
II
The Baouendi–Treves approximation formula

In this chapter we prove what is probably the most important single result in
the theory of locally integrable structures. It states that in a small neighborhood
of a given point of the domain of a locally integrable structure �, any solution
of the equation �u = 0 may be approximated by polynomials in a set of a
finite number of homogeneous solutions as soon as the solutions in that set
are chosen with linearly independent differentials and the number of them is
equal to the corank of �. Such a set is called a complete set of first integrals
of the locally integrable structure.

The proof is relatively simple for classical solutions and depends on the
construction of a suitable approximation of the identity modeled on the kernel
of the heat equation as shown in Section II.1. The extension to distribution
solutions is carried out in Section II.2. Section II.3 studies the convergence of
the formula in some of the standard spaces used in analysis: Lebesgue spaces
Lp, 1≤ p<�; Sobolev spaces; Hölder spaces; and (localizable) Hardy spaces
hp, 0 < p <�. The last section is devoted to applications.

II.1 The approximation theorem

Since the approximation formula is of a local nature it will be enough to
restrict our attention to a locally integrable structure � defined in an open
subset � of RN over which �⊥ is spanned by the differentials dZ1� � � � �dZm

of m smooth functions Zj ∈ C����, j = 1� � � � �m, at every point of �. Thus,
if n is the rank of �, we recall that N = n+m.

Given a distribution u ∈
′��� we say that u is a homogeneous solution
of � and write �u= 0 if

Lu= 0 on U
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II.1 The approximation theorem 53

for every local section L of � defined on an open subset U ⊂ �. Simple
examples of homogeneous solutions of � are the constant functions and
also the functions Z1� � � � �Zm, since LZj = #dZj�L$ = 0 because dZj ∈ �⊥,
j = 1� � � � �m. By the Leibniz rule, any product of smooth homogeneous
solutions is again a homogeneous solution, so a polynomial with constant
coefficients in the m functions Zj , i.e., a function of the form

P�Z�= ∑

�
≤d

c�Z
�� �= ��1� � � � ��m� ∈ Zm� c� ∈ C� (II.1)

is also a homogeneous solution. The approximation theorem states that any
distribution solution u of �u = 0 is the weak limit of polynomial solutions
such as (II.1).

Theorem II.1.1. Let � be a locally integrable structure on � and assume
that dZ1� � � � �dZm span �⊥ at every point of �. Then, for any p ∈�, there
exist two open sets U and W , with p ∈ U ⊂ U ⊂W ⊂�, such that

(i) every u ∈ 
 ′�W� that satisfies �u = 0 on W is the limit in 
 ′�U� of a
sequence of polynomial solutions Pj�Z1� � � � �Zm�:

u= lim
j→�

Pj 
Z in 
′�U��

(ii) if u ∈ Ck�W� the convergence holds in the topology of Ck�U�, k =
0�1�2� � � � ��.

Some well-known approximation results in analysis are particular cases of
Theorem II.1.1.

Example II.1.2. Let � be the locally integrable structure generated over an
open set �⊂ C by the Cauchy–Riemann vector field

� = 1
2

(
�

�x
+ i

�

�y

)
� z= x+ iy�

Then a distribution solution of �u= 0 is just a holomorphic function and the
theorem simply states that any holomorphic function can be locally approxi-
mated by polynomials in the complex variable z.

Later we will give several applications of the approximation theorem but
we wish to point out already one interesting consequence. Assume that two
points p�q ∈ U are such that Z�p�= Z�q� and let u ∈ C0��� satisfy �u= 0.
Then P 
Z�p� = P 
Z�q� for any polynomial P in m variables and, by
the uniform approximation of u on U by polynomials in Z, it follows that
u�p�= u�q�. The fibers of Z in U are, by definition, the equivalence classes
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54 The Baouendi–Treves approximation formula

of the equivalence relation defined by ‘p ∼ q if and only if Z�p� = Z�q�’.
Thus, every solution u ∈ C0��� of �u= 0 is constant on the fibers of Z. In
particular, if the differentials of Z#

1� � � � �Z
#
m span �⊥ over � it follows that

Z# = �Z#
1� � � � �Z

#
m� is constant on the fibers of Z in U . Applying the theorem

with Z# in the place of Z we may as well find a neighborhood U # ⊂ U of p

such that Z is constant on the fibers of Z# in U #, which shows that the fibers
of Z and the fibers of Z# on U # are identical. Thus, in the sense of germs
of sets at p, the equivalence classes defined by Z and those defined by any
other Z# = �Z#

1� � � � �Z
#
m� such that dZ#

1� � � � �dZ#
m generates �⊥ coincide. This

independence of the particular choice of Z allows us to talk about the germs
at p of the fibers of � which are invariants of the structure.

The fact that u is constant on the fibers of Z in U when �u= 0, u ∈C0���,
may be expressed by saying that there exists a function û ∈ C0�Z�U�� such
that u= û
Z. Thus, any continuous solution of �u= 0 can be factored as the
composition with Z of a continuous function defined on a subset of Cm. In
general, the set Z�U� may be irregular but if it happens to be a submanifold
of Cm, then û will satisfy in the weak sense the induced Cauchy–Riemann
equations on Z�U�. Hence, at a conceptual level, the theorem links the study
of solutions of �u= 0 to solutions of the induced Cauchy–Riemann equations
on certain sets of Cm.

We will prove Theorem II.1.1 in several steps. The first step consists
of taking convenient local coordinates in a neighborhood of p. Applying
Corollary I.10.2, there exists a local coordinate system vanishing at p,

�x1� � � � � xm� t1� � � � � tn	

and smooth, real-valued functions �1� � � � ��m defined in a neighborhood of
the origin and satisfying

�k�0�0�= 0� dx�k�0�0�= 0� k= 1� � � � �m�

such that the functions Zk, k= 1� � � � �m, may be written as

Zk�x� t�= xk+ i�k�x� t�� k= 1� � � � �m� (II.2)

on a neighborhood of the origin. To do so we need to assume that the real
parts of dZ1� � � � �dZm are linearly independent, for which we might have to
replace Zj by iZj for some of the indexes j ∈ �1� � � � �m	. Notice that this will
not change the conclusion of the theorem. Thus, we may choose a number R

such that if

V = �q 
 
x�q�
< R� 
t�q�
< R	

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511543067.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511543067.003


II.1 The approximation theorem 55

then (II.2) holds in a neighborhood of V and we may assume that∥∥∥∥(��j�x� t�

�xk

)∥∥∥∥<
1
2
� �x� t� ∈ V� (II.3)

where the double bar indicates the norm of the matrix �x�x� t�= ���j�x� t�/�xk�

as a linear operator in Rm. Modifying the functions �k’s off a neighborhood
of V may assume without loss of generality that the functions �k�x� t�,
k = 1� � � � �m, are defined throughout RN , have compact support and satisfy
(II.3) everywhere, that is∥∥∥∥(��j�x� t�

�xk

)∥∥∥∥<
1
2
� �x� t� ∈ RN � (II.3′)

Modifying also � off a neighborhood of V we may assume as well that the
differentials dZj , j = 1� � � � �m, given by (II.2), span �⊥ over RN . Of course,
the new structure � and the old one coincide on V so any conclusion we
draw about the new � on V will hold as well for the original �. We will
make use of the vector fields Lj , j = 1� � � � � n and Mk, k= 1� � � � �m entirely
analogous to those introduced in Chapter I after Corollary I.10.2, with the
only difference that here they are defined throughout RN . We recall from
Chapter I that the vector fields

Mk =
m∑

�=1

�k��x� t�
�

�x�

� k= 1� � � � �m

are characterized by the relations

MkZ� = �k�� k� �= 1� � � � �m

and that the vector fields

Lj =
�

�tj
− i

m∑
k=1

��k

�tj
�x� t�Mk� j = 1� � � � � n

are linearly independent and satisfy LjZk = 0, for j = 1� � � � � n, k= 1� � � � �m.
Hence, L1� � � � �Ln span � at every point while the N = n+m vector fields

L1� � � � �Ln�M1 � � � �Mm

are pairwise commuting and span CTp�R
N �, p ∈ RN . Since

dZ1� � � � �dZm�dt1� � � � �dtn span CT ∗RN

the differential dw of a C1 function w�x� t� may be expressed in this basis.
In fact, we have

dw =
n∑

j=1

Ljw dtj+
m∑

k=1

Mkw dZk (II.4)
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56 The Baouendi–Treves approximation formula

which may be checked by observing that LjZk = 0 and Mktj = 0 for 1 ≤
j ≤ n and 1 ≤ k ≤ m, while Ljtk = �jk for 1 ≤ j� k ≤ n and MkZj = �jk for
1≤ j� k≤m (�jk =Kronecker delta).

We now choose the open set W as any fixed neighborhood of V in �. In
proving the theorem we will assume initially that u is a smooth homogeneous
solution of �u = 0 defined in W with continuous derivatives of all orders,
i.e., u ∈ C��W� satisfies on W the overdetermined system of equations

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
L1u= 0�

L2u= 0�

· · · · · · · · ·
Lnu= 0�

(II.5)

Given such u we define a family of functions �E�u	 that depend on a real
parameter �, 0 < � <�, by means of the formula

E�u�x� t�= ��/)�m/2
∫

Rm
e−�
Z�x�t�−Z�x′�0��2u�x′�0�h�x′�det Zx�x

′�0�dx′

which we now discuss. For � = ��1� � � � � �m� ∈ Cm we will use the notation

��2 = �2

1 + · · ·+ �2
m, which explains the meaning of 
Z�x� t�−Z�x′�0��2 in

the formula. The function h�x� ∈ C�c �Rm� satisfies h�x�= 0 for 
x
 ≥ R and
h�x�= 1 in a neighborhood of 
x
 ≤ R/2 (recall that R was introduced right
before (II.3) in the definition of the set V ). Note that since u is assumed to
be defined in a neighborhood of V , the product u�x′�0�h�x′� is well-defined
on Rm, compactly supported, and of class C�. Since Z has m components
we may regard Zx as the m×m matrix ��Zj/�xk� and denote by det Zx its
determinant. Furthermore, since the exponential in the integrand is an entire
function of �Z1� � � � �Zm�, the chain rule shows that it satisfies the homogenous
system of equations (II.5) and the same holds for E�u�x� t� by differentiation
under the integral sign. The second step of the proof will be to show that
E�u�x� t�→ u�x� t� as � →� uniformly for 
x
 < R/4 and 
t
 < T < R if
T is conveniently small. Once this is proved we may approximate in the
C� topology the exponential e−�
��2 (for fixed large �) by the partial sum of
degree k, Pk���, of its Taylor series on a fixed polydisk that contains the set
�
√

��Z�x� t�−Z�x′�0�� 
 
x
� 
x′
 < R� 
t
 < R	, so replacing the exponential
in the definition of E� by Pk�Z�x� t�−Z�x′�0�� we will find polynomials
in Z�x� t� that approximate E�u�x� t� in the C� topology for 
x
 < R/4 and

t
 < T when k is large. Hence, from now on we fix our attention on the
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II.1 The approximation theorem 57

convergence of E�u→ u. We consider the following modification of the
operator E� :

G�u�x� t�= ��/)�m/2
∫

Rm
e−�
Z�x�t�−Z�x′�t��2u�x′� t�h�x′�det Zx�x

′� t�dx′�

Notice that in the trivial case in which the functions �k, k= 1� � � � �m, vanish
identically so Z�x� t� = x and det Zx = 1, G� is just the convolution of
u�x�0�h�x� with a Gaussian in Rm, which is a well-known approximation
of the identity as �→�. In general, the functions �k do not vanish but they
are relatively small because they vanish at the origin and (II.3′) holds, so
G� is still an approximation of the identity. The idea is then to prove that
G�u→ u and then estimate the difference R�u = G�u−E�u using the fact
that �u= 0.

Lemma II.1.3. Let B be an m×m matrix with real coefficients and norm
�B�< 1 and set A= I+ iB where I is the identity matrix. Then

det A
∫

Rm
e−
Ax�2 dx= )m/2�

Proof. We may write 
Ax�2 = tAAx ·x (the dot indicates the standard inner
product in Rm and also its extension as a C-bilinear form to Cm) so e−
Ax�2 =
e−Cx·x where the matrix C = tAA has positive definite real part �C = I− tBB

because �B�< 1. It is then known that (see, e.g., [H2, page 85])∫
Rm

e−Cx·x dx= )m/2�det C�−1/2

where the branch of the square root is chosen so �det C�1/2 > 0 when C is
real. Since det C = �det A�2 the proof is complete.

Set h�x�u�x� t�det Zx�x� t�= v�x� t�. For �x� t� fixed, the matrix Zx�x� t�=
I + i�x�x� t� satisfies the hypotheses of the lemma in view of (II.3′). Thus,
we may write

h�x�u�x� t�= )−m/2
∫

Rm
e−
Zx�x�t�x

′�2v�x� t�dx′�

Introducing the change of variables x′ �→ x+�−1/2x′ in the integral that defines
G�u we get

G�u�x� t�= )−m/2
∫

Rm
e−�
Z�x�t�−Z�x+�−1/2x′�t��2v�x+ �−1/2x′� t�dx′�

Then

G�u�x� t�−h�x�u�x� t�= I�+ J��
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58 The Baouendi–Treves approximation formula

where

I��x� t�= )−m/2
∫

Rm
e−
Zx�x�t�x

′�2�v�x+ �−1/2x′� t�−v�x� t��dx′

and

J��x� t�= )−m/2∫
Rm

(
e−�
Z�x�t�−Z�x+�−1/2x′�t��2 − e−
Zx�x�t�x

′�2
)
v�x+ �−1/2x′� t�dx′�

To estimate I� we observe that 
e−
Zx�x�t�x
′�2 
 = e−
x′ 
2+
�x�x�t�x

′ 
2 ≤ e−3
x′ 
2/4 in
view of (II.3′). We also observe that 
,xv�x� t�
 is bounded in Rm× �
t
 ≤ R	

because v vanishes for large x, so the mean value theorem gives


I��x� t�
 ≤ C�−1/2
∫

Rm
e−3
x′ 
2/4
x′
dx′ ≤ C ′�−1/2�

showing that 
I��x� t�
→ 0 as �→� uniformly on Rm×�
t
 ≤R	. To estimate
J� we first observe that 
e−�
Z�x�t�−Z�x+�−1/2x′�t��2 − e−
Zx�x�t�x

′�2 
 ≤ 2e−3
x′ 
2/4, so


J��x� t�
 ≤C
∫

x′ 
<K


e−�
Z�x�t�−Z�x+�−1/2x′�t��2 − e−
Zx�x�t�x
′�2 
dx′

+C exp�−K2/2��

Thus, to show that 
J��x� t�
 → 0 uniformly we need only estimate the
integral on 
x′
 < K for any large K. When 
x′
 ≤ K and 
t
 ≤ R, the
Leibniz quotient �1 = �Z�x� t�−Z�x+ �−1/2x′� t��/�−1/2 converges to �2 =
−Zx�x� t�x

′ uniformly in x as �→� in view of (II.3′), which also implies
that �
�1�

2 ≥ 0 and �
�2�
2 ≥ 0. Since e−� is a Lipschitz function on �� ≥ 0

and 

�1�
2− 
�2�

2
 ≤ C�−1/2 (note that �2 remains bounded as �x� t� ∈ RN and

x′
 ≤ K), we have


J��x� t�
 ≤ CKm�−1/2+C exp�−K2/2��

which shows that J��x� t�→ 0 uniformly for x ∈ Rm and 
t
 ≤ R as �→�.
Thus, G�u�x� t�→ h�x�u�x� t� uniformly and the limit h�x�u�x� t� = u�x� t�

for 
x
< R/2.
We will now estimate the remainder R� = G� −E� by means of Stokes’

theorem. The fact that u satisfies the system (II.5)—which was not used to
prove that G�u→ hu—is essential at this point. For �x� t�∈RN fixed consider
the m-form on RN given by

��x′� t′�= ��/)�m/2e−�
Z�x�t�−Z�x′�t′��2u�x′� t′�h�x′�dZ�x′� t′�

= v�x′� t′�dZ�x′� t′��
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II.1 The approximation theorem 59

where dZ = dZ1∧· · ·∧dZm. Hence, we may write

G�u�x� t�=
∫

Rm×�t	
� and E�u�x� t�=

∫
Rm×�0	

��

observing that the pullback of dZ�x′� t′� to a slice �t = c = const.	 is given
by det Zx�x

′� c�dx1∧· · ·∧dxm. Keeping in mind that � vanishes identically
for 
x′
> R and invoking Stokes’ theorem, we have

G�u�x� t�−E�u�x� t�=
∫

Rm×
0�t�
d�

where 
0� t� denotes the segment joining the origin of Rn to the point t ∈
Rn. To compute d� we will take advantage of expression (II.4). We have
d�= dv∧dZ so the only terms in (II.4) that matter here are those that do not
contain dZj , j= 1� � � � �m , i.e., d�=∑n

j=1 Ljvdtj∧dZ. Since the exponential
factor in v is an entire function of Z1� � � � �Zn, and thus satisfies (II.5) as well
as u, we obtain

R�u�x� t�= ��/)�m/2
n∑

j=1

∫
Rm×
0�t�

e−�
Z�x�t�−Z�x′�t′��2u�x′� t′�Ljh�x
′�dtj ∧dZ�x′� t′��

Assume now that 
x
 ≤R/4 and 
t
 ≤ T , where T will be chosen momentarily.
We wish to estimate the exponential factor


e−�
Z�x�t�−Z�x′�t′��2 
 = e��
��x�t�−��x′�t′�
2−
x−x′ 
2��

We have


��x� t�−��x′� t′�
 ≤ 
��x� t�−��x′� t�
+ 
��x′� t�−��x′� t′�

≤ 1

2

x−x′
+C
t− t′


≤ 1
2

x−x′
+CT

because t′ ∈ 
0� t� and 
t
 ≤ T . Hence,


��x� t�−��x′� t′�
2 ≤ 1
2

x−x′
2+2�T 2

and ∣∣e−�
Z�x�t�−Z�x′�t′��2 ∣∣= e��2�T 2−
x−x′ 
2/2��

where � is a bound that depends only on � and does not depend on u. Since
Ljh vanishes for 
x′
 ≤ R/2 we have that 
x′
 ≥ R/2 in all integrands in the
expression of R� , so 
x−x′
 ≥ R/4 and


R�u�x� t�
 ≤ Ce��2�T 2−R2/32��
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60 The Baouendi–Treves approximation formula

We may now choose T small enough so as to achieve 
R�u�x� t�
 ≤Ce−�R2/33.
This proves that 
R�u�x� t�
 → 0 uniformly on U = �
x
 ≤ R/4	× �
t
 ≤ T	.
Summing up, we have found a neighborhood of the origin U such that for
any C�-solution u of (II.5) defined in W , E�u→ u uniformly on U , which
partially proves part (i) of the theorem for very regular distributions.

The third step is to prove part (ii) of the theorem for k = � (the cases
1 ≤ k <� will be proved later). The main tool is the use of commutation
formulas for the vector fields Mk with G� .

Lemma II.1.4. For u ∈C1�W� and k= 1� � � � �m� the following identity holds:

MkG�u�x� t�−G�Mku�x� t�= 
Mk�G��u�x� t�

= ��/)�m/2
∫

Rm
e−�
Z�x�t�−Z�x′�t��2u�x′� t�Mkh�x

′�det Zx�x
′� t�dx′� (II.6)

Proof. By the symmetry in the variables x and x′ of the expression

Zj�x� t�−Zj�x
′� t�� j = 1� � � � �m

we have

�jk =Mk�x� t�Dx��Zj�x� t�−Zj�x
′� t��

)
=−Mk�x

′� t�Dx′��Zj�x� t�−Zj�x
′� t��

)
�

Thus, if F��� is an entire holomorphic function and we set

f�x� x′� t�= F�Z�x� t�−Z�x′� t��

we also have, by the chain rule,

Mk�x� t�Dx�f�x� t� t
′�=−Mk�x

′� t�Dx′�f�x� t� t
′��

Applying this to F���= e−�
��2 we get, after differentiation under the integral
sign that

MkG�u�x� t�=−��/)�m/2∫
Rm

Mk�x
′� t�Dx′��e

−�
Z�x�t�−Z�x′�t��2�u�x′� t�h�x′�dZ�x′� t�

where we have used the fact that the pullback to any slice t′ = const. of the
m-form dZ1∧· · ·∧dZn is given by det Zx�x

′� t�dx′. Next, using the ‘integra-
tion by parts’ formula ∫

Rm
Mkvw dZ =−

∫
Rm

vMkw dZ (II.7)
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II.1 The approximation theorem 61

which is valid if v and w are of class C1 and one of them has compact support,
we get

MkG�u�x� t�= ��/)�m/2∫
Rm

e−�
Z�x�t�−Z�x′�t��2(Mku�x
′� t�h�x′�+u�x′� t�Mkh�x

′�
)

dZ�x′� t�

which proves (II.6). To complete the proof we show that (II.7) holds. Consider
the exact m-form defined by

�k = d�uvdZ1∧· · ·∧ d̂Zk∧· · ·∧dZm�

= d�uv�∧dZ1∧· · ·∧ d̂Zk∧· · ·∧dZm

where the hat indicates that the factor dZk has been omitted. The pullback of
�k to the slice �t	×Rm is exact, so∫

�t	×Rm
�k = 0� (II.8)

Using (II.4) to compute d�uv� and observing that the pullback to the slice of
terms that contain a factor dtj vanish, we get

�k
�t	×Rm = �−1�k+1�vMku+uMkv�dZ
�t	×Rm�

so (II.8) implies (II.7).

Next we prove for the Lj commutation formulas analogous to (II.6). We
write

Lj =
�

�tj
− i

m∑
k=1

��k

�tj
�x� t�Mk�

= �

�tj
+

m∑
k=1

�jk

�

�xk

� j = 1� � � � � n�

We start with a technical lemma.

Lemma II.1.5.

� det Zx

�tj
+

m∑
k=1

���jk det Zx�

�xk

≡ 0� j = 1� � � � � n� (II.9)

Proof. Note that (II.9) says that the vector field �det Zx�Lj is divergence free,
i.e., div ��det Zx�Lj� = 0, or that tLj�det Zx� = 0 where tLj is the transpose
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62 The Baouendi–Treves approximation formula

of Lj . Take a test function v�x� t� and consider the compactly supported
exact form

�j = d
(
vdZ∧dt1∧· · ·∧ d̂tj ∧· · ·∧dtn

)
= dv∧dZ∧dt1∧· · ·∧ d̂tj ∧· · ·∧dtn
= �−1�m+j−1LjvdZ∧dt

= �−1�m+j−1Ljv �det Zx�dx∧dt

whose integral over RN vanishes, that is,∫
RN

Ljv�det Zx�dxdt =
∫

RN
v tLj�det Zx�dxdt = 0�

Since v is arbitrary, tLj�det Zx�≡ 0 and (II.9) is proved.

If g̃��� t� is a smooth function on Cm×Rn that is holomorphic with respect
to � and we set g�x� t�= g̃�Z�x� t�� t� we have, by the chain rule, that

Ljg�x� t�=
�g̃

�tj
�Z�x� t�� t�

because LjZk = 0, k= 1� � � � �m. To take advantage of this fact we may write
G�u�x� t�= ��/)�m/2�G̃�u��Z�x� t�� t�, where

G̃�u��� t�=
∫

Rm
e−�
�−Z�x′�t��2u�x′� t�h�x′�det Zx�x

′� t�dx′�

so

LjG�u�x� t�= ��/)�m/2 �G̃�u

�tj
�Z�x� t�� t��

To compute the right-hand side of the last identity we write e���� x
′� t� =

e−�
�−Z�x′�t��2 , differentiate with respect to tj under the integral sign, and
observe that

��e�uhdet Zx�

�tj
= ��e�uh�

�tj
det Zx+ e�uh

��det Zx�

�tj

= det ZxLj�e�uh�−det Zx

m∑
k=1

�jk

�

�xk

�e�uh�

+ e�uh
��det Zx�

�tj
�

Note that the integral over Rm of the second term of the right-hand side may
be written, after integration by parts, as∫

e�uh
m∑

k=1

�

�xk

��jk det Zx�dx
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so the integral of the second and third terms together yields∫
e�uh

(
��det Zx�

�tj
+

m∑
k=1

�

�xk

��jk det Zx�

)
dx= 0�

in view of (II.9). Since Lj�e�� = 0, we also have that det ZxLj�e�uh� =
det Zxe��Lju�h+det Zxe�uLjh. This shows that

�

�tj
G̃�u��� t�= G̃�Lju��� t�+

∫
e���� x

′� t��u�Ljh�det Zx��x
′� t�dx′�

When � = Z�x� t� we obtain

Lemma II.1.6. For u ∈ C1�W� and j = 1� � � � �m the following identity holds:

LjG�u�x� t�−G�Lju�x� t�= 
Lj�G��u�x� t�

= ��/)�m/2
∫

Rm
e−�
Z�x�t�−Z�x′�t��2u�x′� t�Ljh�x

′�det Zx�x
′� t�dx′� (II.10)

Let us assume now that u ∈ C��W� satisfies �u= 0 and we wish to prove
that E�u�x� t�→ u�x� t� in C��U�. We have already proved that G�u→ hu

uniformly in �
t
 ≤ T	×Rm. Since LjMku=MkLju= 0, 1≤ j ≤ n, 1≤ k≤m,
Mku is a smooth solution of the system, so we also have that G�Mku→ hMku

uniformly on �
t
 ≤ T	×Rm. Now, the expression (II.6) of 
Mk�G��u is almost
identical to that of G� , the only difference being that h has been replaced by
Mkh, so 
Mk�G��u→ �Mkh�u. Restricting our attention to U where h= 1 and
Mkh= 0, we conclude that MkG�u=G�Mku+ 
Mk�G��u→Mku uniformly
on U as �→�. A similar conclusion can be obtained for LjG�u using (II.10)
instead of (II.6), that is, LjG�u→ Lju uniformly on U . Since any first-order
derivative D may expressed as a linear combination with smooth coefficients
of the Mk’s and the Lj’s, we see that DG�u→ Du uniformly on U . This
shows that G�u→ u in C1�U�. Of course, the argument can be iterated for
higher-order derivatives to conclude that G�u→ u in C��U�.

II.2 Distribution solutions

We continue the proof of Theorem II.1.1, keeping the notations of Section II.1.
In order to extend the arguments of the previous section to a distribution
u ∈ 
′�W� such that �u = 0—which is the fourth step of the proof of
Theorem II.1.1—it is enough to check the following facts:

(a) E�u is well-defined for u ∈
′�W�;
(b) G�u is well-defined for u ∈
′�W�;
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64 The Baouendi–Treves approximation formula

(c) G�u→ u in 
′�U� as �→� for u ∈
 ′�W�;
(d) R�u=G�u−E�u→ 0 in 
′�U� as �→� for u ∈
 ′�W�.

We start by observing that since u satisfies the system of equations (II.5)
on a neighborhood of V , the wave front set WF�u� of u is contained in the
characteristic set of � and therefore does not intersect the set

��x� t�0� �� ∈ RN ×RN � 
x
� 
t
< R′� � �= 0	�

for some R′ >R. Thus, WF�hu� is contained in the same set and, in particular,
the restriction of u to W belongs to

C���
t
 ≤ R	�
′��
x
< R	���

On the connection between wave front sets and restrictions of distributions,
we refer to [H2, chapter VIII]. Moreover, since V = �
x
 < R	× �
t
 < R	

is relatively compact in W we may assume that t �→ u�·� t� is a continuous
function with values in the L2 based local Sobolev space L2�s

loc�BR� of order s,
for all 
t
 ≤R and some real s, where BR denotes the ball of radius R centered
at the origin of Rm (for the definition of local Sobolev spaces see Section II.3.2
below). Thus, for any 
t
 ≤ R, the trace u�·� t� is well-defined and belongs
to L2�s

loc�BR�. Then, E�u�x� t� (resp. G�u�x� t�) is well-defined if we interpret
the integral as duality between the distribution u�·�0� and the test function
��/)�m/2e−�
Z�x�t�−Z�x′�0��2h�x′�det Zx�x

′�0� (resp. u�·� t� and the test function
��/)�m/2e−�
Z�x�t�−Z�x′�t��2h�x′�det Zx�x

′� t�). This takes care of (a) and (b). To
prove (d), it is convenient to express R�u by a reinterpretation of the formula
obtained for smooth u using Stokes’ theorem. We point out that the formula
could also have been written as

R�u�x� t�=
∫

0�t�

n∑
j=1

rj�x� t� t
′� ��dt′j� (II.11)

where

rj�x� t� t
′� ��= ��/)�m/2

∫
Rm

e−�
Z�x�t�−Z�x′�t′��2u�x′� t′�Ljh�x
′�det Zx�x

′� t′�dx′

(II.12)

and 
0� t� denotes the straight segment joining 0 to t. In other words, by
integrating first in x we may express the integral of an m+1-form over the
cell Rm× 
0� t� as the integral of a 1-form over the segment 
0� t�. In this
form, Stokes’ theorem is just a restatement of the fundamental theorem of
calculus for a 1-form. To prove this claim, write for fixed � and �

g�t′�= G̃�u��� t
′�=

∫
Rm

e−�
�−Z�x′�t′��2u�x′� t′�h�x′�det Zx�x
′� t′�dx′�
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Then,

g�t�−g�0�=
∫

0�t�

n∑
j=1

�g

�t′j
�t′�dt′j � (∗)

To compute the derivatives of g we write e���� x
′� t�= e−�
�−Z�x′�t��2 , differen-

tiate with respect to t′j under the integral sign, and recall that

��e�uhdet Zx�

�t′j
= ��e�uh�

�t′j
det Zx+ e�uh

��det Zx�

�t′j

=det ZxLj�e�uh�−det Zx

m∑
k=1

�jk

�

�xk

�e�uh�

+ e�uh
��det Zx�

�t′j
�

a fact we already used in the proof of (II.10). Once again, the integral over
Rm of the second term of the right-hand side may be written, after integrating
by parts, as ∫

e�uh
m∑

k=1

�

�xk

��jk det Zx�dx

so the integral of the second and third terms together yields∫
e�uh

(
��det Zx�

�tj
+

m∑
k=1

�

�xk

��jk det Zx�

)
dx= 0�

in view of (II.9). Since Lj�e�u� = 0, we also have that detZxLj�e�uh� =
det Zxe�uLjh. This shows that

�g

�t′j
�t′�= r̃j��� t

′� �� (∗∗)

where

r̃j��� t
′� ��=

∫
Rm

e−�
�−Z�x′�t′��2u�x′� t′�Ljh�x
′�det Zx�x

′� t′�dx′�

Hence, (∗) for � = Z�x� t� gives an alternative proof of the fact that R�u =
G�u−E�u as given by (II.11) and (II.12). Notice that (II.12) makes sense if
u ∈ C���
t
 ≤ R	�
′��
x
 < R	�� as soon as we change the integral symbol
by the duality pairing between the distribution u�·� t′� and the appropriate test
function; furthermore, R�u = G�u−E�u is still given by (II.11) and (II.12)
in the case of distribution solutions since (∗∗) is easily seen to remain valid
in this case. Note also that R�u�x� t� is a smooth function of �x� t�. We will
prove a stronger form of (d).
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66 The Baouendi–Treves approximation formula

Proposition II.2.1. Let u ∈
′�W� satisfy the system (II.5). Then,

R�u�x� t�→ 0 in C��U�� (II.13)

Proof. We already saw that the exponential in (II.12) may be majorized by
e−c� for some positive constant c > 0 when 
x
<R/4, 
x′
 ≥R/2, 
t
<T and
t′ ∈ 
0� T�. Let $x denote the Laplacian in Rm. For k ∈ Z+ we may write

Ljh�x
′�u�x′� t′�det Zx�x

′� t′�=(�x′��1−$x′�
k�1−$x′�

−k
(
Ljh�x

′�

u�x′� t′�det Zx�x
′� t′�

)
�

where (�x′� is a cut-off function that vanishes for 
x′
 ≤ R/4 such that
(�x′�Ljh�x

′�= Ljh�x
′�. Let us write

vj�x
′� t′�= �1−$x′�

−k
�Ljh�x
′��u�x′� t′�det Zx�x

′� t′���

It follows that vj ∈ C0�V� for an appropriate choice of k and we may write,
after an integration by parts,

rj�x� t� t
′� ��= ��/)�m/2

∫
vj�x

′� t′��1−$x′�
k
(�x′�e−�
Z�x�t�−Z�x′�t′��2 �dx′�

Indeed, the convolution operator

�1−$�−kf�x�= 1
�2)�m

∫
eix·��1+
�
2�−kf̂ ���d�� f ∈ ��Rm�

maps continuously L2�s�Rm� onto L2�s+2k�Rm� and the latter is contained in
L��Rm�∩C0�Rm� if s+2k >m/2 by Sobolev’s embedding theorem. Hence,
rj�x� t� t

′� �� is continuous with respect to t′ and converges to 0 uniformly
for 
x
 ≤ R/2� 
t′
 ≤ 
t
 ≤ T , as � →�, since the derivatives in �1−$x′�

k

produce powers of � that are dominated by the exponential e−c� . Hence,
R�u�x� t�→ 0 uniformly as �→� and it is easy to see, by differentiating
(II.11), that the same holds for the derivatives of any order with respect to x

and t of R�u�x� t�, as we wished to prove.

Finally, it is enough to prove that (c) holds assuming that u ∈ C0
(
�
t
 ≤

R	�L2�k
loc �BR�

)
for some integer k. Let us start with the case k= 0. We assume

that u ∈ C0
(
�
t
 ≤ R	�L2

loc�BR′�
)

(with R′ slightly larger that R) and we wish
to prove that∫


x
≤R/4

G�u�x� t�−u�x� t�
2 dx→ 0 uniformly in 
t
 ≤ T�
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which certainly implies (c) in this case. Redefining u by zero off BR×Rn we
may assume that u�x� t� ∈ L2�Rm� for each fixed t, 
t
 ≤ T . Using once more
(II.3′), we see that for any x�x′ ∈ Rm and t ∈ Rn



Z�x� t�−Z�x′� t��2 = 
x−x′
2−
��x� t�−��x′� t�
2
≥ �3/4�
x−x′
2�

so the exponential inside the integral that defines G�u has a bound

e−�
Z�x�t�−Z�x′�t′��2 
 ≤ e−3�
x−x′ 
2/4. If we set

F��x�= �m/2e−3�
x
2/4� 0 < � <��

we easily conclude for fixed 
t
 ≤ R that


G�u�x� t�
 ≤ C �F� ∗ 
u
� �x� t�
where the convolution is performed in the x variable and t plays the role of
a parameter. Since �F��L1 = �F1�L1 = C, Young’s inequality for convolution
implies

sup

t
≤T

�G�u�·� t��L2�Rm� ≤ C sup

t
≤T

�u�·� t��L2�Rm�� (II.14)

On the other hand, we proved in Section II.1 that if u ∈C�c �V� then G�u→ u

uniformly in U = BR/4× �
t
 < T	, which implies convergence in the mixed
norm space C0

(
�
t
 ≤ T	�L2�BR/4�

)
. So the operator G� 
U converges to the

restriction operator u �→ u
U , as � →�, on a dense subset of C0
(
�
t
 ≤

T	�L2�BR�
)

and the family of operators �G� 
U	 is equicontinuous because of
(II.14). Thus, G�u
U → u
U in the whole space C0

(
�
t
 ≤ T	�L2�BR�

)
.

Assume now that u∈C0
(
�
t
 ≤ T	�L2�1�BR′�

)
, R′ >R. Introducing a cut-off

function we may assume that u ∈ C0
(
�
t
 ≤ T	�L2�1�Rm�

)
without modifying

u for 
x
 < R. Thus, for 
t
 ≤ T fixed, we see that u, ��u/�xk� and ��u/�tj�

are in L2�Rm� for 1 ≤ k ≤m, 1 ≤ j ≤ n. Since we are assuming that ��x� t�

is compactly supported, the coefficients of Lj and Mk are bounded, with
bounded derivatives. In particular, Lju and Mku are in L2�Rm� for 1≤ k≤m,
1≤ j ≤ n, uniformly in 
t
 ≤ T . To obtain the convergence result for k= 1 we
will be able to reason as with the case k= 0 as soon as we prove an estimate
analogous to (II.14) for the L2�1 norm, i.e.,

sup

t
≤T

�G�u�·� t��L2�1�Rm� ≤ C sup

t

≤T

�u�·� t��L2�1�Rm�� (II.15)

Any first-order derivative with respect to x is a linear combination with
bounded coefficients of the Mk’s, so it is enough to prove for 
t
 ≤ T ,
1≤k≤m, 1≤ j ≤ n, that
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68 The Baouendi–Treves approximation formula

�MkG�u�·� t��L2�Rm� ≤ C sup

t
≤T

�u�·� t��L2�1�Rm�� (II.16)

Writing MkG� = 
Mk�G��+G�Mk we are led to estimate �G�Mku�L2 and
�
Mk�G��u�L2 . By (II.14) we have �G�Mku�L2 ≤ C�Mku�L2 ≤ C ′�u�L2�1 .
Notice that an estimate like (II.14) holds as well with 
Mk�G�� in the place
of G� because G� and 
Mk�G�� have very similar kernels, as (II.10) shows.
Thus, �
Mk�G��u�L2 ≤ C�u�L2�1 , which proves (II.16) and gives (II.15). This
process can be continued to prove

sup

t
≤T

�G�u�·� t��L2�k�Rm� ≤ Ck sup

t

≤T

�u�·� t��L2�k�Rm�� k= 1�2 � � � (II.17)

To deal with the case in which k′ is a negative integer, i.e., k′ = −
k′
 = −k,
we consider a slight modification of G� , namely, G′

�u�x�= h�x�G�u�x�. Of
course, �G�u
U	 = �G′

�u
U	 because h�x� = 1 for 
x
 ≤ R/2, so this change
will not affect our conclusions for 
x
 ≤ R/4. The advantage of considering
G′

� is that for fixed t it becomes a formally symmetric operator in the x-
variables, as soon as we use the pairing given by the complex measure
dZ�x� t� = det Zx�x� t�dx. More precisely, for fixed t and v�w ∈ C�c �Rm�

we have #G′
�v�w$ = #v�G′

�w$ where we are using the notation #a�b$ =∫
a�x�b�x�det Zx�x� t�dx, when a�b ∈C��Rm� and one of them has compact

support. Thus,

�G′
�u�·� t��L2�k′ �Rm� ≤ C sup

w∈C�c �Rm�

�w�
L2�k≤1


#G′
�u�·� t��w$


= C sup
w∈C�c �Rm�

�w�
L2�k≤1


#u�·� t��G′
�w$


≤ C sup
w∈C�c �Rm�

�w�
L2�k≤1

�u�·� t��L2�k′ �G′
�w�L2�k

≤ C�u�·� t��L2�k′ �

(II.18)

where we have used (II.17) for the positive integer k in the last inequality.
This extends (II.17) to all integers k ∈ Z, proving the equicontinuity of G′

�

in all spaces C0
(
�
t
 ≤ T	�L2�k�BR′�

)
, k ∈ Z, which together with the conver-

gence of G�u
U to u
U for the space of test functions C�c �BR′ × �
t
 ≤ T	�

which is dense in any C0
(
�
t
 ≤ T	�L2�k�BR′�

)
proves that G�u→ u in

C0
(
�
t
 ≤ T	�L2�k�BR/4�

)
for any u ∈ C0

(
�
t
 ≤ T	�L2�k�BR′�

)
. This proves

(c) and concludes the proof of part (i) of Theorem II.1.1.
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To prove part (ii) of the theorem—this is the fifth and final step of the
proof—using the same method of proof, it will be enough to prove the
equicontinuity of G� on the spaces

Cj
(
�
t
 ≤ T	�Ck

b�R
m�

)
� j� k= 0�1�2 � � � �

where Ck
b�R

m� is the space of functions on Rm possessing continuous bounded
derivatives of order ≤ k. For j� k= 0 this is easily achieved by noting that


G�u�x� t�
 ≤ C �F� ∗ 
u
� �x� t�≤ C ′�u�
C0
(
�
t
≤T	�C0

b �R
m�

)�
For j� k≤ 1 one expresses the derivatives in terms of the vector fields Lj and
Mk and reduces the equicontinuity for the norms of Cj

(
�
t
 ≤ T	�Ck

b�R
m�

)
to

the case j = k= 0 by introduction of the commutators 
G��Lj� and 
G��Mk�,
as was done before for Sobolev norms; iteration of this process gives the
result for k= 2�3� � � � This concludes the proof of Theorem II.1.1.

II.3 Convergence in standard functional spaces

As proved in Proposition II.2.1, R�u = G�u−E�u→ 0 in C��U�, for any
distribution u satisfying �u = 0 in a larger open set V . This reduces the
problem of the convergence E�u→ u in any space with coarser topology
than C�-topology to the convergence of G�u→ u in the same space. Now,
as the reader probably noticed in the proof of Theorem II.1.1, the operator G�

is very close to convolution with a Gaussian in the x-variables with t playing
the role of a parameter, and as such it is a very well-behaved approximation
of the identity. Hence, loosely speaking, we may expect that the convergence
G�u→ u on U holds in the topology of many functional spaces used in
analysis, provided that u belongs to that space over the larger set V . In this
section we deal with this question and the approach will always be the same:
to prove convergence in a given space of distributions X�U� we will first
prove the equicontinuity of �G�	 in the space X�RN � and then try to apply
the standard fact that under the hypotheses of equicontinuity it is enough to
check the convergence on a convenient dense subset of X�V�. Usually the
dense subset will be the space of test functions * ∈C�c �V�, for which we know
that G�*→ * in C��U�. Thus, this approach works if (i) X�V� is a normal
space of distributions (i.e., C�c �V� is dense in X�V�), and (ii) C��U�⊂ X�U�

with continuous inclusion. We have already applied this principle in the proof
of Theorem II.1.1 with X�V�= C0

(
�
t
 ≤ R	�L2�k�BR�

)
.
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II.3.1 Convergence in Lp

The main result of this subsection is:

Theorem II.3.1. Let � be a locally integrable structure on � and assume
that dZ1� � � � �dZm span �⊥ at every point of �. Then, for any z ∈�, there
exist two open sets U and W , with z ∈ U ⊂ U ⊂W ⊂�, such that for any
u ∈ L

p
loc�W�, 1≤ p ≤�, satisfying �u= 0,

E�u�x� t�−→ u�x� t� a.e. in U as �→�. (II.19)

In case p is finite, i.e., 1≤ p <�, we also have

E�u�x� t�−→ u�x� t� in Lp�U� as �→�. (II.20)

In (II.19) and (II.20) we may replace the operator E� by a convenient sequence
of polynomials in Z, P��Z1� � � � �Zm�.

In the proof of Theorem II.3.1 we may assume from the start by shrinking
W that u ∈ Lp�W� and we will do so. We are also tacitly assuming that we
are using special coordinates �x� t� adapted to a given set of local generators
dZ1� � � � �dZm of �⊥ with linearly independent real parts so that Z = x+
i��x� t�, where ��x� t� is smooth, real, has compact support and satisfies
(II.3′). Once the special coordinates �x� t� are fixed, the operator E� referred
to in (II.19) and (II.20) is defined precisely as in the proof of Theorem II.1.1.

We will also prove below theorems similar to Theorem II.3.1 for different
norms and in all of them the first step will be to choose special local coordi-
nates where Z has this special form where the operators E� and G� are defined
and have good convergence properties. To avoid repetitions we will always
assume that this step has already been carried out, even if not mentioned
explicitly.

According to the considerations made at the beginning of the section, we
need only prove that

G�u−→ hu in Lp�W�� � −→�� u ∈ Lp�W�� (II.21)

For 1 ≤ p < �, the space C0
c �W� is dense in Lp�W� and (II.20) will be a

consequence of

G�u−→ hu uniformly� � −→�� u ∈ C0
c �W�

(which we already know by Theorem II.1.1) and the uniform bound that we
will prove later:

�G�u�p ≤ C�u�p� u ∈ Lp�RN �� � > 0� (II.22)

where � �p denotes the Lp-norm.
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Let us set W = Bx×Bt, where Bx = �
x
 < R	 and Bt = �
t
 < R	. Let
u ∈ Lp�W� and set ut�x� = u�x� t�. Fubini’s theorem guarantees that ut is
defined for a.e. t, it is measurable, and it belongs to Lp�Bx�. If, moreover, u
satisfies �u= 0, we know that u has a trace Ttu and Bt � t �→ Ttu ∈
′�Bx�

is a smooth function. It will be useful to compare both types of restrictions
of u to the slices t = const.

Lemma II.3.2. If u ∈ Lp�W�� 1 ≤ p ≤ �, and u is a solution of the system
(II.5) then Ttu= ut for a.e. t ∈ Bt. In particular, Ttu ∈ Lp�Bx� for a.e. t ∈ Bt.

Proof. We take functions � ∈ C�c �Bx� and * ∈ C�c �Bt�. We know that t �→
#Ttu��$ is a C�-function defined in Bt, t �→ #ut��$ belongs to Lp�Bt� and∫

#Ttu��$*�t�dt =
∫ (∫

u�x� t���x�dx
)
*�t�dt

=
∫
#ut��$*�t�dt�

(II.23)

If we take *�t�= (j�t−t0�, (j�t�= jn(�jt�, 0≤ ( ∈C�c ��
t
 ≤ 1	�,
∫
(dt= 1,

and let j→�, the left-hand side of (II.23) converges for every t ∈ Bt to
#Ttu��$ while the right-hand side converges a.e. to #ut��$. Hence, there is
a null set N���⊂ Bt such that

#Ttu��$ = #ut��$� � ∈ C�c � t % N����

If we apply the last identity to a dense sequence ��k	 ⊂ C�c �Bx� and set
N =⋃

N��n� we obtain that Ttu= ut as elements of 
′�Bx� when t is not in
the null set N .

Remark II.3.3. One cannot expect in general that, under the conditions of
Lemma II.3.2, Ttu ∈ Lp for all t. For instance, if �= �−1�1�×�−1�1�⊂R2,
Z = x+ it2/2, L= �t− it�x is the Mizohata operator and u�x� t�= 1/Z�x� t�,
it is simple to verify that u ∈ Lp��� for 1≤ p < 3/2, Lu= 0 in the sense of
distributions and Ttu ∈ C��
−1�1�� ⊂ L��−1�1� ⊂ Lp�−1�1� for t �= 0 but
for t = 0 we have T0u= pv�1/x�− i)��x� % Lp�−1�1�.

We now prove Theorem II.3.1. Consider the maximal operator associated
with G�u:

G∗
�u�x� t�= sup

�≥1

G�u�x� t�
�

We claim that, for u ∈ L1���, there exists a constant C > 0 such that

G∗
�u�x� t�≤ CM�h�x�Ttu�x��� (II.24)
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for any t such that Ttu ∈ L1�Bx�. Here

Mf�x� t�= sup
r>0

1

B�x� r�


∫
B�x�r�


f�x′� t�
dx′

is the Hardy–Littlewood maximal operator acting in the x-variable, B�x� r� is
the ball of radius r centered at x, and 
B�x� r�
 denotes its Lebesgue measure.
In fact, 
G�u�x� t�
 can be estimated by

��/)�m/2
∫

Rm
e−��
x−x′ 
2−
��x�t�−��x′�t�
2�
Ttu�x

′�

h�x′�

detZx�x
′� t�
dx′

and this expression can be dominated by the maximal operator

sup
�≥1

F� ∗ 
hTtu det Zx
 = C sup
�≥1

�m/2
∫

Rm
e−3�
x−x′ 
2/4


Ttu�x
′�

h�x′�

det Zx�x

′� t�
dx′

where

F��x�= C�m/2e−3�
x
2/4

and C is a constant. Hence,

G∗
�u�x� t�≤ sup

�≥1
F� ∗ 
hTtudetZx
 ≤ CM�h�·�Ttu�·���x��

The last inequality follows from the fact that F1�x� = Ce−3
x
2/4 is radial
decreasing and belongs to L1�Rm� (see, for instance, [S1, page 62]). Thus,
(II.24) is proved.

If u ∈ C0
c �W�, we know that G�u�x� t�→ h�x�u�x� t�� �→� uniformly.

The standard properties of the maximal operator allow us to conclude that
for any t ∈ Bt such that Ttu�x� ∈ L1�Bx� there exists a subset Nt ⊂ Bx with

Nt
 = 0 such that

G�u�x� t�→ h�x�u�x� t�� x % Nt�

Hence, if we choose �x� t� ∈ U such that Ttu ∈ L1�Bx� and x % Nt, we get
(recalling that R�u→ 0 uniformly in U )

E�u�x� t�→ h�x�u�x� t�= u�x� t� a�e� in U

and therefore E�u�x� t�→ u�x� t� a.e. in U as we wished to prove.
We now prove (II.22). We observe that


G�u�x� t�
 ≤ F� ∗ 
hTtu det Zx

and then Young’s inequality for convolution implies

�G�u�·� t��Lp�dx� ≤ �F��1�hTtu det Zx�Lp�dx� ≤ C�Ttu�Lp�dx��
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since the L1 norm of F� does not depend on � and h det Zx is bounded. Raising
this inequality to the pth power and integrating with respect to t we obtain
(II.22). Since G�u→ hu uniformly in W as � →� when u is continuous,
the usual density argument shows that (II.21) holds for 1 ≤ p < �. Thus,
(II.19) and (II.20) have been proved. Finally, since E�u can be approximated
in C��U� by polynomials in Z for fixed �, the proof is complete.

It is obvious that (II.20) is, in general, false for p=� because the uniform
limit of a sequence of continuous functions, such as E�u�x� t�, is continuous.

A simple consequence of Theorem II.3.1 is:

Corollary II.3.4. Let � be a locally integrable structure over a C� manifold
U and let u ∈ L

p
loc�U�, 1 ≤ p ≤�, v ∈ L

q
loc�U�, 1/p+ 1/q = 1, be solutions

of the system (II.5). Then the product w = uv ∈ L1
loc�U� also satisfies (II.5).

Proof. By localization we may assume that U is the neighborhood where
the conclusions of Theorem II.3.1 hold. Set u� = E�u, w� = u� v. Leibniz’s
rule shows that �w� = 0, as u� ∈ C��U�. By Theorem II.3.1 and Hölder’s
inequality w� → w in L1

loc�U�, �→�, showing that �w = 0 in the sense of
distributions.

II.3.2 Convergence in Sobolev spaces

In this subsection we prove

Theorem II.3.5. Let � be a locally integrable structure with first integrals
Z1� � � � �Zm, defined in a neighborhood of the closure of W = Bx×Bt. There
exists a neighborhood U ⊂ W of the origin such that for any u ∈ L

p�s
loc �W�,

1 < p <�, s ∈ R, satisfying �u= 0,

E�u�x� t�−→ u�x� t� in L
p�s
loc �U�� � −→�� (II.25)

As usual, we may replace the operator E� in (II.25) by a convenient sequence
of polynomials in Z, P��Z1� � � � �Zm�.

We recall that for 1≤ p ≤�� s ∈ R,

Lp
s �R

N �= �f ∈ �′�RN � 
 �f�p�s �= �#sf�p <�	

where #sf�x�=� −1
�1+
�
2�s/2� f�����x� and � denotes the Fourier trans-
form in RN (#s is the Bessel potential and �′ denotes the space of tempered
distributions). For k ∈ Z+ and p in the range 1 < p <� the space L

p
k�R

N �

is exactly the subspace of the functions in Lp�RN � whose derivatives of
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order ≤k in the sense of distributions belong to Lp�RN �. This space is equiv-
alently normed by ([S1])

�u�Lp
k
= ∑

�
≤k

�D�u�p� (II.26)

The space L
p�s
loc ��� is the subspace of 
′��� of the distributions u such that

*u ∈ Lp
s �R

N � for all test functions * ∈ C�c ���, equipped with the locally
convex topology given by the seminorms u �→ �*u�p�s, * ∈ C�c ���. Fix
p ∈ �1���, s ∈ R and choose the open sets U and W as in Theorem II.1.1.
The theorem will be proved if we show that

lim
�→�G�v= hv in Lp

s �W�� ∀v ∈ C�c �W�� (II.27)

and there exists a positive constant C such that

�G�w�p�s ≤ C�w�p�s ∀w ∈ Lp
s �R

N �� (II.28)

Indeed, (II.27) and (II.28) imply as usual, by density and triangular approx-
imation, that �G�w−hw�p�s → 0 as �→� for any w ∈ Lp

s �R
N �∩�′�W�—

where �′�W� denotes the space of distributions compactly supported in
W—which implies that G�w→ w in the topology of L

p�s
loc �U�. We know

that for u ∈ C�c �U�, G�u→ u in C��U�, thus (II.27) is clearly true and we
need only worry about proving (II.28), which we prove first for a positive
integer s = k ∈ Z+. The vector fields Lj and Mk form a basis of CTRn and
we may express the derivatives D� in (II.26) in terms of the vector fields Lj ,
j = 1� � � � � n, Mk, k= 1� � � � �m. This gives

�G�w�Lp
k
≤ C

∑

�1
+
�2
≤k

�M�1L�2G�w�p� (II.29)

We write

LjG�w =G�Ljw+ 
Lj�G��w�

MkG�w =G�Mkw+ 
Mk�G��w�

As shown in Lemmas II.1.4 and II.1.6, the operators 
Lj�G�� and 
Mk�G��

are given by the same expression as G� with h�x� replaced respectively by
Ljh�x� and Mkh�x�. Hence, the proof of Theorem II.3.1 gives bounds in Lp

for the commutators that may be written as

�
Lj�G��v�p+�
Mk�G��v�p ≤ C�v�p� v ∈ Lp�RN �� (II.30)
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Thus, for 1≤ j ≤ n, 1≤ k≤m,

�LjG�w�p+�MkG�w�p ≤ C��Ljw�p+�Mkw�p+�w�p�
≤ C��w�p�1+�w�p�
≤ C�w�p�1� (II.31)

where we have used (II.22) to estimate G�Ljw and G�Mkw in the first
inequality. Thus, combining (II.26) for u = G�w and k = 1 with (II.31) we
get (II.28) for k = 1. This reasoning can be iterated for any s = k ∈ Z+ and
the theorem is proved for s ∈ Z+.

To prove (II.28) for nonintegral s > 0, we use interpolation of Sobolev
spaces (on the subject of interpolation see, for instance, [C1] and [C2]). First
we take k ∈ Z+ such that 0 < s < k. The operator G� is of type �p�p�0�0�
and also of type �p�p�k� k�� k ∈ Z+, that is, it verifies

�G�w�p ≤ C�w�p� w ∈ C�c �RN �

and

�G�w�p�k ≤ C�w�p�k� w ∈ C�c �RN ��

By complex interpolation we obtain that G� is of type �p�p� s� s�; that is,
(II.28) holds for 0 < s < k and w ∈ C�c �RN � and by density it also holds for
w ∈Lp

s �R
N �. Finally, to prove (II.28) for s < 0, we invoke a slight variation of

the duality argument that was used to extend (II.18) from positive integers to
negative integers: we consider the modification of G� , G′

�u�x�= h�x�G�u�x�

which is formally symmetric in the x-variables for fixed t for the pairing
given by integration with respect to dZ�x� t� = det Zx�x� t�dx and thus also
symmetric in both variables x and t for the pairing given by integration
with respect to dZ�x� t�∧ dt = det Zx�x� t�dxdt. Since this is a nonsingular
continuous pairing for the spaces Lp

s �R
N � and Lq

−s�R
N �, 1/p+ 1/q = 1, it

extends (II.28) to s < 0 as follows:

�G′
�w�Lp

s �RN � ≤ C sup
*∈C�c �RN �

�*�
L
q−s
≤1


#G′
�w�·� t��*$


≤ C sup
*∈C�c �RN �

�*�
L
q−s
≤1


#w�G′
�*$


≤ C sup
*∈C�c �RN �

�*�
L
q−s
≤1

�w�Lp
s
�G′

�*�Lq−s

≤ Cs�w�Lp
s �RN ��
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where in the last inequality we used (II.28) with q in the place of p and
−s > 0 in the place of s. Thus, (II.28) is completely proved and the proof of
Theorem II.3.5 is complete.

II.3.3 Convergence in Hölder spaces

Let � ⊂ RN be an open, bounded, convex set. The Hölder space C���� is
defined as

C����= �u ∈ Ck�����u�� <�	

where

�u�� = 
u
�+
u
0�

u
0 = sup

x∈�

u�x�
�


u
� = sup
x�y∈��
x �=y


u�x�−u�y�


x−y
� � 0 < �≤ 1�


u
� =
∑
�≤k


D�u
�−k� k < �≤ k+1� k ∈ Z+� u ∈ Ck����

The spaces C��RN � are defined similarly. The approximation theorem is:

Theorem II.3.6. Let � be a locally integrable structure with first integrals
Z1� � � � �Zm, defined in a neighborhood of the closure of W = Bx×Bt. There
exists a convex neighborhood U ⊂ � of the origin such that for any u ∈
C��W�, �> 0 satisfying �u= 0 in a neighborhood of W and any 0≤ �< �

E�u�x� t�−→ u�x� t� in C��U�� � −→�� (II.32)

As usual, we may replace the operator E� in (II.32) by a convenient sequence
of polynomials in Z, P��Z1� � � � �Zm�.

Proof. As always, since C�c �W� is dense in C�
c �W� for the C� norm, we

need only prove

G�u−→ u in C��W�� u ∈ C�c �W��

and the inequality

�G�u�� ≤ C�u��� u ∈ C�
c �W��

It is obvious that �G�u− u�� → 0 when � →�, u ∈ C�c �W�, because by
Theorem II.1.1 G�u→ u, � →� in Ck�W� for every positive integer k.
We may assume without loss of generality, as we always do, that Z�x� t� =
x+ i��x� t� is defined and satisfies (II.3′) throughout RN and reduces to
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Z�x� t�≡ x for �x� t� outside a compact set. We shall then prove

�G�u�� ≤ C�u��� u ∈ C�
c �R

N �� (II.33)

We assume first that 0 < � < 1. It will be useful to use the following
well-known characterization of C��RN � ([S2, page 256]):

Lemma II.3.7. A function u belongs to C��RN �, 0 < � < 1, if and only if
there exist a sequence of functions �uk� ∈C1�RN �, bounded and with bounded
gradients, such that

(i) �uk�L� ≤ K 2−�k, k= 0�1� � � � �
(ii) �,uk�L� ≤ K 2�1−��k, k= 0�1� � � � �

(iii) u�z�=∑�
k=0 uk�z�, z ∈ RN .

It also follows that the best constant K in (i) and (ii) above is proportional to
�u��. Such a sequence is usually called a sequence of best approximation for
u. We start by writing u=∑

uk with �uk� a sequence of best approximation
for u. Then, G�u=

∑
G�uk and we need to estimate the essential supremum

of G�uk and ,G�uk. Taking account of (II.22) with p=� and (i) of Lemma
II.3.7 we derive

�G�uk�L� ≤ C�uk�L� ≤ CK2−�k� k ∈ Z+� (II.34)

In order to estimate ,G�uk it is convenient to express any partial derivative in
terms of the vector fields Lj and M�, 1≤ j ≤ n, 1≤ �≤m. Then, we are led
to estimate LjG�uk, j = 1� � � � � n and M�G�uk, � = 1� � � � �m. We may write
LjG�uk =G�Ljuk+ 
Lj�G��uk and recall that

�
Lj�G��uk�L� ≤ C�uk�L��
which follows from (II.30) with p=�. We get

�LjG�uk�L� ≤ C��Ljuk�L� +�uk�L��
≤ C��,uk�L� +�uk�L��� j = 1� � � � � n� k= 1�2� � � �

Similar estimates are true for M�G�uk, �= 1� � � � �m, k ∈ Z+ and we obtain

�,G�uk�L� ≤ C��uk�L� +�,uk�L��≤ C ′K2�1−��k� k ∈ Z+� (II.35)

Thus, (II.34), (II.35) and Lemma II.3.7 imply that (II.33) holds for 0 <�< 1.
Let us assume next that there is a positive integer k such that � = k+�,

0 < � < 1 and we wish to estimate

�G�u�� ∼
∑

�
≤k

�D�G�u�� ≤ C
∑


�1
+
�2
≤k

�M�1L�2G�u���
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Using the commutation formulas of Lemmas II.1.4 and II.1.6 it is easy to
prove (II.33) by induction on k, adapting the reasonings we used to deal with
Sobolev norms of integral order in Section II.3.2; we leave the details to the
reader. Finally, to prove (II.33) for �= k= 1�2� � � � , we observe that in this
case �u�� = �u�k ∼ �u�L�k so (II.33) is a variation of the estimates already
considered for Sobolev norms. This completes the proof of Theorem II.3.6.

It is not possible to take �= � in Theorem II.3.6, as we will see next.

Example II.3.8. Consider in R2, where we denote the coordinates by �x� t�,
the structure � spanned by �t with first integral Z�x� t�= x and let 0 <�≤ 1.
Consider a function u�x� ∈ C�

c �R
2� independent of t (so it satisfies �u= 0)

such that u�x�= 
x
� for 
x
 ≤ 1. If w�x� t� is of class C1 in a neighborhood
of the origin, we have for 0 < - < 1 sufficiently small,


u−w
� ≥

u�-�−w�-�0�− �u�0�−w�0�0�


-�
≥ 1−C-1−�

and the left-hand side is ≥ 1/2 for - small, showing that u cannot be approx-
imated by continuously differentiable functions in the C� topology.

II.3.4 Convergence in Hardy spaces

We recall that the real Hardy space Hp�RN �, 0 < p < �, introduced by
Stein and Weiss ([SW]), is equal to Lp�RN � for p > 1, is properly contained
in L1�RN � for p = 1, and is a space of not necessarily locally integrable
distributions for 0 < p < 1. For p ≤ 1, Hp�RN � is a substitute for Lp�RN �

([S2]), as the latter is not a space of distributions and has trivial dual if p< 1;
even for p = 1, L1�RN � does not behave as well as Lp�RN �, 1 < p < �,
for example on questions concerning the continuity of pseudo-differential
operators. Let us choose a function ! ∈ ��RN �, with

∫
!dz �= 0 and write

!-�z�= -−N!�z/-�, z ∈ RN , and

M!f�z�= sup
0<-<�


�!- ∗f��z�
�

Then ([S2])

Hp�RN �= �f ∈ �′�RN � 
 M!f ∈ Lp�RN �	�

An obstacle to the localization of the elements of Hp�RN �, 0 < p≤ 1, is that
*u may not belong to Hp�RN � for * ∈ C�c �RN � and u ∈ Hp�RN �. A way
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around this is the definition of localizable Hardy spaces hp�RN � ([G],[S2])
by means of the truncated maximal function

m!f�z�= sup
0<-≤1


�!- ∗f��z�
�

hp�RN �= �f ∈ �′�RN � 
 m!f ∈ Lp�RN �	�

It turns out that if ! is replaced in the definition of hp�RN � by any other
function ! ∈ ��R� only required to satisfy

∫
! �= 0, this will not change

the space hp�RN �. It is also known that the space hp�RN � is stable under
multiplication by test functions and also that hp�RN �=Lp�RN � for 1 <p<�.
For 0 < p ≤ 1, which we henceforth assume, hp�RN � is a metric space with
the distance d�f� g� = ∫

�m!�f − g��z��p dz. If � ⊂ RN is an open set, the
space H

p
loc��� is the subspace of 
′��� of the distributions u such that

*u ∈ hp�RN � for all test functions * ∈ C�c ���. A sequence un converges
to zero in H

p
loc��� if *un → 0 in hp�RN � for every * ∈ C�c ���. We have

Theorem II.3.9. Let � be a locally integrable structure with first integrals
Z1� � � � �Zm, defined in a neighborhood of the closure of W = Bx×Bt. There
exists a neighborhood U ⊂ W of the origin such that for any u ∈ H

p
loc�W�,

0 < p <�, satisfying �u= 0,

E�u�x� t�−→ u�x� t� in H
p
loc�U�� � −→�� (II.36)

As usual, we may replace the operator E� in (II.36) by a convenient sequence
of polynomials in Z, P��Z1� � � � �Zm�.

Proof. Since H
p
loc�W� = L

p
loc�W� for p > 1, Theorem II.3.9 follows from

Theorem II.3.1 for these values of p and it is enough to assume that 0 <p≤ 1.
The space C�c �W� is continuously included in H

p
loc�W� and the theorem may

be proved by showing once again that

lim
�→�G�v= hv in hp�RN �� ∀v ∈ C�c �W� (II.37)

�G�w�hp ≤ C�w�hp ∀w ∈ hp�RN � (II.38)

with the notation �w�hp = �
∫
�m!w�z��p dz�1/p, in spite of the fact that w→

�w�hp is not a norm for p < 1. To prove (II.37) and (II.38) we use the atomic
decomposition of hp ([G],[S2]). An hp atom, p≤ 1, is a bounded, compactly
supported function a�z� satisfying the following property: there exists a cube
Q with sides parallel to the coordinate axes that contains the support of a and
furthermore
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80 The Baouendi–Treves approximation formula

(i) 
a�z�
 ≤ 
Q
−1/p, a.e., with 
Q
 denoting the Lebesgue measure of Q;
(ii)

∫
z� a�z�dz= 0, 
�
 ≤ N�1/p−1�, if the side length of Q happens to be

less than 1.

Notice that if the support of a is contained in a cube Q such that (i) holds and
the side of Q has length ≥ 1, then a is an atom, as condition (ii) is vacuous
and only (i) is required in this case.

As always, (II.37) follows from the convergence G�v→ v in C�c ���,
v ∈ C�c ���. So, to prove Theorem II.3.9, we need only show (II.38) and
the density of C�c �RN � in hp�RN �. To prove the density, it is enough to
approximate hp atoms by smooth hp atoms in the hp norm. This is simply
approximating a rough atom a by the convolution a- = a∗*-, where *-�z�=
-−N*�z/-�, and * ∈ C�c �RN � has integral equal to 1. Then, a- satisfies the
vanishing moments condition (ii) because a does and satisfies (i) for a cube
Q slightly larger than the one that worked for a, if - > 0 is sufficiently small.
Moreover, a- → a in the hp ‘norm’ as -→ 0. To check the last fact use
Hölder’s inequality to write∫

�m!�a−a-��z��
p dz≤ 
Q
1−p/2�m!�a−a-��L2

≤ C
Q
1−p/2�M�a−a-��L2

≤ C
Q
1−p/2�a−a-�L2

where we have majorized the maximal function m!�a − a-� by the
Hardy–Littlewood maximal function M�a−a-� which is continuous in L2.

Any w ∈ hp can be written as a convergent series in hp, w=∑
k �kak, where

the ak are atoms and �k are complex numbers such that
∑

k 
�k
p ∼ �w�hp

([S2]) (since atoms may be approximated by smooth atoms we may even
assume that ak ∈ C�c �RN � for all k). Then, to prove (II.38) it is enough to
verify that there is a constant C > 0 such that for all hp atoms a�z�

�G�a�php =
∫

�m!G�a�z��
p dz≤ C� � ≥ 1� (II.39)

Indeed, ∫ (
m!G�

∑
k

�kak

)p

dz≤
∫ (∑

k


�k
m!G�ak

)p

dz

≤∑
k


�k
p
∫

�m!G�ak�
p dz

because p≤ 1. We assume without loss of generality that !≥ 0 is supported in
the unit ball (in fact, changing the function ! by any other function in ��RN �
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with nonvanishing integral will produce an equivalent ‘norm’ in Hp�RN �).
We set F�x� = e−3
x
2/4, x ∈ Rm, F��x� = �−mF�s/�� and we check that by
the estimates of Section II.3.1 (see (II.24)):


�!- ∗G�a��x� t�
 ≤ C
!- ∗ �F�

�x�∗a��x� t�

= C
�!- ∗a�

�x�∗F��x� t�
� � = �−1/2�

where the symbol
�x�∗ denotes convolution in the x-variable. Let Q=Q1×Q2,

Q1 ⊂Cm, Q2 ⊂Cn, be a cube containing the support of a. Thus, invoking (i),
we get

m!�G�a��x� t�≤ C
Q
−1/p(Q2
�t�� (II.40)

Here and in the sequel, (A will denote the characteristic function of a measur-
able set A. Let Q∗1 (resp. Q∗∗1 ) be the cube in Rm concentric with Q1 having
twice (resp. four times) the side length. Then (II.40) shows that∫

Q∗∗1 ×Rn

m!�G�a��x� t�
p dx dt ≤ C� (II.41)

with C > 0 independent of 0 < -≤ 1, � ≥ 1, a�z� an atom. Thus, (II.39) will
be proved as soon as we obtain∫

�Rm\Q∗∗1 �×Rn
sup

0<-≤1

!- ∗ �F�

�x�∗a��x� t�
p dx dt ≤ C� 0 < � ≤ 1� (II.42)

Assuming that !�x� t�=!1�x�!2�t�, !1 and !2 supported in the unit ball of

Rm and Rn respectively, we are led to consider the convolution !1
-

�x�∗a�x�∗F� .
In order to simplify the notation we simply write !1

- ∗a∗F� , letting t play
the role of a parameter. Let us assume first that the side r of the cube Q

is ≥ 1. Since !1 is supported in the unit ball, !1
- ∗ a �= a-, 0 < - ≤ 1, is

supported in Q∗1. Therefore, if x % Q∗∗1 , letting x0 be the center of Q1 and
CL = supx∈Rn 
x
LF�x�, we have


�!1
- ∗a∗F���x� t�
 ≤ (Q2

�t�
∣∣∣∫ a-�y� t�F��x−y�dy

∣∣∣
≤ CCL(Q2

�t�
Q
−1/p
Q∗1
�−m

[ 
x−x0

�

]−L

where we have used that 
x− x0
 ∼ 
x− y
 for y ∈ Q∗1 and x % Q∗∗1 . Since

Q∗1
 = �2r�m ≤ �2
x−x0
�m and �L−m ≤ 1 if we take L > m, we obtain for a
large integer d = L−m


�!1
- ∗a∗F���x� t�
 ≤ C(Q2

�t�
Q
−1/p
x−x0
−d�
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Convolving with !2
-�t� gives, for x %Q∗∗1 and t ∈ Rn,


!- ∗ �F�

�x�∗a��x� t�
 ≤ C
Q
−1/p
x−x0
−d�!2
-

�t�∗(Q2
��t�

≤ C
Q
−1/p
x−x0
−d(Q∗2�t��

Choose d=m+1. If we take the supremum in 0 < -≤ 1, raise both sides to
the pth power and integrate in �Rm\Q∗∗1 �×Rn, we obtain (II.42), under the
assumption r ≥ 1.

Let us assume now that r < 1, so a�z� satisfies the moment conditions (ii).
It is clear that these properties are inherited by a-�z�, i.e.,

∫
z� a-�z�dz= 0,


�
 ≤ N�1/p−1�. We start by writing F�x� as a convergent series in ��Rm�,
F�x�=∑

k F
�k��x� with F�0� supported in the unit ball B = B�0�1� and each

F�k� supported in some ball of radius 1. We aim at proving (II.42) with F�k�

in the place of F . Using the vanishing of the moments of a

�a-
�x�∗F�k�

� ��x� t�= (Q∗2�t�
∫

a�y� t�G�k�
��-�x−y�dy

=
∫

a�y� t�
G�k�
��-�x−y�−qx�-�y��dy (II.43)

where G�k�
��- = !1

- ∗F�k�
� and qx�-�y� is the Taylor polynomial of degree d of

the function y→G�k�
��-�x−y� expanded about x0 and d is the integral part of

N�1/p− 1�. The usual estimates for the remainder of the Taylor expansion
imply that the integrand in (II.43) is ≤ C
Q
−1/p�−�d+1+m� rd+1. We assume
first that k= 0 so F�0� is supported in the unit ball. Since 
x−x0
 ≤ C
x−y

when y ∈Q∗1 and x %Q∗∗1 , 
x−y
 ≤ � on the support of F�0�

� �x−y�, and a is
supported in the cube Q∗1 of measure �2r�m it follows that for any 0 < % ≤ 1
and 0 < � ≤ 1


�a- ∗F�0�
� ��x� t�
p ≤ C0(Q2

�t�

(
r


x−x0

)�d+m+1�p

� x %Q∗∗1 �

which after integration gives∫
�Rm\Q∗∗1 �×Rn

sup
0<-≤1


!- ∗ �F �0�
� ∗a��x� t�
p dx dt ≤ C0� (II.44)

On the other hand, the proof of (II.41) shows that∫
Q∗∗1 ×Rn

sup
0<-≤1


!- ∗ �F �0�
� ∗a��x� t�
p dx dt ≤ C0�

which combined with (II.44) gives∫
Rm×Rn

sup
0<-≤1


!- ∗ �F �0�
� ∗a��x� t�
p dx dt ≤ 2C0� (II.45)
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For other values of k we consider an appropriate translate F̃ �k� of F�k� so
that F̃ �k� is supported in B�0�1�. If for any given � we replace the atom a

by a convenient translate ã, which of course is also an atom, we may write
a- ∗F�k�

� = ã- ∗ F̃ �k�
� . Reasoning as before we get the analogue of (II.45):∫
Rm×Rn

sup
0<-≤1


!- ∗ �F �k�
� ∗a��x� t�
p dx dt ≤ Ck� (II.46)

The proof also shows that there is a continuous seminorm p in � involving
derivatives of order ≤ d+ 1 such that Ck ≤ p�F�k�� and since the series
F =∑

k F
�k� converges absolutely in � we see that

∑
k Ck < �. Estimates

(II.46) imply (II.41) by subadditivity and the theorem is proved.

II.4 Applications

In this section we discuss two typical applications of the Baouendi–Treves
approximation formula. The first one deals with extensions of CR functions
and the second with uniqueness of solutions of the equation �u = 0 where
� is a locally integrable structure. The principle that governs the first appli-
cation is conceptually very simple: suppose that we know that a sequence of
polynomials P����, � ∈ Cm, converges uniformly in a compact set K ⊂ Cm,
then it converges uniformly in the holomorphic convex hull K̂ of K in Cm.
We recall that

K̂ = ⋂
P∈�

�� ∈ Cm 
 
P���
 ≤ sup
K


P
	�

where � denotes the space of polynomials in m complex variables. Since on
a ball that contains K any entire function, that is any holomorphic function
defined throughout Cm, can be uniformly approximated by the partial sums
of its Taylor series, we also have

K̂ = �� ∈ Cm 
 
f���
 ≤ sup
K


f 
 for all entire functions f	�

Let u ∈ C0�W� satisfy �u = 0 on W and let K = Z�V� where V ⊂ U and
U , W are the neighborhoods in the statement of Theorem II.1.1. We already
noticed that we may write u = û 
Z on V where û ∈ C0�K� because u is
constant on the fibers of Z in U . Now, we have a function Û ��� defined
on K̂ by Û ��� = lim�→� P����, � ∈ K̂, which clearly extends û. Depending
on the geometry of Z�V�, K̂ may have nonempty interior and on this open
set the extension Û will be holomorphic because it is the uniform limits of
polynomials in � . Composition with Z gives the required extension. When u
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84 The Baouendi–Treves approximation formula

is not continuous but, say, belongs to Lp, things are technically more involved
but essentially the same principle works.

This type of approach may also be seen at work in the following simple
example. Consider the operator in R2

L= �

�t
−3it2 �

�x
(a)

with first integral Z�x� t�= x+ it3. Indeed, it is easily verified that LZ= 0 and
clearly dZ never vanishes. The operator L has real analytic coefficients and
is elliptic off the x-axis but is not elliptic at t = 0, nevertheless it shares with
elliptic vector fields with real analytic coefficients the following regularity
property: if u is a C1 solution of Lu= 0, then u is real-analytic ([M]). This
is also true for distribution solutions (thus, (a) is analytic hypoelliptic) but to
keep matters simple let us restrict ourselves to classical solutions. To prove the
claim, it will be enough to prove that u is real-analytic at any point �x�0� of
its domain, since for points �x� t� with t �= 0 this follows from ellipticity. Let
us prove, for instance, that u is real-analytic at the origin in case it is defined
in a neighborhood of the origin. By Theorem II.1.1 we may find � > 0 such
that for 
x
 ≤ � and 
t
 ≤ � the uniform limit u�x� t� = lim�→� P��x+ it3�

holds for a certain sequence of polynomials P�, � ∈ Z+. This implies that
the sequence P��z� = P��x+ iy� is a Cauchy sequence in the space C0�K�

where K = 
−����× 
−�3� �3�. Hence, lim�→� P��z�
�= û�z� is a continuous

function on K which is a holomorphic function on �−����× �−�3� �3� and
we have that u�x� t� = û�x+ it3� for 
x
� 
t
 ≤ �. Since û is real-analytic in
a neighborhood of the origin and so is Z�x� t� = x+ it3, it follows that u is
real-analytic in a neighborhood of the origin as we wished to prove.

II.4.1 Extendability of CR functions

Consider the Heisenberg group

Hn � Cn×R= ��z� s�= �z1� � � � � zn� s� 
 z ∈ Cn� s ∈ R	

with the group law

�z� s� · �w� s′�=
(
z+w� s+ s′ +�

n∑
j=1

zjw̄j

)
�

Then Hn can be topologically identified with the boundary of the Siegel upper
half-space

Dn+1 = ��z1� � � � � zn+1� ∈ Cn+1 
 �zn+1 >
n∑

j=1


zj
2	
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via the map

Z 
 �z1� � � � � zn� t� �−→ �z1� � � � � zn� t+ i
z
2�� (II.47)

This identification endows Hn with the CR structure transported from the
boundary �Dn+1 which possesses a standard CR structure as a smooth boundary
of an open subset of Cn+1 induced by the anti-holomorphic differentiations.
A function f ∈ C1�Hn� (or more generally a distribution) is a CR function
(resp. CR distribution) if and only if it satisfies the overdetermined first-order
linear system of equations

L̃jf =
�f

�z̄j

− izj

�f

�s
= 0� j = 1� � � � � n� (II.48)

Observe that the vector fields L̃j are left-invariant under the action of
Hn. The components of the map (II.47), that is, the functions Z1�z� s� =
z1� � � � �Zn�z� s�= zn, W�z� s�= s+ i
z
2 satisfy (II.48) and it is of interest to
determine which solutions of (II.48) may be expressed as the composition of
the map (II.47) with a holomorphic function defined in Dn+1 and having a
suitable trace in �Dn+1. It is known ([FS]) that a function f ∈C1�Hn� is a CR

function if and only if there exists a function F ∈ C1�D
n+1

� which is holo-
morphic in Dn+1 and whose composition with the map (II.47) is equal to f .
There is also a similar local result due to Hans Lewy ([L1]) which holds in
the general set-up of CR structures of hypersurface type with nondegenerate
Levi form which we now describe. Consider a hypersurface � in Cn+1 with
the CR structure � induced by the standard anti-holomorphic differentiations
of Cn+1. We may assume that, in a suitable neighborhood of the origin in
Cn+1, � is given by

t =!�z1� z2� ���� zn� s�� zi ∈ C� s ∈ R� i= 1� ���� n

where

!�z� s�=
n∑

i�j=1

�2!

�zj�z̄k

�0�0�zjz̄k+O�
z
3+
s

z
+ s2��

Then � is orthogonal to the differential of the functions

Zj�z� s�= zj� j = 1� ���� n� z= �z1� ���� zn�

W�z� s�= s+ i!�z� s��

and generated by the vector fields

Lj =
�

�z̄j

− i!z̄j
�z� s�
1+ i!s�z� s��

−1 �

�s
� j = 1� ���� n� (II.49)
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Using zj and w = s+ it as a system of coordinates, the Levi form at �0�ds�
is represented by the matrix

�2!

�zk�z̄j

�0�0��

The aforementioned result of Hans Lewy asserts that, when the Levi form of
� at �0�ds� has a positive eigenvalue, there exists a neighborhood V of the
origin in Cn+1 such that every continuous function satisfying

Lju= 0 (II.50)

in Z−1��∩V�, Z = �z1� ���� zn� s+ i!�z� s��, can written as

u= F 
Z
where F is a continuous function defined in ��z�w� ∈ V� t ≥ !�z� s�	 and
holomorphic in V+ = ��z�w� ∈ V� t > !�z� s�	.

We now return to the Heisenberg group Hn and recall that the (global)
holomorphic Hardy space � p�Dn+1�, 0 < p <�, is the set of functions F ,
holomorphic in Dn+1, which satisfy

sup
0<&<�

∫
C×R


F�z� s+ i�
z
2+&��
p dm�z�ds <��

Here dm is the Lebesgue measure on Cn, ds is the Lebesgue measure on the
real line and it turns out that the pullback of the product measure dm× ds
is the Haar measure on Hn. If F ∈� p�Dn+1�, F has a pointwise boundary
value f at almost every point of �Dn+1 given by the normal limit which exists
also in Lp norm and, of course, f is a CR distribution. We now prove an
analogue of Lewy’s local extension result within the framework of local Lp

spaces, 1≤ p <�.

Theorem II.4.1. Let � be a smooth hypersurface of Cn+1 passing through the
origin and assume that the Levi form has a nonzero eigenvalue. Then, for any
1≤ p <� and f ∈ L

p
loc��� which is a CR distribution in a neighborhood of

the origin, there exists an open set V � 0 of Cn+1 and a holomorphic function
F in Lp�V+� (V+ denotes the portion of V lying on the ‘convex’ side of �)
such that f is the trace of F .

Proof. In view of the hypothesis we may assume V+ is given by t=�zn+1 >

!�z� s� with

!�z� s�= 
z1
2+
n∑

j=2

%j
zj
2+O�
z
3+
s

z
+ s2� (II.51)
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where each %j may assume the values +1, −1, or 0. We will assume initially
that the remainder terms vanish identically because the proof is very simple
in this case. Hence, we assume that

!�z� s�=!�z�= 
z1
2+
n∑

j=2

%j
zj
2� (model case)

Since f is a CR function, it follows that f 
 Z satisfies the overdeter-
mined system (II.50) where the vector fields Lj are given by (II.49). By
Theorem II.3.1 there is a sequence of polynomials P��Z�, Z = �z1� ���� zn� s+
i!�z� s�� that converges to f 
Z in Lp norm in a neighborhood of the origin
in Cn

z ×Rs. We may assume that the closure of the Cartesian product of
the polydisk $�0�2

√
a� of radius 0 < a ≤ 1 times the interval �−a�a� is

contained in that neighborhood. Let us write z′ = �z2� � � � � zn�. Then, for each
z′ and t fixed, the set

�z1 
 �z1� z
′� s+ it� ∈ V+	

is a disk centered at the origin of radius R�z′� t� = �t−∑n
j=2 %j
zj
2�1/2 if

�t−∑n
j=2 %j
zj
2� ≥ 0 and empty if the latter quantity is negative. We will

denote this (possibly empty) disk by D�z′� t�. Given an entire function u

defined on Cn+1 (actually we will only use that u is harmonic in the first
variable), we wish to estimate the Lp norm of u on

V+a = ��z1� z
′� s+ it� ∈ V+ 
 
zj
 ≤ a� j = 2� � � � � n� 
s
� 
t
 ≤ a	

in terms of the Lp norm of the restriction of u to the boundary of V+. As the
disks D�z′� r� sweep V+, their boundaries sweep the boundary of V+, which
suggests the use of Poisson’s formula. A change to polar coordinates rei� in
the variable �x1� y1� allows us to express the integral

I =
∫ a

−a
ds

∫ a

−a
dt

∫
$′�0�a�

dx′ dy′
∫
D�z′�t�


u�x1+ iy1� z
′� s� t�
pdx1dy1

as

I =
∫ a

−a
ds

∫ a

−a
dt

∫
$′�0�a�

dx′ dy′
∫ 2)

0
d�

∫ R�z′�t�

0

u�rei�� z′� s� t�
p rdr�

It is a well-known consequence of Poisson’s formula and Young’s inequality
for convolution that∫ R�z′�t�

0

∫ 2)

0

u�rei�� z′� s� t�
p d� rdr ≤ R�z′� t�2

2

∫ 2)

0

u�R�z′� t�ei�� z′� s� t�
p d��

A more geometric way of writing this inequality for any disk D is∫
D

u
p dA≤ diam �D�

4

∫
�D

u
p d� (II.52)
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where dA is the element of area and d� indicates arc length. Hence,

I ≤
∫ a

−a
ds

∫
$′�0�a�

dx′ dy′
∫ a

��z′�
dt

R�z′� t�2

2

∫ 2)

0

u�R�z′� t�ei�� z′� s� t�
p d��

where, for a given z′, ��z′� indicates the value of t below which the disk
D�z′� t� becomes empty (if this ever happens) or −a, whichever is larger.
Now the substitution � = R�z′� t� in the integral with respect to t (so that
t =!��� z′�) yields, assuming a is sufficiently small,

I ≤
∫ a

−a
ds

∫
$′�0�a�

dx′ dy′
∫ 2

√
a

−2
√

a

�
3d�

∫ 2)

0

u��ei�� z′� s�!��� z′��
p d�

≤
∫ a

−a
ds

∫
$′�0�a�

dx′ dy′
∫ 2

√
a

−2
√

a

�
d�

∫ 2)

0

u��ei�� z′� s�!��� z′��
p d�

≤ 2
∫
$�0�2

√
a�×�−a�a�


u
Z
p dxdyds�

Thus, we have proved that∫
V+a

u
p dxdydsdt ≤ 2

∫
$�0�2

√
a�×�−a�a�


�u
Z��z� s�
p dxdyds (II.53)

and applying this to u= P�−P�′ we conclude that the sequence P� converges
in Lp�V+a � to a holomorphic function F that has a trace F/�V+a such that
F/�V+a 
Z = f 
Z and this implies that F/�V+a = f , as we wished to prove
(it follows from Cauchy’s formula that Lp-convergence implies local uniform
convergence). To deal with a general ! given by (II.51) we may reason
exactly in the same way, except that now the domains of C

D̃�z′� s� t�= �z1 
 �z1� z
′� s+ it� ∈ V+	

will no longer be round disks centered at the origin. However, they are simply
connected and may be regarded as smooth perturbations of a disk D�z′� t� of
radius R�z′� t� which can be mapped by a Riemann map z1 �→ .�z1� z

′� s� t�
onto D�z′� t�. Thus, we will be able to reason as in the proof of (II.52) as
soon as we prove the following substitute for (II.52):∫

D̃�z′�s�t�

u
p dA≤ C diam �D̃�z′� s� t��

∫
�D̃�z′�s�t�


u
p d�

where C> 0 is independent of �z′� s� t� in a neighborhood of the origin and u

is any harmonic function defined in D̃�z′� s� t� and continuous in its closure.
To simplify the notation we omit any reference to the variables �z′� s� that
play the role of parameters and write z= x+ iy instead of z1 = x1+y1. Thus,
we are led to consider the class �% of smooth functions ��x� y� in R2 whose
Taylor series at the origin is ��x� y�∼ a+bx+cy+x2+y2+O�
z
3�, when
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z→ 0, where 
a
+ 
b
+ 
c
< % and such that 
D���x� y�
 ≤ C� (here % > 0
is a conveniently chosen small number and �C�� is a given fixed sequence of
positive constants). We will need to study the sublevel sets in a fixed small
neighborhood of the origin,

D̃�t�= �z= x+ iy 
 
z
< r� ��x� y� < t	�

for an arbitrary � ∈ �%. Observe that any � ∈ �% has a small local minimum
m at a point z0 = �x0� y0� located close to the origin for small %. It follows
that

m+2−1
z− z0
2 ≤ ��x� y�≤m+2
z− z0
2�
in a neighborhood of the origin and thus

D�z0�
√
t/2�⊂ D̃�m+ t�⊂D�z0�

√
2t��

We see that D̃�m+ t� is empty for t ≤ 0 and contained between concentric
disks of radius comparable to

√
t if t is positive and small. Furthermore,

the implicit function theorem shows that, in the latter case, D̃�m+ t� has a
smooth boundary made up of a simple closed curve contained in the annulus
t/2 < 
z− z0
2 < 2t.

Lemma II.4.2. There exist t0� r0 > 0 such that for all 0 < t ≤ t0 and � ∈
�%, D̃�m+ t� is a relatively compact simply connected open subset of the
disk D�0� r0�. Furthermore, there exists C > 0 such that for every harmonic
function u defined in a neighborhood of the closure of D̃�m+ t� and any
1≤ p <�, the following a priori inequality holds:∫

D̃�m+t�

u
p dA≤ C diam �D̃�m+ t��

∫
�D̃�m+t�


u
p d�� (II.54)

Proof. After a translation, we may assume that z0 = 0. For small t > 0, the
level curve ��x� y� = m+ t, which is implicitly given in polar coordinates
by r2�A���+ rB�r� ��� = t where A��� = � cos2 �+ 2� sin � cos�+ � sin2 �

and all derivatives of B with respect to x and y are bounded, may also be
explicitly expressed by r = r��� t�. Observe that if % is small, � and � are
close to 1 and � is close to zero. Implicit differentiation shows that

r ′ = �r

��
=− rA�+ r2B�

2A+3rB+ r2Br

= O�
√

t�� t→ 0�

Differentiating further the expression above we conclude that the higher-
order derivatives r�n�, n = 1�2� � � � , are also O�

√
t� as t→ 0. Consider a
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dilation of D̃�m+ t�, 
t = �1/
√

t�D̃�m+ t�, whose boundary is given by
Rt���= r��� t�/

√
t = A−1/2���+O�

√
t�. Observe that we also have

dnRt/d�n = dnA−1/2/d�n+O�
√

t� for n≥ 1.

Since (II.54) is invariant under dilations of the domain, it will be enough
to prove it for the dilate 
t that converges in C� to the domain 
0 with
equation R<A−1/2��� as t→ 0. To do so it is enough to show that, for small
t, the derivative F ′t of the Riemann map Ft from 
t to the unit disk satisfies
1/C ≤ 
F ′t 
 ≤ C. Indeed, if u is harmonic in 
t and continuous up to the
boundary, so will be v = u 
F−1

t on the unit disk, and starting from (II.52)
applied to v, the change of variables w = Ft�z� will give∫


t


u
p dA≤ C
∫
�
t


u
p d�� (II.55)

Notice that if we introduce the factor diam �
t� on the right-hand side of
(II.55) the inequality remains valid because 2/

√
2≤ diam �
t�≤ 2

√
2. Hence,

the proof of (II.54) will be finished as soon as we prove

Lemma II.4.3. There exist t0 > 0 and C > 0 such that for 0 ≤ t ≤ t0 the
Riemann map Ft from 
t to the unit disk D satisfies 1/C ≤ 
F ′t 
 ≤ C.

Proof. Let u be the solution of the Dirichlet problem⎧⎨⎩$u= �2u

�x2
+ �2u

�y2
= 0� on 
t�

u
�
t
= u�Rt���e

i��= log�Rt����� 0 ≤ � ≤ 2)�

(II.56)

Let v be the harmonic conjugate of u in 
t (say, normalized by v�0�= 0) and
set ft = u+ iv. Then a Riemann map from 
t onto the unit disk D=D�0�1�
is (cf. the proof of theorem 3.3 in [F])

Ft�z�= ze−ft�z��

Thus, F ′t = e−ft�z��1− zf ′t �z�� and 
F ′t 
 = e−u�z�
1− zf ′t �z�
 which implies, by
the maximum principle, that

C−1 inf

t


1− zf ′t �z�
 ≤ 
F ′t 
 ≤ C sup

t


1− zf ′t �z�
�

with C > 0 independent of t, for small t. Indeed, log�Rt���� converges to
−�1/2� logA���=−�1/2� log
� cos2 �+2� sin � cos�+� sin2 �� as t→ 0 and
the domain 
0 is close to the unit disk for small %. Therefore, to conclude the
proof, we need only show that 
f ′t 
 ≤ 1/2 for small t and %. Since f ′t = ux− iuy

we must show that the derivatives of u are uniformly small in 
t. The domains

t change with t and the analysis may be simplified by mapping 
t ∪ �
t
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onto the fixed domain 
0 ∪ �
o by a diffeomorphism (of manifolds with
boundaries) !t such that all derivatives of !t and !−1

t are bounded uniformly
with bounds that do not depend on t ∈ 
0� t0�. Such !t are easily constructed.
Then, Ut = u
!−1

t is the solution of a Dirichlet problem on 
0 with respect
to an elliptic second-order differential operator Pt�x� y�Dx�Dy�Ut = 0 and in
particular satisfies the boundary condition Ut
�
0

= �log 
!−1
t 
�
�
0

. The coef-
ficients of Pt�x� y�Dx�Dy� depend continuously on t ∈ 
0� t0� as well as their
derivatives. The usual regularity theory of smooth elliptic boundary value
problems implies that there exists a positive integer N> 0 with the following
property: given &> 0 there exists �> 0 such that any function U that satisfies
the equation Pt�x� y�Dx�Dy�U = 0 for some t ∈ 
0� t0�, and has in addition all
tangential derivatives at the boundary bounded up to order N by �, will satisfy
the estimate 
,U�x� y�
 ≤ &. Since 
0 is close to the unit disk for small %,
it follows that �log 
!−1

t 
�
�
0
will have small tangential derivatives up to

any fixed order, and thus Ut = u 
!−1
t will have uniformly small gradient.

The chain rule now implies that u= U 
!t has small gradient, uniformly in
�x� y�∈
t and t ∈ 
0� t0�, proving that 
f ′t 
 = 
,u
 ≤ 1/2 for small t and %.

Since Lemma II.4.3 implies (II.54), Lemma II.4.2 is proved.

As we pointed out, the control of the Lp norm of u on the sublevel sets
D̃�m+ t� in terms of the Lp norm of u on their boundaries �D̃�m+ t� given
by Lemma II.4.2 is all that is needed in order to extend the proof carried out
in the model case to the general case. The proof of Theorem II.4.1 is then
complete.

Remark II.4.4. Stronger results than Theorem II.4.1 are known. In fact, it is
possible to sweep V+ with suitable translates of � so that the Lp norm of the
restriction of F to those translates is uniformly bounded ([Ro]). Theorem II.4.1
then follows from an application of Fubini’s theorem.

II.4.2 Propagation of zeros of homogeneous solutions

Given a locally integrable structure � in a manifold �, and a solution u of
�u= 0 a natural question is: what additional conditions must the solution u

satisfy in order to conclude that u vanishes identically? The local version of
the question is: given p ∈ �, and a neighborhood V of p, what conditions
guarantee that there exists a neighborhood p ∈ U ⊂ V on which u vanishes
identically? A natural additional condition would be to require that u vanish
in some subset of V . In a small neighborhood of p, �u= 0 may be expressed
as an overdetermined system of equations (II.5). To get some insight, let
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92 The Baouendi–Treves approximation formula

us consider the simplest case of a single vector field L = A�x+B�y, 
A
+

B
> 0, defined in an open set �⊂ R2. Since the constant functions u= C

always satisfy Lu= 0 it is apparent that some additional condition is needed;
for instance, requiring that u vanishes at p certainly rules out the nonzero
constants, but for most vector fields this is not enough (there exist, however,
vector fields whose only homogeneous solutions are the constant functions
[N1]). If L = � is the Cauchy–Riemann operator of Example II.1.2, one
could require that u vanishes at p to infinite order which would imply that
u vanishes throughout any connected open set U that contains p. However,
this condition will not be enough for the vector field L= �x since a smooth
function u�y� independent of x could vanish to infinite order at p and yet
not vanish identically in any neighborhood U of p. A better condition for
L= �x would be then to require that u vanishes on the curve 0 = ��p1� y�	,
p = �p1� p2�. So requiring that u vanishes on 0, that is a submanifold of
� of codimension one, works for both � and �x but it does not work for
�y (show this). The main point is that �y is tangent to ��p1� y�	 while the
two previous vector fields are transversal to any vertical line (for a complex
vector field L= X+ iY with real part X and imaginary part Y , L transversal
to 0 means that at least one of the two vectors X and Y is transversal). This
suggests that we should look at the case where u vanishes on a submanifold
0 of codimension one to which L is transversal. Note that if the structure
� of rank n = 1 generated by L is locally integrable, the corank m of L⊥

must be one, so we have N = 2, m= 1, and n= 1. Elaboration of this type
of consideration for the case of a locally integrable structure � of rank n

and corank m defined in a manifold of dimension N = n+m leads to the
following definition:

Definition II.4.5. Let 0⊂� be an embedded submanifold. We say that 0

is maximally real with respect to � if

(i) the dimension of 0 is equal to m;
(ii) for every p ∈ 0, any nonvanishing section L of � defined in a neighbor-

hood of p is transversal to 0 at p.

If local coordinates �x1� � � � � xm� t1� � � � � tn	 vanishing at p are chosen according
to Corollary I.10.2, then �⊥ is generated in a neighborhood of x= 0, t= 0, by
dZ1� � � � �dZm, where Zj�x� t�= xj+i�j�x� t�, �j�0�0�= 0, ���j/�xk�0�0��=
0, 1≤ j� k�≤m, and the vectors L1� � � � �Ln become Lj = �/�tj , j = 1� � � � � n
at the origin. If 0 is maximally real, the vectors �tj


0 are transversal to 0 at
the origin, so by the implicit function theorem we may find locally defined
functions �j�x� such that 0= ��x� ��x�	, where ��x�= ��1�x�� � � � � �n�x��. If

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511543067.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511543067.003


II.4 Applications 93

we perform the change of coordinates x′ = x, t′ = t− ��x� the expression of
Z in the new coordinates is Z′�x′� t′�= x′ + i��x′� t′ +��x′��= x′ + i�′�x′� t′�
and now 0 is given by t′ = 0. In other words, if 0 is maximally real, we
may always assume that the set of coordinates �x� t� of Corollary I.10.2 are
such that not only Z has the form Z�x� t�= x+ i� with � real, ��0�0�= 0,
dx��0�0�= 0 but also that 0 is given locally by 0= ��x�0�	. In particular, if
u is a distribution solution of �u= 0 we may always consider its restriction
to 0, u
0, which is just the trace u�x�0� which we have seen to exist from
considerations on the wave front set of u.

Theorem II.4.6. Let � be a locally integrable structure on the manifold �

and let 0 ⊂� be an embedded submanifold maximally real with respect to
�. If u ∈
′��� satisfies

(i) �u= 0 in �;

(ii) u
0 = 0;

then u vanishes identically in a neighborhood V of 0.

Proof. It is enough to see that any point p∈0 is contained in a neighborhood
U on which u vanishes identically. According to our previous remarks, given
p ∈ 0 we may assume that the special coordinates of Corollary I.10.2 that
were used to prove Theorem II.1.1 are such that 0 is given by 0 = ��x�0�	
and p = �0�0�. We may find open sets 0 ∈ U ⊂W as in Theorem II.1.1 so
that W is contained in the coordinate neighborhood and u is approximated
in U by E�u in the sense of 
′�U�. However, the formula that defines E�u

right after (II.5) shows that E�u�x� t�= 0 because u�x�0� vanishes on 0∩W .
Thus, u≡ 0 on U .

Corollary II.4.7. Let � be a locally integrable structure on a manifold �

and let u ∈ 
′��� satisfy �u = 0 in �. Let L be a local section of �, let
X = �L. Assume that � is an integral curve of X joining the points p and
q ∈�. Then p ∈ supp u &⇒ q ∈ supp u.

Proof. If X vanishes at p then p = q and there is nothing to prove. We
may assume that � 
 
0�1�→� is a nonconstant solution of �′�s�= X 
��s�,
0≤ s≤ 1, with ��0�= q and ��1�= p, so X does not vanish in a neighborhood
of �. Denote by K = supp u the support of u and let us assume for the sake
of a contradiction that p ∈ K and q % K. Replacing p by the first point ��s�

such that ��s� ∈ K we may assume that p and q are as close as we wish
and all points in � between q and p are not in K. We may find a local set
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94 The Baouendi–Treves approximation formula

of generators of �, L
�= L1�L2� � � � �Ln such that in appropriate coordinates

�x� t�, 
x
< 1, 
t
< 2, that rectify the flow of X1
�= X we have

(i) X1 =�L1 =
�

�t1

Xj =�Lj =
�

�tj
+

m∑
k=1

�jk

�

�xk

� j = 2� � � � � n

and p= �0�0�;
(ii) ��s�= �s−1�0� � � � �0�, q = ��0�= �−1�0� � � � �0�;

(iii) for some a > 0 the embedded closed m-ball given by 
x
 ≤ a, t′ = 0,
t1 =−1 does not meet K (here t′ = �t2� � � � � tn�). Since it is an embedded
submanifold with boundary we may denote this m-ball as 00∪�00, where
00 is the corresponding open m-ball.

Consider now the one-parameter family of embedded submanifolds 0� (without
their boundaries) given by the equations

t1 = �−1−�

x
2
a2

� t2 = · · · = tn = 0� 
x
< a� 0 ≤ � ≤ 1�

Since 00∩K = ∅ and �0�0� ∈ 01∩K there is a largest �0 ∈ �0�1� such that
0� ∩K = ∅ for 0≤ � < �0. Note that the submanifolds 0� are all maximally
real with respect to �. Indeed, the vector fields Xj , 1≤ j ≤ n, are transversal
to any 0� . This is clear for j ≥ 2 because 0� is contained in the slice
t2 = · · · = tn = 0 and it is also obvious for j = 1 because ��/�t1� is never
tangent to 0� . Hence, the trace u
0�

is well-defined and furthermore u
0�
= 0

for 0 <�<�0 and, since � �→ u
0�
depends continuously on � , we conclude

that

u
0�0
= 0� (A)

We claim that

0�0
∩K �= ∅� (B)

Indeed, since dist�0�0
�K�= 0, this is certainly true if we replace 0�0

by its

closure 0�0
which amounts to adding to 0�0

its boundary points �0�0
. But,

for any � ∈ 
0�1�, �0� is given by 
x
 = a, t1 =−1, t2 = · · · = tn = 0, so (iii)
shows that �0� ∩K = ∅. Hence, 0�0

∩K = 0�0
∩K �= ∅. However, applying

Theorem II.4.6 to 0�0
, (A) implies that u vanishes in a neighborhood of 0�0

in 
x
< a, 
t
< 2. This contradicts (B).

Let � be a manifold and consider a collection D= �X	 of locally defined,
smooth, real vector fields X. In Chapter III, the notion of orbit of D is
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defined. Suppose now that � is a locally integrable structure and we consider
the collection D� = ��L	 of all vector fields that are real parts of local
sections of �. In this case the orbits of D� are simply called the orbits of
�. In the language of orbits, Corollary II.4.7 implies that if an orbit of �
intersects the support K of a solution u of the equation �u = 0 it must be
entirely contained in K. This is equivalent to saying that K is a union of orbits
of �. Thus, Corollary II.4.7 gives an alternative proof of Theorem III.2.1. The
proof presented in Chapter III follows in a remarkable simple way—thanks
to the use of a criterion of Bony about flow-invariant sets—from a related
uniqueness result that we now describe. An embedded submanifold of �

of codimension 1 will be called a hypersurface. A hypersurface 0 ⊂ � is
noncharacteristic with respect to � at p ∈0 if there exists a local section L of
� defined in a neighborhood of p that is transversal to 0 at p (which means,
changing L by iL if necessary, that X =�L is transversal to 0 at p). Notice
that if u is a solution of �u= 0 defined in a neighborhood U of p, the trace
u
0∩U is defined because u satisfies the equation Lu= 0 for any local section
of �, so choosing L transversal to 0 we see that the wave front set of u does
not contain 0’s conormal directions.

Definition II.4.8. Let � be a formally integrable structure in the manifold
�. We say that � has the Uniqueness in the Cauchy Problem property for
noncharacteristic hypersurfaces if and only if the following holds: for every
hypersurface 0, every point p ∈ 0 such that 0 is noncharacteristic at p and
every distribution solution u of �u= 0 defined in a neighborhood U of p,

u
U∩0 = 0 &⇒ u vanishes in a neighborhood of p.

Corollary II.4.9. The Uniqueness in the Cauchy Problem property for
noncharacteristic hypersurfaces holds for every locally integrable structure �.

Proof. Let 0 be a noncharacteristic hypersurface at p. As usual, we denote
by N the dimension of the manifold �, by n the rank of � and set m=N −n.
In appropriate local coordinates �x� t� we may assume that �⊥ is generated
by dZ1� � � � �dZm, Z = x+ i��x� t�, ��0�0� = 0, dx��0�0� = 0, p = �0�0�.
Hence, � is spanned at �0�0� by

�

�t1

� � � � �
�

�tn
�

and since � is transversal to 0 at p = �0�0�, the implicit function theorem
gives a local representation of 0 as t1 = t1�t

′� x�, t′ = �t2� � � � � tn�, after renum-
bering the t-coordinates if necessary. Let 01 be given by t1 = t1�0� x�, t

′ = 0.
Then, 01 is a maximally real submanifold contained in 0 that contains
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p = �0�0�. Consider now a neighborhood U of p = �0�0� and u ∈ 
′�U�

such that �u= 0 and u
U∩0 = 0. Since 01 ⊂ 0 we also have that u
U∩01
= 0

and it follows from Theorem II.4.6 that u vanishes in a neighborhood of p.

Example II.4.10. P. Cohen ([Co]) (see also [Zu] and the references therein)
constructed smooth functions u�x� y� and a�x� y� defined on R2 such that

(1) Lu�x� y�= �u

�y
+a�x� y�

�u

�x
= 0;

(2) u�x� y�= a�x� y�= 0 for all y ≤ 0;
(3) supp u= supp a= ��x� y� 
 y ≥ 0	.

Thus, the formally integrable structure � spanned by the vector field L fails to
have the Uniqueness in the Cauchy Problem property for the noncharacteristic
curve 0 = �t = 0	 and, by Corollary II.4.9, cannot be locally integrable in
any open set that intersects the x-axis. The construction of a�x� y� shows
that a�x� y� is real-analytic for y �= 0, so for any point p = �x� y� with y �= 0
we may find a function Z defined in a neighborhood of p such that LZ = 0
and dZ�p� �= 0. On the other hand, if Z is a smooth function defined in a
neighborhood of p = �x�0� such that LZ = 0 we must have that dZ�p�= 0,
otherwise � would be locally integrable in some open set that intersects the
x-axis, a contradiction. A nonlocally integrable vector field was first exhibited
by Nirenberg ([N1]) who used a completely different method to construct a
vector field whose only homogeneous solutions are contant.

II.4.3 An extension

In the applications to uniqueness we have seen so far, the ‘initial’ maximally
real manifold t = 0 is in the interior of the domain where the solution u of
�u = 0 is defined. This is quite convenient because in this case the trace
u�·� t� exists and t �→ u�·� t� is a continuous function of t valued in the space
of distributions. However, in the study of one-sided Cauchy problems or
boundary values of solutions, it is desirable to consider the case where the
solution is not defined in a neighborhood of the ‘initial’ manifold. We will
say that a set + ⊂ Rn\�0	 is a cone (or a cone with vertex at the origin to be
explicit) if t ∈ +⇐⇒ &t ∈ + ∀ 0 < &<�. A set +T ⊂Rn\�0	, 0 < T , will be
called a truncated cone if there exists a cone + such that +T = + ∩ �
t
< T	.
An open truncated cone is a truncated cone which is an open set. Notice that
the origin is in the closure of + and +T but it does not belong to them. A cone
+ ′ is said to be a proper subcone of + if + ′ ∩ �
x
 = 1	 is a compact subset of
+ . This is, for instance, the case if + and + ′ are circular cones with the same
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axis and + ′ has a smaller aperture than + . If + ′ is a proper subcone of + and
T ′ <T we say that + ′T ′ is a proper truncated subcone of the truncated cone +T .
When n= 1, a truncated cone is an interval of the form �0� T� or �−T�0� or
the union of both. If W ⊂Rm is an open set and +T ⊂Rn is an open truncated
cone, the set W ×+T ⊂ Rm×Rn is usually called a wedge with edge W .

Consider a locally integrable structure � of rank n in an N -manifold and
assume that the standard coordinates �x� t� used in the proof of Theorem II.1.1
had been chosen in a neighborhood of the origin. Let Bx⊂Rm, m=N−n, be a
ball centered at the origin, +T ⊂Rn a truncated open cone, and assume that u is
a distribution satisfying the system (II.5) in Bx×+T . Under this circumstances
we can assert that the trace u
Bx×�t	 = Ttu�x�= u�x� t� is defined and depends
smoothly on t ∈ +T as a map valued in 
′�Bx�, but u�x�0� might not be
defined. On the other hand, we may assume that limt→0 Ttu

�= bu exists in

′�Bx� as t→ 0.

If n=N −m= 1, Bx×�0	 divides �= Bx×�−T�T� into two components
�+ = ��x� t� ∈ � 
 t > 0	 and �− = ��x� t� ∈ � 
 t < 0	 and in this case
we consider distributions u that satisfy the system (II.5) in �+ and such
that limt↘0 Ttu = bu exists. In other words, we assume that u ∈ C0�+T ∪
�0	�
′�Bx�� (resp. u ∈ C0�
0� T��
′�Bx�� for n = 1). We see that E�u can
still be defined by

E�u�x� t�= ��/)�m/2
∫

Rm
e−�
Z�x�t�−Z�x′�0��2u�x′�0�h�x′�det Zx�x

′�0�dx′

as soon as we interpret u�x′�0� as bu�x′�. For a given t ∈ +T and 0 < % < 1
consider

R%
�u�x� t�=G�u�x� t�−E%

�u�x� t�

where E%
�u is given by

E%
�u�x� t�= ��/)�m/2

∫
Rm

e−�
Z�x�t�−Z�x′�0��2u�x′� %t�h�x′�det Zx�x
′�0�dx′

and

G�u�x� t�= ��/)�m/2
∫

Rm
e−�
Z�x�t�−Z�x′�t��2u�x′� t�h�x′�det Zx�x

′� t�dx′�

As in the proof of Theorem II.1.1, the remainder R%
�u is given by

R%
�u�x� t�=

∫

%t�t�

m∑
j=1

rj�x� t� t
′� ��dt′j�

where

rj�x� t� t
′� ��= ��/)�m/2

∫
Rm

e−�
Z�x�t�−Z�x′�t′��2u�x′� t′�Ljh�x
′�det Zx�x

′� t′�dx′�
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Letting %→ 0 we obtain

R�u=G�u−E�u�

with R� given by

R�u�x� t�=
∫

0�t�

m∑
j=1

rj�x� t� t
′� ��dt′j�

rj�x� t� t
′� ��= ��/)�m/2

∫
Rm

e−�
Z�x�t�−Z�x′�t′��2u�x′� t′�Ljh�x
′�det Zx�x

′� t′�dx′�

The proof of Theorem II.1.1 now shows that there is a ball B′x = B′x�0� �� and
proper subcone + ′& ⊂ +T such that R�u→ 0 uniformly in B′x×+ ′& as �→�.
Indeed, we can find a fixed k such that vj�x� t�= �1−$x�

−k
�Ljh�x��u�x� t�

detZx�x� t��� is continuous in Bx×+ ′&, since the distributions x→Ljh�x�u�x� t�

detZx�x� t� lie in a bounded set of some Sobolev space when t ranges
over a compact subset of +T ∪ �0	 because u ∈ C0�+T ∪ �0	�
′�Bx��. Since
the continuity of +T ∪ �0	 � t→ Ttu�x� ∈ 
′�Bx� implies the continuity of
+T ∪ �0	 � t→ D�

xTtu�x� = TtD
�
x u�x� ∈ 
′�Bx� and equation (II.5) allows

us to express the derivatives of u with respect to t as a linear combination
with smooth coefficients of derivatives of u with respect to x for t �= 0, we
conclude that actually u ∈ C��+T ∪ �0	�
′�Bx��. The derivatives of R�u can
be estimated in the same fashion and we obtain

Corollary II.4.11. Let u∈C0�+T ∪�0	�
′�Bx�� (resp. u∈C0�
0� T��
′�Bx��

for n= 1) be a distribution satisfying the system (II.5) in �= Bx×+T (resp.
in �+ = Bx× �0� T� for n = 1). There exist � > 0, and a proper subcone
+ ′& ⊂ +T (resp. a number & > 0 for n = 1) such that for all multi-indexes
� ∈ Zm

+ and � ∈ Zn
+

D�
xD

�
t R�u�x� t�−→ 0 uniformly on Bx�0� ��× �+&∪ �0	�

(resp. on Bx�0� ��× 
0� &� for n= 1).

Corollary II.4.11 reduces the study of the approximation of u by E�

to the problem of approximating u by G�u. As an illustration, we sketch
the proof of a version of the approximation for wedges. Consider a wedge
W = Bx×+T—where Bx ⊂Rm is a ball centered at the origin and +T ⊂Rn is
an open truncated cone—and a locally integrable structure � with first inte-
grals Z1 = x1+ i�1�x� t�� � � � �Zm = xm+ i�m�x� t�, ��0�0�= dx��0�0�= 0,
defined in a neighborhood of the closure of W . Let u∈C0�+T ∪�0	�Lp

loc�Bx��,
1 ≤ p <� satisfy �u= 0 and we wish to approximate u by polynomials in
Z in the topology of C0�+ ′&∪ �0	�Lp

loc�Bx����, where + ′& is a proper subcone
of + of height &, Bx��� ⊂ Bx is a ball of radius � and &�� > 0 are small.
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Shrinking Bx we may assume that u�·� t� ∈ Lp and by Corollary II.4.11 it will
be enough to approximate u by G�u in the norm

sup
t∈+T

�u�·� t�−G�u�·� t��Lp�Rm��

By the proof of Theorem II.3.1 we know that the norm of G� as an operator
on Lp�Rm� (depending on t as a parameter) may be bounded by a constant
independent of t ∈ +T . Thus, it is enough to check that G� converges strongly
to the identity on a dense subset of C0�+T ∪ �0	�Lp�Bx��. This is indeed the
case, because if v�x� t� is continuous and supported in �+T ∪ �0	�×B′x where
B′x is a ball concentric with Bx and of smaller radius, we know by the proof of
Theorem II.1.1 that G�v�x� t�→ v�x� t� uniformly on +T×Bx and this implies
convergence in the norm of C0�+T ∪ �0	�Lp�Bx��. This proves

Theorem II.4.12. Let � be a locally integrable structure with first integrals
Z1� � � � �Zm, defined in a neighborhood of the closure of W = Bx×+T . There
exist a ball B′x ⊂ Bx and a proper truncated subcone + ′& of +T such that for
any u ∈ C0�+T ∪ �0	�Lp�Bx��, 1≤ p <�, satisfying �u= 0

E�u�x� t�−→ u�x� t� in C0�+ ′&∪ �0	�Lp�B′x��� � −→�� (II.57)

As usual, we may replace the operator E� in (II.57) by a convenient sequence
of polynomials in Z, P��Z1� � � � �Zm�.

Notes

The approximation formula of Section II.1 for classical solutions was first
proved by Baouendi and Treves in [BT1], building upon their previous work
([BT2]) that dealt with a corank one system of real-analytic vector fields.
For distribution solutions, the proof in [BT1] relied on a local representa-
tion formula proved under a supplementary hypothesis on the locally inte-
grable structure. This representation formula, which is of independent interest
and states that any distribution solution u of �u = 0 may be written as
u = P�x�D�v, where v is a classical solution of �v = 0 and P�x�D� is a
differential operator that commutes with the local generators Lj , 1≤ j ≤ n, of
�. This representation formula was proved in general by Treves in [T4], who
also stated and proved the approximation formula for distribution solutions
in all generality. Metivier studied the case of a nonlinear first-order analytic
single equation and proved an approximation formula for solutions of class
C2, obtaining as a consequence uniqueness in the Cauchy problem ([Met]).
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The convergence in Lp of the approximation formula for solutions in Lp

is an unpublished observation of S. Chanillo and S. Berhanu; the proofs
presented here for Lp as well as for other functional spaces follow [HMa1].

It was soon realized by researchers in several complex variables theory that
the approximation formula, although formulated in the rather general context
of locally integrable structures, could be applied with success to deal with
classical questions and it was used early as a tool in the problem of extending
CR functions ([BP],[W1], [BT3]) and other matters like the study of the Radó
property for CR functions ([RS]) (see also [HT1] for the Radó property for
solutions of locally solvable vector fields).

Because the approximation is obtained through the operator E� that depends
linearly on the trace of the solution on a maximally real submanifold, it is
hardly surprising that it would have consequences for uniqueness questions.
One remarkable feature is that it applies directly to distribution solutions in
sharp contrast with other methods, like Carleman’s estimates, which were
devised to deal with functions rather than with less regular distributions.
Before the definition of orbits by Sussmann in 1973 ([Su]), the propagation
of zeros had been observed for some operators with real-analytic coefficients
([Z]) using as propagators Nagano’s leaves ([Na]), which coincide with Suss-
mann’s orbits in the real-analytic set-up. The theorem stating that the support
of a solution is a union of Sussmann’s orbits was initially stated and proved
in [T4]. Another early application to uniqueness is [BT4]. Nowadays, the use
of the approximation formula is so standard that probably there is no point
in keeping track of its use in the literature. Anyway, we mention [BH3] as a
recent uniqueness result that takes advantage of the approximation formula.
Another application outside the scope of the theory of holomorphic func-
tions is its use in the study of removable singularities for solutions of locally
solvable vector fields ([HT2], [HT3], [HT4]).
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