3. 

Inf {g(x) -- h(x)} < inf {h*(x*) -^ g*(x*)}. 
v e x x* e x* 

Equality holds whenever h E ro(X). 

We have shown that: 

(2.8) inf {g(x) - h(x)} = inf {/Z*(JC*) - g*(x*)} whenever h E T0(X). 
x E dom # .v* E dom h* 

By just using that sup (•) = — inf (— •), we also derive: 

(2.9) sup {g(x) — h(x)} = sup {h*(x*) — g*(x*)} whenever g E r0(X). 
.v E dom h x* E dom #* 

REMARK 1. Toland's result (2.8) has been obtained here as a consequence of the 
formula (2.6) giving (g — h)*. Conversely, one may wonder whether one can get (2.6) 
having the relation (2.8) or (2.9) at our disposal. The answer is yes and the proof comes 
as follows: 
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(g - h)*(x*) = sup {(x,x*) - [g(x) - h(x)]} 
x E dom g 

= sup {h(x) - [g(x) - (x,x*)]}. 
x E dom g 

It then remains to apply (2.9) with the functions x —» h(x) and x —> g(x) - (x, JC*). 

REMARK 2. An alternate proof of (2.6) can be offered assuming that h is sub-
differentiable on X ([4]). Both proofs are actually simple and concise. 

COMMENTS. Pshenichnyi ([7]) should be credited with having considered firstly the 
conjugate of the difference of convex functions. He proved the formula of Theorem 2.2 
assuming that both g and h are finite-valued convex functions. The way he proved that 
was first deriving the relation (2.9) and then deducing the general formula as it is 
sketched in Remark 1. 

In two successive papers ([9], [10]), Toland proved and exploited thoroughly the 
equality (2.8). The mapping which assigns h* - g* to g - h, g and h E T0(X), is 
sometimes referred to as Toland's involution. The duality schemes Toland proposed in 
the context of variational problems have been further developed by Auchmuty ([1]). 
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