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To Professor Kinjiro Kunugi on the occasion of his 60th birthday

The aim of this paper is to investigate the behaviour of Green lines at
Royden’s boundary I' of a Riemann surface R with the Green fuaction g(z, o)
with the fixed pole o in R. We denote by & the totality of Green lines L
issuing from the fixed point 0. There exists a positive number ¢ such that the
set (zeR; g(z, 0)> —loge) is relatively compact and simply connected in R
and the set J=(z&R; g(z2, o) = —loge) is homeomorphic™ to the unit circle.
We may represent each point z in J by 8 (0<6<2n), if z corresponds to *
by the above homeomorphism. Using this, we can represent each L in @ by
L =L, (0<0<2r), where 6 is the point determined as the intersection of L and
J. ForeachsetSinI,weset S =(0;(LeNI)NSxP)and S=0;(L.NI)cS).
We denote by 7 (resp. ) the outer (resp. inner) normalized Lebesgue measure
on J. These may be considered as the outer and inner measures on §. For a
measurable set, we set m=7. We also denote by u the canonical measure on
I'" with the center o (i.e. the harmonic measure for subsets of I" calculated at o).

The fundamental result of this paper is that
m(K) < u(K) for any Fs set K in T,
or equivalently that
m(77) = p(U) for any Gs set U in T.

Since the subset of I" at each point of which the Green function is strictly posi-
tive is an F, set with canonical measure zero, the first inequality mentioned above
implies the well-known Brelot-Choquet’s result [2] that the set of Green lines on
which the Green function does not tend to zero is of Lebesgue measure zero.
By using the above inequalities and the theory of Royden’s compactification,

Received May 10, 1963.
*) This homeomorphism is a special one. See §2.
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we shall investigate the behaviour of HD and AD functions on Green lines.
By a simple application of Riesz-Fisher’s theorem, it is seen that the “radial
limit”

f(0) = HmLeaz—»I‘f(Z)

exists for every 6 in [0, 2] except a set of measure zero, where s is an arbi-
trary a.c.T. function on R with finite Dirichlet integral taken over R. This also
follows from a result of Godefroid [3]. Hence, in particular, any HD function
u on R possesses the radial limit #2(f) almost everywhere on J. Concerning this,
we shall show an analogue of the mean-value theorem of Gauss:

u(o) = z—lnjzﬂu(ﬁ)do

for any % in HD(R). We shall also show that
(A v)(0) =u(d) Nv(d)

for any # and v in HD(R), where # A v is the greatest harmonic minorant of «
and v and aNb =min (a, b). Similarly, any AD-function f on R possesses the
radial limit £(6) almost everywhere on J. Concerning this, we shall show an
analogoue of F. and M. Riesz’s theorem : if f is an AD-function on R such that
f(8) =0 on a subset of J with positive measure, then f vanishes identically on
R. This follows also from a result of Brelot-Choquet [2]. Our main result in

this paper is as follows.

A hyperbolic Riemann surface R belongs to the Constantinescu-Cornea’s class
Uup if and only if there exists a subset P of J with positive measure such that
u(0) is a constant almost everywhere on P for any HD-function u on R (Theo-

rem 3).

Green lines and polar coordinate

1. Let R be a hyperbolic Riemann surface and o be a fixed point in R and
&(z, 0) be the Green function on R with its pole 0. Consider a pair (#(z), 8(2))

of functions of local parameters z defined by the following equations:

{ dr(z)/r(z) = —dg(z, o)
di(z) = — *dg(z, o).
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The function 7(z) is uniquely determined by the initial condition 7(0) =0 as a
single-valued function on R, i.e.

7(2) =exp (— g(z,0)).
Clearly 0<7(2) <1 on R. We set
G, = (2eR; r(2) <p) and C, =2G,

for each number p in 0<p<1. The set C, is nothing but the log (1/p)-level
. curve for g(z,0). We say that C, (resp. G,) is regular if dg(z,0)=0 on C,.
Concerning the set G,, the following is very important.

Lemma 1 (Kuramochi’s lemma). Assume that the set G, is regular. Then
the set G, is a subdomain of R and the double C,, of G, along the relative bounda-
7y C, is @ Riemann surface with null boundary.

For the proof of this, see Kusunoki-Mori [4] or Nakai [7]. Using this, we
prove

Lemma 2. For any regular C,, TIEL di(z) =1.
P

Proof. Let (R.)7 be a normal exhaustion of R with o€ RyC RyC G, and w,(z)
be the harmonic function on G, N R, — Ry with the continuous boundary value 1
on 9R, and 0 on 9R, N G, and the normal derivative ow,/ov =0 on 3G, N R,. For
convinience, we set ws =0 outside R in G, and wx,=1on K. Then by Lemma
1, ws,/'1 on G, and Dg,(wx) 0. By Green’s formula,

De,(wn,g) = f R”w,,(z) —a@; &(z, 0)ds + LRD%g(z, 0)ds,

Con

where % denotes the inner normal differentiation with respect to the open set
G, N Rs— R, and ds denotes the line element on C,. Here
a —_— —
5axn$ g(z,0)ds= —2n
and by Lebesgue’s convergence theorem,

1im,,§c

On the other hand,

? (@ 3
wn(z)a—vg(z, 0)ds = jcpézg(z, 0)ds = Lpdﬁ(z).

pNRy

Da,,(w,., g) S‘/Dap—Ro(g)Dop( Wn) \0

https://doi.org/10.1017/5S0027763000011314 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000011314

4 MITSURU NAKAI

as n,/" . Hence we get L di(z) =2r. QED.
P

2. Although 6(z) is not single-valued in R - (o), it is harmonic locally on
R—(0). A level arc for 6(z) is an open or closed or half open and closed arc
on which df=0 and 6(z) is a constant, being locally considered at each point.
We call a level arc for 6(z) as a Green arc. The totallity of Green arcs forms
a partially ordered set by inclusion. In this sense, a maximal Green arc is
called a Green line. Hereafter we use the term Green line L only for those L

issuing from o, ie. L>0. We denote by
&

the totality of Green lines (issuing from o) and we call & as the space of

Green lines. We denote by
R?

the set of all points in R which lie on a Green line issuing from o. Clearly
R? is a subdomain of R. If we choose & sufficiently small, then the set G: is
regular and relatively compact in R and conformally equivalent to the disc
(z; |zl <1). Hereafter we fix such an ¢ and use the following particular no-

tations :
€=G:=(zeR; r(2) <e¢)
and
J=0€ =C:=(z€R; r(z) =¢).

Since there exists a one-to-one analytic mapping ¢ of the disc (z; |z/<1) onto
the set € UJ, we can represent each point p in J by the coordinate 6 in [0, 27),
where the correspondence p <> 0 is given by the relation ¢(¢®)=p. Using this,

we can represent each Green line L issuing from o by
L= LG’

where 6 is the point L NJ, or more precisely, § is the coordinate of the point

LNJin J. Hence we can write
S = (Ly; 6€T).

Since the totality of points in R at which df(z) =0 is countable, the set
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E=(0; Lic® and df(z) =0 at the end point Ly— Ly U (o) of L in R)

is a countable subset of J and hence of Lebesgue measure zero.

10(2)

3. Although 6(z) is not single-valued on R, we may use 7(z)e as a local

parameter at each point of R except possibly a countable number of points at
which df(z) =0. If we take the branch of 6(z) at 2€ L, such as 6(z) =46, then
we can use the single-valued function

7(2)e"* = re®

in R? as the global polar coordinate in R® with the origin 0. We also denote
by

m

the normalized Lebesgue measure on J, i.e.
1
dm() = 5 ds.
T

Using these concepts, we give a generalization of the mean-value theorem of
Gauss on bounded harmonic functions. As usual, we denote by HB = HB(R)

the totality of bounded harmonic functions on R.

ProposiTioN 1 (Gauss’ theorem). Let p be an arbitrary number in 0<p<1
with regular C, and u be in HB(G,) and continuous in G,UC,. Then

u(o) = f:"u(pe"e)dm(ﬁ).

Proof. Let (R,)7 be a normal exhaustion of R with €< R, and ga(z, 0) be
the Green function on G, N R, with its pole 0. For convinience, we set gx(z, 0)

=0 outside R, in G,. Clearly g(z, 0) —p is the Green function on G, with the
pole o. Hence gx(z,0) /"g(z, 0) —p on G,. Therefore by defining %gn(z,o) =0

on C, - C,N R,, we have
o o
Ogjgn(z, o)/'g;g(z, 0)

on C,, where a% denotes the inner normal differentiation with respect to G,.
Next we denote by w, the harmonic functionon G, N R, — € with the con-

tinuous boundary value 0 on J=03€ and 1 on R, N G, and %wn=0 on 9G, N Ry.
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For convinience, we set w,=0 on € and w»=1 on G, ~ R,. Then by Lemma 1,
w0 on G, and De,(wn) 0

as # /" . By Green’s formula,

o 2
Osfaxnﬂopagn(z, 0)ds+ Lpnnnwn(z) a~”g,,(z, 0)ds

= 9
B ja(GP”Rn‘"Ro) wn(z)avg”(z) O)ds

<VDg,-5(gn) * Do,(wn) <VDa,-5(&) * Da, wn) 0
as n /" c. On the other hand,

OSWn(Z)g;gn(z, o)s%g(z, 0) on C,

5]
and wn(z)%gn(z, 0)—-0 on C, and ag(z,o)ds is integrable on C,. Hence by

the Lebesgue convergence theorem,

limnS N wn(z)g;gn(z, 0)ds =0.

Cpn

Therefore, we get

lim,,LR . %gn(z, o)ds =0.
nNGp

Again by Green’s formula,

- l_S
ulo) = 2nda@,nr

1

2 1 CpnRy

o
u(z)—a—yg,.(z, 0)ds

5] 1 o
u(z)g;g(z, o)ds + ELR u(2) é;gn(z, 0)ds.

nNGp

Here we have
o 2
L gl . 9 R
Uaﬂ,ma,,“(z) 5,8 % o)dsl < (supe, | %]) Lﬂnhapavgn(z, 0)ds— 0
as n,/" . We also have

o 9
jcpnknu(z) é;gn(z, 0)ds— jcpu(z) a—yg(z, 0)ds.

In fact,

iu(z)g—ygn(z,o)‘ < (supe, | %!) a%g(z, 0)
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and

u(z)%gn(z, 0) - u(z)g;g(z, 0)

asn - o onC, and (supe, lul)a%g(z, 0)ds is integrable on C,. Hence by Lebes-

gue'’s convergence theorem, we get the above conclusion.
Thus by making n— <, we get

1 5
u(0) = ﬂscpu(z)é—vg(z, 0)ds.

On the other hand,
o g(z,0)ds = di(z)
or°”
on C,. Hence by using local parameter z = re’®, we finally get

1 2 7 i0 2m io
u(o) =2~7—1_S0 u(pe )d0=so u(pe'®)dm(0). Q.ED.

End parts of Green lines in Royden’s boundary

4. We denote by M(R) the (real) Royden's algebra associated with the
surface R, ie. the algebra of all real-valued bounded a.c.T. (abbreviation of
the term absolutely continuous in the sense of Tonelli”) functions on R with
finite Dirichlet integrals taken over R (see Nakai [5], [6]). We denote by R*
the Royden compactification of R, i.e. the compact Hausdorff space containing
R as its open and dense subspace, and the algebra M(R) can be considered to
be a uniformly dense subspace of B(R*), the totality of bounded real-valued
continuons functions on R*. We call the set

I'=R*-R

the Royden boundary of R (see Nakai [5], [6]).
We denote by 4 the set of all regular points in I' with respect to the
Dirichlet problem considered for harmonic functions on R with boundary values

on I. This set 4 coincides with the harmonic boundary of R named by Royden
[9], ie.

4= (peTl; f(p)=0 for all f in Ma(R)),
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where we denote by M,(R) the BD-closure of Mi(R), the totality of functions
in M(R) with compact carriers in R. Here a sequence (f») in M(R) converges
to f in M(R) in BD-topology, if, by definition, (/) is uniformly bounded and
converges to f uniformly on each compact subset on R and Dx(f»— f)—>0 as
n—> o (see Nakai [5], [6], [8]). We must notice that g(z, 0) is continuous on
R* and vanishes on 4, since min (g(z, 0), —loge) belongs to M,(R).

We denote by x the canonical measure on I with center o= R, which is

defined as the regular Borel measure on I" satisfying
u(o) = Spu(p)dy(p) for any # in HD(R),

where HD = HD(R) is, as usual, the totality of harmonic functions on R with
finite Dirichlet integrals taken over R. We know that the support S, of u is
identical with 4 (see Nakai [6]). Let X be a Borel subset of I" and fx be the
characteristic function of X in I We know that fx is resoltive and the gener-
alized solution of the Dirichlet problem with boundary value fx, denoted by

fo(z), is related to the canonical measure u by
H'*(0) = u(X).

Hence 4 is the so-called harmonic measure and so the set I"— 4 is of harmonic

measure zero (see Nakai [8]).
5. For each Green line Ly in &, we set
eo=1Ly— Ly— (0),

where L, is the closure of Ly in R*. We call e, the end part of L,. We also
denote

dy =sup (7(2); z€Ly).
Clearly e<dy<1. If ds<1, then we call Ly a singular Green line. We denote
N=(0]; dy<1).

If 6€E, then ¢, is one point z in R at which df(z) =0 and so we get ECN.
For any set S in I, we denote by S and $ the sets in J =026 defined by

S=(0€T; eeNSx9)

and
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S=(0€TF; epCS).
Clearly S ©8. The following is one of the fundamental lemmas of our dis-
cussion.
Lemma 3. Let K be a compact set in 1'— 4. Then m(K) =0.

Proof. We take an open neighborhood U of K in R* such that the relative
boundary a(UN R) of U N R consists of a countable number of piece-wise analytic
Jordan curves not accumulating in R and U~4=¢. We set

Un=U—Eﬂ’

where (R,)7 is a normal exhaustion of R. Then there exists a unique continuous
function w, in M(R) such that

1, on Uyx;
wn = | harmonic, in R— Uy ;
0, on 4.

Then it holds that w, 0 and D(w,) 0 as " = (see p. 161 in Nakai [8]).
Next we set

Un=(0; LS, LN (UsNR)x0).

Clearly Uy, is open in J and U,>Uy.;DK. For each 6 in Ui we choose a
point 2 in Ly N (U, N R). Then wx(2) =1 and so

n7(Zg)

1—wn(ee®) = 5 »a%wn(rei")dr.
€

We can find a positive number a such that 1—wx(2)>a>0 on J for all %
Then

7= 70)
a<L é;w,.(fe dr.
By Schwarz’s inequality,
7(29) ) ) 2 r(ze)d
2 9o 10 _1
<L Iarwn(re )l rdrSE ’

<(-loge) °ij !éa;w,.(re"") ] 2rdr.

Hence we have
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j,,,,,“zd"s (—log E)JU:. jze( ‘aa—rwn(re“) I ’ + 772 ! é%w,.( re'®) l 2)rdrda
< (—log &) Da(wn).
Therefore by putting ¢ = ( —log¢)/2 nd’, we get
m(Uxn) <cDr(wan).
Thus by noticing Uy DUk, DK, we get
(outer Lebesgue measure of K)<limu m(Uk) <limucD(Wp) = 0.

Hence m(K) =0. QED.
As a corollary of our Lemma 3, we get the following well-known result due

to Brelot-Choquet [2], which is a fundamental result in the theory of Green lines.

LemMA 4 (Brelot-Choquet’s lemma). m(N) =0, i.e. dy =1 almost everywhere

on J.

Proof. Let K,= (p=I"; g(p,0)=1/n) (n=1,2, ...). Then each K, is com-
pact in I'— 4 and

NCEU (U 7-1K%).

Since E is countable, m(E) =0. By Lemma 4, since K, is compact in I'—
N~

4, m(K») =0 and so m(U2..K,) =m(Ug.,K») =0. Hence m(N) =0. QED.

Functions with radial limits

6. We say that a complex-valued function f on R possesses a radial limit
almost everywhere on J if lim,.; f(7e"®) exists for any 6 in J— N except a set

of Lebesgue measure zero. Here the meaning of the above limit is as follows:
limy.,1 £ (7€) = limy () 21,2610 f (2).

We denote the totality of complex-valued functions on R possessing a radial
limit almost everywhere on J by the notation It = R(R).

We also denote by F(R) the vector space of all real-valued a.c.T. functions
on R with finite Dirichlet integrals taken over R (see Nakai [6]). Clearly
F(R)DHD(R) and F(R)D>M(R)D>HBD(R) = HD(R)NHB(R). Although the
following result follows from the result of Godefroid [3], we shall give an
alternating proof.
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ProposiTiON 2. F(R)CR(R).

Proof. Let L*(J, dm) be the Hilbert space of all square integrable functions
on J with respect to the measure m and | - || be the norm in L%J, dm). Let f
be in F(R) and set f,(6) = f(re®). Then (f;)s<r<» can be considered to be
a one-parameter family of functions in L*J— N, dm) = L*(J, dm). For any 6
in J—N except a set of measure zero, by the definition of a.c.T. functions,

we get
b5 )
750 ~fal0) = | 2 r(reVar  (0<a<b<1).
aor
Hence by Schwarz’s inequality,
b 2 b
- o iy | L(Tdr
1760) ~ a0V P <[ | 2 (e | rar- [ &
b\(% o i |2
< (Iog;)Sa!a—rf(re )‘ rdr.
Therefore

b

_f:"l /5(0) — fa(0) ['d0 < ( log?)S:ﬂ jb( |2 1 | +97%| 2 pre) | )raran.

Thus we get the following inequality :

/s = Fal £V Doy, (7)) Tog L,
where G4,5=Gs— G, (0<a<b<1).
Let (K»)7 be a sequence of compact sets in J— N such that
KunC Knry and m(U 5=1Ky) = 1.

For simplicity, we set F= U %-1Ks. Let (rs)7-; be a strictly increasing sequence
of positive numbers such that lim,r, =1 and G,, is regular.
Since f(re") is uniformly continuous on the compact set (76 ; 7,<r<7n:1,

6= K,), there exists a subdivision
Tn=0n1<8n2< * ** <@nsm+1= Tn+1
of [7a, rn+1] such that for any 7 in [an,j, @n j+1] and 6 in Kn,
| £(re”) = f(an,j€) 1 <1/m,

where j is one of 1, 2, ... and s(n). Let k£ be an arbitrary positive integer.
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Then % is uniquely represented as
E=20s()+t  (0<t<s(n)),
where we promise that s(0) = 0. Using this expression, we define a new sequence
(be) =1 by br = an,¢.
Now set

h(o) = E:=l|fbk(0) —fbk+1(0) I

for 6 in J— N. By the triangle inequality,

L5710 Pamio) < S, o

< 7V Doy (1" Tog B
< 2;?=1(D9bk,bk+1(f) +log bz—;l)

1
b’

< Dr(f) +log

Hence h(6) < ~ almost everywhere on J and so on F. Hence
D1 (St (0) = £3,(0))
converges almost everywhere on F. Since
D=1 S, (0) = 15,(8)) = lime f5,(0) — f5,(0), £(0) = limg f3,(6)

exists almost everywhere on F. Let F' be the set of points in F at which ()
exists. Then m(F') =1. Fix an arbitrary 6 in F'. Let y be an arbitrary posi-

tive number. We can find a positive integer n, such that
0Ky, and 1/n,<%/2.
Let %, be a positive integer such that k> >172,s(7) and that for any k> ko
| 76,(0) — £(8) [ <n/2.

Let 7 be arbitrary in b, <7<1. Then we can find a positive integer & such

that
by <br < 7 <bp+1.
Let the representation of 2 by means of (s(7)) be

k=2 s()+t  (0<t<s(n+1)).
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Then clearly n=>n, and b =an,: and 0K, C K,. Hence
[fr(8) = f5,(0) | = | £ (7€") — f(an, ) | <Un< 1/m<n/2.
Thus

Lfr(8) — F(O) | <1 /7(8) — f5,(8) | + | f5,(8) = F(O) | <n/2+9/2=1.
This shows that lim,../,(8) = F(6) exists for every 6 in F'. Q.E.D.

7. For two numbers ¢ and b, we denote ¢ b =min(a, ) and eUb=
max (@,b). Similarly, for two harmonic functions # and », we denote by #Av
the greatest harmonic minorant of # and » and by #V v the least harmonic
majorant of #» and v. We know that the class HD(R) forms a vector lattice
with respect to the lattice operations V and A (see Nakai [6]). Concerning
the general property of functions in HD(R) on Green lines, we state the follow-

ing.

TueoreM 1.1 (Fatou type theorem). Any function u in the class HD(R)

Dossesses the radial limit almost everywhere on J, i.e.
#(60) =lim,.; u(re'®)
exists for every 0 in J— N except a set of LebesQue measure zero.
TueoreM 1.2 (Gauss type theorem). Let u be in the class HD(R). Then
27
w(0) = | "w(0)dm(0).
0
TueorReM 1.3. For any pair of functions u and v in HD(R), the function
u\v belongs to HD(R) and
(A 2)(0) =u(6) Nv(6)
for every 0 in J — N except a set of Lebesgue measure zero.

Proof of Theorem 1.1. Since HD(R) C F(R), this follows from Proposition

Proof of Theorem 1.3. As HD(R) forms a vector lattice, so we may assume
without loss of generality that # and v are non-negative. First we consider the
case where v is bounded. Let f(z)=wu(z)Nwv(z), which is a non-negative
bounded superharmonic function on R belonging to the algebra M(R). We take
a normal exhaustion (R,); of R with o€R,. Let p be in 0<p<1 with regular
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G,. We set w, » the continuous functionon in R such that

{f, on R—G, N Ry:
wP,n=

harmonic, on G, N Rj.

Then it is easy to see that
=W n= Wy ns1=uNv

and

We,n<Wp,n (0 >0).
Thus we can define

wp = limn wp, n

on R, which is harmonic in G, and continuous on R and

w,(2) = u(z) Nv(z)
on C, and

fzw,zwy=ulNv (0>p).

Since #A v is the greatest harmonic minorant of f and (w,) converges to a

harmonic function on R as p 1, we can conclude that
limp,w, =uAv
on R. By Proposition 1,
2m . 2% . .
w,(0) = So w,(pe'®) dm(0) = So u(pe®) N v(pe®)dm(0).
Clearly w,(0) \((#Av)(0)(p,”1). On the other hand, by Theorem 1.1,
u(pe”) N v(pe'®) - u(8) N v(6)

as p—1 for every 0 in J— N except a set of Lebesgue zero, where u(f) =
lim,  #(pe’®) and v(0) = lim,~ v(pe’®). Moreover, #(pe®) Nv(pe”) is uniformly

bounded. Hence by Lebesgue’s convergence theorem, we get, by making o1,
27
(wAv)(o) = jo u(0) N v(0) dm(6).
On the other hand, by Proposition 1,

(A v)(0) = yz"(u/\ v) (0e'®)dm(6)
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and by Theorem 1.1, writing (#A2)(8) = lim,.,(% A v)(pe®), we get
27T
@A2)(0) = [ (@A) (©0)am(0).
Clearly (#Av)(6) < u(6) Nwv(8) almost everywhere on J — N and
27
So (#(6) N 0(8) — (uA0)(6))dm(8) = 0.

Thus
(N v)(0) =u(6) No(d)

almost everywhere on J— N.

Next we remove the assunption that v is bounded. By the above consider-

ation, we get

(uA)(@)Nn=uAv) An)8) = (A (vAn))(0)=u8) N (vAn)()
=u(0) N (v(0) N2) = (u(f) Nv(8)) Nn,

ie.
[(Nv)(0) —u(0) Nv@)]INn=0

almost everywhere on J—N for any positive integer ». Thus by making

n/ o,
(AN 0)(0) =u(8) Nov(8). Q.E.D.

Proof of Theorem 1.2. Since HD(R) forms a vector lattice, we may assume
without loss of generality that #=0. By Proposition 1, we get

2m .
(u/\n)(o)=So (uAn)(pe®)dm(6)

for any positive integer n. Hence by Theorem 1.1, writing (xA#n)(8)
= limp, (u An)(pe”), we get

27
(uAn)(0) = jo (u A n)(8)dm(0).
This with Theorem 1.3 gives
27
(A n)(o) =S° %(0) N ndm(6).

Clearly (uAn)(0) /" u(o) and %(8) Nn,"u(0) as n, . Therefore by making
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n,/ o we get
27
w(o0) = | “u(0)am(0). QED.
8. We know that each function in F(R) is continuously extended to R*
admitting infinite values (see Nakai [6]). We denote

Fis(R) = (f€F(R); f vanishes on 4).

Then Fa(R)DM,(R) and f/(1+]|f|)e Ms(R) for any f in Fi(R) and the
following harmonic decomposition holds (see Nakai [6]) :

F(R) = HD(R) ® FA(R),

ie. any function f in F(R) is uniquely decomposed into the form f=u+4¢
(w € HD(R), ¢ = FA(R)), where we have

D(u,¢) =0 and supg|u|=supslfl.

ProrpositiON 3. For any function f in the class Fi(R), the radial limit
F(0) =limy.; f(re'®), which exists almost everywhere on J —N by Proposition 2,

vanishes almost everywhere on J — N.
Proof. For each positive integer n, we set
Ka=(peTl; f(p)=1/n).
Then K, is compact in I'— 4 and so by Lemma 3, m(K») =0. Next we set
E,=0€3; f(0)=1/n).

Clearly E, is measure equivalent to K», ie. m(KaOEn) =0, where K,OF, =
KnUEy—K,NE,. Thus m(E,)=0.

As (€3 —N; f(8)>0) = Un-1En, so m(I—N; f(6)>0)=0.

Hence f(#) =0 almost everywhere on J— N. Q.E.D.
We may consider J as a representation of the ideal boundary of R. Each
function f in F(R) gives the “boundary function”

£(0) = lim,: f(re™)
on J. By the harmonic decomposition of £,
F(2) =u(2) +¢(2) (usHD(R), ¢ Fi(R)).

Hence by Proposition 3,
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#(0) =lim, s u(7e'®) = lim,; (f(re®) — @(re'®)) = £(0)

almost everywhere on J. Hence there exists a harmonic function % with

“boundary value” f(8).

Subsets of the space of Green lines

9. We denote by 7 (resp. 7¢) the outer (resp. inner) measure on J induced

by the normalized Lebesgue measure m.
PropoSITION 4.1. For any compact set K in I, m(K) < u(K).
ProrosiTiON 4.2. For any open set U in I, m([7) = u(U).

These two propositions are equivalent. In fact, assume that Proposition 4.1

is true. If U is open in I, then I'—-U = K is compact in I" and
U=J-E)-K.
Hence we have
m(U) =1-m(K) =1~ p(K) = p(I'= K) = p(U).

Conversely assume that Proposition 4.2 holds. If K is compact in I, then
I'-K=U is open in I" and

K=J-E)-{.
Therefore
MEK)=1-m) <1 - u(U) = u(K).

Hence to prove these two propositions, it is sufficient to prove, for example,

Proposition 4.2.

Proof of Proposition 4.2. Let y be an arbitrary positive number. We set
F=TI-U. We can find a compact set K in 4N U such that

W K) < p(O) <u(K) + 1.

We can find a function » in HBD(R) such that

0<u<l
on R* and
{ 1, on K;
u':
0, on 4—U
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(see Nakai [6]). We set
Fp,= (p=F; ulp)=1/n).

Clearly the set F, is compact and contained in I'— 4 for any positive intege:
7. Then by Lemma 3,

m(ﬁn) =0-
Let
Fo=F—- U Fo=(pEF; ulp) =0).

Assume that #(0) = lim,,;%(re'®) exists at 6 in Fo. Since Lo N Fox 0, u(8) = 0.
Hence by Proposition 2,

#(0) =0 almost everywhere on Fy.
As m(\jE:I/"n) =m(U5s-1Fx) =0, so m(F — Fo)=0. Hence
() =0 almost everywhere on F.
Since I'=FU U, we have
J-E=FUU.
Set V= (6; u(6)>0). Then by the above
m(V-U)=0
and V is measurable. Hence
m(T)=m(V).

On the other hand, by Proposition 1,
2 7
m(V) =j dm(6) _>_S u(0)dm(0) = u(o)
14 0

= [ wpaup) = dup) = ().
Hence
m(U) = p(U) =7
and by making % (0, we get
m(T) = w(U). Q.E.D.

Remark 1. Proposition 4.1 implies that if K is a compact set in I with
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#(K) =0, then K (and also X) is Lebesgue measurable and of measure zero.

Remark 2. By the increasing (resp. decreasing) monotone continuity of 72
(resp. ) and the continuity of u, we may replace the compact set (resp. open
set) in Proposition 4.1 (resp. 2) by Fs (resp. Gs) set.

10. As usual, we denote by AD=AD(R) the class of all single valued
analytic functions on R with finite Dirichlet integrals taken over R.

TueoreMm 2.1 (Fatou type theorem). Any function f in the class AD(R)
possesses a radial limit almost everywhere on J, i.e.

F(6) =limy.; £ (7€)
exists for every 0 in J — N except a set of Lebesgue measure zero.

TaeoreM 2.2 (F. and M. Riesz type theorem). Let f belong to the class
AD(R) and Z be a subset of J— N with positive measure. Assume that

(@) =0
Jfor each 0 in the set Z. Then f vanishes identically on R.

Proof of Theorem 2.1. Since Re(f) and Im(f) belong to the class HD(R),
our assertion follows from Theorem 1.1.

Proof of Therem 2.2. We denote
S=Uwzes and K=8S.
Clearly K is a compact set in I" and
KoKk>8 =2
Hence by Proposition 4.1,
w(K) =m{ K) =m(Z) >0.

Since Re(f) and Im(f) are continuous on R* admitting infinite values, f is
continuous on R* admitting infinite values. As f(8) =0 for 6 in Z, so f must
vanish on the set ey for each 6 in Z. Thus f vanishes on S and by the con-
tinuity of £, f vanishes on K. Thus the analytic function f has continuous
boundary value zero at each point of the compact set K in I with positive
canonical measure. Hence by Lusin-Privaloff type theorem (see Nakai [8]), f
vanishes identically on R. QED.
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Measures concerning blocks
11. Let R&EOgp. For each point p in the harmonic boundary 4 of R, we set
Ap=(qET; u(q) = u(p) for any # in HBD(R))

and we call this set as the block at p. Since the class HBD separates points

in 4, we can conclude that
AsNd=(p)
and
ApNAg=0  (p=q).

We can find a function % in HBD such that #>0 in R and «#(p) =0 (see Nakai
[6]). Then =0 on 4,. Multiplying # by a suitable constant a, we get that
au(z) > g(z,0) on J. Since au=g on 4, we get au(z) > g(z o) on R*— €. Thus

g(g,0)=0 on Ap.
This shows that
ey N Ap= g implies dy =1 or §=J — N.
Concerning blocks, we prove
ProrosiTiON 5. The set A, is measurable for any p in 4 and
m(Ap) = u(p).

Proof. First we consider the case where where u(p) =0. In this case, by

Proposition 4.1, we have
m(Ap) < pu(p)=0.

Hence [, is measurable and m(A,) = u(p).
Next we assume that x(p) >0. Using the harmonic kernel K(z, q) (see Nakai
[61), we set

u(z) =S(mK(z,q)du(q) (zeR).

Then #(z) belongs to the class HD considered by Constantinescu-Cornea [1],
where HD is the totality of limits of decreasing sequences of non-negative
functions in the class HD. In particular,
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0<u(2)<1 on R and lim sup #(z) =1.

R2z-p

Hence we can find a decreasing sequence (#.) of functions u, in the class
HBD such that

0<us(2) <1 and lim, #a(2) = u(z)

on R (see Nakai [6]1). Therefore #.(p) =1 and so u»=1 on 4,. For the sake

of simplicity, we set
an = ux(0) — u(0) =0.

For any p in 0<p<1 with regular G,, we have, by Proposition 1,

2= ) .
5‘0 (%, 0€°) — u(pe®))dm(0) = an.
Let
#(f) = lim sup,1u(pe'®).

Since #(pe™®) is continuous in p (0<p<1) and measurable in € J — N, %(8) is
measurable on J. By Fatou’s lemma,

27

So lim infoo: (%a(pe™®) — u(0e”®))dm(6)

27 . .
<lim inf,,_,ljo (un(pe’®) — u(pe'®))dm(0) = ay,.
As we have

lim inf,,;(#n(p€™®) — u(pe™®)) = un(6) — lim sup,;#(pe'®)
= un(ﬂ) - 77(0) ZO

almost everywhere on J, so we get
27
0< So (un(0) — 7(8)) dm(0) = an.

The sequence (#,(8))7-: is decreasing and so v(0) = lim, us(0) exists and
v(8) = u(8)

almost everywhere on J. By making n 7 «, we get

27
jo (0(8) — 72(6)) dm(8) = 0.

Hence we get
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v(0) = u(6)
almost everywhere on J. Let
Unt=(qET; us(q)>1-1/k)
and
Fn=(q<T'; us(q) =1) and F= N5-1Fn.

Then Fpn= Ng-1Unr>4p and so FD A4p. By Propostion 2, there exists a set J’
in J such that m(J—J') =0 and for any 6 in J', #4(8) = lim,s14a(7¢’®) exists
for all positive integers #». Then for any #, us(0) =1 (6 F»N]J') and so #x(0)
=1 (f€F NJ'). Hence

v(@)=1on FNJ.
Therefore, there exists a set J” with m(J—J") =0 and
#(@)=1on FnJ

Let w be an arbitrary non-constant function in the class HBD(R). Let
¢ = (supzer|w(z) —w(p)!)™". Since lim supgsz.pu(2) =1 and lim suprsz.qu(z)
=0 (ge4; g=p) (see Nakai [6]), we get

lim infrszoql (1 — %(2)) — c(w(z) —w(p))1=0

and
lim infrsz-el (1 — 2#(2)) + c(w(z) — w($))1=0

for any ¢ in 4. Hence by the maximum principle (see Nakai [6]), we get
clw(z) —w(@)| <1 —u(2)
on R. Hence if 4 F NJ", then we can find a sequence 7,1 such that
limp #(7x€") = lim sup,.; u(re”®) = %(0) = 1.

Let 2z, =7.¢" and ¢ be an accumulation point of (z.). Then g belongs to the

set ey and as
clw(zn) —w(p)| <1 —ulza),

so we get w(g) =w(p). This holds for any w in HBD(R), so g=/p, or e N 4y
x0. Hence = f,. Therefore

Fnpcli,cF.
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This shows that

e

m(F ~ Ap) =0.
Then, since Fn\(F,

m(Ap) = m(F) =lima(Fp).
By the fact that U, \\ F» and by Proposition 4.2,

m(Fp) = limg 2T, ) = limg 22( T, 1) = limg u( U, 1)
= u(Fp) = pu(4p) = p(p).

Hence
m(4 ) = p(p).

On the other hand, since 4 is compact and 4,N 4= (p), we get by using
Proposition 4.1,

(A ) < pu(4p) = p(p).
Thus we get
u(P) <m(Ap) <aldp) < p(p).

This shows that A is measurable and m(A4,) = u(p). Q.E.D.

Indivisible set in the space of Green lines
12. Let R be a hyperbolic Riemann surface and
HD - HD(R)
be the class of all functions on R which are the limits of non-increasing sequences
of non-negative functions in the class HD(R). A function % in the class HD(R)
is called an HD-minimal function on Rif #>0on R and if for any » in HD(R)
with #>v on R, there exists a constant ¢, with v =cou# on R. If R carries at

least one HD.minimal function, then, following Constantinescu-Cornea [1], we
denote the fact by

ReUnp.

In terms of the theory of Royden’s compactification, this condition is character-
ized by the following (see Nakai [6]):

R=Unp if and only if there exists a point p in I’ with u(p) > 0.
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Constantinescu-Cornea [1] gave the following characterization of the class Uup:

let R be hyperbolic. Then there exists an analytic mapping ¢ of the unit disc

(z;]2]<1) onto R. Consider the class  of all functions » on (z; |z|<1) such

that v = u - ¢ for some » in HD(R). Then it is proved that for any » in
limy i v(re”) = v(8)

exists almost everywhere on C = (z; |z| =1). Constantinescu-Cornea’s charac-

terization is as follows:

Re&Ugyp if and only if there exists a set P of C of positive measure such

that v(0) = lim,» v(re”®) = const. almost everywhere on P for any v in 9.

Here we give the similar result as above for the space of Green lines in-

stead of the universal covering surface.

TueoreMm 3. In order that a hyperbolic Riemann surface R should belong to
the class Ugnp, it is necessary and sufficient that. there exists a measurable set P
in I~ N with m(P) >0 such that for any function u in the class HD(R), u(6) =

lim,» u(re'’®) is a constant almost everywhere on P.

Proof. First we show the necessity of our condition. Let R Ugsp. Then
there exists a point p in I" with u(p) >0 (see Nakai [6]). Now we show that
P= [, is the required set.*’ By Proposition 5,

m(P) =m(Ap) = p(p)>0.

Next let = HD(R). We must show that #(6) is a constant almost everywhere
on P. Since HD(R) forms a vector lattice, we may assume that #>0 on R.

We denote by #. the harmonic function #A ¢, where ¢ is a positive constarit.
Then by Theorem 1.3,

u:(0) = u(6) Nc

almost everywhere on J, where «(6) =lim,.1u(7¢®) and u.(0) = lim,.; u.(re®).
We also have that

uc(q) =ulg) Nc
on 4 (see Nakai [6]). Since u(p)>0, u(p) < . Hence for any ¢>u(p),
u:(q) = u(p)

*) If R&0gp, then our assertion is clear. So we assume that ReOgp.
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for any point ¢ in the block Ap. Let (¢»)" be a sequence of numbers such that
u(p)<ca,/ . Let J' be the subset of J with m(J—J') =0 such that for any
positive ~integer 7, u:,(0) exists for all # in J'. If 6 PNJ'=/4,N], then u.,
is a constant on e, and e, N A, @ and so uc, is a constant u(p) on the block

Ap. Thus u:,(0) =u(p). Hence for all positive integers n,
u(0) Nen = te,(0) = u(p)
and so
u(0) = u(p)
for any 6 in PN J'. Hence
limy 11 u(re™®)

exists and is a constant for 6 € PN J', where m(P— PN J') =0.
Next we show that our condition is sufficient. For the aim, we denote by

e the set of all functions # in HD(R) such that

0<u<l
on R and

w(6) =1
almost everywhere on P. For any # and » in {», by Theorem 1.3,

(#A0)(0) =u(0) No(d) =1

almost everywhere on P and 0<u#Av<1 on R. Thus #Awv belongs to Fe».
Hence it is well-known that

s(z2) =inf(u(2); ueFpr) (z€R)

is a harmonic function on R and there exists a non-increasing sequence (#») of

functions in ¥, such that
limyun(2) = s(z)

on R. Therefore s(z) belongs to the class HD(R). As we have

2

s(0) = limuun(0) = limnxonuﬂ(ﬁ)dm(ﬁ) Z)Pdmw) =m(P)>0,

so we can conclude that
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s(z)>0 on R.

Now we show that s(z) is HD-minimal on R. For the aim take an arbitrary
function #(z) in HD(R) such that s(z)=t(z) >0 on R. Let (v3) be the non-

increasing sequence of functions in the class HD(R) such that
lim, 27(2) = #(2).

Then, since the class HD is a vector lattice (see Nakai [61), v» = #n A v belongs
to the class HD(R) and vs \(sAt=1t Hence

lim, va(2) = #(2)
on R and
1= un=v,>0
on R. By the assumption on P,
va(0) =ca  (a constant)

almost everywhere on P. Clearly 0<c¢s,<1 and there exists a constant ¢ in
0<c¢<1 such that ¢s ! ¢.

If ¢ =1, then 0<2,<1 and v,(6) = 1 almost everywhere on P. Hence v, &
%r and SO0 v,=>s on R or {>s. Hence t=s.

If ¢<1, then we may assume that ¢,<1. Then

Un— 0 u 4
n % and n+ Un

1—c¢n 1+c¢n A

belong to the class $-. Hence

Un — Un
l—Cn

un+vn> un+vn/\1>s

>s and itc, = 1+c, =

on R and by making n 7 «, we get

s—t s+t
1=¢c=*% and E

on R. Then the first inequality shows that s —#>s—c¢s or
s>t
on R. Similarly, the second inequality gives that s+¢>s+¢s or

cs<t
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on R. Thus t=c¢s on R
Hence in any case, the function ¢ is a constant multiple of s and so s is
HD-minimal on R. Therefore we can conclude that R e Ugp. Q.ED.
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