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ABSTRACT. Most non·Hnear fluids for which the 
appropriate measurements have been made exhibit 
non-zero and unequal normal stress differences in 
shearing flows. Power-law models such as Glen's law 
cannot represent this phenomenon. The simplest 
constitutive equation that does embody normal stress 
effects defines the second-order fluid . An exact 
analytical solution for biaxial creep of such a fluid is 
fit to data from four tests on polycrystalline ice. The 
model gives an excellent representation of both primary 
and secondary creep. The fits provide values for the 
three material constants . These coefficients indicate 
positive first and second normal stress differences. One 
consequence is the prediction that a steady open-channel 
flow will exhibit a longitudinal free-surface depression 
of up to several meters for sufficiently thick ice on 
steep slopes . In addition, the compressive principal stress 
at the channel margin is decreased and the tensile 
principal stress is increased in magnitude over those 
predicted by models without normal stresses . The normal 
stresses thus favor the formation of crevasses . 
Furthermore, the angle these crevasses form with the 
channel margin is decreased . 

RESUME. Influence de la conlrainle normale sur le 
fluage de la glace. La piu part des flu ides non lineaires 
pour lesquels des mesures adequates ont ete realisees 
montrent des differences non nulles et inegales de la 
contrainte normale dans les ecoulements de cisaillement. Des 
lois-puissance telles que celles de Glen ne peuvent rendre 
compte de ce phenomene. La plus simple de ces equations 
d'etat qui incorpore les effets de la contrainte normale 
definit un f1uide du second ordre. Une solution analytique 
exacte pour un f1uage biaxial d'un tel f1uide est comparee 
aux donnees de quatre tests sur de la glace polycristalline. 
Le modele donne une excellente representation il la fois du 
f1uage primaire et du secondaire. Les ajustements donnent 
des valeurs pour les trois constantes du materiau . Ces 
coefficients indiquent des differences positives pour la 

INTRODUCTION 

Glen's law (1955), which represents ice as a 
power-law fluid, has proven to be a useful and effective 
tool for modeling the shearing behavior of ice in simple 
flow configurations. However, Glen (1958) himself 
explicitly recognized the limited nature of the power 
law, and discussed some of the implications of more 
general constitutive equations . In particular, he 
considered an expression for the rate of deforma tion as 
a function of stress for an isotropic and incompressible 
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premiere et la seconde contrainte normale. Une des 
consequences est la prediction pour un chenal ouvert en etat 
de regime d'une depression longitudinale il la surface libre 
de plusieurs metres pour une epaisseur suffisante de glace 
sur de fortes pentes. De plus, la contrainte principale de 
compression decroit au bord du chenal et la contrainte 
principale de traction croit en amplitude au delil de celles 
predites par des modeles sans contraintes normales. Les 
contraintes normales favorisent alors la formation des 
crevasses. Dans ce cas, I'angle de ces crevasses avec le bord 
est reduit. 

ZUSAMMENFASSUNG. Wirkullgen der Normalspannung beim 
Kriechen von Eis. Die meisten nichtlinearen Flussigkeiten, 
fur die geeignete Messungen angestellt wurden, zeigen beim 
Fliessen unter Scherung von Null verschiedene und ungleiche 
Differenzen der Normalspannung. Modelle mit 
Potenzgesetzen, wie etwa das Glen'sche Fliessgesetz, konnen 
dieser Erscheinung nicht gerecht werden. Die einfachste 
Grundgleichung, die Effekte der Normalspannung 
miteinbezieht, definiert die Flussigkeit zweiter Ordnung. 
Eine exakte analytische Losung fur das biachsiale Kriechen 
einer solchen Flussigkeit passt zu den Oaten von 4 
Versuchsreihen mit polykristallinem Eis. Das Modell liefert 
eine ausgezeichnete Darstellung sowohl des primaren wie des 
sekundaren Kriechens. Die Anpassungen ergeben Werte fUr 
die drei Materialkonstanten. Diese Koeffizienten deuten auf 
positive erste und zweite Differenzen der Normalspannung. 
Als Folgerung Hisst sich vorhersagen, dass stetiges Fliessen 
in offenen Kanalen bei ausreichend dickem Eis auf steilen 
Hangen eine Langsabsenkung der freien Oberfliiche bis zu 
emlgen Metern ergibt. Ausserdem verringert sich die 
Hauptdruckspannung am Rande des Kanals und die 
Hauptdehnungsspannung erweist sich als hoher als die von 
Modellen ohne Normalspannung vorausgesagte. Die 
Normalspannungen begUnstigen so die Biuldung von Spaiten. 
Weiterhin wird der Winkel zwischen diesen Spaiten und dem 
Kanalrand verringert . 

fluid, specialized to exclude dependence on the spherical 
part of the stress. Glen's law is a further specialization 
of the resulting equation that neglects terms of second 
order in the stress . Glen (1958) showed that the power 
law cannot consistently represent results from both 
uniaxial compression and direct shear tests, nor can it 
account for measurements made under simultaneous shear 
and compression achieved in torsion of an annular 
sample. the higher-order theory, however, is able to 
reconcile these observa tions. 

This paper considers the application of the 
"second-order fluid" model to polycrystalline ice. Morland 
(1979, 1981) has discussed this possibility for a more 
general constitutive equation, of which the second-order 
fluid is a special case . The second-order fluid has close 
affinities to the general flow law treated by Glen 
(1958), but there are several fundamental differences. 
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First, the second-order fluid arises in an expansion of 
stress as a function of the deformation-rate, while 
glaciologists often work with the inverse of such a 
relation . Non-linear constitutive equations often cannot 
be inverted, so that direct comparisons between these 
different approaches may be difficult. For example, the 
procedure discussed by Glen (1958), when applied to a 
relationship for stress as a function of deformation rate , 
leads to the definition of the "Reiner-Rivlin fluid" (see, 
e.g . Bird and others , 1977), which exhibits behavior 
significantly different from that of the material defined 
by Glen's general expression. A second major difference 
between the second-order fluid and earlier formulations 
is that it involves an expansion not only in higher 
powers of the deformation rate , but also in higher order 
derivatives of the deformation rate . This extension was 
critical in developing a constitutive model capable of 
representing the unequal normal stress differences 
commonly observed in non-linear fluids in shearing 
flows , a phenomenon central to the discuss ion to follow . 
Finally, the coefficients in the general flow law posed 
by Glen (1958) are allowed to be functions of the 
invariants of the stress. Similarly, the coefficients in the 
constitutive equations considered by Morland (1979, 1981) 
are allowed to depend upon the i"nvariants of the rates 
of deformation . The coefficients in the expansion 
leading to the second-order fluid are taken to be 
ma terial constants. 

The last feature of the second-order fluid model bears 
elaboration in the present context . An important 
consequence of this assumption is that the relationship 
between shear stress and rate of shearing deformation 
for the second-order fluid is identical to that for a 
linearly viscous fluid. Thus, the second-order fluid is in 
no way presented here as a replacement for, or 
generalization of, Glen's law . Clearly , it fails to 
represent the non-linear rate dependence of ice in shear. 
However, just as the power law is a useful artifice for 
capturing non-linear shearing behavior, the second-order 
fluid is likewise a convenient idealization for 
representing certain other classes of non-linear 
phenomena . Prominent among these are normal stress 
effects. 

The term "normal stress effects" refers here to 
various measurable kinematic and dynamic phenomena 
that are a consequence of rate-dependent normal stresses 
associated with shearing deformations. In particular, 
materials such as the second-<Jrder fluid, when subjected 
to simple shear, exhibit non-hydrostatic normal stresses 
perpendicular to the plane of shear and in the direction 
of the flow that are quadratic in the shear rate . 
Similarly, the material treated by Glen (1958), when 
subjected to a simple shear stress, exhibits a non-zero 
dilation rate normal to the plane of shear. It is 
important to emphasize that the term "normal stress 
effect," in this context, is completely unrelated to the 
question of whether the rate of shear deformation of ice 
is affected by the spherical part of the stress . Indeed, as 
noted previously, the shear rate of the second-order 
fluid depends only on the shear stress. 

Both theoretical considerations and experimental 
evidence indicate that normal stress effects are among 
the first manifestations of non-linearity in many fluids. 
Power-law constitutive models cannot properly represent 
normal stresses, and thus cannot be used to predict an 
entire class of important non-linear phenomenology. The 
purpose of this paper is to study the possibility of 
normal stress effects in ice. The second-<Jrder fluid, 
which is an idealization commonly used by polymer 
rheologists, is adopted as a tentative model. The three 
coefficients appearing in this model are determined from 
data for polycrystalline ice in biaxial creep . An 
excellent representation of primary and secondary creep 
is obtained . Normal stress effects are illustrated by 
examining the free~urface depression predicted for 
open-channel flow . Using the material properties 
determined for ice, it appears that such a depression 
could be measurable on glaciers on sufficiently steep 
slopes . Furthermore, the principal stresses at the surface 
of the channel are changed in both magnitude and 
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direction, which could influence the development of 
crevasses. 

THE SECOND-ORDER FLUID 

A quite general model for material behavior is the 
simple material. This material is defined by the 
constitutive assumption that the stress is a functional of 
the history of the strain (Noli, 1958)*, and it includes as 
special or asymptotic cases many of the classical theories 
of material behavior, such as linear and non-linear 
viscosity, linear and non-linear visco - elasticity, and 
linear and non-linear elasticity. This model is not only 
highly useful for conceptual purposes (e.g. Truesdell 
and Noll , 1965) but also may be used to solve certain 
boundary-value problems exactly (Coleman and others, 
1966). However, usually the model is too general to 
allow analytical solut ions . A useful expediency is, then , 
to choose special simple materials, explicit enough to 
allow solution of boundary-value problems , but not so 
special as to exclude the physical phenomena one wishes 
to model. For such choices, there are two obvious 
options (1) arbitrary choice of constitutive equations for 
special simple materials, and (2) development of a 
hierarchy of more and more complex materials by 
rational approximation schemes. Option I is not 
discussed here. Within the realm of option 2, the choice 
that gives answers that are most aceeptable to those who 
do experimental work on fluid-like materials is the 
method of retarded motions (Coleman and NolI, 1960). 
There, the functional is approximated by a sequence of 
functionals of motions more and more retarded , i.e. 
stretched out, in time. For incompressible materials, the 
first-order approximation is the linearly viscous fluid. 
The second-order approximation ist 

(1) (2) (1) (1) 
Tij + P6ij = 1'1Aij + ~Aij + Il-JAikAkj' (I) 

where Tij is the stress, P is an isotropic pressure, 1'1' ~, 
and Il-J are material constants, 

(1 ) 
Aij = Vi,j + Vj,i' (2) 

is twice the deformation rate ("strain-rate") Dij 
used in fluid mechanics, Vi is the velocity, and 

(2) a (1) (1) (1) (1) 
Aij aI Aij + VkAij, k + AikVk,j + A jkVk, i ' 

usually 

(3) 

(1) (2) . 
The quantities Ai' and Aij were Introduced by Rivlin 
and Ericksen (1955), and are now commonly called 
Rivlin-Ericksen tensors. The material model (1), properly 
referred to as the "incompressible fluid of grade 2", is 
commonly called the second-order fluid . The special 
case ~ = I' 3 = 0 recovers the linearly viscous fluid, 
while sett ing ~ = 0 recovers the Reiner-Rivlin fluid 
(Rivlin, 1948). As with any good putative material 
model, the basis of the second-order fluid is a strong 
theoretical argument , but its ultimate acceptance as a 
constitutive equation for any real material depends upon 
comparisons between exact solutions to boundary-value 
problems and experimental data . Steps in that process 
for ice are presented here . 

One distinguishing feature of the second-order fluid 
model is that it allows for non-zero and unequal normal 
stress differences in shearing flows. The normal stress 
differences are defined by 

(4a) 

(4b) 

* A formally similar but less general theory was proposed 
by Green and Rivlin (1957). 
tCartesian indicial notation is used here. Translation 
into other notations is a straightforward task. 
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For a shear rate au 1/ ax 2 = K, NI = 
N2 = (2~ + 1Is)r2 . It is easily seen that 
constitutive equation of the form 

Tij + PSi) = an-(n - 1)/2nA~;) 

_2~.2 and 
a power-law 

(5) 

(1) (1) 
where n = tAklAlk' cannot yield non-zero values for NI 
and N 2 in rectilinear shearing flows . Glen's law (1955), 
commonly used to represent the behavior of ice, is of 
the form of Equation (5), with n generally found to be 
about 3. Normal stress effects, if present, thus cannot be 
predicted by Glen's law. 

Direct measurements on a great variety of 
non-linear fluids, most of them polymer solutions or 
melts, have shown that most exhibit non-zero and 
unequal normal stress differences in shearing (e.g. Bird 
and others, 1977). A power law can accurately represent 
the secondary creep behavior of these materials, but 
cannot predict any of the non-linear phenomena 
associated with normal stresses. Ice is not a polymer in 
the classical sense, and for that reason it might be 
inferred that this experimental evidence carries little 
weight. However, it is significant that few materials 
have ever been found that exhibit non-linear shear 
viscosity that do not also exhibit normal stress effects . 
It is interesting to note that non-linear kinetic theories 
for fluids (e.g. Bird and others, 1977, part 2; Truesdell and 
Muncaster, 1980) arrive at a similar conclusion based on 
detailed considerations of momentum transfer on a 
molecular scale. 

The second-<Jrder fluid model successfully represents 
data from viscometric measurements for numerous 
materials. In addition, its application in various 
boundary-value problems leads to predictions of normal 
stress effects that are qualitatively consistent with 
laboratory observations. Included among these are the 
phenomena of rod climbing (the Weissenberg effect) 
(Joseph and Fosdick, 1973), die swell (Bagley and 
Schreiber, 1969), secondary flows in non-circular conduits 
(Langlois and Rivlin, 1963), cross-stream migration of 
particles (Ho and Leal, 1976), and free-surface bulging 
in open-channel flows (Wineman and Pipkin, 1966). All 
of these effects are due to non-zero normal stress 
differences. The second-<Jrder fluid is the simplest model 
that can represent this phenomenology. 

DETERMINATION OF MATERIAL PARAMETERS 

Although the second-<Jrder fluid has been suggested 
previously (Hobbs, 1973; Rundle and Passman, 1982) as a 
model for geological materials in creep, there has been 
no simple and direct method available for determining 
the three coefficients in Equation (I) from standard 
laboratory tests. However, Passman (1982) has recently 
presented an exact solution to the boundary-value 
problem corresponding to a cylinder of second-<Jrder 
fluid in biaxial creep. By fitting the analytical 
expression for axial strain versus time to laboratory 
data, the material properties can be determined directly . 
Indeed, this has been done successfully for 
polycrystalline halite (Passman, 1982) and polycrystalline 
olivine at high temperature (a paper in preparation by 
D.F. McTigue and S.L. Passman). 

Consider a right circular cylinder of ice, as 
commonly tested in a biaxial device (Fig . I), and choose 
a rectangular Cartesian coordinate system with Xl along 
the axis of the cylinder. Let the cylinder have a length 
L in a reference configuration. Assume the ice is 
incompressible- and that it undergoes a homogeneous 
motion, with its length as a function of time being l(t). 
Let 

a = 
J(t) 

L 
(6) 

-This assumption is commented upon later in this paper. 
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Fig. I . Definition sketch for the biaxial creep test. 

Clearly, a is related to the infinitesimal ("engineering") 
axial strain E by a = I + E and to the natural strain e 
by e = Ina. Then the deformation gradient tensor (see 
e.g. Schowalter, 1978) is diagonal, and its components FiJ 
have the form 

Fi! = diag 
[ 

I I 1 " a, -, - ,Cl = a(t) , 
-la -la 

(7) 

the second two terms being equal because of the choice 
of coordinate system, and having the value I / -Ia because 
incompressibility requires that the determinant of FiJ be 
I. The Rivlin-Ericksen tensors 
(1) (2) 
Ai} and Ail (Equations (2) and (3» are easily computed 
from Fi!' They take the forms 

(1 ) 
Aij = diag [2a, -a, -al, (8) 

a, a2 
- al, (9) 

where a = a/a, and a superposed dot indicates 
differentiation with respect to time. 

Now by Equation 
forms of Equations (8) 
form 

. (1) (2) 
(I), If Ai} and Aij have the 
and (9), then Ti} must have the 

Tij + PSi} = diag[a + v,v,vl (10) 

where v is the confining pressure, and a is the axial 
stress in excess of the confining pressure. It then follows 
from Equation (I) that 

(11) 

and 

(12) 

If one eliminates v from these equations, one obtains 

(I3) 
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a (14) a 
a 

with the initial conditions 

a(0) = ~, (15 ) 

~O) =~, ~ (16) 

Passman (1982) details a number of solutions to this 
system, corresponding to different types of fluids in 
polymer rheology . The only situation of interest here is 

ILl > 0, ~.,. 0, ~.,. 0 . (17) 

The solution is facilitated by the introduction of the 
following parameters: 

ILl (18) IL = 
2(~ + ~) , 

~ + ~ (19) 
~ 

JI. 2 a 
~2 1 + (20) 

4(~ + ~)2 3(~ + ~) 

The parameters }. and 11 may be either positive or 
negative, but may not vanish or be infinite . Likewise, ~2 
may vanish or be positive or negative. Discussion is 
limited here to the case ~2 > 0, which yields physically 
reasonable results and has been found to provide the 
best fits to laboratory creep data for geological materials 
(Passman, 1982). For this case, the solution is 

a + IL [(ao + JI.) / O cosh(}'~t) + sinh(}.~t) 

[(ao + IL)/ ~l sinh(}.~t) + cosh(}.~t)' 
(21 ) 

In the following section, data for ice 
Equation (22) in order to determine 
constants ILl' ~, and ~. 

are fitted by 
the material 

EXPERIMENTAL PROCEDURE AND DATA 

The creep curves given here were obtained from ice 
grown in a cold room at about _8°C . A mold , similar to 
that described by Cole (1979), was about 80% filled with 
snow or crushed ice which had been passed through a 
#30 sieve but had been retained on a #40 sieve. It wa s 
evacuated with a vacuum pump for about 15 min a nd 
then flooded with de-aerated , de-ionized, and doubl y 
distilled water at O°C. While still under vacuum , the 
mold was tapped lightly to release any trapped air 
bubbles . It was allowed to freeze for about 20 min, and 
then the vacuum was released and the top cap of the 
mold unscrewed to allow for expansion of the freezing 
sample. The whole was then left in the cold room, 
usually overnight, to freeze solid . 

The samples were removed by gently warming the 
mold and allowing the ice to slide out. At this point the 
samples were approximately 140 mm long and 85 mm in 
diameter. There was usually a thin core of air bubbles 
running down the center of the sample . However, 
because the sample was cut longitudinally into four 
pieces and then each piece turned on a lathe, the 
bubbly center part was removed . The final samples 
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tested were 12 mm in diameter and 40 mm long, with 
stainless steel caps frozen on to the ends . Thin sections 
of each sample were examined to check that the crystals 
were randomly oriented. The average grain-size was 
I mm. 

The samples were defoimed under a constant 
uniaxial dead-weight compressive load in a stainless steel 
jig , Friction was minimized by using linear ball 
bearings, and the ensuing deformation was measured 
with an L VDT. The whole jig was placed in a 
high-pressure cell with two electrical feedthroughs, one 
for the L VDT connections and one for a thermocouple , 
The pressurizing fluid was Dow Corning silicone fluid 
200, which served also to prevent evaporation of the 
sample. The whole was placed in a cold room, and the 
compressive creep deformation was recorded as a 
function of time on a strip-chart recorder. The data 
were converted to give a normal creep curve of strain 
against time for a constant hydrostatic pressure . Some 
results of these tests have already been discussed (Jones 
and Chew, 1983). 

Four tests were done at the same temperature 
(-9.5°C to -9.8°C) and axial stress in excess of the 
confining pressure (--{l.47 MPa), but at different 
confining pressures (0, 37, and 50 MPa). The tests were 
carried out for 23 to 35 d. The data reveal the onset of 
tertiary creep at late time; i.e. there is evidence of 
strain-softening behavior. It is known for other materials 
that the second-{)rder fluid can represent primary and 
secondary , but not tertiary, creep (Passman, 1982)*. Thus, 
for the purpose of fitting Equation (22) to the measured 
strains , the data have been truncated at the onset of 
tertiary creep. 

The three coefficients characterizing the second-{)rder 
fluid were determined by multiple regression, fitting 
Equation (22) to the data as shown in Figure 2 . The 
results are given in Table I. The properties inferred 

0.030 

0 .025 

0 .020 
z 
;( 
a: .... 

0 .015 '" ..J .. 
;( 
~ 0.010 

0 .005 

0 .000 
0 6 8 10 12 14 16 

TIME (s) x105 

Fig . 2. Fits of Equation ( 22) to data for primary and 
secondary creep. Parameters determined by regression are 
shown in Table I. 

from tests 2, 3, and 4 are quite consistent. Because these 
tests were run at essentially the same temperature, 
possible temperature dependence of the coefficients is 
not revealed . A wide range of confining pressures was 
used, and there is no discernible effect on the material 
properties, This observation lends credence to the 
assumption of incompressibility . The fits shown in 
Figure 2 and the corresponding coefficients recorded in 
Table I were determined using all of the available data . 
The values obtained for ~ and ~ are highly sensitive 
to the data at early time , This was substantiated by 
repeating the regression analyses with the first point in 
each data set deleted. The results of this procedure, 
which are not shown here, were values for all three 
coefficients in all four tests within a few percent of 

*In contrast, a power law can represent only secondary 
creep. 
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T ABLE I. CONSTITUTIVE COEFFICIENTS, TEMPERATURE, AND CONFINING PRESSURE FOR 
FOUR BIAXIAL CREEP TESTS 

T est III 112 113 T v 

Pa s Pa S2 Pa S2 't MPa 

-8.3 x 1020 5 .9 X 1022 -9.5 0 

2 5.9 x 1013 -1.6 x 1019 5.5 X 1021 -9.8 0 

3 3.8 x 1013 -3.4 x 1018 2.3 X 1021 -9.5 37 

4 3.9 X 1013 -1.2 x 1019 2.5 X 1021 -1) .7 50 

Mean* 4.5 X 1013 -1.0 x 1019 3.4 X 10 21 

'The entries in the row of means are for tests 2, 3, and 4 only . 

their respective means. Thus, the scatter in the values 
recorded in Table I can be ascribed primarily to 
uncertainty in the creep response at early time. Test I 
in particular is strongly affected by the first data point, 
and the resulting parameters are not included in the 
calculated averages. 

It should be emphasized that all of these tests were 
carried out at the same deviatoric stress; only the 
confining pressure was varied . In general, of course, the 
coefficients are expected to be different for different 
shear rates (e.g. J.il may vary in the fashion of the term 
multiplying Afy in Equation (5». This type of 

generalization has reen discussed by Morland (1979, 
1981). The results presented here, then, are not in tended 
to suggest that the second-<Jrder fluid model gives a 
complete representation for the beha vior of ice. Rather, 
attention is confined to a limited test condition in order 
to obtain a first estimate of possible normal stress 
effects. 

For shearing flows , the average values obtained for 
ice yield normal stress differences of 

NI = 2.1 X 1019 .2 Pa, (23a) 

(23b) 

where the shear rate is in units of S-I. It is 
interesting to compare these results with those for other 
materials modeled as second-<Jrder fluids . Polymer 
rheologists generally find from direct viscometric 
measurements that NI > 0 and N2 < 0 (e.g . Bird and 
others, 1977), and observe that IN2 I is about one order 
of magnitude smaller than 1Nl I. The results for ice 
which are inferred here from non-viscometric 
measurements, contrast strongly with data for polymers; 
N2 is positive and two orders of magnitude greater than 
NI. These differences are not surprising because the 
mechanisms that give rise to normal stresses in polymers 
are interactions of long-<:hain molecules. That is clearly 
not the case for ice. For salt (Passman, 1982) and 
olivine (a paper in preparation by D .F. McTigue and S.L. 
Passman), relationships similar to those observed in ice 
are found: NI > 0, N2 > 0, and N2 » ~.* 

*In a work not yet published, C.-S. Man and others 
adopt a model that generalizes the second-<Jrder fluid in 
the sense that the viscosity III may be a function of the 
deformation rate. They then present an approximate 
solution to the equations of motion corresponding to the 
pressure-meter creep test . Preliminary analysis of a set 
of careful tests on polycrystalline ice then indicates that 
~ > 0, implying that NI < O. An abstract of this work 
will appear as C.-S . Man and others, Proceedings 0/ the 
10th Canadian Congress 0/ Applied Mechanics, 1985 . 
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FREE-SURFACE DEPRESSION IN OPEN-CHANNEL 
FLOW 

A significant qualitative difference between the 
flow of a second-<Jrder fluid and that of a power-law 
fluid is the shape of the free surface in steady flow in 
an open channel. Wineman and Pipkin (1966) showed 
that a negative second normal stress difference N2 will 
result in a free surface that is convex upward in this 
type of flow . For slow flow , the kinematics are 
dominated by the linear term in Equation (I) . An 
approximation to the non-linear normal stresses can then 
be determined based on the velocity field for a linearly 
viscous fluid. This results in a non~quilibrated normal 
stress on the nominal (horizontal) free surface, which is 
balanced by a proportional rise or fall of the surface. 
Tanner (1970) implemented this observation as an 
experimental method for determining the normal stress 
difference N2 • Schowal ter (1978) has presented a general 
expression relating the maximum surface deflection to 
N2 for flow in a semicircular channel: 

pgh cos (J = -N 2(R) -( N2(~) d~~ 
o 

(24) 

where p is the density, g the acceleration due to 
gravity, h the central (maximum) rise or fall, {J the 
channel slope, and R the channel radius (Fig . 3). The 
velocity field, to this order of approximation, has the 
same parabolic profile as is found for a Newtonian 
fluid. Thus, by Equations (I) and (4b), the normal stress 
difference for the second-<Jrder fluid is found to be 

(25) 

where r is the radial coordinate . Substituting Equ ation 
(25) into Equation (24) and integrating gives 

h 
3pg(2~ + Ilg )R2 sin 2{J 

81112 cos{J 
(26) 

Because 2~ + II:! > 0, h is negative, representing a 
conca ve surface, i.e. a depression. 

It is recognized, of course, that most glacial 
surfaces exhibit a concave surface in the accumulation 
region and a convex bulge in the ablation region . These 
are generally well understood in terms of the equation 
of conservation of mass in an axially extending or 
shortening flow region (Raymond, 1971), where vertical 
flow results in surface displacements over the thicker 
central part of the channel. Nonetheless, it is interesting 
to consider whether the normal stress effect examined 
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Fig. 3. Definition sketch for channel flow. 

here could contribute measurably to observed surface 
deformation. Using the average values for jl.l' ~' and 11:1 
given in Table I and taking p = 9 X 102 kg/ m, g = 9.8 
m/ s2, h can be estimated for various channel slopes and 
radii . Results for such a calculation are shown in Figure 
4. Because the normal stress effects are of second-{)rder 
in the rate of shear deformation, they become 
significant only at higher rates, i.e . for large channels 
and / or steep slopes. 

The principal stresses at the free surface are 
affected by the non-linear normal stress terms, and this 
may influence the development of crevasses. In the case 
of a power-la w fluid, the normal stress differences in a 
steady uniform flow are zero, and the principal stresses 
are a tension and a compression of equal magnitude, 
oriented at 45 ° to the glacier margin (Nye, 1952). 
Crevasses normal to the principal tension are fa vored . 
For the second-{)rder fluid , the normal stress difference 
causes a change in magnitude and orientation of the 
principal stresses . In a semicircular channel, the 
principal stresses Tl and T2 are given by 

Tl -jl.lBr [I + [~ r ~r2 r + (j/.z + I1:I)B2r2, 

(27) 

T2 jl.lBr [I + [~ r B2r2 r + (j/.z + I1:I)B2r2 
(28) 

where B = pg sin I'/2j1.l' As a sample calculation, 
consider a flow for which p = 9 X 102 kg/ mS, I' = 2°, 
and jl.l' j/.z, 
in Table I. 
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and Il:! are given the average values shown 
At the margin of a 500 m radius flow, the 
principal stress Tl is decreased by 12% and 
principal stress Tz is increased by 14% 
the purely viscous case (j/.z = Il:! 0). 

CHANNEL RADIUS R = 500 m 

2 4 6 8 10 

BED SLOPE {3 (degrees) 

Fig. 4. Calculated surface depression as a function of 
channel slope and radius for a semicircular channel. 
using mean values from Table I. 

McT igue. alld others: Normal stress effects in the creep of ice 

Furthermore, the angle 9 at which Tl meets the 
boundary is given by 

tan 29 (29) 

which, for large values of the right-hand side, leads to 
the approximation 

11 
9 

4 
+ .. . (30) 

For the example cited in the foregoing, 9 = 41°; i.e. the 
normal stresses cause a small rotation of the direction 
most conducive to crevasse formation. 

CONCLUSIONS AND DISCUSSION 

Glacier ice is most often represented by a 
power-law constitutive model that provides good 
estimates of shear stresses and overall kinematics in 
simple flow configurations. However, such a model 
cannot represent the non-zero normal stress differences 
that have been observed in virtually all non-linear fluids 
for which the appropriate measurements have been made . 
The simplest constitutive model that arises from strong 
theoretical arguments and embodies these effects is the 
second-{)rder fluid. The model provides an excellent fit 
to data for primary and secondary creep of ice in 
biaxial tests in a single deviatoric stress state, and the 
inferred material constants are reasonably consistent 
among the four tests considered. The results indicate 
positive first and second normal stress differences, which 
contrasts with other materials. This provides a point of 
departure for inquiry into possible normal stress effects 
in natural glacier flows . The free-surface deformation in 
a steady channel flow has been considered briefly as an 
example of such phenomena, and it appears that it could 
be discernible for thick glaciers on steep slopes . In 
addition, the normal stresses alter the principal stresses 
in a fashion that favors crevasse formation in uniform 
flow . 

A limitation of the present analysis that should be 
noted is that the data-fitting procedure is somewhat 
insensitive to changes in the constants j/.z and 11:1; i.e. 
good fits of Equation (22) to the creep data can be 
found for broad ranges of these parameters . The 
coefficients j/.z and Il:! are determined principally by the 
curvature of the strain-time plot at early time. Most 
standard biaxial tests, including those reported here, 
provide only sparse data in this critical region, and 
regression analyses are consequently ill-constrained. This 
could be rectified, of course, in tests run explicitly for 
the purpose of examining the early time response in 
detail. A second reason for the low parameter sensitivity 
is that the response of a material in biaxial creep is 
dominated by its shearing properties .- While the biaxial 
creep test is not ideally suited to the measurement of 
normal stress coefficients, it has the advantage that it is 
a standard test for which experimental equipment is 
easily available and highly refined, and for which there 
is a large body of existing data. Despite these 
limitations, it is emphasized that the four data sets 
considered here all yield consistent values for j/.z and Il:!, 
implying that they are reasonably well constrained . Of 
course, the four tests cited were performed in the same 
dev ia toric stress state, so that any non-linear ra te 
dependence of the shear stress is not revealed . 

The Reiner-Rivlin fluid, which can be obtained 
from Equation (I) by setting j/.z = 0, also embodies 
certain normal stress effects . However, all fluids for 
which normal stresses have been measured exhibit a 

·This is a problem that plagues many viscometric 
measurements; the normal stress coefficients are in 
general difficult to determine accurately. 
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non-zero value of Nl (cf. Equation (4a)), contradicting 
the Reiner-Rivlin model (see e.g. Bird and others , 1977). 
Furthermore, it can be shown that the beha vior of the 
Reiner-Rivlin fluid in a biaxial creep test is 
indistinguishable from that of the linearly viscous fluid . 
Thus, it, too, is incapable of representing both primary 
and secondary creep. The second-<Jrder fluid , in contrast, 
does capture the transient primary creep phenomenon . 
However, it should be noted that the observation of 
primary creep in a biaxial test does not necessarily 
imply the existence of normal stresses. While they are 
closely linked in the present analysis, it is important to 
recognize that the representation of pr imary creep is not 
unique to models of this type. For example, the 
four-element visco-elastic material known as the Burgers 
substance, like the second-<Jrder fluid , can capture an 
initial elastic displacement, primary creep, and 
asymptotic steady secondary creep, but does not predict 
non-zero normal stress differences. 

Another limitation , which is not unique to the 
second-<Jrder fluid model, lies in the extension of 
laboratory measurements on a small homogeneous sample 
to large-scale field situations in which ice may be 
highly inhomogeneous and extensively fractured . It is 
not known whether such circumstances may enhance or 
suppress normal stress effects in the bulk material when 
it is viewed as a continuum. 

It remains to be seen whether normal stress effects 
of any sort are discernible in natural glacier flows . 
Experience with other non-linear fluids in other contexts 
suggests that such effects can be of practical 
significance. Calculations based on power-law models can 
never point toward these phenomena. The search for 
normal stress effects in ice must begin with a 
constitutive model capable of representing them in a 
self -{;onsistent fashion, and the second-{)rder fluid is the 
simplest such model. An important step in the assessment 
of this sort of phenomenology is the quantification of 
material properties. This has now been initiated for ice, 
and the results serve as a point of departure for further 
investigation. 
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